1 // SPDX-License-Identifier: GPL-2.0-only
3 * Driver for Atmel AT32 and AT91 SPI Controllers
5 * Copyright (C) 2006 Atmel Corporation
8 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/pm_runtime.h>
25 #include <trace/events/spi.h>
27 /* SPI register offsets */
30 #define SPI_RDR 0x0008
31 #define SPI_TDR 0x000c
33 #define SPI_IER 0x0014
34 #define SPI_IDR 0x0018
35 #define SPI_IMR 0x001c
36 #define SPI_CSR0 0x0030
37 #define SPI_CSR1 0x0034
38 #define SPI_CSR2 0x0038
39 #define SPI_CSR3 0x003c
40 #define SPI_FMR 0x0040
41 #define SPI_FLR 0x0044
42 #define SPI_VERSION 0x00fc
43 #define SPI_RPR 0x0100
44 #define SPI_RCR 0x0104
45 #define SPI_TPR 0x0108
46 #define SPI_TCR 0x010c
47 #define SPI_RNPR 0x0110
48 #define SPI_RNCR 0x0114
49 #define SPI_TNPR 0x0118
50 #define SPI_TNCR 0x011c
51 #define SPI_PTCR 0x0120
52 #define SPI_PTSR 0x0124
55 #define SPI_SPIEN_OFFSET 0
56 #define SPI_SPIEN_SIZE 1
57 #define SPI_SPIDIS_OFFSET 1
58 #define SPI_SPIDIS_SIZE 1
59 #define SPI_SWRST_OFFSET 7
60 #define SPI_SWRST_SIZE 1
61 #define SPI_LASTXFER_OFFSET 24
62 #define SPI_LASTXFER_SIZE 1
63 #define SPI_TXFCLR_OFFSET 16
64 #define SPI_TXFCLR_SIZE 1
65 #define SPI_RXFCLR_OFFSET 17
66 #define SPI_RXFCLR_SIZE 1
67 #define SPI_FIFOEN_OFFSET 30
68 #define SPI_FIFOEN_SIZE 1
69 #define SPI_FIFODIS_OFFSET 31
70 #define SPI_FIFODIS_SIZE 1
73 #define SPI_MSTR_OFFSET 0
74 #define SPI_MSTR_SIZE 1
75 #define SPI_PS_OFFSET 1
77 #define SPI_PCSDEC_OFFSET 2
78 #define SPI_PCSDEC_SIZE 1
79 #define SPI_FDIV_OFFSET 3
80 #define SPI_FDIV_SIZE 1
81 #define SPI_MODFDIS_OFFSET 4
82 #define SPI_MODFDIS_SIZE 1
83 #define SPI_WDRBT_OFFSET 5
84 #define SPI_WDRBT_SIZE 1
85 #define SPI_LLB_OFFSET 7
86 #define SPI_LLB_SIZE 1
87 #define SPI_PCS_OFFSET 16
88 #define SPI_PCS_SIZE 4
89 #define SPI_DLYBCS_OFFSET 24
90 #define SPI_DLYBCS_SIZE 8
92 /* Bitfields in RDR */
93 #define SPI_RD_OFFSET 0
94 #define SPI_RD_SIZE 16
96 /* Bitfields in TDR */
97 #define SPI_TD_OFFSET 0
98 #define SPI_TD_SIZE 16
100 /* Bitfields in SR */
101 #define SPI_RDRF_OFFSET 0
102 #define SPI_RDRF_SIZE 1
103 #define SPI_TDRE_OFFSET 1
104 #define SPI_TDRE_SIZE 1
105 #define SPI_MODF_OFFSET 2
106 #define SPI_MODF_SIZE 1
107 #define SPI_OVRES_OFFSET 3
108 #define SPI_OVRES_SIZE 1
109 #define SPI_ENDRX_OFFSET 4
110 #define SPI_ENDRX_SIZE 1
111 #define SPI_ENDTX_OFFSET 5
112 #define SPI_ENDTX_SIZE 1
113 #define SPI_RXBUFF_OFFSET 6
114 #define SPI_RXBUFF_SIZE 1
115 #define SPI_TXBUFE_OFFSET 7
116 #define SPI_TXBUFE_SIZE 1
117 #define SPI_NSSR_OFFSET 8
118 #define SPI_NSSR_SIZE 1
119 #define SPI_TXEMPTY_OFFSET 9
120 #define SPI_TXEMPTY_SIZE 1
121 #define SPI_SPIENS_OFFSET 16
122 #define SPI_SPIENS_SIZE 1
123 #define SPI_TXFEF_OFFSET 24
124 #define SPI_TXFEF_SIZE 1
125 #define SPI_TXFFF_OFFSET 25
126 #define SPI_TXFFF_SIZE 1
127 #define SPI_TXFTHF_OFFSET 26
128 #define SPI_TXFTHF_SIZE 1
129 #define SPI_RXFEF_OFFSET 27
130 #define SPI_RXFEF_SIZE 1
131 #define SPI_RXFFF_OFFSET 28
132 #define SPI_RXFFF_SIZE 1
133 #define SPI_RXFTHF_OFFSET 29
134 #define SPI_RXFTHF_SIZE 1
135 #define SPI_TXFPTEF_OFFSET 30
136 #define SPI_TXFPTEF_SIZE 1
137 #define SPI_RXFPTEF_OFFSET 31
138 #define SPI_RXFPTEF_SIZE 1
140 /* Bitfields in CSR0 */
141 #define SPI_CPOL_OFFSET 0
142 #define SPI_CPOL_SIZE 1
143 #define SPI_NCPHA_OFFSET 1
144 #define SPI_NCPHA_SIZE 1
145 #define SPI_CSAAT_OFFSET 3
146 #define SPI_CSAAT_SIZE 1
147 #define SPI_BITS_OFFSET 4
148 #define SPI_BITS_SIZE 4
149 #define SPI_SCBR_OFFSET 8
150 #define SPI_SCBR_SIZE 8
151 #define SPI_DLYBS_OFFSET 16
152 #define SPI_DLYBS_SIZE 8
153 #define SPI_DLYBCT_OFFSET 24
154 #define SPI_DLYBCT_SIZE 8
156 /* Bitfields in RCR */
157 #define SPI_RXCTR_OFFSET 0
158 #define SPI_RXCTR_SIZE 16
160 /* Bitfields in TCR */
161 #define SPI_TXCTR_OFFSET 0
162 #define SPI_TXCTR_SIZE 16
164 /* Bitfields in RNCR */
165 #define SPI_RXNCR_OFFSET 0
166 #define SPI_RXNCR_SIZE 16
168 /* Bitfields in TNCR */
169 #define SPI_TXNCR_OFFSET 0
170 #define SPI_TXNCR_SIZE 16
172 /* Bitfields in PTCR */
173 #define SPI_RXTEN_OFFSET 0
174 #define SPI_RXTEN_SIZE 1
175 #define SPI_RXTDIS_OFFSET 1
176 #define SPI_RXTDIS_SIZE 1
177 #define SPI_TXTEN_OFFSET 8
178 #define SPI_TXTEN_SIZE 1
179 #define SPI_TXTDIS_OFFSET 9
180 #define SPI_TXTDIS_SIZE 1
182 /* Bitfields in FMR */
183 #define SPI_TXRDYM_OFFSET 0
184 #define SPI_TXRDYM_SIZE 2
185 #define SPI_RXRDYM_OFFSET 4
186 #define SPI_RXRDYM_SIZE 2
187 #define SPI_TXFTHRES_OFFSET 16
188 #define SPI_TXFTHRES_SIZE 6
189 #define SPI_RXFTHRES_OFFSET 24
190 #define SPI_RXFTHRES_SIZE 6
192 /* Bitfields in FLR */
193 #define SPI_TXFL_OFFSET 0
194 #define SPI_TXFL_SIZE 6
195 #define SPI_RXFL_OFFSET 16
196 #define SPI_RXFL_SIZE 6
198 /* Constants for BITS */
199 #define SPI_BITS_8_BPT 0
200 #define SPI_BITS_9_BPT 1
201 #define SPI_BITS_10_BPT 2
202 #define SPI_BITS_11_BPT 3
203 #define SPI_BITS_12_BPT 4
204 #define SPI_BITS_13_BPT 5
205 #define SPI_BITS_14_BPT 6
206 #define SPI_BITS_15_BPT 7
207 #define SPI_BITS_16_BPT 8
208 #define SPI_ONE_DATA 0
209 #define SPI_TWO_DATA 1
210 #define SPI_FOUR_DATA 2
212 /* Bit manipulation macros */
213 #define SPI_BIT(name) \
214 (1 << SPI_##name##_OFFSET)
215 #define SPI_BF(name, value) \
216 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
217 #define SPI_BFEXT(name, value) \
218 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
219 #define SPI_BFINS(name, value, old) \
220 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
221 | SPI_BF(name, value))
223 /* Register access macros */
224 #define spi_readl(port, reg) \
225 readl_relaxed((port)->regs + SPI_##reg)
226 #define spi_writel(port, reg, value) \
227 writel_relaxed((value), (port)->regs + SPI_##reg)
228 #define spi_writew(port, reg, value) \
229 writew_relaxed((value), (port)->regs + SPI_##reg)
231 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
232 * cache operations; better heuristics consider wordsize and bitrate.
234 #define DMA_MIN_BYTES 16
236 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
238 #define AUTOSUSPEND_TIMEOUT 2000
240 struct atmel_spi_caps
{
243 bool has_dma_support
;
244 bool has_pdc_support
;
248 * The core SPI transfer engine just talks to a register bank to set up
249 * DMA transfers; transfer queue progress is driven by IRQs. The clock
250 * framework provides the base clock, subdivided for each spi_device.
260 struct platform_device
*pdev
;
261 unsigned long spi_clk
;
263 struct spi_transfer
*current_transfer
;
264 int current_remaining_bytes
;
266 dma_addr_t dma_addr_rx_bbuf
;
267 dma_addr_t dma_addr_tx_bbuf
;
271 struct completion xfer_completion
;
273 struct atmel_spi_caps caps
;
282 u8 native_cs_for_gpio
;
285 /* Controller-specific per-slave state */
286 struct atmel_spi_device
{
290 #define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
291 #define INVALID_DMA_ADDRESS 0xffffffff
294 * Version 2 of the SPI controller has
296 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
297 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
299 * - SPI_CSRx.SBCR allows faster clocking
301 static bool atmel_spi_is_v2(struct atmel_spi
*as
)
303 return as
->caps
.is_spi2
;
307 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
308 * they assume that spi slave device state will not change on deselect, so
309 * that automagic deselection is OK. ("NPCSx rises if no data is to be
310 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
311 * controllers have CSAAT and friends.
313 * Even controller newer than ar91rm9200, using GPIOs can make sens as
314 * it lets us support active-high chipselects despite the controller's
315 * belief that only active-low devices/systems exists.
317 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
318 * right when driven with GPIO. ("Mode Fault does not allow more than one
319 * Master on Chip Select 0.") No workaround exists for that ... so for
320 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
321 * and (c) will trigger that first erratum in some cases.
324 static void cs_activate(struct atmel_spi
*as
, struct spi_device
*spi
)
326 struct atmel_spi_device
*asd
= spi
->controller_state
;
331 chip_select
= as
->native_cs_for_gpio
;
333 chip_select
= spi
->chip_select
;
335 if (atmel_spi_is_v2(as
)) {
336 spi_writel(as
, CSR0
+ 4 * chip_select
, asd
->csr
);
337 /* For the low SPI version, there is a issue that PDC transfer
338 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
340 spi_writel(as
, CSR0
, asd
->csr
);
341 if (as
->caps
.has_wdrbt
) {
343 SPI_BF(PCS
, ~(0x01 << chip_select
))
349 SPI_BF(PCS
, ~(0x01 << chip_select
))
354 mr
= spi_readl(as
, MR
);
356 gpiod_set_value(spi
->cs_gpiod
, 1);
358 u32 cpol
= (spi
->mode
& SPI_CPOL
) ? SPI_BIT(CPOL
) : 0;
362 /* Make sure clock polarity is correct */
363 for (i
= 0; i
< spi
->master
->num_chipselect
; i
++) {
364 csr
= spi_readl(as
, CSR0
+ 4 * i
);
365 if ((csr
^ cpol
) & SPI_BIT(CPOL
))
366 spi_writel(as
, CSR0
+ 4 * i
,
367 csr
^ SPI_BIT(CPOL
));
370 mr
= spi_readl(as
, MR
);
371 mr
= SPI_BFINS(PCS
, ~(1 << chip_select
), mr
);
373 gpiod_set_value(spi
->cs_gpiod
, 1);
374 spi_writel(as
, MR
, mr
);
377 dev_dbg(&spi
->dev
, "activate NPCS, mr %08x\n", mr
);
380 static void cs_deactivate(struct atmel_spi
*as
, struct spi_device
*spi
)
386 chip_select
= as
->native_cs_for_gpio
;
388 chip_select
= spi
->chip_select
;
390 /* only deactivate *this* device; sometimes transfers to
391 * another device may be active when this routine is called.
393 mr
= spi_readl(as
, MR
);
394 if (~SPI_BFEXT(PCS
, mr
) & (1 << chip_select
)) {
395 mr
= SPI_BFINS(PCS
, 0xf, mr
);
396 spi_writel(as
, MR
, mr
);
399 dev_dbg(&spi
->dev
, "DEactivate NPCS, mr %08x\n", mr
);
402 spi_writel(as
, CR
, SPI_BIT(LASTXFER
));
404 gpiod_set_value(spi
->cs_gpiod
, 0);
407 static void atmel_spi_lock(struct atmel_spi
*as
) __acquires(&as
->lock
)
409 spin_lock_irqsave(&as
->lock
, as
->flags
);
412 static void atmel_spi_unlock(struct atmel_spi
*as
) __releases(&as
->lock
)
414 spin_unlock_irqrestore(&as
->lock
, as
->flags
);
417 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer
*xfer
)
419 return is_vmalloc_addr(xfer
->tx_buf
) || is_vmalloc_addr(xfer
->rx_buf
);
422 static inline bool atmel_spi_use_dma(struct atmel_spi
*as
,
423 struct spi_transfer
*xfer
)
425 return as
->use_dma
&& xfer
->len
>= DMA_MIN_BYTES
;
428 static bool atmel_spi_can_dma(struct spi_master
*master
,
429 struct spi_device
*spi
,
430 struct spi_transfer
*xfer
)
432 struct atmel_spi
*as
= spi_master_get_devdata(master
);
434 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5
))
435 return atmel_spi_use_dma(as
, xfer
) &&
436 !atmel_spi_is_vmalloc_xfer(xfer
);
438 return atmel_spi_use_dma(as
, xfer
);
442 static int atmel_spi_dma_slave_config(struct atmel_spi
*as
,
443 struct dma_slave_config
*slave_config
,
446 struct spi_master
*master
= platform_get_drvdata(as
->pdev
);
449 if (bits_per_word
> 8) {
450 slave_config
->dst_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
451 slave_config
->src_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
453 slave_config
->dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
454 slave_config
->src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
457 slave_config
->dst_addr
= (dma_addr_t
)as
->phybase
+ SPI_TDR
;
458 slave_config
->src_addr
= (dma_addr_t
)as
->phybase
+ SPI_RDR
;
459 slave_config
->src_maxburst
= 1;
460 slave_config
->dst_maxburst
= 1;
461 slave_config
->device_fc
= false;
464 * This driver uses fixed peripheral select mode (PS bit set to '0' in
465 * the Mode Register).
466 * So according to the datasheet, when FIFOs are available (and
467 * enabled), the Transmit FIFO operates in Multiple Data Mode.
468 * In this mode, up to 2 data, not 4, can be written into the Transmit
469 * Data Register in a single access.
470 * However, the first data has to be written into the lowest 16 bits and
471 * the second data into the highest 16 bits of the Transmit
472 * Data Register. For 8bit data (the most frequent case), it would
473 * require to rework tx_buf so each data would actualy fit 16 bits.
474 * So we'd rather write only one data at the time. Hence the transmit
475 * path works the same whether FIFOs are available (and enabled) or not.
477 slave_config
->direction
= DMA_MEM_TO_DEV
;
478 if (dmaengine_slave_config(master
->dma_tx
, slave_config
)) {
479 dev_err(&as
->pdev
->dev
,
480 "failed to configure tx dma channel\n");
485 * This driver configures the spi controller for master mode (MSTR bit
486 * set to '1' in the Mode Register).
487 * So according to the datasheet, when FIFOs are available (and
488 * enabled), the Receive FIFO operates in Single Data Mode.
489 * So the receive path works the same whether FIFOs are available (and
492 slave_config
->direction
= DMA_DEV_TO_MEM
;
493 if (dmaengine_slave_config(master
->dma_rx
, slave_config
)) {
494 dev_err(&as
->pdev
->dev
,
495 "failed to configure rx dma channel\n");
502 static int atmel_spi_configure_dma(struct spi_master
*master
,
503 struct atmel_spi
*as
)
505 struct dma_slave_config slave_config
;
506 struct device
*dev
= &as
->pdev
->dev
;
511 dma_cap_set(DMA_SLAVE
, mask
);
513 master
->dma_tx
= dma_request_chan(dev
, "tx");
514 if (IS_ERR(master
->dma_tx
)) {
515 err
= PTR_ERR(master
->dma_tx
);
516 dev_dbg(dev
, "No TX DMA channel, DMA is disabled\n");
520 master
->dma_rx
= dma_request_chan(dev
, "rx");
521 if (IS_ERR(master
->dma_rx
)) {
522 err
= PTR_ERR(master
->dma_rx
);
524 * No reason to check EPROBE_DEFER here since we have already
525 * requested tx channel.
527 dev_dbg(dev
, "No RX DMA channel, DMA is disabled\n");
531 err
= atmel_spi_dma_slave_config(as
, &slave_config
, 8);
535 dev_info(&as
->pdev
->dev
,
536 "Using %s (tx) and %s (rx) for DMA transfers\n",
537 dma_chan_name(master
->dma_tx
),
538 dma_chan_name(master
->dma_rx
));
542 if (!IS_ERR(master
->dma_rx
))
543 dma_release_channel(master
->dma_rx
);
544 if (!IS_ERR(master
->dma_tx
))
545 dma_release_channel(master
->dma_tx
);
547 master
->dma_tx
= master
->dma_rx
= NULL
;
551 static void atmel_spi_stop_dma(struct spi_master
*master
)
554 dmaengine_terminate_all(master
->dma_rx
);
556 dmaengine_terminate_all(master
->dma_tx
);
559 static void atmel_spi_release_dma(struct spi_master
*master
)
561 if (master
->dma_rx
) {
562 dma_release_channel(master
->dma_rx
);
563 master
->dma_rx
= NULL
;
565 if (master
->dma_tx
) {
566 dma_release_channel(master
->dma_tx
);
567 master
->dma_tx
= NULL
;
571 /* This function is called by the DMA driver from tasklet context */
572 static void dma_callback(void *data
)
574 struct spi_master
*master
= data
;
575 struct atmel_spi
*as
= spi_master_get_devdata(master
);
577 if (is_vmalloc_addr(as
->current_transfer
->rx_buf
) &&
578 IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
579 memcpy(as
->current_transfer
->rx_buf
, as
->addr_rx_bbuf
,
580 as
->current_transfer
->len
);
582 complete(&as
->xfer_completion
);
586 * Next transfer using PIO without FIFO.
588 static void atmel_spi_next_xfer_single(struct spi_master
*master
,
589 struct spi_transfer
*xfer
)
591 struct atmel_spi
*as
= spi_master_get_devdata(master
);
592 unsigned long xfer_pos
= xfer
->len
- as
->current_remaining_bytes
;
594 dev_vdbg(master
->dev
.parent
, "atmel_spi_next_xfer_pio\n");
596 /* Make sure data is not remaining in RDR */
598 while (spi_readl(as
, SR
) & SPI_BIT(RDRF
)) {
603 if (xfer
->bits_per_word
> 8)
604 spi_writel(as
, TDR
, *(u16
*)(xfer
->tx_buf
+ xfer_pos
));
606 spi_writel(as
, TDR
, *(u8
*)(xfer
->tx_buf
+ xfer_pos
));
608 dev_dbg(master
->dev
.parent
,
609 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
610 xfer
, xfer
->len
, xfer
->tx_buf
, xfer
->rx_buf
,
611 xfer
->bits_per_word
);
613 /* Enable relevant interrupts */
614 spi_writel(as
, IER
, SPI_BIT(RDRF
) | SPI_BIT(OVRES
));
618 * Next transfer using PIO with FIFO.
620 static void atmel_spi_next_xfer_fifo(struct spi_master
*master
,
621 struct spi_transfer
*xfer
)
623 struct atmel_spi
*as
= spi_master_get_devdata(master
);
624 u32 current_remaining_data
, num_data
;
625 u32 offset
= xfer
->len
- as
->current_remaining_bytes
;
626 const u16
*words
= (const u16
*)((u8
*)xfer
->tx_buf
+ offset
);
627 const u8
*bytes
= (const u8
*)((u8
*)xfer
->tx_buf
+ offset
);
631 dev_vdbg(master
->dev
.parent
, "atmel_spi_next_xfer_fifo\n");
633 /* Compute the number of data to transfer in the current iteration */
634 current_remaining_data
= ((xfer
->bits_per_word
> 8) ?
635 ((u32
)as
->current_remaining_bytes
>> 1) :
636 (u32
)as
->current_remaining_bytes
);
637 num_data
= min(current_remaining_data
, as
->fifo_size
);
639 /* Flush RX and TX FIFOs */
640 spi_writel(as
, CR
, SPI_BIT(RXFCLR
) | SPI_BIT(TXFCLR
));
641 while (spi_readl(as
, FLR
))
644 /* Set RX FIFO Threshold to the number of data to transfer */
645 fifomr
= spi_readl(as
, FMR
);
646 spi_writel(as
, FMR
, SPI_BFINS(RXFTHRES
, num_data
, fifomr
));
648 /* Clear FIFO flags in the Status Register, especially RXFTHF */
649 (void)spi_readl(as
, SR
);
652 while (num_data
>= 2) {
653 if (xfer
->bits_per_word
> 8) {
661 spi_writel(as
, TDR
, (td1
<< 16) | td0
);
666 if (xfer
->bits_per_word
> 8)
671 spi_writew(as
, TDR
, td0
);
675 dev_dbg(master
->dev
.parent
,
676 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
677 xfer
, xfer
->len
, xfer
->tx_buf
, xfer
->rx_buf
,
678 xfer
->bits_per_word
);
681 * Enable RX FIFO Threshold Flag interrupt to be notified about
682 * transfer completion.
684 spi_writel(as
, IER
, SPI_BIT(RXFTHF
) | SPI_BIT(OVRES
));
688 * Next transfer using PIO.
690 static void atmel_spi_next_xfer_pio(struct spi_master
*master
,
691 struct spi_transfer
*xfer
)
693 struct atmel_spi
*as
= spi_master_get_devdata(master
);
696 atmel_spi_next_xfer_fifo(master
, xfer
);
698 atmel_spi_next_xfer_single(master
, xfer
);
702 * Submit next transfer for DMA.
704 static int atmel_spi_next_xfer_dma_submit(struct spi_master
*master
,
705 struct spi_transfer
*xfer
,
707 __must_hold(&as
->lock
)
709 struct atmel_spi
*as
= spi_master_get_devdata(master
);
710 struct dma_chan
*rxchan
= master
->dma_rx
;
711 struct dma_chan
*txchan
= master
->dma_tx
;
712 struct dma_async_tx_descriptor
*rxdesc
;
713 struct dma_async_tx_descriptor
*txdesc
;
714 struct dma_slave_config slave_config
;
717 dev_vdbg(master
->dev
.parent
, "atmel_spi_next_xfer_dma_submit\n");
719 /* Check that the channels are available */
720 if (!rxchan
|| !txchan
)
723 /* release lock for DMA operations */
724 atmel_spi_unlock(as
);
728 if (atmel_spi_dma_slave_config(as
, &slave_config
,
729 xfer
->bits_per_word
))
732 /* Send both scatterlists */
733 if (atmel_spi_is_vmalloc_xfer(xfer
) &&
734 IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
735 rxdesc
= dmaengine_prep_slave_single(rxchan
,
736 as
->dma_addr_rx_bbuf
,
742 rxdesc
= dmaengine_prep_slave_sg(rxchan
,
752 if (atmel_spi_is_vmalloc_xfer(xfer
) &&
753 IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
754 memcpy(as
->addr_tx_bbuf
, xfer
->tx_buf
, xfer
->len
);
755 txdesc
= dmaengine_prep_slave_single(txchan
,
756 as
->dma_addr_tx_bbuf
,
757 xfer
->len
, DMA_MEM_TO_DEV
,
761 txdesc
= dmaengine_prep_slave_sg(txchan
,
771 dev_dbg(master
->dev
.parent
,
772 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
773 xfer
, xfer
->len
, xfer
->tx_buf
, (unsigned long long)xfer
->tx_dma
,
774 xfer
->rx_buf
, (unsigned long long)xfer
->rx_dma
);
776 /* Enable relevant interrupts */
777 spi_writel(as
, IER
, SPI_BIT(OVRES
));
779 /* Put the callback on the RX transfer only, that should finish last */
780 rxdesc
->callback
= dma_callback
;
781 rxdesc
->callback_param
= master
;
783 /* Submit and fire RX and TX with TX last so we're ready to read! */
784 cookie
= rxdesc
->tx_submit(rxdesc
);
785 if (dma_submit_error(cookie
))
787 cookie
= txdesc
->tx_submit(txdesc
);
788 if (dma_submit_error(cookie
))
790 rxchan
->device
->device_issue_pending(rxchan
);
791 txchan
->device
->device_issue_pending(txchan
);
798 spi_writel(as
, IDR
, SPI_BIT(OVRES
));
799 atmel_spi_stop_dma(master
);
805 static void atmel_spi_next_xfer_data(struct spi_master
*master
,
806 struct spi_transfer
*xfer
,
811 *rx_dma
= xfer
->rx_dma
+ xfer
->len
- *plen
;
812 *tx_dma
= xfer
->tx_dma
+ xfer
->len
- *plen
;
813 if (*plen
> master
->max_dma_len
)
814 *plen
= master
->max_dma_len
;
817 static int atmel_spi_set_xfer_speed(struct atmel_spi
*as
,
818 struct spi_device
*spi
,
819 struct spi_transfer
*xfer
)
822 unsigned long bus_hz
;
826 chip_select
= as
->native_cs_for_gpio
;
828 chip_select
= spi
->chip_select
;
830 /* v1 chips start out at half the peripheral bus speed. */
831 bus_hz
= as
->spi_clk
;
832 if (!atmel_spi_is_v2(as
))
836 * Calculate the lowest divider that satisfies the
837 * constraint, assuming div32/fdiv/mbz == 0.
839 scbr
= DIV_ROUND_UP(bus_hz
, xfer
->speed_hz
);
842 * If the resulting divider doesn't fit into the
843 * register bitfield, we can't satisfy the constraint.
845 if (scbr
>= (1 << SPI_SCBR_SIZE
)) {
847 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
848 xfer
->speed_hz
, scbr
, bus_hz
/255);
853 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
854 xfer
->speed_hz
, scbr
, bus_hz
);
857 csr
= spi_readl(as
, CSR0
+ 4 * chip_select
);
858 csr
= SPI_BFINS(SCBR
, scbr
, csr
);
859 spi_writel(as
, CSR0
+ 4 * chip_select
, csr
);
860 xfer
->effective_speed_hz
= bus_hz
/ scbr
;
866 * Submit next transfer for PDC.
867 * lock is held, spi irq is blocked
869 static void atmel_spi_pdc_next_xfer(struct spi_master
*master
,
870 struct spi_message
*msg
,
871 struct spi_transfer
*xfer
)
873 struct atmel_spi
*as
= spi_master_get_devdata(master
);
875 dma_addr_t tx_dma
, rx_dma
;
877 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
879 len
= as
->current_remaining_bytes
;
880 atmel_spi_next_xfer_data(master
, xfer
, &tx_dma
, &rx_dma
, &len
);
881 as
->current_remaining_bytes
-= len
;
883 spi_writel(as
, RPR
, rx_dma
);
884 spi_writel(as
, TPR
, tx_dma
);
886 if (msg
->spi
->bits_per_word
> 8)
888 spi_writel(as
, RCR
, len
);
889 spi_writel(as
, TCR
, len
);
891 dev_dbg(&msg
->spi
->dev
,
892 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
893 xfer
, xfer
->len
, xfer
->tx_buf
,
894 (unsigned long long)xfer
->tx_dma
, xfer
->rx_buf
,
895 (unsigned long long)xfer
->rx_dma
);
897 if (as
->current_remaining_bytes
) {
898 len
= as
->current_remaining_bytes
;
899 atmel_spi_next_xfer_data(master
, xfer
, &tx_dma
, &rx_dma
, &len
);
900 as
->current_remaining_bytes
-= len
;
902 spi_writel(as
, RNPR
, rx_dma
);
903 spi_writel(as
, TNPR
, tx_dma
);
905 if (msg
->spi
->bits_per_word
> 8)
907 spi_writel(as
, RNCR
, len
);
908 spi_writel(as
, TNCR
, len
);
910 dev_dbg(&msg
->spi
->dev
,
911 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
912 xfer
, xfer
->len
, xfer
->tx_buf
,
913 (unsigned long long)xfer
->tx_dma
, xfer
->rx_buf
,
914 (unsigned long long)xfer
->rx_dma
);
917 /* REVISIT: We're waiting for RXBUFF before we start the next
918 * transfer because we need to handle some difficult timing
919 * issues otherwise. If we wait for TXBUFE in one transfer and
920 * then starts waiting for RXBUFF in the next, it's difficult
921 * to tell the difference between the RXBUFF interrupt we're
922 * actually waiting for and the RXBUFF interrupt of the
925 * It should be doable, though. Just not now...
927 spi_writel(as
, IER
, SPI_BIT(RXBUFF
) | SPI_BIT(OVRES
));
928 spi_writel(as
, PTCR
, SPI_BIT(TXTEN
) | SPI_BIT(RXTEN
));
932 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
933 * - The buffer is either valid for CPU access, else NULL
934 * - If the buffer is valid, so is its DMA address
936 * This driver manages the dma address unless message->is_dma_mapped.
939 atmel_spi_dma_map_xfer(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
941 struct device
*dev
= &as
->pdev
->dev
;
943 xfer
->tx_dma
= xfer
->rx_dma
= INVALID_DMA_ADDRESS
;
945 /* tx_buf is a const void* where we need a void * for the dma
947 void *nonconst_tx
= (void *)xfer
->tx_buf
;
949 xfer
->tx_dma
= dma_map_single(dev
,
950 nonconst_tx
, xfer
->len
,
952 if (dma_mapping_error(dev
, xfer
->tx_dma
))
956 xfer
->rx_dma
= dma_map_single(dev
,
957 xfer
->rx_buf
, xfer
->len
,
959 if (dma_mapping_error(dev
, xfer
->rx_dma
)) {
961 dma_unmap_single(dev
,
962 xfer
->tx_dma
, xfer
->len
,
970 static void atmel_spi_dma_unmap_xfer(struct spi_master
*master
,
971 struct spi_transfer
*xfer
)
973 if (xfer
->tx_dma
!= INVALID_DMA_ADDRESS
)
974 dma_unmap_single(master
->dev
.parent
, xfer
->tx_dma
,
975 xfer
->len
, DMA_TO_DEVICE
);
976 if (xfer
->rx_dma
!= INVALID_DMA_ADDRESS
)
977 dma_unmap_single(master
->dev
.parent
, xfer
->rx_dma
,
978 xfer
->len
, DMA_FROM_DEVICE
);
981 static void atmel_spi_disable_pdc_transfer(struct atmel_spi
*as
)
983 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
987 atmel_spi_pump_single_data(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
991 unsigned long xfer_pos
= xfer
->len
- as
->current_remaining_bytes
;
993 if (xfer
->bits_per_word
> 8) {
994 rxp16
= (u16
*)(((u8
*)xfer
->rx_buf
) + xfer_pos
);
995 *rxp16
= spi_readl(as
, RDR
);
997 rxp
= ((u8
*)xfer
->rx_buf
) + xfer_pos
;
998 *rxp
= spi_readl(as
, RDR
);
1000 if (xfer
->bits_per_word
> 8) {
1001 if (as
->current_remaining_bytes
> 2)
1002 as
->current_remaining_bytes
-= 2;
1004 as
->current_remaining_bytes
= 0;
1006 as
->current_remaining_bytes
--;
1011 atmel_spi_pump_fifo_data(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
1013 u32 fifolr
= spi_readl(as
, FLR
);
1014 u32 num_bytes
, num_data
= SPI_BFEXT(RXFL
, fifolr
);
1015 u32 offset
= xfer
->len
- as
->current_remaining_bytes
;
1016 u16
*words
= (u16
*)((u8
*)xfer
->rx_buf
+ offset
);
1017 u8
*bytes
= (u8
*)((u8
*)xfer
->rx_buf
+ offset
);
1018 u16 rd
; /* RD field is the lowest 16 bits of RDR */
1020 /* Update the number of remaining bytes to transfer */
1021 num_bytes
= ((xfer
->bits_per_word
> 8) ?
1025 if (as
->current_remaining_bytes
> num_bytes
)
1026 as
->current_remaining_bytes
-= num_bytes
;
1028 as
->current_remaining_bytes
= 0;
1030 /* Handle odd number of bytes when data are more than 8bit width */
1031 if (xfer
->bits_per_word
> 8)
1032 as
->current_remaining_bytes
&= ~0x1;
1036 rd
= spi_readl(as
, RDR
);
1037 if (xfer
->bits_per_word
> 8)
1047 * Must update "current_remaining_bytes" to keep track of data
1051 atmel_spi_pump_pio_data(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
1054 atmel_spi_pump_fifo_data(as
, xfer
);
1056 atmel_spi_pump_single_data(as
, xfer
);
1061 * No need for locking in this Interrupt handler: done_status is the
1062 * only information modified.
1065 atmel_spi_pio_interrupt(int irq
, void *dev_id
)
1067 struct spi_master
*master
= dev_id
;
1068 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1069 u32 status
, pending
, imr
;
1070 struct spi_transfer
*xfer
;
1073 imr
= spi_readl(as
, IMR
);
1074 status
= spi_readl(as
, SR
);
1075 pending
= status
& imr
;
1077 if (pending
& SPI_BIT(OVRES
)) {
1079 spi_writel(as
, IDR
, SPI_BIT(OVRES
));
1080 dev_warn(master
->dev
.parent
, "overrun\n");
1083 * When we get an overrun, we disregard the current
1084 * transfer. Data will not be copied back from any
1085 * bounce buffer and msg->actual_len will not be
1086 * updated with the last xfer.
1088 * We will also not process any remaning transfers in
1091 as
->done_status
= -EIO
;
1094 /* Clear any overrun happening while cleaning up */
1097 complete(&as
->xfer_completion
);
1099 } else if (pending
& (SPI_BIT(RDRF
) | SPI_BIT(RXFTHF
))) {
1102 if (as
->current_remaining_bytes
) {
1104 xfer
= as
->current_transfer
;
1105 atmel_spi_pump_pio_data(as
, xfer
);
1106 if (!as
->current_remaining_bytes
)
1107 spi_writel(as
, IDR
, pending
);
1109 complete(&as
->xfer_completion
);
1112 atmel_spi_unlock(as
);
1114 WARN_ONCE(pending
, "IRQ not handled, pending = %x\n", pending
);
1116 spi_writel(as
, IDR
, pending
);
1123 atmel_spi_pdc_interrupt(int irq
, void *dev_id
)
1125 struct spi_master
*master
= dev_id
;
1126 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1127 u32 status
, pending
, imr
;
1130 imr
= spi_readl(as
, IMR
);
1131 status
= spi_readl(as
, SR
);
1132 pending
= status
& imr
;
1134 if (pending
& SPI_BIT(OVRES
)) {
1138 spi_writel(as
, IDR
, (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
)
1141 /* Clear any overrun happening while cleaning up */
1144 as
->done_status
= -EIO
;
1146 complete(&as
->xfer_completion
);
1148 } else if (pending
& (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
))) {
1151 spi_writel(as
, IDR
, pending
);
1153 complete(&as
->xfer_completion
);
1159 static int atmel_word_delay_csr(struct spi_device
*spi
, struct atmel_spi
*as
)
1161 struct spi_delay
*delay
= &spi
->word_delay
;
1162 u32 value
= delay
->value
;
1164 switch (delay
->unit
) {
1165 case SPI_DELAY_UNIT_NSECS
:
1168 case SPI_DELAY_UNIT_USECS
:
1174 return (as
->spi_clk
/ 1000000 * value
) >> 5;
1177 static void initialize_native_cs_for_gpio(struct atmel_spi
*as
)
1180 struct spi_master
*master
= platform_get_drvdata(as
->pdev
);
1182 if (!as
->native_cs_free
)
1183 return; /* already initialized */
1185 if (!master
->cs_gpiods
)
1186 return; /* No CS GPIO */
1189 * On the first version of the controller (AT91RM9200), CS0
1190 * can't be used associated with GPIO
1192 if (atmel_spi_is_v2(as
))
1198 if (master
->cs_gpiods
[i
])
1199 as
->native_cs_free
|= BIT(i
);
1201 if (as
->native_cs_free
)
1202 as
->native_cs_for_gpio
= ffs(as
->native_cs_free
);
1205 static int atmel_spi_setup(struct spi_device
*spi
)
1207 struct atmel_spi
*as
;
1208 struct atmel_spi_device
*asd
;
1210 unsigned int bits
= spi
->bits_per_word
;
1214 as
= spi_master_get_devdata(spi
->master
);
1216 /* see notes above re chipselect */
1217 if (!spi
->cs_gpiod
&& (spi
->mode
& SPI_CS_HIGH
)) {
1218 dev_warn(&spi
->dev
, "setup: non GPIO CS can't be active-high\n");
1222 /* Setup() is called during spi_register_controller(aka
1223 * spi_register_master) but after all membmers of the cs_gpiod
1224 * array have been filled, so we can looked for which native
1225 * CS will be free for using with GPIO
1227 initialize_native_cs_for_gpio(as
);
1229 if (spi
->cs_gpiod
&& as
->native_cs_free
) {
1231 "No native CS available to support this GPIO CS\n");
1236 chip_select
= as
->native_cs_for_gpio
;
1238 chip_select
= spi
->chip_select
;
1240 csr
= SPI_BF(BITS
, bits
- 8);
1241 if (spi
->mode
& SPI_CPOL
)
1242 csr
|= SPI_BIT(CPOL
);
1243 if (!(spi
->mode
& SPI_CPHA
))
1244 csr
|= SPI_BIT(NCPHA
);
1247 csr
|= SPI_BIT(CSAAT
);
1248 csr
|= SPI_BF(DLYBS
, 0);
1250 word_delay_csr
= atmel_word_delay_csr(spi
, as
);
1251 if (word_delay_csr
< 0)
1252 return word_delay_csr
;
1254 /* DLYBCT adds delays between words. This is useful for slow devices
1255 * that need a bit of time to setup the next transfer.
1257 csr
|= SPI_BF(DLYBCT
, word_delay_csr
);
1259 asd
= spi
->controller_state
;
1261 asd
= kzalloc(sizeof(struct atmel_spi_device
), GFP_KERNEL
);
1265 spi
->controller_state
= asd
;
1271 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1272 bits
, spi
->mode
, spi
->chip_select
, csr
);
1274 if (!atmel_spi_is_v2(as
))
1275 spi_writel(as
, CSR0
+ 4 * chip_select
, csr
);
1280 static int atmel_spi_one_transfer(struct spi_master
*master
,
1281 struct spi_message
*msg
,
1282 struct spi_transfer
*xfer
)
1284 struct atmel_spi
*as
;
1285 struct spi_device
*spi
= msg
->spi
;
1288 struct atmel_spi_device
*asd
;
1291 unsigned long dma_timeout
;
1293 as
= spi_master_get_devdata(master
);
1295 if (!(xfer
->tx_buf
|| xfer
->rx_buf
) && xfer
->len
) {
1296 dev_dbg(&spi
->dev
, "missing rx or tx buf\n");
1300 asd
= spi
->controller_state
;
1301 bits
= (asd
->csr
>> 4) & 0xf;
1302 if (bits
!= xfer
->bits_per_word
- 8) {
1304 "you can't yet change bits_per_word in transfers\n");
1305 return -ENOPROTOOPT
;
1309 * DMA map early, for performance (empties dcache ASAP) and
1310 * better fault reporting.
1312 if ((!msg
->is_dma_mapped
)
1314 if (atmel_spi_dma_map_xfer(as
, xfer
) < 0)
1318 atmel_spi_set_xfer_speed(as
, msg
->spi
, xfer
);
1320 as
->done_status
= 0;
1321 as
->current_transfer
= xfer
;
1322 as
->current_remaining_bytes
= xfer
->len
;
1323 while (as
->current_remaining_bytes
) {
1324 reinit_completion(&as
->xfer_completion
);
1327 atmel_spi_pdc_next_xfer(master
, msg
, xfer
);
1328 } else if (atmel_spi_use_dma(as
, xfer
)) {
1329 len
= as
->current_remaining_bytes
;
1330 ret
= atmel_spi_next_xfer_dma_submit(master
,
1334 "unable to use DMA, fallback to PIO\n");
1335 atmel_spi_next_xfer_pio(master
, xfer
);
1337 as
->current_remaining_bytes
-= len
;
1338 if (as
->current_remaining_bytes
< 0)
1339 as
->current_remaining_bytes
= 0;
1342 atmel_spi_next_xfer_pio(master
, xfer
);
1345 /* interrupts are disabled, so free the lock for schedule */
1346 atmel_spi_unlock(as
);
1347 dma_timeout
= wait_for_completion_timeout(&as
->xfer_completion
,
1350 if (WARN_ON(dma_timeout
== 0)) {
1351 dev_err(&spi
->dev
, "spi transfer timeout\n");
1352 as
->done_status
= -EIO
;
1355 if (as
->done_status
)
1359 if (as
->done_status
) {
1361 dev_warn(master
->dev
.parent
,
1362 "overrun (%u/%u remaining)\n",
1363 spi_readl(as
, TCR
), spi_readl(as
, RCR
));
1366 * Clean up DMA registers and make sure the data
1367 * registers are empty.
1369 spi_writel(as
, RNCR
, 0);
1370 spi_writel(as
, TNCR
, 0);
1371 spi_writel(as
, RCR
, 0);
1372 spi_writel(as
, TCR
, 0);
1373 for (timeout
= 1000; timeout
; timeout
--)
1374 if (spi_readl(as
, SR
) & SPI_BIT(TXEMPTY
))
1377 dev_warn(master
->dev
.parent
,
1378 "timeout waiting for TXEMPTY");
1379 while (spi_readl(as
, SR
) & SPI_BIT(RDRF
))
1382 /* Clear any overrun happening while cleaning up */
1385 } else if (atmel_spi_use_dma(as
, xfer
)) {
1386 atmel_spi_stop_dma(master
);
1389 if (!msg
->is_dma_mapped
1391 atmel_spi_dma_unmap_xfer(master
, xfer
);
1396 /* only update length if no error */
1397 msg
->actual_length
+= xfer
->len
;
1400 if (!msg
->is_dma_mapped
1402 atmel_spi_dma_unmap_xfer(master
, xfer
);
1404 spi_transfer_delay_exec(xfer
);
1406 if (xfer
->cs_change
) {
1407 if (list_is_last(&xfer
->transfer_list
,
1411 cs_deactivate(as
, msg
->spi
);
1413 cs_activate(as
, msg
->spi
);
1420 static int atmel_spi_transfer_one_message(struct spi_master
*master
,
1421 struct spi_message
*msg
)
1423 struct atmel_spi
*as
;
1424 struct spi_transfer
*xfer
;
1425 struct spi_device
*spi
= msg
->spi
;
1428 as
= spi_master_get_devdata(master
);
1430 dev_dbg(&spi
->dev
, "new message %p submitted for %s\n",
1431 msg
, dev_name(&spi
->dev
));
1434 cs_activate(as
, spi
);
1436 as
->keep_cs
= false;
1439 msg
->actual_length
= 0;
1441 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1442 trace_spi_transfer_start(msg
, xfer
);
1444 ret
= atmel_spi_one_transfer(master
, msg
, xfer
);
1448 trace_spi_transfer_stop(msg
, xfer
);
1452 atmel_spi_disable_pdc_transfer(as
);
1454 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1456 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1458 xfer
->tx_buf
, &xfer
->tx_dma
,
1459 xfer
->rx_buf
, &xfer
->rx_dma
);
1464 cs_deactivate(as
, msg
->spi
);
1466 atmel_spi_unlock(as
);
1468 msg
->status
= as
->done_status
;
1469 spi_finalize_current_message(spi
->master
);
1474 static void atmel_spi_cleanup(struct spi_device
*spi
)
1476 struct atmel_spi_device
*asd
= spi
->controller_state
;
1481 spi
->controller_state
= NULL
;
1485 static inline unsigned int atmel_get_version(struct atmel_spi
*as
)
1487 return spi_readl(as
, VERSION
) & 0x00000fff;
1490 static void atmel_get_caps(struct atmel_spi
*as
)
1492 unsigned int version
;
1494 version
= atmel_get_version(as
);
1496 as
->caps
.is_spi2
= version
> 0x121;
1497 as
->caps
.has_wdrbt
= version
>= 0x210;
1498 as
->caps
.has_dma_support
= version
>= 0x212;
1499 as
->caps
.has_pdc_support
= version
< 0x212;
1502 static void atmel_spi_init(struct atmel_spi
*as
)
1504 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1505 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1507 /* It is recommended to enable FIFOs first thing after reset */
1509 spi_writel(as
, CR
, SPI_BIT(FIFOEN
));
1511 if (as
->caps
.has_wdrbt
) {
1512 spi_writel(as
, MR
, SPI_BIT(WDRBT
) | SPI_BIT(MODFDIS
)
1515 spi_writel(as
, MR
, SPI_BIT(MSTR
) | SPI_BIT(MODFDIS
));
1519 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
1520 spi_writel(as
, CR
, SPI_BIT(SPIEN
));
1523 static int atmel_spi_probe(struct platform_device
*pdev
)
1525 struct resource
*regs
;
1529 struct spi_master
*master
;
1530 struct atmel_spi
*as
;
1532 /* Select default pin state */
1533 pinctrl_pm_select_default_state(&pdev
->dev
);
1535 regs
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1539 irq
= platform_get_irq(pdev
, 0);
1543 clk
= devm_clk_get(&pdev
->dev
, "spi_clk");
1545 return PTR_ERR(clk
);
1547 /* setup spi core then atmel-specific driver state */
1548 master
= spi_alloc_master(&pdev
->dev
, sizeof(*as
));
1552 /* the spi->mode bits understood by this driver: */
1553 master
->use_gpio_descriptors
= true;
1554 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
1555 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(8, 16);
1556 master
->dev
.of_node
= pdev
->dev
.of_node
;
1557 master
->bus_num
= pdev
->id
;
1558 master
->num_chipselect
= 4;
1559 master
->setup
= atmel_spi_setup
;
1560 master
->flags
= (SPI_MASTER_MUST_RX
| SPI_MASTER_MUST_TX
);
1561 master
->transfer_one_message
= atmel_spi_transfer_one_message
;
1562 master
->cleanup
= atmel_spi_cleanup
;
1563 master
->auto_runtime_pm
= true;
1564 master
->max_dma_len
= SPI_MAX_DMA_XFER
;
1565 master
->can_dma
= atmel_spi_can_dma
;
1566 platform_set_drvdata(pdev
, master
);
1568 as
= spi_master_get_devdata(master
);
1570 spin_lock_init(&as
->lock
);
1573 as
->regs
= devm_ioremap_resource(&pdev
->dev
, regs
);
1574 if (IS_ERR(as
->regs
)) {
1575 ret
= PTR_ERR(as
->regs
);
1576 goto out_unmap_regs
;
1578 as
->phybase
= regs
->start
;
1582 init_completion(&as
->xfer_completion
);
1586 as
->use_dma
= false;
1587 as
->use_pdc
= false;
1588 if (as
->caps
.has_dma_support
) {
1589 ret
= atmel_spi_configure_dma(master
, as
);
1592 } else if (ret
== -EPROBE_DEFER
) {
1595 } else if (as
->caps
.has_pdc_support
) {
1599 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
1600 as
->addr_rx_bbuf
= dma_alloc_coherent(&pdev
->dev
,
1602 &as
->dma_addr_rx_bbuf
,
1603 GFP_KERNEL
| GFP_DMA
);
1604 if (!as
->addr_rx_bbuf
) {
1605 as
->use_dma
= false;
1607 as
->addr_tx_bbuf
= dma_alloc_coherent(&pdev
->dev
,
1609 &as
->dma_addr_tx_bbuf
,
1610 GFP_KERNEL
| GFP_DMA
);
1611 if (!as
->addr_tx_bbuf
) {
1612 as
->use_dma
= false;
1613 dma_free_coherent(&pdev
->dev
, SPI_MAX_DMA_XFER
,
1615 as
->dma_addr_rx_bbuf
);
1619 dev_info(master
->dev
.parent
,
1620 " can not allocate dma coherent memory\n");
1623 if (as
->caps
.has_dma_support
&& !as
->use_dma
)
1624 dev_info(&pdev
->dev
, "Atmel SPI Controller using PIO only\n");
1627 ret
= devm_request_irq(&pdev
->dev
, irq
, atmel_spi_pdc_interrupt
,
1628 0, dev_name(&pdev
->dev
), master
);
1630 ret
= devm_request_irq(&pdev
->dev
, irq
, atmel_spi_pio_interrupt
,
1631 0, dev_name(&pdev
->dev
), master
);
1634 goto out_unmap_regs
;
1636 /* Initialize the hardware */
1637 ret
= clk_prepare_enable(clk
);
1641 as
->spi_clk
= clk_get_rate(clk
);
1644 if (!of_property_read_u32(pdev
->dev
.of_node
, "atmel,fifo-size",
1646 dev_info(&pdev
->dev
, "Using FIFO (%u data)\n", as
->fifo_size
);
1651 pm_runtime_set_autosuspend_delay(&pdev
->dev
, AUTOSUSPEND_TIMEOUT
);
1652 pm_runtime_use_autosuspend(&pdev
->dev
);
1653 pm_runtime_set_active(&pdev
->dev
);
1654 pm_runtime_enable(&pdev
->dev
);
1656 ret
= devm_spi_register_master(&pdev
->dev
, master
);
1661 dev_info(&pdev
->dev
, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1662 atmel_get_version(as
), (unsigned long)regs
->start
,
1668 pm_runtime_disable(&pdev
->dev
);
1669 pm_runtime_set_suspended(&pdev
->dev
);
1672 atmel_spi_release_dma(master
);
1674 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1675 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1676 clk_disable_unprepare(clk
);
1679 spi_master_put(master
);
1683 static int atmel_spi_remove(struct platform_device
*pdev
)
1685 struct spi_master
*master
= platform_get_drvdata(pdev
);
1686 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1688 pm_runtime_get_sync(&pdev
->dev
);
1690 /* reset the hardware and block queue progress */
1692 atmel_spi_stop_dma(master
);
1693 atmel_spi_release_dma(master
);
1694 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
1695 dma_free_coherent(&pdev
->dev
, SPI_MAX_DMA_XFER
,
1697 as
->dma_addr_tx_bbuf
);
1698 dma_free_coherent(&pdev
->dev
, SPI_MAX_DMA_XFER
,
1700 as
->dma_addr_rx_bbuf
);
1704 spin_lock_irq(&as
->lock
);
1705 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1706 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1708 spin_unlock_irq(&as
->lock
);
1710 clk_disable_unprepare(as
->clk
);
1712 pm_runtime_put_noidle(&pdev
->dev
);
1713 pm_runtime_disable(&pdev
->dev
);
1719 static int atmel_spi_runtime_suspend(struct device
*dev
)
1721 struct spi_master
*master
= dev_get_drvdata(dev
);
1722 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1724 clk_disable_unprepare(as
->clk
);
1725 pinctrl_pm_select_sleep_state(dev
);
1730 static int atmel_spi_runtime_resume(struct device
*dev
)
1732 struct spi_master
*master
= dev_get_drvdata(dev
);
1733 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1735 pinctrl_pm_select_default_state(dev
);
1737 return clk_prepare_enable(as
->clk
);
1740 #ifdef CONFIG_PM_SLEEP
1741 static int atmel_spi_suspend(struct device
*dev
)
1743 struct spi_master
*master
= dev_get_drvdata(dev
);
1746 /* Stop the queue running */
1747 ret
= spi_master_suspend(master
);
1751 if (!pm_runtime_suspended(dev
))
1752 atmel_spi_runtime_suspend(dev
);
1757 static int atmel_spi_resume(struct device
*dev
)
1759 struct spi_master
*master
= dev_get_drvdata(dev
);
1760 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1763 ret
= clk_prepare_enable(as
->clk
);
1769 clk_disable_unprepare(as
->clk
);
1771 if (!pm_runtime_suspended(dev
)) {
1772 ret
= atmel_spi_runtime_resume(dev
);
1777 /* Start the queue running */
1778 return spi_master_resume(master
);
1782 static const struct dev_pm_ops atmel_spi_pm_ops
= {
1783 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend
, atmel_spi_resume
)
1784 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend
,
1785 atmel_spi_runtime_resume
, NULL
)
1787 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1789 #define ATMEL_SPI_PM_OPS NULL
1792 static const struct of_device_id atmel_spi_dt_ids
[] = {
1793 { .compatible
= "atmel,at91rm9200-spi" },
1797 MODULE_DEVICE_TABLE(of
, atmel_spi_dt_ids
);
1799 static struct platform_driver atmel_spi_driver
= {
1801 .name
= "atmel_spi",
1802 .pm
= ATMEL_SPI_PM_OPS
,
1803 .of_match_table
= atmel_spi_dt_ids
,
1805 .probe
= atmel_spi_probe
,
1806 .remove
= atmel_spi_remove
,
1808 module_platform_driver(atmel_spi_driver
);
1810 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1811 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1812 MODULE_LICENSE("GPL");
1813 MODULE_ALIAS("platform:atmel_spi");