WIP FPC-III support
[linux/fpc-iii.git] / drivers / spi / spi-hisi-sfc-v3xx.c
blob4650b483a33d32c34f0c21d671af44ebab1d94dc
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // HiSilicon SPI NOR V3XX Flash Controller Driver for hi16xx chipsets
4 //
5 // Copyright (c) 2019 HiSilicon Technologies Co., Ltd.
6 // Author: John Garry <john.garry@huawei.com>
8 #include <linux/acpi.h>
9 #include <linux/bitops.h>
10 #include <linux/completion.h>
11 #include <linux/dmi.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/slab.h>
17 #include <linux/spi/spi.h>
18 #include <linux/spi/spi-mem.h>
20 #define HISI_SFC_V3XX_VERSION (0x1f8)
22 #define HISI_SFC_V3XX_RAW_INT_STAT (0x120)
23 #define HISI_SFC_V3XX_INT_STAT (0x124)
24 #define HISI_SFC_V3XX_INT_MASK (0x128)
25 #define HISI_SFC_V3XX_INT_CLR (0x12c)
26 #define HISI_SFC_V3XX_CMD_CFG (0x300)
27 #define HISI_SFC_V3XX_CMD_CFG_DATA_CNT_OFF 9
28 #define HISI_SFC_V3XX_CMD_CFG_RW_MSK BIT(8)
29 #define HISI_SFC_V3XX_CMD_CFG_DATA_EN_MSK BIT(7)
30 #define HISI_SFC_V3XX_CMD_CFG_DUMMY_CNT_OFF 4
31 #define HISI_SFC_V3XX_CMD_CFG_ADDR_EN_MSK BIT(3)
32 #define HISI_SFC_V3XX_CMD_CFG_CS_SEL_OFF 1
33 #define HISI_SFC_V3XX_CMD_CFG_START_MSK BIT(0)
34 #define HISI_SFC_V3XX_CMD_INS (0x308)
35 #define HISI_SFC_V3XX_CMD_ADDR (0x30c)
36 #define HISI_SFC_V3XX_CMD_DATABUF0 (0x400)
38 /* Common definition of interrupt bit masks */
39 #define HISI_SFC_V3XX_INT_MASK_ALL (0x1ff) /* all the masks */
40 #define HISI_SFC_V3XX_INT_MASK_CPLT BIT(0) /* command execution complete */
41 #define HISI_SFC_V3XX_INT_MASK_PP_ERR BIT(2) /* page progrom error */
42 #define HISI_SFC_V3XX_INT_MASK_IACCES BIT(5) /* error visiting inaccessible/
43 * protected address
46 /* IO Mode definition in HISI_SFC_V3XX_CMD_CFG */
47 #define HISI_SFC_V3XX_STD (0 << 17)
48 #define HISI_SFC_V3XX_DIDO (1 << 17)
49 #define HISI_SFC_V3XX_DIO (2 << 17)
50 #define HISI_SFC_V3XX_FULL_DIO (3 << 17)
51 #define HISI_SFC_V3XX_QIQO (5 << 17)
52 #define HISI_SFC_V3XX_QIO (6 << 17)
53 #define HISI_SFC_V3XX_FULL_QIO (7 << 17)
56 * The IO modes lookup table. hisi_sfc_v3xx_io_modes[(z - 1) / 2][y / 2][x / 2]
57 * stands for x-y-z mode, as described in SFDP terminology. -EIO indicates
58 * an invalid mode.
60 static const int hisi_sfc_v3xx_io_modes[2][3][3] = {
62 { HISI_SFC_V3XX_DIDO, HISI_SFC_V3XX_DIDO, HISI_SFC_V3XX_DIDO },
63 { HISI_SFC_V3XX_DIO, HISI_SFC_V3XX_FULL_DIO, -EIO },
64 { -EIO, -EIO, -EIO },
67 { HISI_SFC_V3XX_QIQO, HISI_SFC_V3XX_QIQO, HISI_SFC_V3XX_QIQO },
68 { -EIO, -EIO, -EIO },
69 { HISI_SFC_V3XX_QIO, -EIO, HISI_SFC_V3XX_FULL_QIO },
73 struct hisi_sfc_v3xx_host {
74 struct device *dev;
75 void __iomem *regbase;
76 int max_cmd_dword;
77 struct completion *completion;
78 int irq;
81 static void hisi_sfc_v3xx_disable_int(struct hisi_sfc_v3xx_host *host)
83 writel(0, host->regbase + HISI_SFC_V3XX_INT_MASK);
86 static void hisi_sfc_v3xx_enable_int(struct hisi_sfc_v3xx_host *host)
88 writel(HISI_SFC_V3XX_INT_MASK_ALL, host->regbase + HISI_SFC_V3XX_INT_MASK);
91 static void hisi_sfc_v3xx_clear_int(struct hisi_sfc_v3xx_host *host)
93 writel(HISI_SFC_V3XX_INT_MASK_ALL, host->regbase + HISI_SFC_V3XX_INT_CLR);
97 * The interrupt status register indicates whether an error occurs
98 * after per operation. Check it, and clear the interrupts for
99 * next time judgement.
101 static int hisi_sfc_v3xx_handle_completion(struct hisi_sfc_v3xx_host *host)
103 u32 reg;
105 reg = readl(host->regbase + HISI_SFC_V3XX_RAW_INT_STAT);
106 hisi_sfc_v3xx_clear_int(host);
108 if (reg & HISI_SFC_V3XX_INT_MASK_IACCES) {
109 dev_err(host->dev, "fail to access protected address\n");
110 return -EIO;
113 if (reg & HISI_SFC_V3XX_INT_MASK_PP_ERR) {
114 dev_err(host->dev, "page program operation failed\n");
115 return -EIO;
119 * The other bits of the interrupt registers is not currently
120 * used and probably not be triggered in this driver. When it
121 * happens, we regard it as an unsupported error here.
123 if (!(reg & HISI_SFC_V3XX_INT_MASK_CPLT)) {
124 dev_err(host->dev, "unsupported error occurred, status=0x%x\n", reg);
125 return -EIO;
128 return 0;
131 #define HISI_SFC_V3XX_WAIT_TIMEOUT_US 1000000
132 #define HISI_SFC_V3XX_WAIT_POLL_INTERVAL_US 10
134 static int hisi_sfc_v3xx_wait_cmd_idle(struct hisi_sfc_v3xx_host *host)
136 u32 reg;
138 return readl_poll_timeout(host->regbase + HISI_SFC_V3XX_CMD_CFG, reg,
139 !(reg & HISI_SFC_V3XX_CMD_CFG_START_MSK),
140 HISI_SFC_V3XX_WAIT_POLL_INTERVAL_US,
141 HISI_SFC_V3XX_WAIT_TIMEOUT_US);
144 static int hisi_sfc_v3xx_adjust_op_size(struct spi_mem *mem,
145 struct spi_mem_op *op)
147 struct spi_device *spi = mem->spi;
148 struct hisi_sfc_v3xx_host *host;
149 uintptr_t addr = (uintptr_t)op->data.buf.in;
150 int max_byte_count;
152 host = spi_controller_get_devdata(spi->master);
154 max_byte_count = host->max_cmd_dword * 4;
156 if (!IS_ALIGNED(addr, 4) && op->data.nbytes >= 4)
157 op->data.nbytes = 4 - (addr % 4);
158 else if (op->data.nbytes > max_byte_count)
159 op->data.nbytes = max_byte_count;
161 return 0;
165 * The controller only supports Standard SPI mode, Duall mode and
166 * Quad mode. Double sanitize the ops here to avoid OOB access.
168 static bool hisi_sfc_v3xx_supports_op(struct spi_mem *mem,
169 const struct spi_mem_op *op)
171 if (op->data.buswidth > 4 || op->dummy.buswidth > 4 ||
172 op->addr.buswidth > 4 || op->cmd.buswidth > 4)
173 return false;
175 return spi_mem_default_supports_op(mem, op);
179 * memcpy_{to,from}io doesn't gurantee 32b accesses - which we require for the
180 * DATABUF registers -so use __io{read,write}32_copy when possible. For
181 * trailing bytes, copy them byte-by-byte from the DATABUF register, as we
182 * can't clobber outside the source/dest buffer.
184 * For efficient data read/write, we try to put any start 32b unaligned data
185 * into a separate transaction in hisi_sfc_v3xx_adjust_op_size().
187 static void hisi_sfc_v3xx_read_databuf(struct hisi_sfc_v3xx_host *host,
188 u8 *to, unsigned int len)
190 void __iomem *from;
191 int i;
193 from = host->regbase + HISI_SFC_V3XX_CMD_DATABUF0;
195 if (IS_ALIGNED((uintptr_t)to, 4)) {
196 int words = len / 4;
198 __ioread32_copy(to, from, words);
200 len -= words * 4;
201 if (len) {
202 u32 val;
204 to += words * 4;
205 from += words * 4;
207 val = __raw_readl(from);
209 for (i = 0; i < len; i++, val >>= 8, to++)
210 *to = (u8)val;
212 } else {
213 for (i = 0; i < DIV_ROUND_UP(len, 4); i++, from += 4) {
214 u32 val = __raw_readl(from);
215 int j;
217 for (j = 0; j < 4 && (j + (i * 4) < len);
218 to++, val >>= 8, j++)
219 *to = (u8)val;
224 static void hisi_sfc_v3xx_write_databuf(struct hisi_sfc_v3xx_host *host,
225 const u8 *from, unsigned int len)
227 void __iomem *to;
228 int i;
230 to = host->regbase + HISI_SFC_V3XX_CMD_DATABUF0;
232 if (IS_ALIGNED((uintptr_t)from, 4)) {
233 int words = len / 4;
235 __iowrite32_copy(to, from, words);
237 len -= words * 4;
238 if (len) {
239 u32 val = 0;
241 to += words * 4;
242 from += words * 4;
244 for (i = 0; i < len; i++, from++)
245 val |= *from << i * 8;
246 __raw_writel(val, to);
249 } else {
250 for (i = 0; i < DIV_ROUND_UP(len, 4); i++, to += 4) {
251 u32 val = 0;
252 int j;
254 for (j = 0; j < 4 && (j + (i * 4) < len);
255 from++, j++)
256 val |= *from << j * 8;
257 __raw_writel(val, to);
262 static int hisi_sfc_v3xx_start_bus(struct hisi_sfc_v3xx_host *host,
263 const struct spi_mem_op *op,
264 u8 chip_select)
266 int len = op->data.nbytes, buswidth_mode;
267 u32 config = 0;
269 if (op->addr.nbytes)
270 config |= HISI_SFC_V3XX_CMD_CFG_ADDR_EN_MSK;
272 if (op->data.buswidth == 0 || op->data.buswidth == 1) {
273 buswidth_mode = HISI_SFC_V3XX_STD;
274 } else {
275 int data_idx, addr_idx, cmd_idx;
277 data_idx = (op->data.buswidth - 1) / 2;
278 addr_idx = op->addr.buswidth / 2;
279 cmd_idx = op->cmd.buswidth / 2;
280 buswidth_mode = hisi_sfc_v3xx_io_modes[data_idx][addr_idx][cmd_idx];
282 if (buswidth_mode < 0)
283 return buswidth_mode;
284 config |= buswidth_mode;
286 if (op->data.dir != SPI_MEM_NO_DATA) {
287 config |= (len - 1) << HISI_SFC_V3XX_CMD_CFG_DATA_CNT_OFF;
288 config |= HISI_SFC_V3XX_CMD_CFG_DATA_EN_MSK;
291 if (op->data.dir == SPI_MEM_DATA_IN)
292 config |= HISI_SFC_V3XX_CMD_CFG_RW_MSK;
294 config |= op->dummy.nbytes << HISI_SFC_V3XX_CMD_CFG_DUMMY_CNT_OFF |
295 chip_select << HISI_SFC_V3XX_CMD_CFG_CS_SEL_OFF |
296 HISI_SFC_V3XX_CMD_CFG_START_MSK;
298 writel(op->addr.val, host->regbase + HISI_SFC_V3XX_CMD_ADDR);
299 writel(op->cmd.opcode, host->regbase + HISI_SFC_V3XX_CMD_INS);
301 writel(config, host->regbase + HISI_SFC_V3XX_CMD_CFG);
303 return 0;
306 static int hisi_sfc_v3xx_generic_exec_op(struct hisi_sfc_v3xx_host *host,
307 const struct spi_mem_op *op,
308 u8 chip_select)
310 DECLARE_COMPLETION_ONSTACK(done);
311 int ret;
313 if (host->irq) {
314 host->completion = &done;
315 hisi_sfc_v3xx_enable_int(host);
318 if (op->data.dir == SPI_MEM_DATA_OUT)
319 hisi_sfc_v3xx_write_databuf(host, op->data.buf.out, op->data.nbytes);
321 ret = hisi_sfc_v3xx_start_bus(host, op, chip_select);
322 if (ret)
323 return ret;
325 if (host->irq) {
326 ret = wait_for_completion_timeout(host->completion,
327 usecs_to_jiffies(HISI_SFC_V3XX_WAIT_TIMEOUT_US));
328 if (!ret)
329 ret = -ETIMEDOUT;
330 else
331 ret = 0;
333 hisi_sfc_v3xx_disable_int(host);
334 host->completion = NULL;
335 } else {
336 ret = hisi_sfc_v3xx_wait_cmd_idle(host);
338 if (hisi_sfc_v3xx_handle_completion(host) || ret)
339 return -EIO;
341 if (op->data.dir == SPI_MEM_DATA_IN)
342 hisi_sfc_v3xx_read_databuf(host, op->data.buf.in, op->data.nbytes);
344 return 0;
347 static int hisi_sfc_v3xx_exec_op(struct spi_mem *mem,
348 const struct spi_mem_op *op)
350 struct hisi_sfc_v3xx_host *host;
351 struct spi_device *spi = mem->spi;
352 u8 chip_select = spi->chip_select;
354 host = spi_controller_get_devdata(spi->master);
356 return hisi_sfc_v3xx_generic_exec_op(host, op, chip_select);
359 static const struct spi_controller_mem_ops hisi_sfc_v3xx_mem_ops = {
360 .adjust_op_size = hisi_sfc_v3xx_adjust_op_size,
361 .supports_op = hisi_sfc_v3xx_supports_op,
362 .exec_op = hisi_sfc_v3xx_exec_op,
365 static irqreturn_t hisi_sfc_v3xx_isr(int irq, void *data)
367 struct hisi_sfc_v3xx_host *host = data;
369 hisi_sfc_v3xx_disable_int(host);
371 complete(host->completion);
373 return IRQ_HANDLED;
376 static int hisi_sfc_v3xx_buswidth_override_bits;
379 * ACPI FW does not allow us to currently set the device buswidth, so quirk it
380 * depending on the board.
382 static int __init hisi_sfc_v3xx_dmi_quirk(const struct dmi_system_id *d)
384 hisi_sfc_v3xx_buswidth_override_bits = SPI_RX_QUAD | SPI_TX_QUAD;
386 return 0;
389 static const struct dmi_system_id hisi_sfc_v3xx_dmi_quirk_table[] = {
391 .callback = hisi_sfc_v3xx_dmi_quirk,
392 .matches = {
393 DMI_MATCH(DMI_SYS_VENDOR, "Huawei"),
394 DMI_MATCH(DMI_PRODUCT_NAME, "D06"),
398 .callback = hisi_sfc_v3xx_dmi_quirk,
399 .matches = {
400 DMI_MATCH(DMI_SYS_VENDOR, "Huawei"),
401 DMI_MATCH(DMI_PRODUCT_NAME, "TaiShan 2280 V2"),
405 .callback = hisi_sfc_v3xx_dmi_quirk,
406 .matches = {
407 DMI_MATCH(DMI_SYS_VENDOR, "Huawei"),
408 DMI_MATCH(DMI_PRODUCT_NAME, "TaiShan 200 (Model 2280)"),
414 static int hisi_sfc_v3xx_probe(struct platform_device *pdev)
416 struct device *dev = &pdev->dev;
417 struct hisi_sfc_v3xx_host *host;
418 struct spi_controller *ctlr;
419 u32 version;
420 int ret;
422 ctlr = spi_alloc_master(&pdev->dev, sizeof(*host));
423 if (!ctlr)
424 return -ENOMEM;
426 ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD |
427 SPI_TX_DUAL | SPI_TX_QUAD;
429 ctlr->buswidth_override_bits = hisi_sfc_v3xx_buswidth_override_bits;
431 host = spi_controller_get_devdata(ctlr);
432 host->dev = dev;
434 platform_set_drvdata(pdev, host);
436 host->regbase = devm_platform_ioremap_resource(pdev, 0);
437 if (IS_ERR(host->regbase)) {
438 ret = PTR_ERR(host->regbase);
439 goto err_put_master;
442 host->irq = platform_get_irq_optional(pdev, 0);
443 if (host->irq == -EPROBE_DEFER) {
444 ret = -EPROBE_DEFER;
445 goto err_put_master;
448 hisi_sfc_v3xx_disable_int(host);
450 if (host->irq > 0) {
451 ret = devm_request_irq(dev, host->irq, hisi_sfc_v3xx_isr, 0,
452 "hisi-sfc-v3xx", host);
454 if (ret) {
455 dev_err(dev, "failed to request irq%d, ret = %d\n", host->irq, ret);
456 host->irq = 0;
458 } else {
459 host->irq = 0;
462 ctlr->bus_num = -1;
463 ctlr->num_chipselect = 1;
464 ctlr->mem_ops = &hisi_sfc_v3xx_mem_ops;
466 version = readl(host->regbase + HISI_SFC_V3XX_VERSION);
468 switch (version) {
469 case 0x351:
470 host->max_cmd_dword = 64;
471 break;
472 default:
473 host->max_cmd_dword = 16;
474 break;
477 ret = devm_spi_register_controller(dev, ctlr);
478 if (ret)
479 goto err_put_master;
481 dev_info(&pdev->dev, "hw version 0x%x, %s mode.\n",
482 version, host->irq ? "irq" : "polling");
484 return 0;
486 err_put_master:
487 spi_master_put(ctlr);
488 return ret;
491 #if IS_ENABLED(CONFIG_ACPI)
492 static const struct acpi_device_id hisi_sfc_v3xx_acpi_ids[] = {
493 {"HISI0341", 0},
496 MODULE_DEVICE_TABLE(acpi, hisi_sfc_v3xx_acpi_ids);
497 #endif
499 static struct platform_driver hisi_sfc_v3xx_spi_driver = {
500 .driver = {
501 .name = "hisi-sfc-v3xx",
502 .acpi_match_table = ACPI_PTR(hisi_sfc_v3xx_acpi_ids),
504 .probe = hisi_sfc_v3xx_probe,
507 static int __init hisi_sfc_v3xx_spi_init(void)
509 dmi_check_system(hisi_sfc_v3xx_dmi_quirk_table);
511 return platform_driver_register(&hisi_sfc_v3xx_spi_driver);
514 static void __exit hisi_sfc_v3xx_spi_exit(void)
516 platform_driver_unregister(&hisi_sfc_v3xx_spi_driver);
519 module_init(hisi_sfc_v3xx_spi_init);
520 module_exit(hisi_sfc_v3xx_spi_exit);
522 MODULE_LICENSE("GPL");
523 MODULE_AUTHOR("John Garry <john.garry@huawei.com>");
524 MODULE_DESCRIPTION("HiSilicon SPI NOR V3XX Flash Controller Driver for hi16xx chipsets");