1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2011 STRATO. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/slab.h>
11 #include <linux/workqueue.h>
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "block-group.h"
22 * This is the implementation for the generic read ahead framework.
24 * To trigger a readahead, btrfs_reada_add must be called. It will start
25 * a read ahead for the given range [start, end) on tree root. The returned
26 * handle can either be used to wait on the readahead to finish
27 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
29 * The read ahead works as follows:
30 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
31 * reada_start_machine will then search for extents to prefetch and trigger
32 * some reads. When a read finishes for a node, all contained node/leaf
33 * pointers that lie in the given range will also be enqueued. The reads will
34 * be triggered in sequential order, thus giving a big win over a naive
35 * enumeration. It will also make use of multi-device layouts. Each disk
36 * will have its on read pointer and all disks will by utilized in parallel.
37 * Also will no two disks read both sides of a mirror simultaneously, as this
38 * would waste seeking capacity. Instead both disks will read different parts
40 * Any number of readaheads can be started in parallel. The read order will be
41 * determined globally, i.e. 2 parallel readaheads will normally finish faster
42 * than the 2 started one after another.
45 #define MAX_IN_FLIGHT 6
48 struct list_head list
;
49 struct reada_control
*rc
;
57 struct list_head extctl
;
60 struct reada_zone
*zones
[BTRFS_MAX_MIRRORS
];
70 struct list_head list
;
73 struct btrfs_device
*device
;
74 struct btrfs_device
*devs
[BTRFS_MAX_MIRRORS
]; /* full list, incl
80 struct reada_machine_work
{
81 struct btrfs_work work
;
82 struct btrfs_fs_info
*fs_info
;
85 static void reada_extent_put(struct btrfs_fs_info
*, struct reada_extent
*);
86 static void reada_control_release(struct kref
*kref
);
87 static void reada_zone_release(struct kref
*kref
);
88 static void reada_start_machine(struct btrfs_fs_info
*fs_info
);
89 static void __reada_start_machine(struct btrfs_fs_info
*fs_info
);
91 static int reada_add_block(struct reada_control
*rc
, u64 logical
,
92 struct btrfs_key
*top
, u64 owner_root
,
93 u64 generation
, int level
);
96 /* in case of err, eb might be NULL */
97 static void __readahead_hook(struct btrfs_fs_info
*fs_info
,
98 struct reada_extent
*re
, struct extent_buffer
*eb
,
105 struct list_head list
;
107 spin_lock(&re
->lock
);
109 * just take the full list from the extent. afterwards we
110 * don't need the lock anymore
112 list_replace_init(&re
->extctl
, &list
);
114 spin_unlock(&re
->lock
);
117 * this is the error case, the extent buffer has not been
118 * read correctly. We won't access anything from it and
119 * just cleanup our data structures. Effectively this will
120 * cut the branch below this node from read ahead.
126 * FIXME: currently we just set nritems to 0 if this is a leaf,
127 * effectively ignoring the content. In a next step we could
128 * trigger more readahead depending from the content, e.g.
129 * fetch the checksums for the extents in the leaf.
131 if (!btrfs_header_level(eb
))
134 nritems
= btrfs_header_nritems(eb
);
135 generation
= btrfs_header_generation(eb
);
136 for (i
= 0; i
< nritems
; i
++) {
137 struct reada_extctl
*rec
;
139 struct btrfs_key key
;
140 struct btrfs_key next_key
;
142 btrfs_node_key_to_cpu(eb
, &key
, i
);
144 btrfs_node_key_to_cpu(eb
, &next_key
, i
+ 1);
147 bytenr
= btrfs_node_blockptr(eb
, i
);
148 n_gen
= btrfs_node_ptr_generation(eb
, i
);
150 list_for_each_entry(rec
, &list
, list
) {
151 struct reada_control
*rc
= rec
->rc
;
154 * if the generation doesn't match, just ignore this
155 * extctl. This will probably cut off a branch from
156 * prefetch. Alternatively one could start a new (sub-)
157 * prefetch for this branch, starting again from root.
158 * FIXME: move the generation check out of this loop
161 if (rec
->generation
!= generation
) {
163 "generation mismatch for (%llu,%d,%llu) %llu != %llu",
164 key
.objectid
, key
.type
, key
.offset
,
165 rec
->generation
, generation
);
168 if (rec
->generation
== generation
&&
169 btrfs_comp_cpu_keys(&key
, &rc
->key_end
) < 0 &&
170 btrfs_comp_cpu_keys(&next_key
, &rc
->key_start
) > 0)
171 reada_add_block(rc
, bytenr
, &next_key
,
172 btrfs_header_owner(eb
), n_gen
,
173 btrfs_header_level(eb
) - 1);
179 * free extctl records
181 while (!list_empty(&list
)) {
182 struct reada_control
*rc
;
183 struct reada_extctl
*rec
;
185 rec
= list_first_entry(&list
, struct reada_extctl
, list
);
186 list_del(&rec
->list
);
190 kref_get(&rc
->refcnt
);
191 if (atomic_dec_and_test(&rc
->elems
)) {
192 kref_put(&rc
->refcnt
, reada_control_release
);
195 kref_put(&rc
->refcnt
, reada_control_release
);
197 reada_extent_put(fs_info
, re
); /* one ref for each entry */
203 int btree_readahead_hook(struct extent_buffer
*eb
, int err
)
205 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
207 struct reada_extent
*re
;
210 spin_lock(&fs_info
->reada_lock
);
211 re
= radix_tree_lookup(&fs_info
->reada_tree
,
212 eb
->start
>> PAGE_SHIFT
);
215 spin_unlock(&fs_info
->reada_lock
);
221 __readahead_hook(fs_info
, re
, eb
, err
);
222 reada_extent_put(fs_info
, re
); /* our ref */
225 reada_start_machine(fs_info
);
229 static struct reada_zone
*reada_find_zone(struct btrfs_device
*dev
, u64 logical
,
230 struct btrfs_bio
*bbio
)
232 struct btrfs_fs_info
*fs_info
= dev
->fs_info
;
234 struct reada_zone
*zone
;
235 struct btrfs_block_group
*cache
= NULL
;
241 spin_lock(&fs_info
->reada_lock
);
242 ret
= radix_tree_gang_lookup(&dev
->reada_zones
, (void **)&zone
,
243 logical
>> PAGE_SHIFT
, 1);
244 if (ret
== 1 && logical
>= zone
->start
&& logical
<= zone
->end
) {
245 kref_get(&zone
->refcnt
);
246 spin_unlock(&fs_info
->reada_lock
);
250 spin_unlock(&fs_info
->reada_lock
);
252 cache
= btrfs_lookup_block_group(fs_info
, logical
);
256 start
= cache
->start
;
257 end
= start
+ cache
->length
- 1;
258 btrfs_put_block_group(cache
);
260 zone
= kzalloc(sizeof(*zone
), GFP_KERNEL
);
264 ret
= radix_tree_preload(GFP_KERNEL
);
272 INIT_LIST_HEAD(&zone
->list
);
273 spin_lock_init(&zone
->lock
);
275 kref_init(&zone
->refcnt
);
277 zone
->device
= dev
; /* our device always sits at index 0 */
278 for (i
= 0; i
< bbio
->num_stripes
; ++i
) {
279 /* bounds have already been checked */
280 zone
->devs
[i
] = bbio
->stripes
[i
].dev
;
282 zone
->ndevs
= bbio
->num_stripes
;
284 spin_lock(&fs_info
->reada_lock
);
285 ret
= radix_tree_insert(&dev
->reada_zones
,
286 (unsigned long)(zone
->end
>> PAGE_SHIFT
),
289 if (ret
== -EEXIST
) {
291 ret
= radix_tree_gang_lookup(&dev
->reada_zones
, (void **)&zone
,
292 logical
>> PAGE_SHIFT
, 1);
293 if (ret
== 1 && logical
>= zone
->start
&& logical
<= zone
->end
)
294 kref_get(&zone
->refcnt
);
298 spin_unlock(&fs_info
->reada_lock
);
299 radix_tree_preload_end();
304 static struct reada_extent
*reada_find_extent(struct btrfs_fs_info
*fs_info
,
306 struct btrfs_key
*top
,
307 u64 owner_root
, int level
)
310 struct reada_extent
*re
= NULL
;
311 struct reada_extent
*re_exist
= NULL
;
312 struct btrfs_bio
*bbio
= NULL
;
313 struct btrfs_device
*dev
;
314 struct btrfs_device
*prev_dev
;
318 unsigned long index
= logical
>> PAGE_SHIFT
;
319 int dev_replace_is_ongoing
;
322 spin_lock(&fs_info
->reada_lock
);
323 re
= radix_tree_lookup(&fs_info
->reada_tree
, index
);
326 spin_unlock(&fs_info
->reada_lock
);
331 re
= kzalloc(sizeof(*re
), GFP_KERNEL
);
335 re
->logical
= logical
;
337 INIT_LIST_HEAD(&re
->extctl
);
338 spin_lock_init(&re
->lock
);
340 re
->owner_root
= owner_root
;
346 length
= fs_info
->nodesize
;
347 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
, logical
,
349 if (ret
|| !bbio
|| length
< fs_info
->nodesize
)
352 if (bbio
->num_stripes
> BTRFS_MAX_MIRRORS
) {
354 "readahead: more than %d copies not supported",
359 real_stripes
= bbio
->num_stripes
- bbio
->num_tgtdevs
;
360 for (nzones
= 0; nzones
< real_stripes
; ++nzones
) {
361 struct reada_zone
*zone
;
363 dev
= bbio
->stripes
[nzones
].dev
;
365 /* cannot read ahead on missing device. */
369 zone
= reada_find_zone(dev
, logical
, bbio
);
373 re
->zones
[re
->nzones
++] = zone
;
374 spin_lock(&zone
->lock
);
376 kref_get(&zone
->refcnt
);
378 spin_unlock(&zone
->lock
);
379 spin_lock(&fs_info
->reada_lock
);
380 kref_put(&zone
->refcnt
, reada_zone_release
);
381 spin_unlock(&fs_info
->reada_lock
);
383 if (re
->nzones
== 0) {
384 /* not a single zone found, error and out */
388 /* Insert extent in reada tree + all per-device trees, all or nothing */
389 down_read(&fs_info
->dev_replace
.rwsem
);
390 ret
= radix_tree_preload(GFP_KERNEL
);
392 up_read(&fs_info
->dev_replace
.rwsem
);
396 spin_lock(&fs_info
->reada_lock
);
397 ret
= radix_tree_insert(&fs_info
->reada_tree
, index
, re
);
398 if (ret
== -EEXIST
) {
399 re_exist
= radix_tree_lookup(&fs_info
->reada_tree
, index
);
401 spin_unlock(&fs_info
->reada_lock
);
402 radix_tree_preload_end();
403 up_read(&fs_info
->dev_replace
.rwsem
);
407 spin_unlock(&fs_info
->reada_lock
);
408 radix_tree_preload_end();
409 up_read(&fs_info
->dev_replace
.rwsem
);
412 radix_tree_preload_end();
414 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(
415 &fs_info
->dev_replace
);
416 for (nzones
= 0; nzones
< re
->nzones
; ++nzones
) {
417 dev
= re
->zones
[nzones
]->device
;
419 if (dev
== prev_dev
) {
421 * in case of DUP, just add the first zone. As both
422 * are on the same device, there's nothing to gain
424 * Also, it wouldn't work, as the tree is per device
425 * and adding would fail with EEXIST
432 if (test_bit(BTRFS_DEV_STATE_NO_READA
, &dev
->dev_state
))
435 if (dev_replace_is_ongoing
&&
436 dev
== fs_info
->dev_replace
.tgtdev
) {
438 * as this device is selected for reading only as
439 * a last resort, skip it for read ahead.
444 ret
= radix_tree_insert(&dev
->reada_extents
, index
, re
);
446 while (--nzones
>= 0) {
447 dev
= re
->zones
[nzones
]->device
;
449 /* ignore whether the entry was inserted */
450 radix_tree_delete(&dev
->reada_extents
, index
);
452 radix_tree_delete(&fs_info
->reada_tree
, index
);
453 spin_unlock(&fs_info
->reada_lock
);
454 up_read(&fs_info
->dev_replace
.rwsem
);
460 radix_tree_delete(&fs_info
->reada_tree
, index
);
461 spin_unlock(&fs_info
->reada_lock
);
462 up_read(&fs_info
->dev_replace
.rwsem
);
467 btrfs_put_bbio(bbio
);
471 for (nzones
= 0; nzones
< re
->nzones
; ++nzones
) {
472 struct reada_zone
*zone
;
474 zone
= re
->zones
[nzones
];
475 kref_get(&zone
->refcnt
);
476 spin_lock(&zone
->lock
);
478 if (zone
->elems
== 0) {
480 * no fs_info->reada_lock needed, as this can't be
483 kref_put(&zone
->refcnt
, reada_zone_release
);
485 spin_unlock(&zone
->lock
);
487 spin_lock(&fs_info
->reada_lock
);
488 kref_put(&zone
->refcnt
, reada_zone_release
);
489 spin_unlock(&fs_info
->reada_lock
);
491 btrfs_put_bbio(bbio
);
496 static void reada_extent_put(struct btrfs_fs_info
*fs_info
,
497 struct reada_extent
*re
)
500 unsigned long index
= re
->logical
>> PAGE_SHIFT
;
502 spin_lock(&fs_info
->reada_lock
);
504 spin_unlock(&fs_info
->reada_lock
);
508 radix_tree_delete(&fs_info
->reada_tree
, index
);
509 for (i
= 0; i
< re
->nzones
; ++i
) {
510 struct reada_zone
*zone
= re
->zones
[i
];
512 radix_tree_delete(&zone
->device
->reada_extents
, index
);
515 spin_unlock(&fs_info
->reada_lock
);
517 for (i
= 0; i
< re
->nzones
; ++i
) {
518 struct reada_zone
*zone
= re
->zones
[i
];
520 kref_get(&zone
->refcnt
);
521 spin_lock(&zone
->lock
);
523 if (zone
->elems
== 0) {
524 /* no fs_info->reada_lock needed, as this can't be
526 kref_put(&zone
->refcnt
, reada_zone_release
);
528 spin_unlock(&zone
->lock
);
530 spin_lock(&fs_info
->reada_lock
);
531 kref_put(&zone
->refcnt
, reada_zone_release
);
532 spin_unlock(&fs_info
->reada_lock
);
538 static void reada_zone_release(struct kref
*kref
)
540 struct reada_zone
*zone
= container_of(kref
, struct reada_zone
, refcnt
);
542 lockdep_assert_held(&zone
->device
->fs_info
->reada_lock
);
544 radix_tree_delete(&zone
->device
->reada_zones
,
545 zone
->end
>> PAGE_SHIFT
);
550 static void reada_control_release(struct kref
*kref
)
552 struct reada_control
*rc
= container_of(kref
, struct reada_control
,
558 static int reada_add_block(struct reada_control
*rc
, u64 logical
,
559 struct btrfs_key
*top
, u64 owner_root
,
560 u64 generation
, int level
)
562 struct btrfs_fs_info
*fs_info
= rc
->fs_info
;
563 struct reada_extent
*re
;
564 struct reada_extctl
*rec
;
567 re
= reada_find_extent(fs_info
, logical
, top
, owner_root
, level
);
571 rec
= kzalloc(sizeof(*rec
), GFP_KERNEL
);
573 reada_extent_put(fs_info
, re
);
578 rec
->generation
= generation
;
579 atomic_inc(&rc
->elems
);
581 spin_lock(&re
->lock
);
582 list_add_tail(&rec
->list
, &re
->extctl
);
583 spin_unlock(&re
->lock
);
585 /* leave the ref on the extent */
591 * called with fs_info->reada_lock held
593 static void reada_peer_zones_set_lock(struct reada_zone
*zone
, int lock
)
596 unsigned long index
= zone
->end
>> PAGE_SHIFT
;
598 for (i
= 0; i
< zone
->ndevs
; ++i
) {
599 struct reada_zone
*peer
;
600 peer
= radix_tree_lookup(&zone
->devs
[i
]->reada_zones
, index
);
601 if (peer
&& peer
->device
!= zone
->device
)
607 * called with fs_info->reada_lock held
609 static int reada_pick_zone(struct btrfs_device
*dev
)
611 struct reada_zone
*top_zone
= NULL
;
612 struct reada_zone
*top_locked_zone
= NULL
;
614 u64 top_locked_elems
= 0;
615 unsigned long index
= 0;
618 if (dev
->reada_curr_zone
) {
619 reada_peer_zones_set_lock(dev
->reada_curr_zone
, 0);
620 kref_put(&dev
->reada_curr_zone
->refcnt
, reada_zone_release
);
621 dev
->reada_curr_zone
= NULL
;
623 /* pick the zone with the most elements */
625 struct reada_zone
*zone
;
627 ret
= radix_tree_gang_lookup(&dev
->reada_zones
,
628 (void **)&zone
, index
, 1);
631 index
= (zone
->end
>> PAGE_SHIFT
) + 1;
633 if (zone
->elems
> top_locked_elems
) {
634 top_locked_elems
= zone
->elems
;
635 top_locked_zone
= zone
;
638 if (zone
->elems
> top_elems
) {
639 top_elems
= zone
->elems
;
645 dev
->reada_curr_zone
= top_zone
;
646 else if (top_locked_zone
)
647 dev
->reada_curr_zone
= top_locked_zone
;
651 dev
->reada_next
= dev
->reada_curr_zone
->start
;
652 kref_get(&dev
->reada_curr_zone
->refcnt
);
653 reada_peer_zones_set_lock(dev
->reada_curr_zone
, 1);
658 static int reada_tree_block_flagged(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
659 u64 owner_root
, int level
, int mirror_num
,
660 struct extent_buffer
**eb
)
662 struct extent_buffer
*buf
= NULL
;
665 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
, owner_root
, level
);
669 set_bit(EXTENT_BUFFER_READAHEAD
, &buf
->bflags
);
671 ret
= read_extent_buffer_pages(buf
, WAIT_PAGE_LOCK
, mirror_num
);
673 free_extent_buffer_stale(buf
);
677 if (test_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
)) {
678 free_extent_buffer_stale(buf
);
680 } else if (extent_buffer_uptodate(buf
)) {
683 free_extent_buffer(buf
);
688 static int reada_start_machine_dev(struct btrfs_device
*dev
)
690 struct btrfs_fs_info
*fs_info
= dev
->fs_info
;
691 struct reada_extent
*re
= NULL
;
693 struct extent_buffer
*eb
= NULL
;
698 spin_lock(&fs_info
->reada_lock
);
699 if (dev
->reada_curr_zone
== NULL
) {
700 ret
= reada_pick_zone(dev
);
702 spin_unlock(&fs_info
->reada_lock
);
707 * FIXME currently we issue the reads one extent at a time. If we have
708 * a contiguous block of extents, we could also coagulate them or use
709 * plugging to speed things up
711 ret
= radix_tree_gang_lookup(&dev
->reada_extents
, (void **)&re
,
712 dev
->reada_next
>> PAGE_SHIFT
, 1);
713 if (ret
== 0 || re
->logical
> dev
->reada_curr_zone
->end
) {
714 ret
= reada_pick_zone(dev
);
716 spin_unlock(&fs_info
->reada_lock
);
720 ret
= radix_tree_gang_lookup(&dev
->reada_extents
, (void **)&re
,
721 dev
->reada_next
>> PAGE_SHIFT
, 1);
724 spin_unlock(&fs_info
->reada_lock
);
727 dev
->reada_next
= re
->logical
+ fs_info
->nodesize
;
730 spin_unlock(&fs_info
->reada_lock
);
732 spin_lock(&re
->lock
);
733 if (re
->scheduled
|| list_empty(&re
->extctl
)) {
734 spin_unlock(&re
->lock
);
735 reada_extent_put(fs_info
, re
);
739 spin_unlock(&re
->lock
);
744 for (i
= 0; i
< re
->nzones
; ++i
) {
745 if (re
->zones
[i
]->device
== dev
) {
750 logical
= re
->logical
;
752 atomic_inc(&dev
->reada_in_flight
);
753 ret
= reada_tree_block_flagged(fs_info
, logical
, re
->owner_root
,
754 re
->level
, mirror_num
, &eb
);
756 __readahead_hook(fs_info
, re
, NULL
, ret
);
758 __readahead_hook(fs_info
, re
, eb
, ret
);
761 free_extent_buffer(eb
);
763 atomic_dec(&dev
->reada_in_flight
);
764 reada_extent_put(fs_info
, re
);
770 static void reada_start_machine_worker(struct btrfs_work
*work
)
772 struct reada_machine_work
*rmw
;
775 rmw
= container_of(work
, struct reada_machine_work
, work
);
777 old_ioprio
= IOPRIO_PRIO_VALUE(task_nice_ioclass(current
),
778 task_nice_ioprio(current
));
779 set_task_ioprio(current
, BTRFS_IOPRIO_READA
);
780 __reada_start_machine(rmw
->fs_info
);
781 set_task_ioprio(current
, old_ioprio
);
783 atomic_dec(&rmw
->fs_info
->reada_works_cnt
);
788 /* Try to start up to 10k READA requests for a group of devices */
789 static int reada_start_for_fsdevs(struct btrfs_fs_devices
*fs_devices
)
793 struct btrfs_device
*device
;
797 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
798 if (atomic_read(&device
->reada_in_flight
) <
800 enqueued
+= reada_start_machine_dev(device
);
803 } while (enqueued
&& total
< 10000);
808 static void __reada_start_machine(struct btrfs_fs_info
*fs_info
)
810 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
, *seed_devs
;
814 mutex_lock(&fs_devices
->device_list_mutex
);
816 enqueued
+= reada_start_for_fsdevs(fs_devices
);
817 list_for_each_entry(seed_devs
, &fs_devices
->seed_list
, seed_list
)
818 enqueued
+= reada_start_for_fsdevs(seed_devs
);
820 mutex_unlock(&fs_devices
->device_list_mutex
);
825 * If everything is already in the cache, this is effectively single
826 * threaded. To a) not hold the caller for too long and b) to utilize
827 * more cores, we broke the loop above after 10000 iterations and now
828 * enqueue to workers to finish it. This will distribute the load to
831 for (i
= 0; i
< 2; ++i
) {
832 reada_start_machine(fs_info
);
833 if (atomic_read(&fs_info
->reada_works_cnt
) >
834 BTRFS_MAX_MIRRORS
* 2)
839 static void reada_start_machine(struct btrfs_fs_info
*fs_info
)
841 struct reada_machine_work
*rmw
;
843 rmw
= kzalloc(sizeof(*rmw
), GFP_KERNEL
);
845 /* FIXME we cannot handle this properly right now */
848 btrfs_init_work(&rmw
->work
, reada_start_machine_worker
, NULL
, NULL
);
849 rmw
->fs_info
= fs_info
;
851 btrfs_queue_work(fs_info
->readahead_workers
, &rmw
->work
);
852 atomic_inc(&fs_info
->reada_works_cnt
);
856 static void dump_devs(struct btrfs_fs_info
*fs_info
, int all
)
858 struct btrfs_device
*device
;
859 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
866 spin_lock(&fs_info
->reada_lock
);
867 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
868 btrfs_debug(fs_info
, "dev %lld has %d in flight", device
->devid
,
869 atomic_read(&device
->reada_in_flight
));
872 struct reada_zone
*zone
;
873 ret
= radix_tree_gang_lookup(&device
->reada_zones
,
874 (void **)&zone
, index
, 1);
877 pr_debug(" zone %llu-%llu elems %llu locked %d devs",
878 zone
->start
, zone
->end
, zone
->elems
,
880 for (j
= 0; j
< zone
->ndevs
; ++j
) {
882 zone
->devs
[j
]->devid
);
884 if (device
->reada_curr_zone
== zone
)
885 pr_cont(" curr off %llu",
886 device
->reada_next
- zone
->start
);
888 index
= (zone
->end
>> PAGE_SHIFT
) + 1;
893 struct reada_extent
*re
= NULL
;
895 ret
= radix_tree_gang_lookup(&device
->reada_extents
,
896 (void **)&re
, index
, 1);
899 pr_debug(" re: logical %llu size %u empty %d scheduled %d",
900 re
->logical
, fs_info
->nodesize
,
901 list_empty(&re
->extctl
), re
->scheduled
);
903 for (i
= 0; i
< re
->nzones
; ++i
) {
904 pr_cont(" zone %llu-%llu devs",
907 for (j
= 0; j
< re
->zones
[i
]->ndevs
; ++j
) {
909 re
->zones
[i
]->devs
[j
]->devid
);
913 index
= (re
->logical
>> PAGE_SHIFT
) + 1;
922 struct reada_extent
*re
= NULL
;
924 ret
= radix_tree_gang_lookup(&fs_info
->reada_tree
, (void **)&re
,
928 if (!re
->scheduled
) {
929 index
= (re
->logical
>> PAGE_SHIFT
) + 1;
932 pr_debug("re: logical %llu size %u list empty %d scheduled %d",
933 re
->logical
, fs_info
->nodesize
,
934 list_empty(&re
->extctl
), re
->scheduled
);
935 for (i
= 0; i
< re
->nzones
; ++i
) {
936 pr_cont(" zone %llu-%llu devs",
939 for (j
= 0; j
< re
->zones
[i
]->ndevs
; ++j
) {
941 re
->zones
[i
]->devs
[j
]->devid
);
945 index
= (re
->logical
>> PAGE_SHIFT
) + 1;
947 spin_unlock(&fs_info
->reada_lock
);
954 struct reada_control
*btrfs_reada_add(struct btrfs_root
*root
,
955 struct btrfs_key
*key_start
, struct btrfs_key
*key_end
)
957 struct reada_control
*rc
;
962 struct extent_buffer
*node
;
963 static struct btrfs_key max_key
= {
969 rc
= kzalloc(sizeof(*rc
), GFP_KERNEL
);
971 return ERR_PTR(-ENOMEM
);
973 rc
->fs_info
= root
->fs_info
;
974 rc
->key_start
= *key_start
;
975 rc
->key_end
= *key_end
;
976 atomic_set(&rc
->elems
, 0);
977 init_waitqueue_head(&rc
->wait
);
978 kref_init(&rc
->refcnt
);
979 kref_get(&rc
->refcnt
); /* one ref for having elements */
981 node
= btrfs_root_node(root
);
983 generation
= btrfs_header_generation(node
);
984 level
= btrfs_header_level(node
);
985 free_extent_buffer(node
);
987 ret
= reada_add_block(rc
, start
, &max_key
, root
->root_key
.objectid
,
994 reada_start_machine(root
->fs_info
);
1000 int btrfs_reada_wait(void *handle
)
1002 struct reada_control
*rc
= handle
;
1003 struct btrfs_fs_info
*fs_info
= rc
->fs_info
;
1005 while (atomic_read(&rc
->elems
)) {
1006 if (!atomic_read(&fs_info
->reada_works_cnt
))
1007 reada_start_machine(fs_info
);
1008 wait_event_timeout(rc
->wait
, atomic_read(&rc
->elems
) == 0,
1010 dump_devs(fs_info
, atomic_read(&rc
->elems
) < 10 ? 1 : 0);
1013 dump_devs(fs_info
, atomic_read(&rc
->elems
) < 10 ? 1 : 0);
1015 kref_put(&rc
->refcnt
, reada_control_release
);
1020 int btrfs_reada_wait(void *handle
)
1022 struct reada_control
*rc
= handle
;
1023 struct btrfs_fs_info
*fs_info
= rc
->fs_info
;
1025 while (atomic_read(&rc
->elems
)) {
1026 if (!atomic_read(&fs_info
->reada_works_cnt
))
1027 reada_start_machine(fs_info
);
1028 wait_event_timeout(rc
->wait
, atomic_read(&rc
->elems
) == 0,
1032 kref_put(&rc
->refcnt
, reada_control_release
);
1038 void btrfs_reada_detach(void *handle
)
1040 struct reada_control
*rc
= handle
;
1042 kref_put(&rc
->refcnt
, reada_control_release
);
1046 * Before removing a device (device replace or device remove ioctls), call this
1047 * function to wait for all existing readahead requests on the device and to
1048 * make sure no one queues more readahead requests for the device.
1050 * Must be called without holding neither the device list mutex nor the device
1051 * replace semaphore, otherwise it will deadlock.
1053 void btrfs_reada_remove_dev(struct btrfs_device
*dev
)
1055 struct btrfs_fs_info
*fs_info
= dev
->fs_info
;
1057 /* Serialize with readahead extent creation at reada_find_extent(). */
1058 spin_lock(&fs_info
->reada_lock
);
1059 set_bit(BTRFS_DEV_STATE_NO_READA
, &dev
->dev_state
);
1060 spin_unlock(&fs_info
->reada_lock
);
1063 * There might be readahead requests added to the radix trees which
1064 * were not yet added to the readahead work queue. We need to start
1065 * them and wait for their completion, otherwise we can end up with
1066 * use-after-free problems when dropping the last reference on the
1067 * readahead extents and their zones, as they need to access the
1070 reada_start_machine(fs_info
);
1071 btrfs_flush_workqueue(fs_info
->readahead_workers
);
1075 * If when removing a device (device replace or device remove ioctls) an error
1076 * happens after calling btrfs_reada_remove_dev(), call this to undo what that
1077 * function did. This is safe to call even if btrfs_reada_remove_dev() was not
1080 void btrfs_reada_undo_remove_dev(struct btrfs_device
*dev
)
1082 spin_lock(&dev
->fs_info
->reada_lock
);
1083 clear_bit(BTRFS_DEV_STATE_NO_READA
, &dev
->dev_state
);
1084 spin_unlock(&dev
->fs_info
->reada_lock
);