1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
5 * Copyright (C) 2008-2012 ST-Ericsson AB
6 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
8 * Author: Linus Walleij <linus.walleij@stericsson.com>
10 * Initial version inspired by:
11 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
12 * Initial adoption to PL022 by:
13 * Sachin Verma <sachin.verma@st.com>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/device.h>
19 #include <linux/ioport.h>
20 #include <linux/errno.h>
21 #include <linux/interrupt.h>
22 #include <linux/spi/spi.h>
23 #include <linux/delay.h>
24 #include <linux/clk.h>
25 #include <linux/err.h>
26 #include <linux/amba/bus.h>
27 #include <linux/amba/pl022.h>
29 #include <linux/slab.h>
30 #include <linux/dmaengine.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/scatterlist.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/gpio.h>
35 #include <linux/of_gpio.h>
36 #include <linux/pinctrl/consumer.h>
39 * This macro is used to define some register default values.
40 * reg is masked with mask, the OR:ed with an (again masked)
41 * val shifted sb steps to the left.
43 #define SSP_WRITE_BITS(reg, val, mask, sb) \
44 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
47 * This macro is also used to define some default values.
48 * It will just shift val by sb steps to the left and mask
49 * the result with mask.
51 #define GEN_MASK_BITS(val, mask, sb) \
52 (((val)<<(sb)) & (mask))
55 #define DO_NOT_DRIVE_TX 1
57 #define DO_NOT_QUEUE_DMA 0
64 * Macros to access SSP Registers with their offsets
66 #define SSP_CR0(r) (r + 0x000)
67 #define SSP_CR1(r) (r + 0x004)
68 #define SSP_DR(r) (r + 0x008)
69 #define SSP_SR(r) (r + 0x00C)
70 #define SSP_CPSR(r) (r + 0x010)
71 #define SSP_IMSC(r) (r + 0x014)
72 #define SSP_RIS(r) (r + 0x018)
73 #define SSP_MIS(r) (r + 0x01C)
74 #define SSP_ICR(r) (r + 0x020)
75 #define SSP_DMACR(r) (r + 0x024)
76 #define SSP_CSR(r) (r + 0x030) /* vendor extension */
77 #define SSP_ITCR(r) (r + 0x080)
78 #define SSP_ITIP(r) (r + 0x084)
79 #define SSP_ITOP(r) (r + 0x088)
80 #define SSP_TDR(r) (r + 0x08C)
82 #define SSP_PID0(r) (r + 0xFE0)
83 #define SSP_PID1(r) (r + 0xFE4)
84 #define SSP_PID2(r) (r + 0xFE8)
85 #define SSP_PID3(r) (r + 0xFEC)
87 #define SSP_CID0(r) (r + 0xFF0)
88 #define SSP_CID1(r) (r + 0xFF4)
89 #define SSP_CID2(r) (r + 0xFF8)
90 #define SSP_CID3(r) (r + 0xFFC)
93 * SSP Control Register 0 - SSP_CR0
95 #define SSP_CR0_MASK_DSS (0x0FUL << 0)
96 #define SSP_CR0_MASK_FRF (0x3UL << 4)
97 #define SSP_CR0_MASK_SPO (0x1UL << 6)
98 #define SSP_CR0_MASK_SPH (0x1UL << 7)
99 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
102 * The ST version of this block moves som bits
103 * in SSP_CR0 and extends it to 32 bits
105 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
106 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
107 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
108 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
111 * SSP Control Register 0 - SSP_CR1
113 #define SSP_CR1_MASK_LBM (0x1UL << 0)
114 #define SSP_CR1_MASK_SSE (0x1UL << 1)
115 #define SSP_CR1_MASK_MS (0x1UL << 2)
116 #define SSP_CR1_MASK_SOD (0x1UL << 3)
119 * The ST version of this block adds some bits
122 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
123 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
124 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
125 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
126 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
127 /* This one is only in the PL023 variant */
128 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
131 * SSP Status Register - SSP_SR
133 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
134 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
135 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
136 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
137 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
140 * SSP Clock Prescale Register - SSP_CPSR
142 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
145 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
147 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
148 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
149 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
150 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
153 * SSP Raw Interrupt Status Register - SSP_RIS
155 /* Receive Overrun Raw Interrupt status */
156 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
157 /* Receive Timeout Raw Interrupt status */
158 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
159 /* Receive FIFO Raw Interrupt status */
160 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
161 /* Transmit FIFO Raw Interrupt status */
162 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
165 * SSP Masked Interrupt Status Register - SSP_MIS
167 /* Receive Overrun Masked Interrupt status */
168 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
169 /* Receive Timeout Masked Interrupt status */
170 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
171 /* Receive FIFO Masked Interrupt status */
172 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
173 /* Transmit FIFO Masked Interrupt status */
174 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
177 * SSP Interrupt Clear Register - SSP_ICR
179 /* Receive Overrun Raw Clear Interrupt bit */
180 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
181 /* Receive Timeout Clear Interrupt bit */
182 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
185 * SSP DMA Control Register - SSP_DMACR
187 /* Receive DMA Enable bit */
188 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
189 /* Transmit DMA Enable bit */
190 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
193 * SSP Chip Select Control Register - SSP_CSR
196 #define SSP_CSR_CSVALUE_MASK (0x1FUL << 0)
199 * SSP Integration Test control Register - SSP_ITCR
201 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
202 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
205 * SSP Integration Test Input Register - SSP_ITIP
207 #define ITIP_MASK_SSPRXD (0x1UL << 0)
208 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
209 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
210 #define ITIP_MASK_RXDMAC (0x1UL << 3)
211 #define ITIP_MASK_TXDMAC (0x1UL << 4)
212 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
215 * SSP Integration Test output Register - SSP_ITOP
217 #define ITOP_MASK_SSPTXD (0x1UL << 0)
218 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
219 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
220 #define ITOP_MASK_SSPOEn (0x1UL << 3)
221 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
222 #define ITOP_MASK_RORINTR (0x1UL << 5)
223 #define ITOP_MASK_RTINTR (0x1UL << 6)
224 #define ITOP_MASK_RXINTR (0x1UL << 7)
225 #define ITOP_MASK_TXINTR (0x1UL << 8)
226 #define ITOP_MASK_INTR (0x1UL << 9)
227 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
228 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
229 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
230 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
233 * SSP Test Data Register - SSP_TDR
235 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
239 * we use the spi_message.state (void *) pointer to
240 * hold a single state value, that's why all this
241 * (void *) casting is done here.
243 #define STATE_START ((void *) 0)
244 #define STATE_RUNNING ((void *) 1)
245 #define STATE_DONE ((void *) 2)
246 #define STATE_ERROR ((void *) -1)
247 #define STATE_TIMEOUT ((void *) -2)
250 * SSP State - Whether Enabled or Disabled
252 #define SSP_DISABLED (0)
253 #define SSP_ENABLED (1)
256 * SSP DMA State - Whether DMA Enabled or Disabled
258 #define SSP_DMA_DISABLED (0)
259 #define SSP_DMA_ENABLED (1)
264 #define SSP_DEFAULT_CLKRATE 0x2
265 #define SSP_DEFAULT_PRESCALE 0x40
268 * SSP Clock Parameter ranges
270 #define CPSDVR_MIN 0x02
271 #define CPSDVR_MAX 0xFE
276 * SSP Interrupt related Macros
278 #define DEFAULT_SSP_REG_IMSC 0x0UL
279 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
280 #define ENABLE_ALL_INTERRUPTS ( \
281 SSP_IMSC_MASK_RORIM | \
282 SSP_IMSC_MASK_RTIM | \
283 SSP_IMSC_MASK_RXIM | \
287 #define CLEAR_ALL_INTERRUPTS 0x3
289 #define SPI_POLLING_TIMEOUT 1000
292 * The type of reading going on on this chip
302 * The type of writing going on on this chip
312 * struct vendor_data - vendor-specific config parameters
313 * for PL022 derivates
314 * @fifodepth: depth of FIFOs (both)
315 * @max_bpw: maximum number of bits per word
316 * @unidir: supports unidirection transfers
317 * @extended_cr: 32 bit wide control register 0 with extra
318 * features and extra features in CR1 as found in the ST variants
319 * @pl023: supports a subset of the ST extensions called "PL023"
320 * @loopback: supports loopback mode
321 * @internal_cs_ctrl: supports chip select control register
330 bool internal_cs_ctrl
;
334 * struct pl022 - This is the private SSP driver data structure
335 * @adev: AMBA device model hookup
336 * @vendor: vendor data for the IP block
337 * @phybase: the physical memory where the SSP device resides
338 * @virtbase: the virtual memory where the SSP is mapped
339 * @clk: outgoing clock "SPICLK" for the SPI bus
340 * @master: SPI framework hookup
341 * @master_info: controller-specific data from machine setup
342 * @pump_transfers: Tasklet used in Interrupt Transfer mode
343 * @cur_msg: Pointer to current spi_message being processed
344 * @cur_transfer: Pointer to current spi_transfer
345 * @cur_chip: pointer to current clients chip(assigned from controller_state)
346 * @next_msg_cs_active: the next message in the queue has been examined
347 * and it was found that it uses the same chip select as the previous
348 * message, so we left it active after the previous transfer, and it's
350 * @tx: current position in TX buffer to be read
351 * @tx_end: end position in TX buffer to be read
352 * @rx: current position in RX buffer to be written
353 * @rx_end: end position in RX buffer to be written
354 * @read: the type of read currently going on
355 * @write: the type of write currently going on
356 * @exp_fifo_level: expected FIFO level
357 * @rx_lev_trig: receive FIFO watermark level which triggers IRQ
358 * @tx_lev_trig: transmit FIFO watermark level which triggers IRQ
359 * @dma_rx_channel: optional channel for RX DMA
360 * @dma_tx_channel: optional channel for TX DMA
361 * @sgt_rx: scattertable for the RX transfer
362 * @sgt_tx: scattertable for the TX transfer
363 * @dummypage: a dummy page used for driving data on the bus with DMA
364 * @dma_running: indicates whether DMA is in operation
365 * @cur_cs: current chip select (gpio)
366 * @chipselects: list of chipselects (gpios)
369 struct amba_device
*adev
;
370 struct vendor_data
*vendor
;
371 resource_size_t phybase
;
372 void __iomem
*virtbase
;
374 struct spi_master
*master
;
375 struct pl022_ssp_controller
*master_info
;
376 /* Message per-transfer pump */
377 struct tasklet_struct pump_transfers
;
378 struct spi_message
*cur_msg
;
379 struct spi_transfer
*cur_transfer
;
380 struct chip_data
*cur_chip
;
381 bool next_msg_cs_active
;
386 enum ssp_reading read
;
387 enum ssp_writing write
;
389 enum ssp_rx_level_trig rx_lev_trig
;
390 enum ssp_tx_level_trig tx_lev_trig
;
392 #ifdef CONFIG_DMA_ENGINE
393 struct dma_chan
*dma_rx_channel
;
394 struct dma_chan
*dma_tx_channel
;
395 struct sg_table sgt_rx
;
396 struct sg_table sgt_tx
;
405 * struct chip_data - To maintain runtime state of SSP for each client chip
406 * @cr0: Value of control register CR0 of SSP - on later ST variants this
407 * register is 32 bits wide rather than just 16
408 * @cr1: Value of control register CR1 of SSP
409 * @dmacr: Value of DMA control Register of SSP
410 * @cpsr: Value of Clock prescale register
411 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
412 * @enable_dma: Whether to enable DMA or not
413 * @read: function ptr to be used to read when doing xfer for this chip
414 * @write: function ptr to be used to write when doing xfer for this chip
415 * @cs_control: chip select callback provided by chip
416 * @xfer_type: polling/interrupt/DMA
418 * Runtime state of the SSP controller, maintained per chip,
419 * This would be set according to the current message that would be served
428 enum ssp_reading read
;
429 enum ssp_writing write
;
430 void (*cs_control
) (u32 command
);
435 * null_cs_control - Dummy chip select function
436 * @command: select/delect the chip
438 * If no chip select function is provided by client this is used as dummy
441 static void null_cs_control(u32 command
)
443 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command
);
447 * internal_cs_control - Control chip select signals via SSP_CSR.
448 * @pl022: SSP driver private data structure
449 * @command: select/delect the chip
451 * Used on controller with internal chip select control via SSP_CSR register
452 * (vendor extension). Each of the 5 LSB in the register controls one chip
455 static void internal_cs_control(struct pl022
*pl022
, u32 command
)
459 tmp
= readw(SSP_CSR(pl022
->virtbase
));
460 if (command
== SSP_CHIP_SELECT
)
461 tmp
&= ~BIT(pl022
->cur_cs
);
463 tmp
|= BIT(pl022
->cur_cs
);
464 writew(tmp
, SSP_CSR(pl022
->virtbase
));
467 static void pl022_cs_control(struct pl022
*pl022
, u32 command
)
469 if (pl022
->vendor
->internal_cs_ctrl
)
470 internal_cs_control(pl022
, command
);
471 else if (gpio_is_valid(pl022
->cur_cs
))
472 gpio_set_value(pl022
->cur_cs
, command
);
474 pl022
->cur_chip
->cs_control(command
);
478 * giveback - current spi_message is over, schedule next message and call
479 * callback of this message. Assumes that caller already
480 * set message->status; dma and pio irqs are blocked
481 * @pl022: SSP driver private data structure
483 static void giveback(struct pl022
*pl022
)
485 struct spi_transfer
*last_transfer
;
486 pl022
->next_msg_cs_active
= false;
488 last_transfer
= list_last_entry(&pl022
->cur_msg
->transfers
,
489 struct spi_transfer
, transfer_list
);
491 /* Delay if requested before any change in chip select */
493 * FIXME: This runs in interrupt context.
494 * Is this really smart?
496 spi_transfer_delay_exec(last_transfer
);
498 if (!last_transfer
->cs_change
) {
499 struct spi_message
*next_msg
;
502 * cs_change was not set. We can keep the chip select
503 * enabled if there is message in the queue and it is
504 * for the same spi device.
506 * We cannot postpone this until pump_messages, because
507 * after calling msg->complete (below) the driver that
508 * sent the current message could be unloaded, which
509 * could invalidate the cs_control() callback...
511 /* get a pointer to the next message, if any */
512 next_msg
= spi_get_next_queued_message(pl022
->master
);
515 * see if the next and current messages point
516 * to the same spi device.
518 if (next_msg
&& next_msg
->spi
!= pl022
->cur_msg
->spi
)
520 if (!next_msg
|| pl022
->cur_msg
->state
== STATE_ERROR
)
521 pl022_cs_control(pl022
, SSP_CHIP_DESELECT
);
523 pl022
->next_msg_cs_active
= true;
527 pl022
->cur_msg
= NULL
;
528 pl022
->cur_transfer
= NULL
;
529 pl022
->cur_chip
= NULL
;
531 /* disable the SPI/SSP operation */
532 writew((readw(SSP_CR1(pl022
->virtbase
)) &
533 (~SSP_CR1_MASK_SSE
)), SSP_CR1(pl022
->virtbase
));
535 spi_finalize_current_message(pl022
->master
);
539 * flush - flush the FIFO to reach a clean state
540 * @pl022: SSP driver private data structure
542 static int flush(struct pl022
*pl022
)
544 unsigned long limit
= loops_per_jiffy
<< 1;
546 dev_dbg(&pl022
->adev
->dev
, "flush\n");
548 while (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
549 readw(SSP_DR(pl022
->virtbase
));
550 } while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_BSY
) && limit
--);
552 pl022
->exp_fifo_level
= 0;
558 * restore_state - Load configuration of current chip
559 * @pl022: SSP driver private data structure
561 static void restore_state(struct pl022
*pl022
)
563 struct chip_data
*chip
= pl022
->cur_chip
;
565 if (pl022
->vendor
->extended_cr
)
566 writel(chip
->cr0
, SSP_CR0(pl022
->virtbase
));
568 writew(chip
->cr0
, SSP_CR0(pl022
->virtbase
));
569 writew(chip
->cr1
, SSP_CR1(pl022
->virtbase
));
570 writew(chip
->dmacr
, SSP_DMACR(pl022
->virtbase
));
571 writew(chip
->cpsr
, SSP_CPSR(pl022
->virtbase
));
572 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
573 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
577 * Default SSP Register Values
579 #define DEFAULT_SSP_REG_CR0 ( \
580 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
581 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
582 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
583 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
584 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
587 /* ST versions have slightly different bit layout */
588 #define DEFAULT_SSP_REG_CR0_ST ( \
589 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
590 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
591 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
592 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
593 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
594 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
595 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
598 /* The PL023 version is slightly different again */
599 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
600 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
601 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
602 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
603 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
606 #define DEFAULT_SSP_REG_CR1 ( \
607 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
608 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
609 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
610 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
613 /* ST versions extend this register to use all 16 bits */
614 #define DEFAULT_SSP_REG_CR1_ST ( \
615 DEFAULT_SSP_REG_CR1 | \
616 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
617 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
618 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
619 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
620 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
624 * The PL023 variant has further differences: no loopback mode, no microwire
625 * support, and a new clock feedback delay setting.
627 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
628 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
629 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
630 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
631 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
632 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
633 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
634 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
635 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
638 #define DEFAULT_SSP_REG_CPSR ( \
639 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
642 #define DEFAULT_SSP_REG_DMACR (\
643 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
644 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
648 * load_ssp_default_config - Load default configuration for SSP
649 * @pl022: SSP driver private data structure
651 static void load_ssp_default_config(struct pl022
*pl022
)
653 if (pl022
->vendor
->pl023
) {
654 writel(DEFAULT_SSP_REG_CR0_ST_PL023
, SSP_CR0(pl022
->virtbase
));
655 writew(DEFAULT_SSP_REG_CR1_ST_PL023
, SSP_CR1(pl022
->virtbase
));
656 } else if (pl022
->vendor
->extended_cr
) {
657 writel(DEFAULT_SSP_REG_CR0_ST
, SSP_CR0(pl022
->virtbase
));
658 writew(DEFAULT_SSP_REG_CR1_ST
, SSP_CR1(pl022
->virtbase
));
660 writew(DEFAULT_SSP_REG_CR0
, SSP_CR0(pl022
->virtbase
));
661 writew(DEFAULT_SSP_REG_CR1
, SSP_CR1(pl022
->virtbase
));
663 writew(DEFAULT_SSP_REG_DMACR
, SSP_DMACR(pl022
->virtbase
));
664 writew(DEFAULT_SSP_REG_CPSR
, SSP_CPSR(pl022
->virtbase
));
665 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
666 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
670 * This will write to TX and read from RX according to the parameters
673 static void readwriter(struct pl022
*pl022
)
677 * The FIFO depth is different between primecell variants.
678 * I believe filling in too much in the FIFO might cause
679 * errons in 8bit wide transfers on ARM variants (just 8 words
680 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
682 * To prevent this issue, the TX FIFO is only filled to the
683 * unused RX FIFO fill length, regardless of what the TX
684 * FIFO status flag indicates.
686 dev_dbg(&pl022
->adev
->dev
,
687 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
688 __func__
, pl022
->rx
, pl022
->rx_end
, pl022
->tx
, pl022
->tx_end
);
690 /* Read as much as you can */
691 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
692 && (pl022
->rx
< pl022
->rx_end
)) {
693 switch (pl022
->read
) {
695 readw(SSP_DR(pl022
->virtbase
));
698 *(u8
*) (pl022
->rx
) =
699 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
702 *(u16
*) (pl022
->rx
) =
703 (u16
) readw(SSP_DR(pl022
->virtbase
));
706 *(u32
*) (pl022
->rx
) =
707 readl(SSP_DR(pl022
->virtbase
));
710 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
711 pl022
->exp_fifo_level
--;
714 * Write as much as possible up to the RX FIFO size
716 while ((pl022
->exp_fifo_level
< pl022
->vendor
->fifodepth
)
717 && (pl022
->tx
< pl022
->tx_end
)) {
718 switch (pl022
->write
) {
720 writew(0x0, SSP_DR(pl022
->virtbase
));
723 writew(*(u8
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
726 writew((*(u16
*) (pl022
->tx
)), SSP_DR(pl022
->virtbase
));
729 writel(*(u32
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
732 pl022
->tx
+= (pl022
->cur_chip
->n_bytes
);
733 pl022
->exp_fifo_level
++;
735 * This inner reader takes care of things appearing in the RX
736 * FIFO as we're transmitting. This will happen a lot since the
737 * clock starts running when you put things into the TX FIFO,
738 * and then things are continuously clocked into the RX FIFO.
740 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
741 && (pl022
->rx
< pl022
->rx_end
)) {
742 switch (pl022
->read
) {
744 readw(SSP_DR(pl022
->virtbase
));
747 *(u8
*) (pl022
->rx
) =
748 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
751 *(u16
*) (pl022
->rx
) =
752 (u16
) readw(SSP_DR(pl022
->virtbase
));
755 *(u32
*) (pl022
->rx
) =
756 readl(SSP_DR(pl022
->virtbase
));
759 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
760 pl022
->exp_fifo_level
--;
764 * When we exit here the TX FIFO should be full and the RX FIFO
770 * next_transfer - Move to the Next transfer in the current spi message
771 * @pl022: SSP driver private data structure
773 * This function moves though the linked list of spi transfers in the
774 * current spi message and returns with the state of current spi
775 * message i.e whether its last transfer is done(STATE_DONE) or
776 * Next transfer is ready(STATE_RUNNING)
778 static void *next_transfer(struct pl022
*pl022
)
780 struct spi_message
*msg
= pl022
->cur_msg
;
781 struct spi_transfer
*trans
= pl022
->cur_transfer
;
783 /* Move to next transfer */
784 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
785 pl022
->cur_transfer
=
786 list_entry(trans
->transfer_list
.next
,
787 struct spi_transfer
, transfer_list
);
788 return STATE_RUNNING
;
794 * This DMA functionality is only compiled in if we have
795 * access to the generic DMA devices/DMA engine.
797 #ifdef CONFIG_DMA_ENGINE
798 static void unmap_free_dma_scatter(struct pl022
*pl022
)
800 /* Unmap and free the SG tables */
801 dma_unmap_sg(pl022
->dma_tx_channel
->device
->dev
, pl022
->sgt_tx
.sgl
,
802 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
803 dma_unmap_sg(pl022
->dma_rx_channel
->device
->dev
, pl022
->sgt_rx
.sgl
,
804 pl022
->sgt_rx
.nents
, DMA_FROM_DEVICE
);
805 sg_free_table(&pl022
->sgt_rx
);
806 sg_free_table(&pl022
->sgt_tx
);
809 static void dma_callback(void *data
)
811 struct pl022
*pl022
= data
;
812 struct spi_message
*msg
= pl022
->cur_msg
;
814 BUG_ON(!pl022
->sgt_rx
.sgl
);
818 * Optionally dump out buffers to inspect contents, this is
819 * good if you want to convince yourself that the loopback
820 * read/write contents are the same, when adopting to a new
824 struct scatterlist
*sg
;
827 dma_sync_sg_for_cpu(&pl022
->adev
->dev
,
832 for_each_sg(pl022
->sgt_rx
.sgl
, sg
, pl022
->sgt_rx
.nents
, i
) {
833 dev_dbg(&pl022
->adev
->dev
, "SPI RX SG ENTRY: %d", i
);
834 print_hex_dump(KERN_ERR
, "SPI RX: ",
842 for_each_sg(pl022
->sgt_tx
.sgl
, sg
, pl022
->sgt_tx
.nents
, i
) {
843 dev_dbg(&pl022
->adev
->dev
, "SPI TX SG ENTRY: %d", i
);
844 print_hex_dump(KERN_ERR
, "SPI TX: ",
855 unmap_free_dma_scatter(pl022
);
857 /* Update total bytes transferred */
858 msg
->actual_length
+= pl022
->cur_transfer
->len
;
859 /* Move to next transfer */
860 msg
->state
= next_transfer(pl022
);
861 if (msg
->state
!= STATE_DONE
&& pl022
->cur_transfer
->cs_change
)
862 pl022_cs_control(pl022
, SSP_CHIP_DESELECT
);
863 tasklet_schedule(&pl022
->pump_transfers
);
866 static void setup_dma_scatter(struct pl022
*pl022
,
869 struct sg_table
*sgtab
)
871 struct scatterlist
*sg
;
872 int bytesleft
= length
;
878 for_each_sg(sgtab
->sgl
, sg
, sgtab
->nents
, i
) {
880 * If there are less bytes left than what fits
881 * in the current page (plus page alignment offset)
882 * we just feed in this, else we stuff in as much
885 if (bytesleft
< (PAGE_SIZE
- offset_in_page(bufp
)))
886 mapbytes
= bytesleft
;
888 mapbytes
= PAGE_SIZE
- offset_in_page(bufp
);
889 sg_set_page(sg
, virt_to_page(bufp
),
890 mapbytes
, offset_in_page(bufp
));
892 bytesleft
-= mapbytes
;
893 dev_dbg(&pl022
->adev
->dev
,
894 "set RX/TX target page @ %p, %d bytes, %d left\n",
895 bufp
, mapbytes
, bytesleft
);
898 /* Map the dummy buffer on every page */
899 for_each_sg(sgtab
->sgl
, sg
, sgtab
->nents
, i
) {
900 if (bytesleft
< PAGE_SIZE
)
901 mapbytes
= bytesleft
;
903 mapbytes
= PAGE_SIZE
;
904 sg_set_page(sg
, virt_to_page(pl022
->dummypage
),
906 bytesleft
-= mapbytes
;
907 dev_dbg(&pl022
->adev
->dev
,
908 "set RX/TX to dummy page %d bytes, %d left\n",
909 mapbytes
, bytesleft
);
917 * configure_dma - configures the channels for the next transfer
918 * @pl022: SSP driver's private data structure
920 static int configure_dma(struct pl022
*pl022
)
922 struct dma_slave_config rx_conf
= {
923 .src_addr
= SSP_DR(pl022
->phybase
),
924 .direction
= DMA_DEV_TO_MEM
,
927 struct dma_slave_config tx_conf
= {
928 .dst_addr
= SSP_DR(pl022
->phybase
),
929 .direction
= DMA_MEM_TO_DEV
,
934 int rx_sglen
, tx_sglen
;
935 struct dma_chan
*rxchan
= pl022
->dma_rx_channel
;
936 struct dma_chan
*txchan
= pl022
->dma_tx_channel
;
937 struct dma_async_tx_descriptor
*rxdesc
;
938 struct dma_async_tx_descriptor
*txdesc
;
940 /* Check that the channels are available */
941 if (!rxchan
|| !txchan
)
945 * If supplied, the DMA burstsize should equal the FIFO trigger level.
946 * Notice that the DMA engine uses one-to-one mapping. Since we can
947 * not trigger on 2 elements this needs explicit mapping rather than
950 switch (pl022
->rx_lev_trig
) {
951 case SSP_RX_1_OR_MORE_ELEM
:
952 rx_conf
.src_maxburst
= 1;
954 case SSP_RX_4_OR_MORE_ELEM
:
955 rx_conf
.src_maxburst
= 4;
957 case SSP_RX_8_OR_MORE_ELEM
:
958 rx_conf
.src_maxburst
= 8;
960 case SSP_RX_16_OR_MORE_ELEM
:
961 rx_conf
.src_maxburst
= 16;
963 case SSP_RX_32_OR_MORE_ELEM
:
964 rx_conf
.src_maxburst
= 32;
967 rx_conf
.src_maxburst
= pl022
->vendor
->fifodepth
>> 1;
971 switch (pl022
->tx_lev_trig
) {
972 case SSP_TX_1_OR_MORE_EMPTY_LOC
:
973 tx_conf
.dst_maxburst
= 1;
975 case SSP_TX_4_OR_MORE_EMPTY_LOC
:
976 tx_conf
.dst_maxburst
= 4;
978 case SSP_TX_8_OR_MORE_EMPTY_LOC
:
979 tx_conf
.dst_maxburst
= 8;
981 case SSP_TX_16_OR_MORE_EMPTY_LOC
:
982 tx_conf
.dst_maxburst
= 16;
984 case SSP_TX_32_OR_MORE_EMPTY_LOC
:
985 tx_conf
.dst_maxburst
= 32;
988 tx_conf
.dst_maxburst
= pl022
->vendor
->fifodepth
>> 1;
992 switch (pl022
->read
) {
994 /* Use the same as for writing */
995 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_UNDEFINED
;
998 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
1001 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
1004 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1008 switch (pl022
->write
) {
1010 /* Use the same as for reading */
1011 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_UNDEFINED
;
1014 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
1017 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
1020 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1024 /* SPI pecularity: we need to read and write the same width */
1025 if (rx_conf
.src_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
1026 rx_conf
.src_addr_width
= tx_conf
.dst_addr_width
;
1027 if (tx_conf
.dst_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
1028 tx_conf
.dst_addr_width
= rx_conf
.src_addr_width
;
1029 BUG_ON(rx_conf
.src_addr_width
!= tx_conf
.dst_addr_width
);
1031 dmaengine_slave_config(rxchan
, &rx_conf
);
1032 dmaengine_slave_config(txchan
, &tx_conf
);
1034 /* Create sglists for the transfers */
1035 pages
= DIV_ROUND_UP(pl022
->cur_transfer
->len
, PAGE_SIZE
);
1036 dev_dbg(&pl022
->adev
->dev
, "using %d pages for transfer\n", pages
);
1038 ret
= sg_alloc_table(&pl022
->sgt_rx
, pages
, GFP_ATOMIC
);
1040 goto err_alloc_rx_sg
;
1042 ret
= sg_alloc_table(&pl022
->sgt_tx
, pages
, GFP_ATOMIC
);
1044 goto err_alloc_tx_sg
;
1046 /* Fill in the scatterlists for the RX+TX buffers */
1047 setup_dma_scatter(pl022
, pl022
->rx
,
1048 pl022
->cur_transfer
->len
, &pl022
->sgt_rx
);
1049 setup_dma_scatter(pl022
, pl022
->tx
,
1050 pl022
->cur_transfer
->len
, &pl022
->sgt_tx
);
1052 /* Map DMA buffers */
1053 rx_sglen
= dma_map_sg(rxchan
->device
->dev
, pl022
->sgt_rx
.sgl
,
1054 pl022
->sgt_rx
.nents
, DMA_FROM_DEVICE
);
1058 tx_sglen
= dma_map_sg(txchan
->device
->dev
, pl022
->sgt_tx
.sgl
,
1059 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
1063 /* Send both scatterlists */
1064 rxdesc
= dmaengine_prep_slave_sg(rxchan
,
1068 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1072 txdesc
= dmaengine_prep_slave_sg(txchan
,
1076 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1080 /* Put the callback on the RX transfer only, that should finish last */
1081 rxdesc
->callback
= dma_callback
;
1082 rxdesc
->callback_param
= pl022
;
1084 /* Submit and fire RX and TX with TX last so we're ready to read! */
1085 dmaengine_submit(rxdesc
);
1086 dmaengine_submit(txdesc
);
1087 dma_async_issue_pending(rxchan
);
1088 dma_async_issue_pending(txchan
);
1089 pl022
->dma_running
= true;
1094 dmaengine_terminate_all(txchan
);
1096 dmaengine_terminate_all(rxchan
);
1097 dma_unmap_sg(txchan
->device
->dev
, pl022
->sgt_tx
.sgl
,
1098 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
1100 dma_unmap_sg(rxchan
->device
->dev
, pl022
->sgt_rx
.sgl
,
1101 pl022
->sgt_rx
.nents
, DMA_FROM_DEVICE
);
1103 sg_free_table(&pl022
->sgt_tx
);
1105 sg_free_table(&pl022
->sgt_rx
);
1110 static int pl022_dma_probe(struct pl022
*pl022
)
1112 dma_cap_mask_t mask
;
1114 /* Try to acquire a generic DMA engine slave channel */
1116 dma_cap_set(DMA_SLAVE
, mask
);
1118 * We need both RX and TX channels to do DMA, else do none
1121 pl022
->dma_rx_channel
= dma_request_channel(mask
,
1122 pl022
->master_info
->dma_filter
,
1123 pl022
->master_info
->dma_rx_param
);
1124 if (!pl022
->dma_rx_channel
) {
1125 dev_dbg(&pl022
->adev
->dev
, "no RX DMA channel!\n");
1129 pl022
->dma_tx_channel
= dma_request_channel(mask
,
1130 pl022
->master_info
->dma_filter
,
1131 pl022
->master_info
->dma_tx_param
);
1132 if (!pl022
->dma_tx_channel
) {
1133 dev_dbg(&pl022
->adev
->dev
, "no TX DMA channel!\n");
1137 pl022
->dummypage
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1138 if (!pl022
->dummypage
)
1139 goto err_no_dummypage
;
1141 dev_info(&pl022
->adev
->dev
, "setup for DMA on RX %s, TX %s\n",
1142 dma_chan_name(pl022
->dma_rx_channel
),
1143 dma_chan_name(pl022
->dma_tx_channel
));
1148 dma_release_channel(pl022
->dma_tx_channel
);
1150 dma_release_channel(pl022
->dma_rx_channel
);
1151 pl022
->dma_rx_channel
= NULL
;
1153 dev_err(&pl022
->adev
->dev
,
1154 "Failed to work in dma mode, work without dma!\n");
1158 static int pl022_dma_autoprobe(struct pl022
*pl022
)
1160 struct device
*dev
= &pl022
->adev
->dev
;
1161 struct dma_chan
*chan
;
1164 /* automatically configure DMA channels from platform, normally using DT */
1165 chan
= dma_request_chan(dev
, "rx");
1167 err
= PTR_ERR(chan
);
1171 pl022
->dma_rx_channel
= chan
;
1173 chan
= dma_request_chan(dev
, "tx");
1175 err
= PTR_ERR(chan
);
1179 pl022
->dma_tx_channel
= chan
;
1181 pl022
->dummypage
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1182 if (!pl022
->dummypage
) {
1184 goto err_no_dummypage
;
1190 dma_release_channel(pl022
->dma_tx_channel
);
1191 pl022
->dma_tx_channel
= NULL
;
1193 dma_release_channel(pl022
->dma_rx_channel
);
1194 pl022
->dma_rx_channel
= NULL
;
1199 static void terminate_dma(struct pl022
*pl022
)
1201 struct dma_chan
*rxchan
= pl022
->dma_rx_channel
;
1202 struct dma_chan
*txchan
= pl022
->dma_tx_channel
;
1204 dmaengine_terminate_all(rxchan
);
1205 dmaengine_terminate_all(txchan
);
1206 unmap_free_dma_scatter(pl022
);
1207 pl022
->dma_running
= false;
1210 static void pl022_dma_remove(struct pl022
*pl022
)
1212 if (pl022
->dma_running
)
1213 terminate_dma(pl022
);
1214 if (pl022
->dma_tx_channel
)
1215 dma_release_channel(pl022
->dma_tx_channel
);
1216 if (pl022
->dma_rx_channel
)
1217 dma_release_channel(pl022
->dma_rx_channel
);
1218 kfree(pl022
->dummypage
);
1222 static inline int configure_dma(struct pl022
*pl022
)
1227 static inline int pl022_dma_autoprobe(struct pl022
*pl022
)
1232 static inline int pl022_dma_probe(struct pl022
*pl022
)
1237 static inline void pl022_dma_remove(struct pl022
*pl022
)
1243 * pl022_interrupt_handler - Interrupt handler for SSP controller
1245 * @dev_id: Local device data
1247 * This function handles interrupts generated for an interrupt based transfer.
1248 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1249 * current message's state as STATE_ERROR and schedule the tasklet
1250 * pump_transfers which will do the postprocessing of the current message by
1251 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1252 * more data, and writes data in TX FIFO till it is not full. If we complete
1253 * the transfer we move to the next transfer and schedule the tasklet.
1255 static irqreturn_t
pl022_interrupt_handler(int irq
, void *dev_id
)
1257 struct pl022
*pl022
= dev_id
;
1258 struct spi_message
*msg
= pl022
->cur_msg
;
1261 if (unlikely(!msg
)) {
1262 dev_err(&pl022
->adev
->dev
,
1263 "bad message state in interrupt handler");
1268 /* Read the Interrupt Status Register */
1269 irq_status
= readw(SSP_MIS(pl022
->virtbase
));
1271 if (unlikely(!irq_status
))
1275 * This handles the FIFO interrupts, the timeout
1276 * interrupts are flatly ignored, they cannot be
1279 if (unlikely(irq_status
& SSP_MIS_MASK_RORMIS
)) {
1281 * Overrun interrupt - bail out since our Data has been
1284 dev_err(&pl022
->adev
->dev
, "FIFO overrun\n");
1285 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RFF
)
1286 dev_err(&pl022
->adev
->dev
,
1287 "RXFIFO is full\n");
1290 * Disable and clear interrupts, disable SSP,
1291 * mark message with bad status so it can be
1294 writew(DISABLE_ALL_INTERRUPTS
,
1295 SSP_IMSC(pl022
->virtbase
));
1296 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
1297 writew((readw(SSP_CR1(pl022
->virtbase
)) &
1298 (~SSP_CR1_MASK_SSE
)), SSP_CR1(pl022
->virtbase
));
1299 msg
->state
= STATE_ERROR
;
1301 /* Schedule message queue handler */
1302 tasklet_schedule(&pl022
->pump_transfers
);
1308 if (pl022
->tx
== pl022
->tx_end
) {
1309 /* Disable Transmit interrupt, enable receive interrupt */
1310 writew((readw(SSP_IMSC(pl022
->virtbase
)) &
1311 ~SSP_IMSC_MASK_TXIM
) | SSP_IMSC_MASK_RXIM
,
1312 SSP_IMSC(pl022
->virtbase
));
1316 * Since all transactions must write as much as shall be read,
1317 * we can conclude the entire transaction once RX is complete.
1318 * At this point, all TX will always be finished.
1320 if (pl022
->rx
>= pl022
->rx_end
) {
1321 writew(DISABLE_ALL_INTERRUPTS
,
1322 SSP_IMSC(pl022
->virtbase
));
1323 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
1324 if (unlikely(pl022
->rx
> pl022
->rx_end
)) {
1325 dev_warn(&pl022
->adev
->dev
, "read %u surplus "
1326 "bytes (did you request an odd "
1327 "number of bytes on a 16bit bus?)\n",
1328 (u32
) (pl022
->rx
- pl022
->rx_end
));
1330 /* Update total bytes transferred */
1331 msg
->actual_length
+= pl022
->cur_transfer
->len
;
1332 /* Move to next transfer */
1333 msg
->state
= next_transfer(pl022
);
1334 if (msg
->state
!= STATE_DONE
&& pl022
->cur_transfer
->cs_change
)
1335 pl022_cs_control(pl022
, SSP_CHIP_DESELECT
);
1336 tasklet_schedule(&pl022
->pump_transfers
);
1344 * This sets up the pointers to memory for the next message to
1345 * send out on the SPI bus.
1347 static int set_up_next_transfer(struct pl022
*pl022
,
1348 struct spi_transfer
*transfer
)
1352 /* Sanity check the message for this bus width */
1353 residue
= pl022
->cur_transfer
->len
% pl022
->cur_chip
->n_bytes
;
1354 if (unlikely(residue
!= 0)) {
1355 dev_err(&pl022
->adev
->dev
,
1356 "message of %u bytes to transmit but the current "
1357 "chip bus has a data width of %u bytes!\n",
1358 pl022
->cur_transfer
->len
,
1359 pl022
->cur_chip
->n_bytes
);
1360 dev_err(&pl022
->adev
->dev
, "skipping this message\n");
1363 pl022
->tx
= (void *)transfer
->tx_buf
;
1364 pl022
->tx_end
= pl022
->tx
+ pl022
->cur_transfer
->len
;
1365 pl022
->rx
= (void *)transfer
->rx_buf
;
1366 pl022
->rx_end
= pl022
->rx
+ pl022
->cur_transfer
->len
;
1368 pl022
->tx
? pl022
->cur_chip
->write
: WRITING_NULL
;
1369 pl022
->read
= pl022
->rx
? pl022
->cur_chip
->read
: READING_NULL
;
1374 * pump_transfers - Tasklet function which schedules next transfer
1375 * when running in interrupt or DMA transfer mode.
1376 * @data: SSP driver private data structure
1379 static void pump_transfers(unsigned long data
)
1381 struct pl022
*pl022
= (struct pl022
*) data
;
1382 struct spi_message
*message
= NULL
;
1383 struct spi_transfer
*transfer
= NULL
;
1384 struct spi_transfer
*previous
= NULL
;
1386 /* Get current state information */
1387 message
= pl022
->cur_msg
;
1388 transfer
= pl022
->cur_transfer
;
1390 /* Handle for abort */
1391 if (message
->state
== STATE_ERROR
) {
1392 message
->status
= -EIO
;
1397 /* Handle end of message */
1398 if (message
->state
== STATE_DONE
) {
1399 message
->status
= 0;
1404 /* Delay if requested at end of transfer before CS change */
1405 if (message
->state
== STATE_RUNNING
) {
1406 previous
= list_entry(transfer
->transfer_list
.prev
,
1407 struct spi_transfer
,
1410 * FIXME: This runs in interrupt context.
1411 * Is this really smart?
1413 spi_transfer_delay_exec(previous
);
1415 /* Reselect chip select only if cs_change was requested */
1416 if (previous
->cs_change
)
1417 pl022_cs_control(pl022
, SSP_CHIP_SELECT
);
1420 message
->state
= STATE_RUNNING
;
1423 if (set_up_next_transfer(pl022
, transfer
)) {
1424 message
->state
= STATE_ERROR
;
1425 message
->status
= -EIO
;
1429 /* Flush the FIFOs and let's go! */
1432 if (pl022
->cur_chip
->enable_dma
) {
1433 if (configure_dma(pl022
)) {
1434 dev_dbg(&pl022
->adev
->dev
,
1435 "configuration of DMA failed, fall back to interrupt mode\n");
1436 goto err_config_dma
;
1442 /* enable all interrupts except RX */
1443 writew(ENABLE_ALL_INTERRUPTS
& ~SSP_IMSC_MASK_RXIM
, SSP_IMSC(pl022
->virtbase
));
1446 static void do_interrupt_dma_transfer(struct pl022
*pl022
)
1449 * Default is to enable all interrupts except RX -
1450 * this will be enabled once TX is complete
1452 u32 irqflags
= (u32
)(ENABLE_ALL_INTERRUPTS
& ~SSP_IMSC_MASK_RXIM
);
1454 /* Enable target chip, if not already active */
1455 if (!pl022
->next_msg_cs_active
)
1456 pl022_cs_control(pl022
, SSP_CHIP_SELECT
);
1458 if (set_up_next_transfer(pl022
, pl022
->cur_transfer
)) {
1460 pl022
->cur_msg
->state
= STATE_ERROR
;
1461 pl022
->cur_msg
->status
= -EIO
;
1465 /* If we're using DMA, set up DMA here */
1466 if (pl022
->cur_chip
->enable_dma
) {
1467 /* Configure DMA transfer */
1468 if (configure_dma(pl022
)) {
1469 dev_dbg(&pl022
->adev
->dev
,
1470 "configuration of DMA failed, fall back to interrupt mode\n");
1471 goto err_config_dma
;
1473 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1474 irqflags
= DISABLE_ALL_INTERRUPTS
;
1477 /* Enable SSP, turn on interrupts */
1478 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
1479 SSP_CR1(pl022
->virtbase
));
1480 writew(irqflags
, SSP_IMSC(pl022
->virtbase
));
1483 static void print_current_status(struct pl022
*pl022
)
1486 u16 read_cr1
, read_dmacr
, read_sr
;
1488 if (pl022
->vendor
->extended_cr
)
1489 read_cr0
= readl(SSP_CR0(pl022
->virtbase
));
1491 read_cr0
= readw(SSP_CR0(pl022
->virtbase
));
1492 read_cr1
= readw(SSP_CR1(pl022
->virtbase
));
1493 read_dmacr
= readw(SSP_DMACR(pl022
->virtbase
));
1494 read_sr
= readw(SSP_SR(pl022
->virtbase
));
1496 dev_warn(&pl022
->adev
->dev
, "spi-pl022 CR0: %x\n", read_cr0
);
1497 dev_warn(&pl022
->adev
->dev
, "spi-pl022 CR1: %x\n", read_cr1
);
1498 dev_warn(&pl022
->adev
->dev
, "spi-pl022 DMACR: %x\n", read_dmacr
);
1499 dev_warn(&pl022
->adev
->dev
, "spi-pl022 SR: %x\n", read_sr
);
1500 dev_warn(&pl022
->adev
->dev
,
1501 "spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1502 pl022
->exp_fifo_level
,
1503 pl022
->vendor
->fifodepth
);
1507 static void do_polling_transfer(struct pl022
*pl022
)
1509 struct spi_message
*message
= NULL
;
1510 struct spi_transfer
*transfer
= NULL
;
1511 struct spi_transfer
*previous
= NULL
;
1512 unsigned long time
, timeout
;
1514 message
= pl022
->cur_msg
;
1516 while (message
->state
!= STATE_DONE
) {
1517 /* Handle for abort */
1518 if (message
->state
== STATE_ERROR
)
1520 transfer
= pl022
->cur_transfer
;
1522 /* Delay if requested at end of transfer */
1523 if (message
->state
== STATE_RUNNING
) {
1525 list_entry(transfer
->transfer_list
.prev
,
1526 struct spi_transfer
, transfer_list
);
1527 spi_transfer_delay_exec(previous
);
1528 if (previous
->cs_change
)
1529 pl022_cs_control(pl022
, SSP_CHIP_SELECT
);
1532 message
->state
= STATE_RUNNING
;
1533 if (!pl022
->next_msg_cs_active
)
1534 pl022_cs_control(pl022
, SSP_CHIP_SELECT
);
1537 /* Configuration Changing Per Transfer */
1538 if (set_up_next_transfer(pl022
, transfer
)) {
1540 message
->state
= STATE_ERROR
;
1543 /* Flush FIFOs and enable SSP */
1545 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
1546 SSP_CR1(pl022
->virtbase
));
1548 dev_dbg(&pl022
->adev
->dev
, "polling transfer ongoing ...\n");
1550 timeout
= jiffies
+ msecs_to_jiffies(SPI_POLLING_TIMEOUT
);
1551 while (pl022
->tx
< pl022
->tx_end
|| pl022
->rx
< pl022
->rx_end
) {
1554 if (time_after(time
, timeout
)) {
1555 dev_warn(&pl022
->adev
->dev
,
1556 "%s: timeout!\n", __func__
);
1557 message
->state
= STATE_TIMEOUT
;
1558 print_current_status(pl022
);
1564 /* Update total byte transferred */
1565 message
->actual_length
+= pl022
->cur_transfer
->len
;
1566 /* Move to next transfer */
1567 message
->state
= next_transfer(pl022
);
1568 if (message
->state
!= STATE_DONE
1569 && pl022
->cur_transfer
->cs_change
)
1570 pl022_cs_control(pl022
, SSP_CHIP_DESELECT
);
1573 /* Handle end of message */
1574 if (message
->state
== STATE_DONE
)
1575 message
->status
= 0;
1576 else if (message
->state
== STATE_TIMEOUT
)
1577 message
->status
= -EAGAIN
;
1579 message
->status
= -EIO
;
1585 static int pl022_transfer_one_message(struct spi_master
*master
,
1586 struct spi_message
*msg
)
1588 struct pl022
*pl022
= spi_master_get_devdata(master
);
1590 /* Initial message state */
1591 pl022
->cur_msg
= msg
;
1592 msg
->state
= STATE_START
;
1594 pl022
->cur_transfer
= list_entry(msg
->transfers
.next
,
1595 struct spi_transfer
, transfer_list
);
1597 /* Setup the SPI using the per chip configuration */
1598 pl022
->cur_chip
= spi_get_ctldata(msg
->spi
);
1599 pl022
->cur_cs
= pl022
->chipselects
[msg
->spi
->chip_select
];
1601 restore_state(pl022
);
1604 if (pl022
->cur_chip
->xfer_type
== POLLING_TRANSFER
)
1605 do_polling_transfer(pl022
);
1607 do_interrupt_dma_transfer(pl022
);
1612 static int pl022_unprepare_transfer_hardware(struct spi_master
*master
)
1614 struct pl022
*pl022
= spi_master_get_devdata(master
);
1616 /* nothing more to do - disable spi/ssp and power off */
1617 writew((readw(SSP_CR1(pl022
->virtbase
)) &
1618 (~SSP_CR1_MASK_SSE
)), SSP_CR1(pl022
->virtbase
));
1623 static int verify_controller_parameters(struct pl022
*pl022
,
1624 struct pl022_config_chip
const *chip_info
)
1626 if ((chip_info
->iface
< SSP_INTERFACE_MOTOROLA_SPI
)
1627 || (chip_info
->iface
> SSP_INTERFACE_UNIDIRECTIONAL
)) {
1628 dev_err(&pl022
->adev
->dev
,
1629 "interface is configured incorrectly\n");
1632 if ((chip_info
->iface
== SSP_INTERFACE_UNIDIRECTIONAL
) &&
1633 (!pl022
->vendor
->unidir
)) {
1634 dev_err(&pl022
->adev
->dev
,
1635 "unidirectional mode not supported in this "
1636 "hardware version\n");
1639 if ((chip_info
->hierarchy
!= SSP_MASTER
)
1640 && (chip_info
->hierarchy
!= SSP_SLAVE
)) {
1641 dev_err(&pl022
->adev
->dev
,
1642 "hierarchy is configured incorrectly\n");
1645 if ((chip_info
->com_mode
!= INTERRUPT_TRANSFER
)
1646 && (chip_info
->com_mode
!= DMA_TRANSFER
)
1647 && (chip_info
->com_mode
!= POLLING_TRANSFER
)) {
1648 dev_err(&pl022
->adev
->dev
,
1649 "Communication mode is configured incorrectly\n");
1652 switch (chip_info
->rx_lev_trig
) {
1653 case SSP_RX_1_OR_MORE_ELEM
:
1654 case SSP_RX_4_OR_MORE_ELEM
:
1655 case SSP_RX_8_OR_MORE_ELEM
:
1656 /* These are always OK, all variants can handle this */
1658 case SSP_RX_16_OR_MORE_ELEM
:
1659 if (pl022
->vendor
->fifodepth
< 16) {
1660 dev_err(&pl022
->adev
->dev
,
1661 "RX FIFO Trigger Level is configured incorrectly\n");
1665 case SSP_RX_32_OR_MORE_ELEM
:
1666 if (pl022
->vendor
->fifodepth
< 32) {
1667 dev_err(&pl022
->adev
->dev
,
1668 "RX FIFO Trigger Level is configured incorrectly\n");
1673 dev_err(&pl022
->adev
->dev
,
1674 "RX FIFO Trigger Level is configured incorrectly\n");
1677 switch (chip_info
->tx_lev_trig
) {
1678 case SSP_TX_1_OR_MORE_EMPTY_LOC
:
1679 case SSP_TX_4_OR_MORE_EMPTY_LOC
:
1680 case SSP_TX_8_OR_MORE_EMPTY_LOC
:
1681 /* These are always OK, all variants can handle this */
1683 case SSP_TX_16_OR_MORE_EMPTY_LOC
:
1684 if (pl022
->vendor
->fifodepth
< 16) {
1685 dev_err(&pl022
->adev
->dev
,
1686 "TX FIFO Trigger Level is configured incorrectly\n");
1690 case SSP_TX_32_OR_MORE_EMPTY_LOC
:
1691 if (pl022
->vendor
->fifodepth
< 32) {
1692 dev_err(&pl022
->adev
->dev
,
1693 "TX FIFO Trigger Level is configured incorrectly\n");
1698 dev_err(&pl022
->adev
->dev
,
1699 "TX FIFO Trigger Level is configured incorrectly\n");
1702 if (chip_info
->iface
== SSP_INTERFACE_NATIONAL_MICROWIRE
) {
1703 if ((chip_info
->ctrl_len
< SSP_BITS_4
)
1704 || (chip_info
->ctrl_len
> SSP_BITS_32
)) {
1705 dev_err(&pl022
->adev
->dev
,
1706 "CTRL LEN is configured incorrectly\n");
1709 if ((chip_info
->wait_state
!= SSP_MWIRE_WAIT_ZERO
)
1710 && (chip_info
->wait_state
!= SSP_MWIRE_WAIT_ONE
)) {
1711 dev_err(&pl022
->adev
->dev
,
1712 "Wait State is configured incorrectly\n");
1715 /* Half duplex is only available in the ST Micro version */
1716 if (pl022
->vendor
->extended_cr
) {
1717 if ((chip_info
->duplex
!=
1718 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
)
1719 && (chip_info
->duplex
!=
1720 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX
)) {
1721 dev_err(&pl022
->adev
->dev
,
1722 "Microwire duplex mode is configured incorrectly\n");
1726 if (chip_info
->duplex
!= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
)
1727 dev_err(&pl022
->adev
->dev
,
1728 "Microwire half duplex mode requested,"
1729 " but this is only available in the"
1730 " ST version of PL022\n");
1737 static inline u32
spi_rate(u32 rate
, u16 cpsdvsr
, u16 scr
)
1739 return rate
/ (cpsdvsr
* (1 + scr
));
1742 static int calculate_effective_freq(struct pl022
*pl022
, int freq
, struct
1743 ssp_clock_params
* clk_freq
)
1745 /* Lets calculate the frequency parameters */
1746 u16 cpsdvsr
= CPSDVR_MIN
, scr
= SCR_MIN
;
1747 u32 rate
, max_tclk
, min_tclk
, best_freq
= 0, best_cpsdvsr
= 0,
1748 best_scr
= 0, tmp
, found
= 0;
1750 rate
= clk_get_rate(pl022
->clk
);
1751 /* cpsdvscr = 2 & scr 0 */
1752 max_tclk
= spi_rate(rate
, CPSDVR_MIN
, SCR_MIN
);
1753 /* cpsdvsr = 254 & scr = 255 */
1754 min_tclk
= spi_rate(rate
, CPSDVR_MAX
, SCR_MAX
);
1756 if (freq
> max_tclk
)
1757 dev_warn(&pl022
->adev
->dev
,
1758 "Max speed that can be programmed is %d Hz, you requested %d\n",
1761 if (freq
< min_tclk
) {
1762 dev_err(&pl022
->adev
->dev
,
1763 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1769 * best_freq will give closest possible available rate (<= requested
1770 * freq) for all values of scr & cpsdvsr.
1772 while ((cpsdvsr
<= CPSDVR_MAX
) && !found
) {
1773 while (scr
<= SCR_MAX
) {
1774 tmp
= spi_rate(rate
, cpsdvsr
, scr
);
1777 /* we need lower freq */
1783 * If found exact value, mark found and break.
1784 * If found more closer value, update and break.
1786 if (tmp
> best_freq
) {
1788 best_cpsdvsr
= cpsdvsr
;
1795 * increased scr will give lower rates, which are not
1804 WARN(!best_freq
, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1807 clk_freq
->cpsdvsr
= (u8
) (best_cpsdvsr
& 0xFF);
1808 clk_freq
->scr
= (u8
) (best_scr
& 0xFF);
1809 dev_dbg(&pl022
->adev
->dev
,
1810 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1812 dev_dbg(&pl022
->adev
->dev
, "SSP cpsdvsr = %d, scr = %d\n",
1813 clk_freq
->cpsdvsr
, clk_freq
->scr
);
1819 * A piece of default chip info unless the platform
1822 static const struct pl022_config_chip pl022_default_chip_info
= {
1823 .com_mode
= POLLING_TRANSFER
,
1824 .iface
= SSP_INTERFACE_MOTOROLA_SPI
,
1825 .hierarchy
= SSP_SLAVE
,
1826 .slave_tx_disable
= DO_NOT_DRIVE_TX
,
1827 .rx_lev_trig
= SSP_RX_1_OR_MORE_ELEM
,
1828 .tx_lev_trig
= SSP_TX_1_OR_MORE_EMPTY_LOC
,
1829 .ctrl_len
= SSP_BITS_8
,
1830 .wait_state
= SSP_MWIRE_WAIT_ZERO
,
1831 .duplex
= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
,
1832 .cs_control
= null_cs_control
,
1836 * pl022_setup - setup function registered to SPI master framework
1837 * @spi: spi device which is requesting setup
1839 * This function is registered to the SPI framework for this SPI master
1840 * controller. If it is the first time when setup is called by this device,
1841 * this function will initialize the runtime state for this chip and save
1842 * the same in the device structure. Else it will update the runtime info
1843 * with the updated chip info. Nothing is really being written to the
1844 * controller hardware here, that is not done until the actual transfer
1847 static int pl022_setup(struct spi_device
*spi
)
1849 struct pl022_config_chip
const *chip_info
;
1850 struct pl022_config_chip chip_info_dt
;
1851 struct chip_data
*chip
;
1852 struct ssp_clock_params clk_freq
= { .cpsdvsr
= 0, .scr
= 0};
1854 struct pl022
*pl022
= spi_master_get_devdata(spi
->master
);
1855 unsigned int bits
= spi
->bits_per_word
;
1857 struct device_node
*np
= spi
->dev
.of_node
;
1859 if (!spi
->max_speed_hz
)
1862 /* Get controller_state if one is supplied */
1863 chip
= spi_get_ctldata(spi
);
1866 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1870 "allocated memory for controller's runtime state\n");
1873 /* Get controller data if one is supplied */
1874 chip_info
= spi
->controller_data
;
1876 if (chip_info
== NULL
) {
1878 chip_info_dt
= pl022_default_chip_info
;
1880 chip_info_dt
.hierarchy
= SSP_MASTER
;
1881 of_property_read_u32(np
, "pl022,interface",
1882 &chip_info_dt
.iface
);
1883 of_property_read_u32(np
, "pl022,com-mode",
1884 &chip_info_dt
.com_mode
);
1885 of_property_read_u32(np
, "pl022,rx-level-trig",
1886 &chip_info_dt
.rx_lev_trig
);
1887 of_property_read_u32(np
, "pl022,tx-level-trig",
1888 &chip_info_dt
.tx_lev_trig
);
1889 of_property_read_u32(np
, "pl022,ctrl-len",
1890 &chip_info_dt
.ctrl_len
);
1891 of_property_read_u32(np
, "pl022,wait-state",
1892 &chip_info_dt
.wait_state
);
1893 of_property_read_u32(np
, "pl022,duplex",
1894 &chip_info_dt
.duplex
);
1896 chip_info
= &chip_info_dt
;
1898 chip_info
= &pl022_default_chip_info
;
1899 /* spi_board_info.controller_data not is supplied */
1901 "using default controller_data settings\n");
1905 "using user supplied controller_data settings\n");
1908 * We can override with custom divisors, else we use the board
1911 if ((0 == chip_info
->clk_freq
.cpsdvsr
)
1912 && (0 == chip_info
->clk_freq
.scr
)) {
1913 status
= calculate_effective_freq(pl022
,
1917 goto err_config_params
;
1919 memcpy(&clk_freq
, &chip_info
->clk_freq
, sizeof(clk_freq
));
1920 if ((clk_freq
.cpsdvsr
% 2) != 0)
1922 clk_freq
.cpsdvsr
- 1;
1924 if ((clk_freq
.cpsdvsr
< CPSDVR_MIN
)
1925 || (clk_freq
.cpsdvsr
> CPSDVR_MAX
)) {
1928 "cpsdvsr is configured incorrectly\n");
1929 goto err_config_params
;
1932 status
= verify_controller_parameters(pl022
, chip_info
);
1934 dev_err(&spi
->dev
, "controller data is incorrect");
1935 goto err_config_params
;
1938 pl022
->rx_lev_trig
= chip_info
->rx_lev_trig
;
1939 pl022
->tx_lev_trig
= chip_info
->tx_lev_trig
;
1941 /* Now set controller state based on controller data */
1942 chip
->xfer_type
= chip_info
->com_mode
;
1943 if (!chip_info
->cs_control
) {
1944 chip
->cs_control
= null_cs_control
;
1945 if (!gpio_is_valid(pl022
->chipselects
[spi
->chip_select
]))
1947 "invalid chip select\n");
1949 chip
->cs_control
= chip_info
->cs_control
;
1951 /* Check bits per word with vendor specific range */
1952 if ((bits
<= 3) || (bits
> pl022
->vendor
->max_bpw
)) {
1954 dev_err(&spi
->dev
, "illegal data size for this controller!\n");
1955 dev_err(&spi
->dev
, "This controller can only handle 4 <= n <= %d bit words\n",
1956 pl022
->vendor
->max_bpw
);
1957 goto err_config_params
;
1958 } else if (bits
<= 8) {
1959 dev_dbg(&spi
->dev
, "4 <= n <=8 bits per word\n");
1961 chip
->read
= READING_U8
;
1962 chip
->write
= WRITING_U8
;
1963 } else if (bits
<= 16) {
1964 dev_dbg(&spi
->dev
, "9 <= n <= 16 bits per word\n");
1966 chip
->read
= READING_U16
;
1967 chip
->write
= WRITING_U16
;
1969 dev_dbg(&spi
->dev
, "17 <= n <= 32 bits per word\n");
1971 chip
->read
= READING_U32
;
1972 chip
->write
= WRITING_U32
;
1975 /* Now Initialize all register settings required for this chip */
1980 if ((chip_info
->com_mode
== DMA_TRANSFER
)
1981 && ((pl022
->master_info
)->enable_dma
)) {
1982 chip
->enable_dma
= true;
1983 dev_dbg(&spi
->dev
, "DMA mode set in controller state\n");
1984 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
1985 SSP_DMACR_MASK_RXDMAE
, 0);
1986 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
1987 SSP_DMACR_MASK_TXDMAE
, 1);
1989 chip
->enable_dma
= false;
1990 dev_dbg(&spi
->dev
, "DMA mode NOT set in controller state\n");
1991 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
1992 SSP_DMACR_MASK_RXDMAE
, 0);
1993 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
1994 SSP_DMACR_MASK_TXDMAE
, 1);
1997 chip
->cpsr
= clk_freq
.cpsdvsr
;
1999 /* Special setup for the ST micro extended control registers */
2000 if (pl022
->vendor
->extended_cr
) {
2003 if (pl022
->vendor
->pl023
) {
2004 /* These bits are only in the PL023 */
2005 SSP_WRITE_BITS(chip
->cr1
, chip_info
->clkdelay
,
2006 SSP_CR1_MASK_FBCLKDEL_ST
, 13);
2008 /* These bits are in the PL022 but not PL023 */
2009 SSP_WRITE_BITS(chip
->cr0
, chip_info
->duplex
,
2010 SSP_CR0_MASK_HALFDUP_ST
, 5);
2011 SSP_WRITE_BITS(chip
->cr0
, chip_info
->ctrl_len
,
2012 SSP_CR0_MASK_CSS_ST
, 16);
2013 SSP_WRITE_BITS(chip
->cr0
, chip_info
->iface
,
2014 SSP_CR0_MASK_FRF_ST
, 21);
2015 SSP_WRITE_BITS(chip
->cr1
, chip_info
->wait_state
,
2016 SSP_CR1_MASK_MWAIT_ST
, 6);
2018 SSP_WRITE_BITS(chip
->cr0
, bits
- 1,
2019 SSP_CR0_MASK_DSS_ST
, 0);
2021 if (spi
->mode
& SPI_LSB_FIRST
) {
2028 SSP_WRITE_BITS(chip
->cr1
, tmp
, SSP_CR1_MASK_RENDN_ST
, 4);
2029 SSP_WRITE_BITS(chip
->cr1
, etx
, SSP_CR1_MASK_TENDN_ST
, 5);
2030 SSP_WRITE_BITS(chip
->cr1
, chip_info
->rx_lev_trig
,
2031 SSP_CR1_MASK_RXIFLSEL_ST
, 7);
2032 SSP_WRITE_BITS(chip
->cr1
, chip_info
->tx_lev_trig
,
2033 SSP_CR1_MASK_TXIFLSEL_ST
, 10);
2035 SSP_WRITE_BITS(chip
->cr0
, bits
- 1,
2036 SSP_CR0_MASK_DSS
, 0);
2037 SSP_WRITE_BITS(chip
->cr0
, chip_info
->iface
,
2038 SSP_CR0_MASK_FRF
, 4);
2041 /* Stuff that is common for all versions */
2042 if (spi
->mode
& SPI_CPOL
)
2043 tmp
= SSP_CLK_POL_IDLE_HIGH
;
2045 tmp
= SSP_CLK_POL_IDLE_LOW
;
2046 SSP_WRITE_BITS(chip
->cr0
, tmp
, SSP_CR0_MASK_SPO
, 6);
2048 if (spi
->mode
& SPI_CPHA
)
2049 tmp
= SSP_CLK_SECOND_EDGE
;
2051 tmp
= SSP_CLK_FIRST_EDGE
;
2052 SSP_WRITE_BITS(chip
->cr0
, tmp
, SSP_CR0_MASK_SPH
, 7);
2054 SSP_WRITE_BITS(chip
->cr0
, clk_freq
.scr
, SSP_CR0_MASK_SCR
, 8);
2055 /* Loopback is available on all versions except PL023 */
2056 if (pl022
->vendor
->loopback
) {
2057 if (spi
->mode
& SPI_LOOP
)
2058 tmp
= LOOPBACK_ENABLED
;
2060 tmp
= LOOPBACK_DISABLED
;
2061 SSP_WRITE_BITS(chip
->cr1
, tmp
, SSP_CR1_MASK_LBM
, 0);
2063 SSP_WRITE_BITS(chip
->cr1
, SSP_DISABLED
, SSP_CR1_MASK_SSE
, 1);
2064 SSP_WRITE_BITS(chip
->cr1
, chip_info
->hierarchy
, SSP_CR1_MASK_MS
, 2);
2065 SSP_WRITE_BITS(chip
->cr1
, chip_info
->slave_tx_disable
, SSP_CR1_MASK_SOD
,
2068 /* Save controller_state */
2069 spi_set_ctldata(spi
, chip
);
2072 spi_set_ctldata(spi
, NULL
);
2078 * pl022_cleanup - cleanup function registered to SPI master framework
2079 * @spi: spi device which is requesting cleanup
2081 * This function is registered to the SPI framework for this SPI master
2082 * controller. It will free the runtime state of chip.
2084 static void pl022_cleanup(struct spi_device
*spi
)
2086 struct chip_data
*chip
= spi_get_ctldata(spi
);
2088 spi_set_ctldata(spi
, NULL
);
2092 static struct pl022_ssp_controller
*
2093 pl022_platform_data_dt_get(struct device
*dev
)
2095 struct device_node
*np
= dev
->of_node
;
2096 struct pl022_ssp_controller
*pd
;
2100 dev_err(dev
, "no dt node defined\n");
2104 pd
= devm_kzalloc(dev
, sizeof(struct pl022_ssp_controller
), GFP_KERNEL
);
2110 of_property_read_u32(np
, "num-cs", &tmp
);
2111 pd
->num_chipselect
= tmp
;
2112 of_property_read_u32(np
, "pl022,autosuspend-delay",
2113 &pd
->autosuspend_delay
);
2114 pd
->rt
= of_property_read_bool(np
, "pl022,rt");
2119 static int pl022_probe(struct amba_device
*adev
, const struct amba_id
*id
)
2121 struct device
*dev
= &adev
->dev
;
2122 struct pl022_ssp_controller
*platform_info
=
2123 dev_get_platdata(&adev
->dev
);
2124 struct spi_master
*master
;
2125 struct pl022
*pl022
= NULL
; /*Data for this driver */
2126 struct device_node
*np
= adev
->dev
.of_node
;
2127 int status
= 0, i
, num_cs
;
2129 dev_info(&adev
->dev
,
2130 "ARM PL022 driver, device ID: 0x%08x\n", adev
->periphid
);
2131 if (!platform_info
&& IS_ENABLED(CONFIG_OF
))
2132 platform_info
= pl022_platform_data_dt_get(dev
);
2134 if (!platform_info
) {
2135 dev_err(dev
, "probe: no platform data defined\n");
2139 if (platform_info
->num_chipselect
) {
2140 num_cs
= platform_info
->num_chipselect
;
2142 dev_err(dev
, "probe: no chip select defined\n");
2146 /* Allocate master with space for data */
2147 master
= spi_alloc_master(dev
, sizeof(struct pl022
));
2148 if (master
== NULL
) {
2149 dev_err(&adev
->dev
, "probe - cannot alloc SPI master\n");
2153 pl022
= spi_master_get_devdata(master
);
2154 pl022
->master
= master
;
2155 pl022
->master_info
= platform_info
;
2157 pl022
->vendor
= id
->data
;
2158 pl022
->chipselects
= devm_kcalloc(dev
, num_cs
, sizeof(int),
2160 if (!pl022
->chipselects
) {
2166 * Bus Number Which has been Assigned to this SSP controller
2169 master
->bus_num
= platform_info
->bus_id
;
2170 master
->num_chipselect
= num_cs
;
2171 master
->cleanup
= pl022_cleanup
;
2172 master
->setup
= pl022_setup
;
2173 master
->auto_runtime_pm
= true;
2174 master
->transfer_one_message
= pl022_transfer_one_message
;
2175 master
->unprepare_transfer_hardware
= pl022_unprepare_transfer_hardware
;
2176 master
->rt
= platform_info
->rt
;
2177 master
->dev
.of_node
= dev
->of_node
;
2179 if (platform_info
->num_chipselect
&& platform_info
->chipselects
) {
2180 for (i
= 0; i
< num_cs
; i
++)
2181 pl022
->chipselects
[i
] = platform_info
->chipselects
[i
];
2182 } else if (pl022
->vendor
->internal_cs_ctrl
) {
2183 for (i
= 0; i
< num_cs
; i
++)
2184 pl022
->chipselects
[i
] = i
;
2185 } else if (IS_ENABLED(CONFIG_OF
)) {
2186 for (i
= 0; i
< num_cs
; i
++) {
2187 int cs_gpio
= of_get_named_gpio(np
, "cs-gpios", i
);
2189 if (cs_gpio
== -EPROBE_DEFER
) {
2190 status
= -EPROBE_DEFER
;
2194 pl022
->chipselects
[i
] = cs_gpio
;
2196 if (gpio_is_valid(cs_gpio
)) {
2197 if (devm_gpio_request(dev
, cs_gpio
, "ssp-pl022"))
2199 "could not request %d gpio\n",
2201 else if (gpio_direction_output(cs_gpio
, 1))
2203 "could not set gpio %d as output\n",
2210 * Supports mode 0-3, loopback, and active low CS. Transfers are
2211 * always MS bit first on the original pl022.
2213 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LOOP
;
2214 if (pl022
->vendor
->extended_cr
)
2215 master
->mode_bits
|= SPI_LSB_FIRST
;
2217 dev_dbg(&adev
->dev
, "BUSNO: %d\n", master
->bus_num
);
2219 status
= amba_request_regions(adev
, NULL
);
2221 goto err_no_ioregion
;
2223 pl022
->phybase
= adev
->res
.start
;
2224 pl022
->virtbase
= devm_ioremap(dev
, adev
->res
.start
,
2225 resource_size(&adev
->res
));
2226 if (pl022
->virtbase
== NULL
) {
2228 goto err_no_ioremap
;
2230 dev_info(&adev
->dev
, "mapped registers from %pa to %p\n",
2231 &adev
->res
.start
, pl022
->virtbase
);
2233 pl022
->clk
= devm_clk_get(&adev
->dev
, NULL
);
2234 if (IS_ERR(pl022
->clk
)) {
2235 status
= PTR_ERR(pl022
->clk
);
2236 dev_err(&adev
->dev
, "could not retrieve SSP/SPI bus clock\n");
2240 status
= clk_prepare_enable(pl022
->clk
);
2242 dev_err(&adev
->dev
, "could not enable SSP/SPI bus clock\n");
2246 /* Initialize transfer pump */
2247 tasklet_init(&pl022
->pump_transfers
, pump_transfers
,
2248 (unsigned long)pl022
);
2251 writew((readw(SSP_CR1(pl022
->virtbase
)) & (~SSP_CR1_MASK_SSE
)),
2252 SSP_CR1(pl022
->virtbase
));
2253 load_ssp_default_config(pl022
);
2255 status
= devm_request_irq(dev
, adev
->irq
[0], pl022_interrupt_handler
,
2258 dev_err(&adev
->dev
, "probe - cannot get IRQ (%d)\n", status
);
2262 /* Get DMA channels, try autoconfiguration first */
2263 status
= pl022_dma_autoprobe(pl022
);
2264 if (status
== -EPROBE_DEFER
) {
2265 dev_dbg(dev
, "deferring probe to get DMA channel\n");
2269 /* If that failed, use channels from platform_info */
2271 platform_info
->enable_dma
= 1;
2272 else if (platform_info
->enable_dma
) {
2273 status
= pl022_dma_probe(pl022
);
2275 platform_info
->enable_dma
= 0;
2278 /* Register with the SPI framework */
2279 amba_set_drvdata(adev
, pl022
);
2280 status
= devm_spi_register_master(&adev
->dev
, master
);
2283 "probe - problem registering spi master\n");
2284 goto err_spi_register
;
2286 dev_dbg(dev
, "probe succeeded\n");
2288 /* let runtime pm put suspend */
2289 if (platform_info
->autosuspend_delay
> 0) {
2290 dev_info(&adev
->dev
,
2291 "will use autosuspend for runtime pm, delay %dms\n",
2292 platform_info
->autosuspend_delay
);
2293 pm_runtime_set_autosuspend_delay(dev
,
2294 platform_info
->autosuspend_delay
);
2295 pm_runtime_use_autosuspend(dev
);
2297 pm_runtime_put(dev
);
2302 if (platform_info
->enable_dma
)
2303 pl022_dma_remove(pl022
);
2305 clk_disable_unprepare(pl022
->clk
);
2309 amba_release_regions(adev
);
2313 spi_master_put(master
);
2318 pl022_remove(struct amba_device
*adev
)
2320 struct pl022
*pl022
= amba_get_drvdata(adev
);
2326 * undo pm_runtime_put() in probe. I assume that we're not
2327 * accessing the primecell here.
2329 pm_runtime_get_noresume(&adev
->dev
);
2331 load_ssp_default_config(pl022
);
2332 if (pl022
->master_info
->enable_dma
)
2333 pl022_dma_remove(pl022
);
2335 clk_disable_unprepare(pl022
->clk
);
2336 amba_release_regions(adev
);
2337 tasklet_disable(&pl022
->pump_transfers
);
2341 #ifdef CONFIG_PM_SLEEP
2342 static int pl022_suspend(struct device
*dev
)
2344 struct pl022
*pl022
= dev_get_drvdata(dev
);
2347 ret
= spi_master_suspend(pl022
->master
);
2351 ret
= pm_runtime_force_suspend(dev
);
2353 spi_master_resume(pl022
->master
);
2357 pinctrl_pm_select_sleep_state(dev
);
2359 dev_dbg(dev
, "suspended\n");
2363 static int pl022_resume(struct device
*dev
)
2365 struct pl022
*pl022
= dev_get_drvdata(dev
);
2368 ret
= pm_runtime_force_resume(dev
);
2370 dev_err(dev
, "problem resuming\n");
2372 /* Start the queue running */
2373 ret
= spi_master_resume(pl022
->master
);
2375 dev_dbg(dev
, "resumed\n");
2382 static int pl022_runtime_suspend(struct device
*dev
)
2384 struct pl022
*pl022
= dev_get_drvdata(dev
);
2386 clk_disable_unprepare(pl022
->clk
);
2387 pinctrl_pm_select_idle_state(dev
);
2392 static int pl022_runtime_resume(struct device
*dev
)
2394 struct pl022
*pl022
= dev_get_drvdata(dev
);
2396 pinctrl_pm_select_default_state(dev
);
2397 clk_prepare_enable(pl022
->clk
);
2403 static const struct dev_pm_ops pl022_dev_pm_ops
= {
2404 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend
, pl022_resume
)
2405 SET_RUNTIME_PM_OPS(pl022_runtime_suspend
, pl022_runtime_resume
, NULL
)
2408 static struct vendor_data vendor_arm
= {
2412 .extended_cr
= false,
2415 .internal_cs_ctrl
= false,
2418 static struct vendor_data vendor_st
= {
2422 .extended_cr
= true,
2425 .internal_cs_ctrl
= false,
2428 static struct vendor_data vendor_st_pl023
= {
2432 .extended_cr
= true,
2435 .internal_cs_ctrl
= false,
2438 static struct vendor_data vendor_lsi
= {
2442 .extended_cr
= false,
2445 .internal_cs_ctrl
= true,
2448 static const struct amba_id pl022_ids
[] = {
2451 * ARM PL022 variant, this has a 16bit wide
2452 * and 8 locations deep TX/RX FIFO
2456 .data
= &vendor_arm
,
2460 * ST Micro derivative, this has 32bit wide
2461 * and 32 locations deep TX/RX FIFO
2469 * ST-Ericsson derivative "PL023" (this is not
2470 * an official ARM number), this is a PL022 SSP block
2471 * stripped to SPI mode only, it has 32bit wide
2472 * and 32 locations deep TX/RX FIFO but no extended
2477 .data
= &vendor_st_pl023
,
2481 * PL022 variant that has a chip select control register whih
2482 * allows control of 5 output signals nCS[0:4].
2486 .data
= &vendor_lsi
,
2491 MODULE_DEVICE_TABLE(amba
, pl022_ids
);
2493 static struct amba_driver pl022_driver
= {
2495 .name
= "ssp-pl022",
2496 .pm
= &pl022_dev_pm_ops
,
2498 .id_table
= pl022_ids
,
2499 .probe
= pl022_probe
,
2500 .remove
= pl022_remove
,
2503 static int __init
pl022_init(void)
2505 return amba_driver_register(&pl022_driver
);
2507 subsys_initcall(pl022_init
);
2509 static void __exit
pl022_exit(void)
2511 amba_driver_unregister(&pl022_driver
);
2513 module_exit(pl022_exit
);
2515 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2516 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2517 MODULE_LICENSE("GPL");