1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3 * vim: noexpandtab sw=8 ts=8 sts=0:
5 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
9 #include <linux/slab.h>
10 #include <linux/highmem.h>
11 #include <linux/pagemap.h>
12 #include <asm/byteorder.h>
13 #include <linux/swap.h>
14 #include <linux/mpage.h>
15 #include <linux/quotaops.h>
16 #include <linux/blkdev.h>
17 #include <linux/uio.h>
20 #include <cluster/masklog.h>
27 #include "extent_map.h"
34 #include "refcounttree.h"
35 #include "ocfs2_trace.h"
37 #include "buffer_head_io.h"
42 static int ocfs2_symlink_get_block(struct inode
*inode
, sector_t iblock
,
43 struct buffer_head
*bh_result
, int create
)
47 struct ocfs2_dinode
*fe
= NULL
;
48 struct buffer_head
*bh
= NULL
;
49 struct buffer_head
*buffer_cache_bh
= NULL
;
50 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
53 trace_ocfs2_symlink_get_block(
54 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
55 (unsigned long long)iblock
, bh_result
, create
);
57 BUG_ON(ocfs2_inode_is_fast_symlink(inode
));
59 if ((iblock
<< inode
->i_sb
->s_blocksize_bits
) > PATH_MAX
+ 1) {
60 mlog(ML_ERROR
, "block offset > PATH_MAX: %llu",
61 (unsigned long long)iblock
);
65 status
= ocfs2_read_inode_block(inode
, &bh
);
70 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
72 if ((u64
)iblock
>= ocfs2_clusters_to_blocks(inode
->i_sb
,
73 le32_to_cpu(fe
->i_clusters
))) {
75 mlog(ML_ERROR
, "block offset is outside the allocated size: "
76 "%llu\n", (unsigned long long)iblock
);
80 /* We don't use the page cache to create symlink data, so if
81 * need be, copy it over from the buffer cache. */
82 if (!buffer_uptodate(bh_result
) && ocfs2_inode_is_new(inode
)) {
83 u64 blkno
= le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) +
85 buffer_cache_bh
= sb_getblk(osb
->sb
, blkno
);
86 if (!buffer_cache_bh
) {
88 mlog(ML_ERROR
, "couldn't getblock for symlink!\n");
92 /* we haven't locked out transactions, so a commit
93 * could've happened. Since we've got a reference on
94 * the bh, even if it commits while we're doing the
95 * copy, the data is still good. */
96 if (buffer_jbd(buffer_cache_bh
)
97 && ocfs2_inode_is_new(inode
)) {
98 kaddr
= kmap_atomic(bh_result
->b_page
);
100 mlog(ML_ERROR
, "couldn't kmap!\n");
103 memcpy(kaddr
+ (bh_result
->b_size
* iblock
),
104 buffer_cache_bh
->b_data
,
106 kunmap_atomic(kaddr
);
107 set_buffer_uptodate(bh_result
);
109 brelse(buffer_cache_bh
);
112 map_bh(bh_result
, inode
->i_sb
,
113 le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) + iblock
);
123 static int ocfs2_lock_get_block(struct inode
*inode
, sector_t iblock
,
124 struct buffer_head
*bh_result
, int create
)
127 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
129 down_read(&oi
->ip_alloc_sem
);
130 ret
= ocfs2_get_block(inode
, iblock
, bh_result
, create
);
131 up_read(&oi
->ip_alloc_sem
);
136 int ocfs2_get_block(struct inode
*inode
, sector_t iblock
,
137 struct buffer_head
*bh_result
, int create
)
140 unsigned int ext_flags
;
141 u64 max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
142 u64 p_blkno
, count
, past_eof
;
143 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
145 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
146 (unsigned long long)iblock
, bh_result
, create
);
148 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_SYSTEM_FILE
)
149 mlog(ML_NOTICE
, "get_block on system inode 0x%p (%lu)\n",
150 inode
, inode
->i_ino
);
152 if (S_ISLNK(inode
->i_mode
)) {
153 /* this always does I/O for some reason. */
154 err
= ocfs2_symlink_get_block(inode
, iblock
, bh_result
, create
);
158 err
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
, &count
,
161 mlog(ML_ERROR
, "Error %d from get_blocks(0x%p, %llu, 1, "
162 "%llu, NULL)\n", err
, inode
, (unsigned long long)iblock
,
163 (unsigned long long)p_blkno
);
167 if (max_blocks
< count
)
171 * ocfs2 never allocates in this function - the only time we
172 * need to use BH_New is when we're extending i_size on a file
173 * system which doesn't support holes, in which case BH_New
174 * allows __block_write_begin() to zero.
176 * If we see this on a sparse file system, then a truncate has
177 * raced us and removed the cluster. In this case, we clear
178 * the buffers dirty and uptodate bits and let the buffer code
179 * ignore it as a hole.
181 if (create
&& p_blkno
== 0 && ocfs2_sparse_alloc(osb
)) {
182 clear_buffer_dirty(bh_result
);
183 clear_buffer_uptodate(bh_result
);
187 /* Treat the unwritten extent as a hole for zeroing purposes. */
188 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
189 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
191 bh_result
->b_size
= count
<< inode
->i_blkbits
;
193 if (!ocfs2_sparse_alloc(osb
)) {
197 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
198 (unsigned long long)iblock
,
199 (unsigned long long)p_blkno
,
200 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
201 mlog(ML_ERROR
, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode
), OCFS2_I(inode
)->ip_clusters
);
207 past_eof
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
209 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
210 (unsigned long long)past_eof
);
211 if (create
&& (iblock
>= past_eof
))
212 set_buffer_new(bh_result
);
221 int ocfs2_read_inline_data(struct inode
*inode
, struct page
*page
,
222 struct buffer_head
*di_bh
)
226 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
228 if (!(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
)) {
229 ocfs2_error(inode
->i_sb
, "Inode %llu lost inline data flag\n",
230 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
234 size
= i_size_read(inode
);
236 if (size
> PAGE_SIZE
||
237 size
> ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
)) {
238 ocfs2_error(inode
->i_sb
,
239 "Inode %llu has with inline data has bad size: %Lu\n",
240 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
241 (unsigned long long)size
);
245 kaddr
= kmap_atomic(page
);
247 memcpy(kaddr
, di
->id2
.i_data
.id_data
, size
);
248 /* Clear the remaining part of the page */
249 memset(kaddr
+ size
, 0, PAGE_SIZE
- size
);
250 flush_dcache_page(page
);
251 kunmap_atomic(kaddr
);
253 SetPageUptodate(page
);
258 static int ocfs2_readpage_inline(struct inode
*inode
, struct page
*page
)
261 struct buffer_head
*di_bh
= NULL
;
263 BUG_ON(!PageLocked(page
));
264 BUG_ON(!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
));
266 ret
= ocfs2_read_inode_block(inode
, &di_bh
);
272 ret
= ocfs2_read_inline_data(inode
, page
, di_bh
);
280 static int ocfs2_readpage(struct file
*file
, struct page
*page
)
282 struct inode
*inode
= page
->mapping
->host
;
283 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
284 loff_t start
= (loff_t
)page
->index
<< PAGE_SHIFT
;
287 trace_ocfs2_readpage((unsigned long long)oi
->ip_blkno
,
288 (page
? page
->index
: 0));
290 ret
= ocfs2_inode_lock_with_page(inode
, NULL
, 0, page
);
292 if (ret
== AOP_TRUNCATED_PAGE
)
298 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
300 * Unlock the page and cycle ip_alloc_sem so that we don't
301 * busyloop waiting for ip_alloc_sem to unlock
303 ret
= AOP_TRUNCATED_PAGE
;
306 down_read(&oi
->ip_alloc_sem
);
307 up_read(&oi
->ip_alloc_sem
);
308 goto out_inode_unlock
;
312 * i_size might have just been updated as we grabed the meta lock. We
313 * might now be discovering a truncate that hit on another node.
314 * block_read_full_page->get_block freaks out if it is asked to read
315 * beyond the end of a file, so we check here. Callers
316 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
317 * and notice that the page they just read isn't needed.
319 * XXX sys_readahead() seems to get that wrong?
321 if (start
>= i_size_read(inode
)) {
322 zero_user(page
, 0, PAGE_SIZE
);
323 SetPageUptodate(page
);
328 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
329 ret
= ocfs2_readpage_inline(inode
, page
);
331 ret
= block_read_full_page(page
, ocfs2_get_block
);
335 up_read(&oi
->ip_alloc_sem
);
337 ocfs2_inode_unlock(inode
, 0);
345 * This is used only for read-ahead. Failures or difficult to handle
346 * situations are safe to ignore.
348 * Right now, we don't bother with BH_Boundary - in-inode extent lists
349 * are quite large (243 extents on 4k blocks), so most inodes don't
350 * grow out to a tree. If need be, detecting boundary extents could
351 * trivially be added in a future version of ocfs2_get_block().
353 static void ocfs2_readahead(struct readahead_control
*rac
)
356 struct inode
*inode
= rac
->mapping
->host
;
357 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
360 * Use the nonblocking flag for the dlm code to avoid page
361 * lock inversion, but don't bother with retrying.
363 ret
= ocfs2_inode_lock_full(inode
, NULL
, 0, OCFS2_LOCK_NONBLOCK
);
367 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0)
371 * Don't bother with inline-data. There isn't anything
372 * to read-ahead in that case anyway...
374 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
378 * Check whether a remote node truncated this file - we just
379 * drop out in that case as it's not worth handling here.
381 if (readahead_pos(rac
) >= i_size_read(inode
))
384 mpage_readahead(rac
, ocfs2_get_block
);
387 up_read(&oi
->ip_alloc_sem
);
389 ocfs2_inode_unlock(inode
, 0);
392 /* Note: Because we don't support holes, our allocation has
393 * already happened (allocation writes zeros to the file data)
394 * so we don't have to worry about ordered writes in
397 * ->writepage is called during the process of invalidating the page cache
398 * during blocked lock processing. It can't block on any cluster locks
399 * to during block mapping. It's relying on the fact that the block
400 * mapping can't have disappeared under the dirty pages that it is
401 * being asked to write back.
403 static int ocfs2_writepage(struct page
*page
, struct writeback_control
*wbc
)
405 trace_ocfs2_writepage(
406 (unsigned long long)OCFS2_I(page
->mapping
->host
)->ip_blkno
,
409 return block_write_full_page(page
, ocfs2_get_block
, wbc
);
412 /* Taken from ext3. We don't necessarily need the full blown
413 * functionality yet, but IMHO it's better to cut and paste the whole
414 * thing so we can avoid introducing our own bugs (and easily pick up
415 * their fixes when they happen) --Mark */
416 int walk_page_buffers( handle_t
*handle
,
417 struct buffer_head
*head
,
421 int (*fn
)( handle_t
*handle
,
422 struct buffer_head
*bh
))
424 struct buffer_head
*bh
;
425 unsigned block_start
, block_end
;
426 unsigned blocksize
= head
->b_size
;
428 struct buffer_head
*next
;
430 for ( bh
= head
, block_start
= 0;
431 ret
== 0 && (bh
!= head
|| !block_start
);
432 block_start
= block_end
, bh
= next
)
434 next
= bh
->b_this_page
;
435 block_end
= block_start
+ blocksize
;
436 if (block_end
<= from
|| block_start
>= to
) {
437 if (partial
&& !buffer_uptodate(bh
))
441 err
= (*fn
)(handle
, bh
);
448 static sector_t
ocfs2_bmap(struct address_space
*mapping
, sector_t block
)
453 struct inode
*inode
= mapping
->host
;
455 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
456 (unsigned long long)block
);
459 * The swap code (ab-)uses ->bmap to get a block mapping and then
460 * bypasseѕ the file system for actual I/O. We really can't allow
461 * that on refcounted inodes, so we have to skip out here. And yes,
462 * 0 is the magic code for a bmap error..
464 if (ocfs2_is_refcount_inode(inode
))
467 /* We don't need to lock journal system files, since they aren't
468 * accessed concurrently from multiple nodes.
470 if (!INODE_JOURNAL(inode
)) {
471 err
= ocfs2_inode_lock(inode
, NULL
, 0);
477 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
480 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
481 err
= ocfs2_extent_map_get_blocks(inode
, block
, &p_blkno
, NULL
,
484 if (!INODE_JOURNAL(inode
)) {
485 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
486 ocfs2_inode_unlock(inode
, 0);
490 mlog(ML_ERROR
, "get_blocks() failed, block = %llu\n",
491 (unsigned long long)block
);
497 status
= err
? 0 : p_blkno
;
502 static int ocfs2_releasepage(struct page
*page
, gfp_t wait
)
504 if (!page_has_buffers(page
))
506 return try_to_free_buffers(page
);
509 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super
*osb
,
514 unsigned int cluster_start
= 0, cluster_end
= PAGE_SIZE
;
516 if (unlikely(PAGE_SHIFT
> osb
->s_clustersize_bits
)) {
519 cpp
= 1 << (PAGE_SHIFT
- osb
->s_clustersize_bits
);
521 cluster_start
= cpos
% cpp
;
522 cluster_start
= cluster_start
<< osb
->s_clustersize_bits
;
524 cluster_end
= cluster_start
+ osb
->s_clustersize
;
527 BUG_ON(cluster_start
> PAGE_SIZE
);
528 BUG_ON(cluster_end
> PAGE_SIZE
);
531 *start
= cluster_start
;
537 * 'from' and 'to' are the region in the page to avoid zeroing.
539 * If pagesize > clustersize, this function will avoid zeroing outside
540 * of the cluster boundary.
542 * from == to == 0 is code for "zero the entire cluster region"
544 static void ocfs2_clear_page_regions(struct page
*page
,
545 struct ocfs2_super
*osb
, u32 cpos
,
546 unsigned from
, unsigned to
)
549 unsigned int cluster_start
, cluster_end
;
551 ocfs2_figure_cluster_boundaries(osb
, cpos
, &cluster_start
, &cluster_end
);
553 kaddr
= kmap_atomic(page
);
556 if (from
> cluster_start
)
557 memset(kaddr
+ cluster_start
, 0, from
- cluster_start
);
558 if (to
< cluster_end
)
559 memset(kaddr
+ to
, 0, cluster_end
- to
);
561 memset(kaddr
+ cluster_start
, 0, cluster_end
- cluster_start
);
564 kunmap_atomic(kaddr
);
568 * Nonsparse file systems fully allocate before we get to the write
569 * code. This prevents ocfs2_write() from tagging the write as an
570 * allocating one, which means ocfs2_map_page_blocks() might try to
571 * read-in the blocks at the tail of our file. Avoid reading them by
572 * testing i_size against each block offset.
574 static int ocfs2_should_read_blk(struct inode
*inode
, struct page
*page
,
575 unsigned int block_start
)
577 u64 offset
= page_offset(page
) + block_start
;
579 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
582 if (i_size_read(inode
) > offset
)
589 * Some of this taken from __block_write_begin(). We already have our
590 * mapping by now though, and the entire write will be allocating or
591 * it won't, so not much need to use BH_New.
593 * This will also skip zeroing, which is handled externally.
595 int ocfs2_map_page_blocks(struct page
*page
, u64
*p_blkno
,
596 struct inode
*inode
, unsigned int from
,
597 unsigned int to
, int new)
600 struct buffer_head
*head
, *bh
, *wait
[2], **wait_bh
= wait
;
601 unsigned int block_end
, block_start
;
602 unsigned int bsize
= i_blocksize(inode
);
604 if (!page_has_buffers(page
))
605 create_empty_buffers(page
, bsize
, 0);
607 head
= page_buffers(page
);
608 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
609 bh
= bh
->b_this_page
, block_start
+= bsize
) {
610 block_end
= block_start
+ bsize
;
612 clear_buffer_new(bh
);
615 * Ignore blocks outside of our i/o range -
616 * they may belong to unallocated clusters.
618 if (block_start
>= to
|| block_end
<= from
) {
619 if (PageUptodate(page
))
620 set_buffer_uptodate(bh
);
625 * For an allocating write with cluster size >= page
626 * size, we always write the entire page.
631 if (!buffer_mapped(bh
)) {
632 map_bh(bh
, inode
->i_sb
, *p_blkno
);
633 clean_bdev_bh_alias(bh
);
636 if (PageUptodate(page
)) {
637 if (!buffer_uptodate(bh
))
638 set_buffer_uptodate(bh
);
639 } else if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
641 ocfs2_should_read_blk(inode
, page
, block_start
) &&
642 (block_start
< from
|| block_end
> to
)) {
643 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
647 *p_blkno
= *p_blkno
+ 1;
651 * If we issued read requests - let them complete.
653 while(wait_bh
> wait
) {
654 wait_on_buffer(*--wait_bh
);
655 if (!buffer_uptodate(*wait_bh
))
659 if (ret
== 0 || !new)
663 * If we get -EIO above, zero out any newly allocated blocks
664 * to avoid exposing stale data.
669 block_end
= block_start
+ bsize
;
670 if (block_end
<= from
)
672 if (block_start
>= to
)
675 zero_user(page
, block_start
, bh
->b_size
);
676 set_buffer_uptodate(bh
);
677 mark_buffer_dirty(bh
);
680 block_start
= block_end
;
681 bh
= bh
->b_this_page
;
682 } while (bh
!= head
);
687 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
688 #define OCFS2_MAX_CTXT_PAGES 1
690 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
693 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
695 struct ocfs2_unwritten_extent
{
696 struct list_head ue_node
;
697 struct list_head ue_ip_node
;
703 * Describe the state of a single cluster to be written to.
705 struct ocfs2_write_cluster_desc
{
709 * Give this a unique field because c_phys eventually gets
713 unsigned c_clear_unwritten
;
714 unsigned c_needs_zero
;
717 struct ocfs2_write_ctxt
{
718 /* Logical cluster position / len of write */
722 /* First cluster allocated in a nonsparse extend */
723 u32 w_first_new_cpos
;
725 /* Type of caller. Must be one of buffer, mmap, direct. */
726 ocfs2_write_type_t w_type
;
728 struct ocfs2_write_cluster_desc w_desc
[OCFS2_MAX_CLUSTERS_PER_PAGE
];
731 * This is true if page_size > cluster_size.
733 * It triggers a set of special cases during write which might
734 * have to deal with allocating writes to partial pages.
736 unsigned int w_large_pages
;
739 * Pages involved in this write.
741 * w_target_page is the page being written to by the user.
743 * w_pages is an array of pages which always contains
744 * w_target_page, and in the case of an allocating write with
745 * page_size < cluster size, it will contain zero'd and mapped
746 * pages adjacent to w_target_page which need to be written
747 * out in so that future reads from that region will get
750 unsigned int w_num_pages
;
751 struct page
*w_pages
[OCFS2_MAX_CTXT_PAGES
];
752 struct page
*w_target_page
;
755 * w_target_locked is used for page_mkwrite path indicating no unlocking
756 * against w_target_page in ocfs2_write_end_nolock.
758 unsigned int w_target_locked
:1;
761 * ocfs2_write_end() uses this to know what the real range to
762 * write in the target should be.
764 unsigned int w_target_from
;
765 unsigned int w_target_to
;
768 * We could use journal_current_handle() but this is cleaner,
773 struct buffer_head
*w_di_bh
;
775 struct ocfs2_cached_dealloc_ctxt w_dealloc
;
777 struct list_head w_unwritten_list
;
778 unsigned int w_unwritten_count
;
781 void ocfs2_unlock_and_free_pages(struct page
**pages
, int num_pages
)
785 for(i
= 0; i
< num_pages
; i
++) {
787 unlock_page(pages
[i
]);
788 mark_page_accessed(pages
[i
]);
794 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt
*wc
)
799 * w_target_locked is only set to true in the page_mkwrite() case.
800 * The intent is to allow us to lock the target page from write_begin()
801 * to write_end(). The caller must hold a ref on w_target_page.
803 if (wc
->w_target_locked
) {
804 BUG_ON(!wc
->w_target_page
);
805 for (i
= 0; i
< wc
->w_num_pages
; i
++) {
806 if (wc
->w_target_page
== wc
->w_pages
[i
]) {
807 wc
->w_pages
[i
] = NULL
;
811 mark_page_accessed(wc
->w_target_page
);
812 put_page(wc
->w_target_page
);
814 ocfs2_unlock_and_free_pages(wc
->w_pages
, wc
->w_num_pages
);
817 static void ocfs2_free_unwritten_list(struct inode
*inode
,
818 struct list_head
*head
)
820 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
821 struct ocfs2_unwritten_extent
*ue
= NULL
, *tmp
= NULL
;
823 list_for_each_entry_safe(ue
, tmp
, head
, ue_node
) {
824 list_del(&ue
->ue_node
);
825 spin_lock(&oi
->ip_lock
);
826 list_del(&ue
->ue_ip_node
);
827 spin_unlock(&oi
->ip_lock
);
832 static void ocfs2_free_write_ctxt(struct inode
*inode
,
833 struct ocfs2_write_ctxt
*wc
)
835 ocfs2_free_unwritten_list(inode
, &wc
->w_unwritten_list
);
836 ocfs2_unlock_pages(wc
);
841 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt
**wcp
,
842 struct ocfs2_super
*osb
, loff_t pos
,
843 unsigned len
, ocfs2_write_type_t type
,
844 struct buffer_head
*di_bh
)
847 struct ocfs2_write_ctxt
*wc
;
849 wc
= kzalloc(sizeof(struct ocfs2_write_ctxt
), GFP_NOFS
);
853 wc
->w_cpos
= pos
>> osb
->s_clustersize_bits
;
854 wc
->w_first_new_cpos
= UINT_MAX
;
855 cend
= (pos
+ len
- 1) >> osb
->s_clustersize_bits
;
856 wc
->w_clen
= cend
- wc
->w_cpos
+ 1;
861 if (unlikely(PAGE_SHIFT
> osb
->s_clustersize_bits
))
862 wc
->w_large_pages
= 1;
864 wc
->w_large_pages
= 0;
866 ocfs2_init_dealloc_ctxt(&wc
->w_dealloc
);
867 INIT_LIST_HEAD(&wc
->w_unwritten_list
);
875 * If a page has any new buffers, zero them out here, and mark them uptodate
876 * and dirty so they'll be written out (in order to prevent uninitialised
877 * block data from leaking). And clear the new bit.
879 static void ocfs2_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
881 unsigned int block_start
, block_end
;
882 struct buffer_head
*head
, *bh
;
884 BUG_ON(!PageLocked(page
));
885 if (!page_has_buffers(page
))
888 bh
= head
= page_buffers(page
);
891 block_end
= block_start
+ bh
->b_size
;
893 if (buffer_new(bh
)) {
894 if (block_end
> from
&& block_start
< to
) {
895 if (!PageUptodate(page
)) {
898 start
= max(from
, block_start
);
899 end
= min(to
, block_end
);
901 zero_user_segment(page
, start
, end
);
902 set_buffer_uptodate(bh
);
905 clear_buffer_new(bh
);
906 mark_buffer_dirty(bh
);
910 block_start
= block_end
;
911 bh
= bh
->b_this_page
;
912 } while (bh
!= head
);
916 * Only called when we have a failure during allocating write to write
917 * zero's to the newly allocated region.
919 static void ocfs2_write_failure(struct inode
*inode
,
920 struct ocfs2_write_ctxt
*wc
,
921 loff_t user_pos
, unsigned user_len
)
924 unsigned from
= user_pos
& (PAGE_SIZE
- 1),
925 to
= user_pos
+ user_len
;
926 struct page
*tmppage
;
928 if (wc
->w_target_page
)
929 ocfs2_zero_new_buffers(wc
->w_target_page
, from
, to
);
931 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
932 tmppage
= wc
->w_pages
[i
];
934 if (tmppage
&& page_has_buffers(tmppage
)) {
935 if (ocfs2_should_order_data(inode
))
936 ocfs2_jbd2_inode_add_write(wc
->w_handle
, inode
,
939 block_commit_write(tmppage
, from
, to
);
944 static int ocfs2_prepare_page_for_write(struct inode
*inode
, u64
*p_blkno
,
945 struct ocfs2_write_ctxt
*wc
,
946 struct page
*page
, u32 cpos
,
947 loff_t user_pos
, unsigned user_len
,
951 unsigned int map_from
= 0, map_to
= 0;
952 unsigned int cluster_start
, cluster_end
;
953 unsigned int user_data_from
= 0, user_data_to
= 0;
955 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode
->i_sb
), cpos
,
956 &cluster_start
, &cluster_end
);
958 /* treat the write as new if the a hole/lseek spanned across
961 new = new | ((i_size_read(inode
) <= page_offset(page
)) &&
962 (page_offset(page
) <= user_pos
));
964 if (page
== wc
->w_target_page
) {
965 map_from
= user_pos
& (PAGE_SIZE
- 1);
966 map_to
= map_from
+ user_len
;
969 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
970 cluster_start
, cluster_end
,
973 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
974 map_from
, map_to
, new);
980 user_data_from
= map_from
;
981 user_data_to
= map_to
;
983 map_from
= cluster_start
;
984 map_to
= cluster_end
;
988 * If we haven't allocated the new page yet, we
989 * shouldn't be writing it out without copying user
990 * data. This is likely a math error from the caller.
994 map_from
= cluster_start
;
995 map_to
= cluster_end
;
997 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
998 cluster_start
, cluster_end
, new);
1006 * Parts of newly allocated pages need to be zero'd.
1008 * Above, we have also rewritten 'to' and 'from' - as far as
1009 * the rest of the function is concerned, the entire cluster
1010 * range inside of a page needs to be written.
1012 * We can skip this if the page is up to date - it's already
1013 * been zero'd from being read in as a hole.
1015 if (new && !PageUptodate(page
))
1016 ocfs2_clear_page_regions(page
, OCFS2_SB(inode
->i_sb
),
1017 cpos
, user_data_from
, user_data_to
);
1019 flush_dcache_page(page
);
1026 * This function will only grab one clusters worth of pages.
1028 static int ocfs2_grab_pages_for_write(struct address_space
*mapping
,
1029 struct ocfs2_write_ctxt
*wc
,
1030 u32 cpos
, loff_t user_pos
,
1031 unsigned user_len
, int new,
1032 struct page
*mmap_page
)
1035 unsigned long start
, target_index
, end_index
, index
;
1036 struct inode
*inode
= mapping
->host
;
1039 target_index
= user_pos
>> PAGE_SHIFT
;
1042 * Figure out how many pages we'll be manipulating here. For
1043 * non allocating write, we just change the one
1044 * page. Otherwise, we'll need a whole clusters worth. If we're
1045 * writing past i_size, we only need enough pages to cover the
1046 * last page of the write.
1049 wc
->w_num_pages
= ocfs2_pages_per_cluster(inode
->i_sb
);
1050 start
= ocfs2_align_clusters_to_page_index(inode
->i_sb
, cpos
);
1052 * We need the index *past* the last page we could possibly
1053 * touch. This is the page past the end of the write or
1054 * i_size, whichever is greater.
1056 last_byte
= max(user_pos
+ user_len
, i_size_read(inode
));
1057 BUG_ON(last_byte
< 1);
1058 end_index
= ((last_byte
- 1) >> PAGE_SHIFT
) + 1;
1059 if ((start
+ wc
->w_num_pages
) > end_index
)
1060 wc
->w_num_pages
= end_index
- start
;
1062 wc
->w_num_pages
= 1;
1063 start
= target_index
;
1065 end_index
= (user_pos
+ user_len
- 1) >> PAGE_SHIFT
;
1067 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1070 if (index
>= target_index
&& index
<= end_index
&&
1071 wc
->w_type
== OCFS2_WRITE_MMAP
) {
1073 * ocfs2_pagemkwrite() is a little different
1074 * and wants us to directly use the page
1077 lock_page(mmap_page
);
1079 /* Exit and let the caller retry */
1080 if (mmap_page
->mapping
!= mapping
) {
1081 WARN_ON(mmap_page
->mapping
);
1082 unlock_page(mmap_page
);
1087 get_page(mmap_page
);
1088 wc
->w_pages
[i
] = mmap_page
;
1089 wc
->w_target_locked
= true;
1090 } else if (index
>= target_index
&& index
<= end_index
&&
1091 wc
->w_type
== OCFS2_WRITE_DIRECT
) {
1092 /* Direct write has no mapping page. */
1093 wc
->w_pages
[i
] = NULL
;
1096 wc
->w_pages
[i
] = find_or_create_page(mapping
, index
,
1098 if (!wc
->w_pages
[i
]) {
1104 wait_for_stable_page(wc
->w_pages
[i
]);
1106 if (index
== target_index
)
1107 wc
->w_target_page
= wc
->w_pages
[i
];
1111 wc
->w_target_locked
= false;
1116 * Prepare a single cluster for write one cluster into the file.
1118 static int ocfs2_write_cluster(struct address_space
*mapping
,
1119 u32
*phys
, unsigned int new,
1120 unsigned int clear_unwritten
,
1121 unsigned int should_zero
,
1122 struct ocfs2_alloc_context
*data_ac
,
1123 struct ocfs2_alloc_context
*meta_ac
,
1124 struct ocfs2_write_ctxt
*wc
, u32 cpos
,
1125 loff_t user_pos
, unsigned user_len
)
1129 struct inode
*inode
= mapping
->host
;
1130 struct ocfs2_extent_tree et
;
1131 int bpc
= ocfs2_clusters_to_blocks(inode
->i_sb
, 1);
1137 * This is safe to call with the page locks - it won't take
1138 * any additional semaphores or cluster locks.
1141 ret
= ocfs2_add_inode_data(OCFS2_SB(inode
->i_sb
), inode
,
1142 &tmp_pos
, 1, !clear_unwritten
,
1143 wc
->w_di_bh
, wc
->w_handle
,
1144 data_ac
, meta_ac
, NULL
);
1146 * This shouldn't happen because we must have already
1147 * calculated the correct meta data allocation required. The
1148 * internal tree allocation code should know how to increase
1149 * transaction credits itself.
1151 * If need be, we could handle -EAGAIN for a
1152 * RESTART_TRANS here.
1154 mlog_bug_on_msg(ret
== -EAGAIN
,
1155 "Inode %llu: EAGAIN return during allocation.\n",
1156 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
1161 } else if (clear_unwritten
) {
1162 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
),
1164 ret
= ocfs2_mark_extent_written(inode
, &et
,
1165 wc
->w_handle
, cpos
, 1, *phys
,
1166 meta_ac
, &wc
->w_dealloc
);
1174 * The only reason this should fail is due to an inability to
1175 * find the extent added.
1177 ret
= ocfs2_get_clusters(inode
, cpos
, phys
, NULL
, NULL
);
1179 mlog(ML_ERROR
, "Get physical blkno failed for inode %llu, "
1180 "at logical cluster %u",
1181 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
);
1187 p_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, *phys
);
1189 p_blkno
+= (user_pos
>> inode
->i_sb
->s_blocksize_bits
) & (u64
)(bpc
- 1);
1191 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1194 /* This is the direct io target page. */
1195 if (wc
->w_pages
[i
] == NULL
) {
1200 tmpret
= ocfs2_prepare_page_for_write(inode
, &p_blkno
, wc
,
1201 wc
->w_pages
[i
], cpos
,
1212 * We only have cleanup to do in case of allocating write.
1215 ocfs2_write_failure(inode
, wc
, user_pos
, user_len
);
1222 static int ocfs2_write_cluster_by_desc(struct address_space
*mapping
,
1223 struct ocfs2_alloc_context
*data_ac
,
1224 struct ocfs2_alloc_context
*meta_ac
,
1225 struct ocfs2_write_ctxt
*wc
,
1226 loff_t pos
, unsigned len
)
1230 unsigned int local_len
= len
;
1231 struct ocfs2_write_cluster_desc
*desc
;
1232 struct ocfs2_super
*osb
= OCFS2_SB(mapping
->host
->i_sb
);
1234 for (i
= 0; i
< wc
->w_clen
; i
++) {
1235 desc
= &wc
->w_desc
[i
];
1238 * We have to make sure that the total write passed in
1239 * doesn't extend past a single cluster.
1242 cluster_off
= pos
& (osb
->s_clustersize
- 1);
1243 if ((cluster_off
+ local_len
) > osb
->s_clustersize
)
1244 local_len
= osb
->s_clustersize
- cluster_off
;
1246 ret
= ocfs2_write_cluster(mapping
, &desc
->c_phys
,
1248 desc
->c_clear_unwritten
,
1251 wc
, desc
->c_cpos
, pos
, local_len
);
1267 * ocfs2_write_end() wants to know which parts of the target page it
1268 * should complete the write on. It's easiest to compute them ahead of
1269 * time when a more complete view of the write is available.
1271 static void ocfs2_set_target_boundaries(struct ocfs2_super
*osb
,
1272 struct ocfs2_write_ctxt
*wc
,
1273 loff_t pos
, unsigned len
, int alloc
)
1275 struct ocfs2_write_cluster_desc
*desc
;
1277 wc
->w_target_from
= pos
& (PAGE_SIZE
- 1);
1278 wc
->w_target_to
= wc
->w_target_from
+ len
;
1284 * Allocating write - we may have different boundaries based
1285 * on page size and cluster size.
1287 * NOTE: We can no longer compute one value from the other as
1288 * the actual write length and user provided length may be
1292 if (wc
->w_large_pages
) {
1294 * We only care about the 1st and last cluster within
1295 * our range and whether they should be zero'd or not. Either
1296 * value may be extended out to the start/end of a
1297 * newly allocated cluster.
1299 desc
= &wc
->w_desc
[0];
1300 if (desc
->c_needs_zero
)
1301 ocfs2_figure_cluster_boundaries(osb
,
1306 desc
= &wc
->w_desc
[wc
->w_clen
- 1];
1307 if (desc
->c_needs_zero
)
1308 ocfs2_figure_cluster_boundaries(osb
,
1313 wc
->w_target_from
= 0;
1314 wc
->w_target_to
= PAGE_SIZE
;
1319 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1320 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1321 * by the direct io procedure.
1322 * If this is a new extent that allocated by direct io, we should mark it in
1323 * the ip_unwritten_list.
1325 static int ocfs2_unwritten_check(struct inode
*inode
,
1326 struct ocfs2_write_ctxt
*wc
,
1327 struct ocfs2_write_cluster_desc
*desc
)
1329 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1330 struct ocfs2_unwritten_extent
*ue
= NULL
, *new = NULL
;
1333 if (!desc
->c_needs_zero
)
1337 spin_lock(&oi
->ip_lock
);
1338 /* Needs not to zero no metter buffer or direct. The one who is zero
1339 * the cluster is doing zero. And he will clear unwritten after all
1340 * cluster io finished. */
1341 list_for_each_entry(ue
, &oi
->ip_unwritten_list
, ue_ip_node
) {
1342 if (desc
->c_cpos
== ue
->ue_cpos
) {
1343 BUG_ON(desc
->c_new
);
1344 desc
->c_needs_zero
= 0;
1345 desc
->c_clear_unwritten
= 0;
1350 if (wc
->w_type
!= OCFS2_WRITE_DIRECT
)
1354 spin_unlock(&oi
->ip_lock
);
1355 new = kmalloc(sizeof(struct ocfs2_unwritten_extent
),
1363 /* This direct write will doing zero. */
1364 new->ue_cpos
= desc
->c_cpos
;
1365 new->ue_phys
= desc
->c_phys
;
1366 desc
->c_clear_unwritten
= 0;
1367 list_add_tail(&new->ue_ip_node
, &oi
->ip_unwritten_list
);
1368 list_add_tail(&new->ue_node
, &wc
->w_unwritten_list
);
1369 wc
->w_unwritten_count
++;
1372 spin_unlock(&oi
->ip_lock
);
1379 * Populate each single-cluster write descriptor in the write context
1380 * with information about the i/o to be done.
1382 * Returns the number of clusters that will have to be allocated, as
1383 * well as a worst case estimate of the number of extent records that
1384 * would have to be created during a write to an unwritten region.
1386 static int ocfs2_populate_write_desc(struct inode
*inode
,
1387 struct ocfs2_write_ctxt
*wc
,
1388 unsigned int *clusters_to_alloc
,
1389 unsigned int *extents_to_split
)
1392 struct ocfs2_write_cluster_desc
*desc
;
1393 unsigned int num_clusters
= 0;
1394 unsigned int ext_flags
= 0;
1398 *clusters_to_alloc
= 0;
1399 *extents_to_split
= 0;
1401 for (i
= 0; i
< wc
->w_clen
; i
++) {
1402 desc
= &wc
->w_desc
[i
];
1403 desc
->c_cpos
= wc
->w_cpos
+ i
;
1405 if (num_clusters
== 0) {
1407 * Need to look up the next extent record.
1409 ret
= ocfs2_get_clusters(inode
, desc
->c_cpos
, &phys
,
1410 &num_clusters
, &ext_flags
);
1416 /* We should already CoW the refcountd extent. */
1417 BUG_ON(ext_flags
& OCFS2_EXT_REFCOUNTED
);
1420 * Assume worst case - that we're writing in
1421 * the middle of the extent.
1423 * We can assume that the write proceeds from
1424 * left to right, in which case the extent
1425 * insert code is smart enough to coalesce the
1426 * next splits into the previous records created.
1428 if (ext_flags
& OCFS2_EXT_UNWRITTEN
)
1429 *extents_to_split
= *extents_to_split
+ 2;
1432 * Only increment phys if it doesn't describe
1439 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1440 * file that got extended. w_first_new_cpos tells us
1441 * where the newly allocated clusters are so we can
1444 if (desc
->c_cpos
>= wc
->w_first_new_cpos
) {
1446 desc
->c_needs_zero
= 1;
1449 desc
->c_phys
= phys
;
1452 desc
->c_needs_zero
= 1;
1453 desc
->c_clear_unwritten
= 1;
1454 *clusters_to_alloc
= *clusters_to_alloc
+ 1;
1457 if (ext_flags
& OCFS2_EXT_UNWRITTEN
) {
1458 desc
->c_clear_unwritten
= 1;
1459 desc
->c_needs_zero
= 1;
1462 ret
= ocfs2_unwritten_check(inode
, wc
, desc
);
1476 static int ocfs2_write_begin_inline(struct address_space
*mapping
,
1477 struct inode
*inode
,
1478 struct ocfs2_write_ctxt
*wc
)
1481 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1484 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1486 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1487 if (IS_ERR(handle
)) {
1488 ret
= PTR_ERR(handle
);
1493 page
= find_or_create_page(mapping
, 0, GFP_NOFS
);
1495 ocfs2_commit_trans(osb
, handle
);
1501 * If we don't set w_num_pages then this page won't get unlocked
1502 * and freed on cleanup of the write context.
1504 wc
->w_pages
[0] = wc
->w_target_page
= page
;
1505 wc
->w_num_pages
= 1;
1507 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), wc
->w_di_bh
,
1508 OCFS2_JOURNAL_ACCESS_WRITE
);
1510 ocfs2_commit_trans(osb
, handle
);
1516 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
1517 ocfs2_set_inode_data_inline(inode
, di
);
1519 if (!PageUptodate(page
)) {
1520 ret
= ocfs2_read_inline_data(inode
, page
, wc
->w_di_bh
);
1522 ocfs2_commit_trans(osb
, handle
);
1528 wc
->w_handle
= handle
;
1533 int ocfs2_size_fits_inline_data(struct buffer_head
*di_bh
, u64 new_size
)
1535 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1537 if (new_size
<= le16_to_cpu(di
->id2
.i_data
.id_count
))
1542 static int ocfs2_try_to_write_inline_data(struct address_space
*mapping
,
1543 struct inode
*inode
, loff_t pos
,
1544 unsigned len
, struct page
*mmap_page
,
1545 struct ocfs2_write_ctxt
*wc
)
1547 int ret
, written
= 0;
1548 loff_t end
= pos
+ len
;
1549 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1550 struct ocfs2_dinode
*di
= NULL
;
1552 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi
->ip_blkno
,
1553 len
, (unsigned long long)pos
,
1554 oi
->ip_dyn_features
);
1557 * Handle inodes which already have inline data 1st.
1559 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1560 if (mmap_page
== NULL
&&
1561 ocfs2_size_fits_inline_data(wc
->w_di_bh
, end
))
1562 goto do_inline_write
;
1565 * The write won't fit - we have to give this inode an
1566 * inline extent list now.
1568 ret
= ocfs2_convert_inline_data_to_extents(inode
, wc
->w_di_bh
);
1575 * Check whether the inode can accept inline data.
1577 if (oi
->ip_clusters
!= 0 || i_size_read(inode
) != 0)
1581 * Check whether the write can fit.
1583 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1585 end
> ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
))
1589 ret
= ocfs2_write_begin_inline(mapping
, inode
, wc
);
1596 * This signals to the caller that the data can be written
1601 return written
? written
: ret
;
1605 * This function only does anything for file systems which can't
1606 * handle sparse files.
1608 * What we want to do here is fill in any hole between the current end
1609 * of allocation and the end of our write. That way the rest of the
1610 * write path can treat it as an non-allocating write, which has no
1611 * special case code for sparse/nonsparse files.
1613 static int ocfs2_expand_nonsparse_inode(struct inode
*inode
,
1614 struct buffer_head
*di_bh
,
1615 loff_t pos
, unsigned len
,
1616 struct ocfs2_write_ctxt
*wc
)
1619 loff_t newsize
= pos
+ len
;
1621 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)));
1623 if (newsize
<= i_size_read(inode
))
1626 ret
= ocfs2_extend_no_holes(inode
, di_bh
, newsize
, pos
);
1630 /* There is no wc if this is call from direct. */
1632 wc
->w_first_new_cpos
=
1633 ocfs2_clusters_for_bytes(inode
->i_sb
, i_size_read(inode
));
1638 static int ocfs2_zero_tail(struct inode
*inode
, struct buffer_head
*di_bh
,
1643 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)));
1644 if (pos
> i_size_read(inode
))
1645 ret
= ocfs2_zero_extend(inode
, di_bh
, pos
);
1650 int ocfs2_write_begin_nolock(struct address_space
*mapping
,
1651 loff_t pos
, unsigned len
, ocfs2_write_type_t type
,
1652 struct page
**pagep
, void **fsdata
,
1653 struct buffer_head
*di_bh
, struct page
*mmap_page
)
1655 int ret
, cluster_of_pages
, credits
= OCFS2_INODE_UPDATE_CREDITS
;
1656 unsigned int clusters_to_alloc
, extents_to_split
, clusters_need
= 0;
1657 struct ocfs2_write_ctxt
*wc
;
1658 struct inode
*inode
= mapping
->host
;
1659 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1660 struct ocfs2_dinode
*di
;
1661 struct ocfs2_alloc_context
*data_ac
= NULL
;
1662 struct ocfs2_alloc_context
*meta_ac
= NULL
;
1664 struct ocfs2_extent_tree et
;
1665 int try_free
= 1, ret1
;
1668 ret
= ocfs2_alloc_write_ctxt(&wc
, osb
, pos
, len
, type
, di_bh
);
1674 if (ocfs2_supports_inline_data(osb
)) {
1675 ret
= ocfs2_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1687 /* Direct io change i_size late, should not zero tail here. */
1688 if (type
!= OCFS2_WRITE_DIRECT
) {
1689 if (ocfs2_sparse_alloc(osb
))
1690 ret
= ocfs2_zero_tail(inode
, di_bh
, pos
);
1692 ret
= ocfs2_expand_nonsparse_inode(inode
, di_bh
, pos
,
1700 ret
= ocfs2_check_range_for_refcount(inode
, pos
, len
);
1704 } else if (ret
== 1) {
1705 clusters_need
= wc
->w_clen
;
1706 ret
= ocfs2_refcount_cow(inode
, di_bh
,
1707 wc
->w_cpos
, wc
->w_clen
, UINT_MAX
);
1714 ret
= ocfs2_populate_write_desc(inode
, wc
, &clusters_to_alloc
,
1720 clusters_need
+= clusters_to_alloc
;
1722 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1724 trace_ocfs2_write_begin_nolock(
1725 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1726 (long long)i_size_read(inode
),
1727 le32_to_cpu(di
->i_clusters
),
1728 pos
, len
, type
, mmap_page
,
1729 clusters_to_alloc
, extents_to_split
);
1732 * We set w_target_from, w_target_to here so that
1733 * ocfs2_write_end() knows which range in the target page to
1734 * write out. An allocation requires that we write the entire
1737 if (clusters_to_alloc
|| extents_to_split
) {
1739 * XXX: We are stretching the limits of
1740 * ocfs2_lock_allocators(). It greatly over-estimates
1741 * the work to be done.
1743 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
),
1745 ret
= ocfs2_lock_allocators(inode
, &et
,
1746 clusters_to_alloc
, extents_to_split
,
1747 &data_ac
, &meta_ac
);
1754 data_ac
->ac_resv
= &OCFS2_I(inode
)->ip_la_data_resv
;
1756 credits
= ocfs2_calc_extend_credits(inode
->i_sb
,
1758 } else if (type
== OCFS2_WRITE_DIRECT
)
1759 /* direct write needs not to start trans if no extents alloc. */
1763 * We have to zero sparse allocated clusters, unwritten extent clusters,
1764 * and non-sparse clusters we just extended. For non-sparse writes,
1765 * we know zeros will only be needed in the first and/or last cluster.
1767 if (wc
->w_clen
&& (wc
->w_desc
[0].c_needs_zero
||
1768 wc
->w_desc
[wc
->w_clen
- 1].c_needs_zero
))
1769 cluster_of_pages
= 1;
1771 cluster_of_pages
= 0;
1773 ocfs2_set_target_boundaries(osb
, wc
, pos
, len
, cluster_of_pages
);
1775 handle
= ocfs2_start_trans(osb
, credits
);
1776 if (IS_ERR(handle
)) {
1777 ret
= PTR_ERR(handle
);
1782 wc
->w_handle
= handle
;
1784 if (clusters_to_alloc
) {
1785 ret
= dquot_alloc_space_nodirty(inode
,
1786 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_alloc
));
1791 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), wc
->w_di_bh
,
1792 OCFS2_JOURNAL_ACCESS_WRITE
);
1799 * Fill our page array first. That way we've grabbed enough so
1800 * that we can zero and flush if we error after adding the
1803 ret
= ocfs2_grab_pages_for_write(mapping
, wc
, wc
->w_cpos
, pos
, len
,
1804 cluster_of_pages
, mmap_page
);
1805 if (ret
&& ret
!= -EAGAIN
) {
1811 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1812 * the target page. In this case, we exit with no error and no target
1813 * page. This will trigger the caller, page_mkwrite(), to re-try
1816 if (ret
== -EAGAIN
) {
1817 BUG_ON(wc
->w_target_page
);
1822 ret
= ocfs2_write_cluster_by_desc(mapping
, data_ac
, meta_ac
, wc
, pos
,
1830 ocfs2_free_alloc_context(data_ac
);
1832 ocfs2_free_alloc_context(meta_ac
);
1836 *pagep
= wc
->w_target_page
;
1840 if (clusters_to_alloc
)
1841 dquot_free_space(inode
,
1842 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_alloc
));
1844 ocfs2_commit_trans(osb
, handle
);
1848 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1849 * even in case of error here like ENOSPC and ENOMEM. So, we need
1850 * to unlock the target page manually to prevent deadlocks when
1851 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1854 if (wc
->w_target_locked
)
1855 unlock_page(mmap_page
);
1857 ocfs2_free_write_ctxt(inode
, wc
);
1860 ocfs2_free_alloc_context(data_ac
);
1864 ocfs2_free_alloc_context(meta_ac
);
1868 if (ret
== -ENOSPC
&& try_free
) {
1870 * Try to free some truncate log so that we can have enough
1871 * clusters to allocate.
1875 ret1
= ocfs2_try_to_free_truncate_log(osb
, clusters_need
);
1886 static int ocfs2_write_begin(struct file
*file
, struct address_space
*mapping
,
1887 loff_t pos
, unsigned len
, unsigned flags
,
1888 struct page
**pagep
, void **fsdata
)
1891 struct buffer_head
*di_bh
= NULL
;
1892 struct inode
*inode
= mapping
->host
;
1894 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1901 * Take alloc sem here to prevent concurrent lookups. That way
1902 * the mapping, zeroing and tree manipulation within
1903 * ocfs2_write() will be safe against ->readpage(). This
1904 * should also serve to lock out allocation from a shared
1907 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1909 ret
= ocfs2_write_begin_nolock(mapping
, pos
, len
, OCFS2_WRITE_BUFFER
,
1910 pagep
, fsdata
, di_bh
, NULL
);
1921 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1924 ocfs2_inode_unlock(inode
, 1);
1929 static void ocfs2_write_end_inline(struct inode
*inode
, loff_t pos
,
1930 unsigned len
, unsigned *copied
,
1931 struct ocfs2_dinode
*di
,
1932 struct ocfs2_write_ctxt
*wc
)
1936 if (unlikely(*copied
< len
)) {
1937 if (!PageUptodate(wc
->w_target_page
)) {
1943 kaddr
= kmap_atomic(wc
->w_target_page
);
1944 memcpy(di
->id2
.i_data
.id_data
+ pos
, kaddr
+ pos
, *copied
);
1945 kunmap_atomic(kaddr
);
1947 trace_ocfs2_write_end_inline(
1948 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1949 (unsigned long long)pos
, *copied
,
1950 le16_to_cpu(di
->id2
.i_data
.id_count
),
1951 le16_to_cpu(di
->i_dyn_features
));
1954 int ocfs2_write_end_nolock(struct address_space
*mapping
,
1955 loff_t pos
, unsigned len
, unsigned copied
, void *fsdata
)
1958 unsigned from
, to
, start
= pos
& (PAGE_SIZE
- 1);
1959 struct inode
*inode
= mapping
->host
;
1960 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1961 struct ocfs2_write_ctxt
*wc
= fsdata
;
1962 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1963 handle_t
*handle
= wc
->w_handle
;
1964 struct page
*tmppage
;
1966 BUG_ON(!list_empty(&wc
->w_unwritten_list
));
1969 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
),
1970 wc
->w_di_bh
, OCFS2_JOURNAL_ACCESS_WRITE
);
1978 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1979 ocfs2_write_end_inline(inode
, pos
, len
, &copied
, di
, wc
);
1980 goto out_write_size
;
1983 if (unlikely(copied
< len
) && wc
->w_target_page
) {
1984 if (!PageUptodate(wc
->w_target_page
))
1987 ocfs2_zero_new_buffers(wc
->w_target_page
, start
+copied
,
1990 if (wc
->w_target_page
)
1991 flush_dcache_page(wc
->w_target_page
);
1993 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1994 tmppage
= wc
->w_pages
[i
];
1996 /* This is the direct io target page. */
1997 if (tmppage
== NULL
)
2000 if (tmppage
== wc
->w_target_page
) {
2001 from
= wc
->w_target_from
;
2002 to
= wc
->w_target_to
;
2004 BUG_ON(from
> PAGE_SIZE
||
2009 * Pages adjacent to the target (if any) imply
2010 * a hole-filling write in which case we want
2011 * to flush their entire range.
2017 if (page_has_buffers(tmppage
)) {
2018 if (handle
&& ocfs2_should_order_data(inode
)) {
2020 ((loff_t
)tmppage
->index
<< PAGE_SHIFT
) +
2022 loff_t length
= to
- from
;
2023 ocfs2_jbd2_inode_add_write(handle
, inode
,
2024 start_byte
, length
);
2026 block_commit_write(tmppage
, from
, to
);
2031 /* Direct io do not update i_size here. */
2032 if (wc
->w_type
!= OCFS2_WRITE_DIRECT
) {
2034 if (pos
> i_size_read(inode
)) {
2035 i_size_write(inode
, pos
);
2036 mark_inode_dirty(inode
);
2038 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
2039 di
->i_size
= cpu_to_le64((u64
)i_size_read(inode
));
2040 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2041 di
->i_mtime
= di
->i_ctime
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
2042 di
->i_mtime_nsec
= di
->i_ctime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
2044 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
2047 ocfs2_journal_dirty(handle
, wc
->w_di_bh
);
2050 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2051 * lock, or it will cause a deadlock since journal commit threads holds
2052 * this lock and will ask for the page lock when flushing the data.
2053 * put it here to preserve the unlock order.
2055 ocfs2_unlock_pages(wc
);
2058 ocfs2_commit_trans(osb
, handle
);
2060 ocfs2_run_deallocs(osb
, &wc
->w_dealloc
);
2062 brelse(wc
->w_di_bh
);
2068 static int ocfs2_write_end(struct file
*file
, struct address_space
*mapping
,
2069 loff_t pos
, unsigned len
, unsigned copied
,
2070 struct page
*page
, void *fsdata
)
2073 struct inode
*inode
= mapping
->host
;
2075 ret
= ocfs2_write_end_nolock(mapping
, pos
, len
, copied
, fsdata
);
2077 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
2078 ocfs2_inode_unlock(inode
, 1);
2083 struct ocfs2_dio_write_ctxt
{
2084 struct list_head dw_zero_list
;
2085 unsigned dw_zero_count
;
2087 pid_t dw_writer_pid
;
2090 static struct ocfs2_dio_write_ctxt
*
2091 ocfs2_dio_alloc_write_ctx(struct buffer_head
*bh
, int *alloc
)
2093 struct ocfs2_dio_write_ctxt
*dwc
= NULL
;
2096 return bh
->b_private
;
2098 dwc
= kmalloc(sizeof(struct ocfs2_dio_write_ctxt
), GFP_NOFS
);
2101 INIT_LIST_HEAD(&dwc
->dw_zero_list
);
2102 dwc
->dw_zero_count
= 0;
2103 dwc
->dw_orphaned
= 0;
2104 dwc
->dw_writer_pid
= task_pid_nr(current
);
2105 bh
->b_private
= dwc
;
2111 static void ocfs2_dio_free_write_ctx(struct inode
*inode
,
2112 struct ocfs2_dio_write_ctxt
*dwc
)
2114 ocfs2_free_unwritten_list(inode
, &dwc
->dw_zero_list
);
2119 * TODO: Make this into a generic get_blocks function.
2121 * From do_direct_io in direct-io.c:
2122 * "So what we do is to permit the ->get_blocks function to populate
2123 * bh.b_size with the size of IO which is permitted at this offset and
2126 * This function is called directly from get_more_blocks in direct-io.c.
2128 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2129 * fs_count, map_bh, dio->rw == WRITE);
2131 static int ocfs2_dio_wr_get_block(struct inode
*inode
, sector_t iblock
,
2132 struct buffer_head
*bh_result
, int create
)
2134 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2135 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
2136 struct ocfs2_write_ctxt
*wc
;
2137 struct ocfs2_write_cluster_desc
*desc
= NULL
;
2138 struct ocfs2_dio_write_ctxt
*dwc
= NULL
;
2139 struct buffer_head
*di_bh
= NULL
;
2141 unsigned int i_blkbits
= inode
->i_sb
->s_blocksize_bits
;
2142 loff_t pos
= iblock
<< i_blkbits
;
2143 sector_t endblk
= (i_size_read(inode
) - 1) >> i_blkbits
;
2144 unsigned len
, total_len
= bh_result
->b_size
;
2145 int ret
= 0, first_get_block
= 0;
2147 len
= osb
->s_clustersize
- (pos
& (osb
->s_clustersize
- 1));
2148 len
= min(total_len
, len
);
2151 * bh_result->b_size is count in get_more_blocks according to write
2152 * "pos" and "end", we need map twice to return different buffer state:
2153 * 1. area in file size, not set NEW;
2154 * 2. area out file size, set NEW.
2157 * |--------|---------|---------|---------
2158 * |<-------area in file------->|
2161 if ((iblock
<= endblk
) &&
2162 ((iblock
+ ((len
- 1) >> i_blkbits
)) > endblk
))
2163 len
= (endblk
- iblock
+ 1) << i_blkbits
;
2165 mlog(0, "get block of %lu at %llu:%u req %u\n",
2166 inode
->i_ino
, pos
, len
, total_len
);
2169 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2170 * we may need to add it to orphan dir. So can not fall to fast path
2171 * while file size will be changed.
2173 if (pos
+ total_len
<= i_size_read(inode
)) {
2175 /* This is the fast path for re-write. */
2176 ret
= ocfs2_lock_get_block(inode
, iblock
, bh_result
, create
);
2177 if (buffer_mapped(bh_result
) &&
2178 !buffer_new(bh_result
) &&
2182 /* Clear state set by ocfs2_get_block. */
2183 bh_result
->b_state
= 0;
2186 dwc
= ocfs2_dio_alloc_write_ctx(bh_result
, &first_get_block
);
2187 if (unlikely(dwc
== NULL
)) {
2193 if (ocfs2_clusters_for_bytes(inode
->i_sb
, pos
+ total_len
) >
2194 ocfs2_clusters_for_bytes(inode
->i_sb
, i_size_read(inode
)) &&
2195 !dwc
->dw_orphaned
) {
2197 * when we are going to alloc extents beyond file size, add the
2198 * inode to orphan dir, so we can recall those spaces when
2199 * system crashed during write.
2201 ret
= ocfs2_add_inode_to_orphan(osb
, inode
);
2206 dwc
->dw_orphaned
= 1;
2209 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2215 down_write(&oi
->ip_alloc_sem
);
2217 if (first_get_block
) {
2218 if (ocfs2_sparse_alloc(osb
))
2219 ret
= ocfs2_zero_tail(inode
, di_bh
, pos
);
2221 ret
= ocfs2_expand_nonsparse_inode(inode
, di_bh
, pos
,
2229 ret
= ocfs2_write_begin_nolock(inode
->i_mapping
, pos
, len
,
2230 OCFS2_WRITE_DIRECT
, NULL
,
2231 (void **)&wc
, di_bh
, NULL
);
2237 desc
= &wc
->w_desc
[0];
2239 p_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, desc
->c_phys
);
2240 BUG_ON(p_blkno
== 0);
2241 p_blkno
+= iblock
& (u64
)(ocfs2_clusters_to_blocks(inode
->i_sb
, 1) - 1);
2243 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
2244 bh_result
->b_size
= len
;
2245 if (desc
->c_needs_zero
)
2246 set_buffer_new(bh_result
);
2248 if (iblock
> endblk
)
2249 set_buffer_new(bh_result
);
2251 /* May sleep in end_io. It should not happen in a irq context. So defer
2252 * it to dio work queue. */
2253 set_buffer_defer_completion(bh_result
);
2255 if (!list_empty(&wc
->w_unwritten_list
)) {
2256 struct ocfs2_unwritten_extent
*ue
= NULL
;
2258 ue
= list_first_entry(&wc
->w_unwritten_list
,
2259 struct ocfs2_unwritten_extent
,
2261 BUG_ON(ue
->ue_cpos
!= desc
->c_cpos
);
2262 /* The physical address may be 0, fill it. */
2263 ue
->ue_phys
= desc
->c_phys
;
2265 list_splice_tail_init(&wc
->w_unwritten_list
, &dwc
->dw_zero_list
);
2266 dwc
->dw_zero_count
+= wc
->w_unwritten_count
;
2269 ret
= ocfs2_write_end_nolock(inode
->i_mapping
, pos
, len
, len
, wc
);
2273 up_write(&oi
->ip_alloc_sem
);
2274 ocfs2_inode_unlock(inode
, 1);
2282 static int ocfs2_dio_end_io_write(struct inode
*inode
,
2283 struct ocfs2_dio_write_ctxt
*dwc
,
2287 struct ocfs2_cached_dealloc_ctxt dealloc
;
2288 struct ocfs2_extent_tree et
;
2289 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2290 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
2291 struct ocfs2_unwritten_extent
*ue
= NULL
;
2292 struct buffer_head
*di_bh
= NULL
;
2293 struct ocfs2_dinode
*di
;
2294 struct ocfs2_alloc_context
*data_ac
= NULL
;
2295 struct ocfs2_alloc_context
*meta_ac
= NULL
;
2296 handle_t
*handle
= NULL
;
2297 loff_t end
= offset
+ bytes
;
2298 int ret
= 0, credits
= 0, locked
= 0;
2300 ocfs2_init_dealloc_ctxt(&dealloc
);
2302 /* We do clear unwritten, delete orphan, change i_size here. If neither
2303 * of these happen, we can skip all this. */
2304 if (list_empty(&dwc
->dw_zero_list
) &&
2305 end
<= i_size_read(inode
) &&
2309 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2310 * are in that context. */
2311 if (dwc
->dw_writer_pid
!= task_pid_nr(current
)) {
2316 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2322 down_write(&oi
->ip_alloc_sem
);
2324 /* Delete orphan before acquire i_mutex. */
2325 if (dwc
->dw_orphaned
) {
2326 BUG_ON(dwc
->dw_writer_pid
!= task_pid_nr(current
));
2328 end
= end
> i_size_read(inode
) ? end
: 0;
2330 ret
= ocfs2_del_inode_from_orphan(osb
, inode
, di_bh
,
2336 di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
2338 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
2340 /* Attach dealloc with extent tree in case that we may reuse extents
2341 * which are already unlinked from current extent tree due to extent
2342 * rotation and merging.
2344 et
.et_dealloc
= &dealloc
;
2346 ret
= ocfs2_lock_allocators(inode
, &et
, 0, dwc
->dw_zero_count
*2,
2347 &data_ac
, &meta_ac
);
2353 credits
= ocfs2_calc_extend_credits(inode
->i_sb
, &di
->id2
.i_list
);
2355 handle
= ocfs2_start_trans(osb
, credits
);
2356 if (IS_ERR(handle
)) {
2357 ret
= PTR_ERR(handle
);
2361 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
2362 OCFS2_JOURNAL_ACCESS_WRITE
);
2368 list_for_each_entry(ue
, &dwc
->dw_zero_list
, ue_node
) {
2369 ret
= ocfs2_mark_extent_written(inode
, &et
, handle
,
2379 if (end
> i_size_read(inode
)) {
2380 ret
= ocfs2_set_inode_size(handle
, inode
, di_bh
, end
);
2385 ocfs2_commit_trans(osb
, handle
);
2387 up_write(&oi
->ip_alloc_sem
);
2388 ocfs2_inode_unlock(inode
, 1);
2392 ocfs2_free_alloc_context(data_ac
);
2394 ocfs2_free_alloc_context(meta_ac
);
2395 ocfs2_run_deallocs(osb
, &dealloc
);
2397 inode_unlock(inode
);
2398 ocfs2_dio_free_write_ctx(inode
, dwc
);
2404 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2405 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2406 * to protect io on one node from truncation on another.
2408 static int ocfs2_dio_end_io(struct kiocb
*iocb
,
2413 struct inode
*inode
= file_inode(iocb
->ki_filp
);
2417 /* this io's submitter should not have unlocked this before we could */
2418 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb
));
2421 mlog_ratelimited(ML_ERROR
, "Direct IO failed, bytes = %lld",
2425 ret
= ocfs2_dio_end_io_write(inode
, private, offset
,
2428 ocfs2_dio_free_write_ctx(inode
, private);
2431 ocfs2_iocb_clear_rw_locked(iocb
);
2433 level
= ocfs2_iocb_rw_locked_level(iocb
);
2434 ocfs2_rw_unlock(inode
, level
);
2438 static ssize_t
ocfs2_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
2440 struct file
*file
= iocb
->ki_filp
;
2441 struct inode
*inode
= file
->f_mapping
->host
;
2442 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2443 get_block_t
*get_block
;
2446 * Fallback to buffered I/O if we see an inode without
2449 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
2452 /* Fallback to buffered I/O if we do not support append dio. */
2453 if (iocb
->ki_pos
+ iter
->count
> i_size_read(inode
) &&
2454 !ocfs2_supports_append_dio(osb
))
2457 if (iov_iter_rw(iter
) == READ
)
2458 get_block
= ocfs2_lock_get_block
;
2460 get_block
= ocfs2_dio_wr_get_block
;
2462 return __blockdev_direct_IO(iocb
, inode
, inode
->i_sb
->s_bdev
,
2464 ocfs2_dio_end_io
, NULL
, 0);
2467 const struct address_space_operations ocfs2_aops
= {
2468 .readpage
= ocfs2_readpage
,
2469 .readahead
= ocfs2_readahead
,
2470 .writepage
= ocfs2_writepage
,
2471 .write_begin
= ocfs2_write_begin
,
2472 .write_end
= ocfs2_write_end
,
2474 .direct_IO
= ocfs2_direct_IO
,
2475 .invalidatepage
= block_invalidatepage
,
2476 .releasepage
= ocfs2_releasepage
,
2477 .migratepage
= buffer_migrate_page
,
2478 .is_partially_uptodate
= block_is_partially_uptodate
,
2479 .error_remove_page
= generic_error_remove_page
,