1 // SPDX-License-Identifier: GPL-2.0
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
10 int sched_rr_timeslice
= RR_TIMESLICE
;
11 int sysctl_sched_rr_timeslice
= (MSEC_PER_SEC
/ HZ
) * RR_TIMESLICE
;
12 /* More than 4 hours if BW_SHIFT equals 20. */
13 static const u64 max_rt_runtime
= MAX_BW
;
15 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
17 struct rt_bandwidth def_rt_bandwidth
;
19 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
21 struct rt_bandwidth
*rt_b
=
22 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
26 raw_spin_lock(&rt_b
->rt_runtime_lock
);
28 overrun
= hrtimer_forward_now(timer
, rt_b
->rt_period
);
32 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
33 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
34 raw_spin_lock(&rt_b
->rt_runtime_lock
);
37 rt_b
->rt_period_active
= 0;
38 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
40 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
43 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
45 rt_b
->rt_period
= ns_to_ktime(period
);
46 rt_b
->rt_runtime
= runtime
;
48 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
50 hrtimer_init(&rt_b
->rt_period_timer
, CLOCK_MONOTONIC
,
51 HRTIMER_MODE_REL_HARD
);
52 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
55 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
57 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
60 raw_spin_lock(&rt_b
->rt_runtime_lock
);
61 if (!rt_b
->rt_period_active
) {
62 rt_b
->rt_period_active
= 1;
64 * SCHED_DEADLINE updates the bandwidth, as a run away
65 * RT task with a DL task could hog a CPU. But DL does
66 * not reset the period. If a deadline task was running
67 * without an RT task running, it can cause RT tasks to
68 * throttle when they start up. Kick the timer right away
69 * to update the period.
71 hrtimer_forward_now(&rt_b
->rt_period_timer
, ns_to_ktime(0));
72 hrtimer_start_expires(&rt_b
->rt_period_timer
,
73 HRTIMER_MODE_ABS_PINNED_HARD
);
75 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
78 void init_rt_rq(struct rt_rq
*rt_rq
)
80 struct rt_prio_array
*array
;
83 array
= &rt_rq
->active
;
84 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
85 INIT_LIST_HEAD(array
->queue
+ i
);
86 __clear_bit(i
, array
->bitmap
);
88 /* delimiter for bitsearch: */
89 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
91 #if defined CONFIG_SMP
92 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
-1;
93 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
-1;
94 rt_rq
->rt_nr_migratory
= 0;
95 rt_rq
->overloaded
= 0;
96 plist_head_init(&rt_rq
->pushable_tasks
);
97 #endif /* CONFIG_SMP */
98 /* We start is dequeued state, because no RT tasks are queued */
102 rt_rq
->rt_throttled
= 0;
103 rt_rq
->rt_runtime
= 0;
104 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
107 #ifdef CONFIG_RT_GROUP_SCHED
108 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
110 hrtimer_cancel(&rt_b
->rt_period_timer
);
113 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
115 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
117 #ifdef CONFIG_SCHED_DEBUG
118 WARN_ON_ONCE(!rt_entity_is_task(rt_se
));
120 return container_of(rt_se
, struct task_struct
, rt
);
123 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
128 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
133 static inline struct rq
*rq_of_rt_se(struct sched_rt_entity
*rt_se
)
135 struct rt_rq
*rt_rq
= rt_se
->rt_rq
;
140 void free_rt_sched_group(struct task_group
*tg
)
145 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
147 for_each_possible_cpu(i
) {
158 void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
159 struct sched_rt_entity
*rt_se
, int cpu
,
160 struct sched_rt_entity
*parent
)
162 struct rq
*rq
= cpu_rq(cpu
);
164 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
-1;
165 rt_rq
->rt_nr_boosted
= 0;
169 tg
->rt_rq
[cpu
] = rt_rq
;
170 tg
->rt_se
[cpu
] = rt_se
;
176 rt_se
->rt_rq
= &rq
->rt
;
178 rt_se
->rt_rq
= parent
->my_q
;
181 rt_se
->parent
= parent
;
182 INIT_LIST_HEAD(&rt_se
->run_list
);
185 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
188 struct sched_rt_entity
*rt_se
;
191 tg
->rt_rq
= kcalloc(nr_cpu_ids
, sizeof(rt_rq
), GFP_KERNEL
);
194 tg
->rt_se
= kcalloc(nr_cpu_ids
, sizeof(rt_se
), GFP_KERNEL
);
198 init_rt_bandwidth(&tg
->rt_bandwidth
,
199 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
201 for_each_possible_cpu(i
) {
202 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
203 GFP_KERNEL
, cpu_to_node(i
));
207 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
208 GFP_KERNEL
, cpu_to_node(i
));
213 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
214 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, parent
->rt_se
[i
]);
225 #else /* CONFIG_RT_GROUP_SCHED */
227 #define rt_entity_is_task(rt_se) (1)
229 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
231 return container_of(rt_se
, struct task_struct
, rt
);
234 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
236 return container_of(rt_rq
, struct rq
, rt
);
239 static inline struct rq
*rq_of_rt_se(struct sched_rt_entity
*rt_se
)
241 struct task_struct
*p
= rt_task_of(rt_se
);
246 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
248 struct rq
*rq
= rq_of_rt_se(rt_se
);
253 void free_rt_sched_group(struct task_group
*tg
) { }
255 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
259 #endif /* CONFIG_RT_GROUP_SCHED */
263 static void pull_rt_task(struct rq
*this_rq
);
265 static inline bool need_pull_rt_task(struct rq
*rq
, struct task_struct
*prev
)
267 /* Try to pull RT tasks here if we lower this rq's prio */
268 return rq
->online
&& rq
->rt
.highest_prio
.curr
> prev
->prio
;
271 static inline int rt_overloaded(struct rq
*rq
)
273 return atomic_read(&rq
->rd
->rto_count
);
276 static inline void rt_set_overload(struct rq
*rq
)
281 cpumask_set_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
283 * Make sure the mask is visible before we set
284 * the overload count. That is checked to determine
285 * if we should look at the mask. It would be a shame
286 * if we looked at the mask, but the mask was not
289 * Matched by the barrier in pull_rt_task().
292 atomic_inc(&rq
->rd
->rto_count
);
295 static inline void rt_clear_overload(struct rq
*rq
)
300 /* the order here really doesn't matter */
301 atomic_dec(&rq
->rd
->rto_count
);
302 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
305 static void update_rt_migration(struct rt_rq
*rt_rq
)
307 if (rt_rq
->rt_nr_migratory
&& rt_rq
->rt_nr_total
> 1) {
308 if (!rt_rq
->overloaded
) {
309 rt_set_overload(rq_of_rt_rq(rt_rq
));
310 rt_rq
->overloaded
= 1;
312 } else if (rt_rq
->overloaded
) {
313 rt_clear_overload(rq_of_rt_rq(rt_rq
));
314 rt_rq
->overloaded
= 0;
318 static void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
320 struct task_struct
*p
;
322 if (!rt_entity_is_task(rt_se
))
325 p
= rt_task_of(rt_se
);
326 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
328 rt_rq
->rt_nr_total
++;
329 if (p
->nr_cpus_allowed
> 1)
330 rt_rq
->rt_nr_migratory
++;
332 update_rt_migration(rt_rq
);
335 static void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
337 struct task_struct
*p
;
339 if (!rt_entity_is_task(rt_se
))
342 p
= rt_task_of(rt_se
);
343 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
345 rt_rq
->rt_nr_total
--;
346 if (p
->nr_cpus_allowed
> 1)
347 rt_rq
->rt_nr_migratory
--;
349 update_rt_migration(rt_rq
);
352 static inline int has_pushable_tasks(struct rq
*rq
)
354 return !plist_head_empty(&rq
->rt
.pushable_tasks
);
357 static DEFINE_PER_CPU(struct callback_head
, rt_push_head
);
358 static DEFINE_PER_CPU(struct callback_head
, rt_pull_head
);
360 static void push_rt_tasks(struct rq
*);
361 static void pull_rt_task(struct rq
*);
363 static inline void rt_queue_push_tasks(struct rq
*rq
)
365 if (!has_pushable_tasks(rq
))
368 queue_balance_callback(rq
, &per_cpu(rt_push_head
, rq
->cpu
), push_rt_tasks
);
371 static inline void rt_queue_pull_task(struct rq
*rq
)
373 queue_balance_callback(rq
, &per_cpu(rt_pull_head
, rq
->cpu
), pull_rt_task
);
376 static void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
378 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
379 plist_node_init(&p
->pushable_tasks
, p
->prio
);
380 plist_add(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
382 /* Update the highest prio pushable task */
383 if (p
->prio
< rq
->rt
.highest_prio
.next
)
384 rq
->rt
.highest_prio
.next
= p
->prio
;
387 static void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
389 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
391 /* Update the new highest prio pushable task */
392 if (has_pushable_tasks(rq
)) {
393 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
394 struct task_struct
, pushable_tasks
);
395 rq
->rt
.highest_prio
.next
= p
->prio
;
397 rq
->rt
.highest_prio
.next
= MAX_RT_PRIO
-1;
403 static inline void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
407 static inline void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
412 void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
417 void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
421 static inline bool need_pull_rt_task(struct rq
*rq
, struct task_struct
*prev
)
426 static inline void pull_rt_task(struct rq
*this_rq
)
430 static inline void rt_queue_push_tasks(struct rq
*rq
)
433 #endif /* CONFIG_SMP */
435 static void enqueue_top_rt_rq(struct rt_rq
*rt_rq
);
436 static void dequeue_top_rt_rq(struct rt_rq
*rt_rq
);
438 static inline int on_rt_rq(struct sched_rt_entity
*rt_se
)
443 #ifdef CONFIG_UCLAMP_TASK
445 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
448 * This check is only important for heterogeneous systems where uclamp_min value
449 * is higher than the capacity of a @cpu. For non-heterogeneous system this
450 * function will always return true.
452 * The function will return true if the capacity of the @cpu is >= the
453 * uclamp_min and false otherwise.
455 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
458 static inline bool rt_task_fits_capacity(struct task_struct
*p
, int cpu
)
460 unsigned int min_cap
;
461 unsigned int max_cap
;
462 unsigned int cpu_cap
;
464 /* Only heterogeneous systems can benefit from this check */
465 if (!static_branch_unlikely(&sched_asym_cpucapacity
))
468 min_cap
= uclamp_eff_value(p
, UCLAMP_MIN
);
469 max_cap
= uclamp_eff_value(p
, UCLAMP_MAX
);
471 cpu_cap
= capacity_orig_of(cpu
);
473 return cpu_cap
>= min(min_cap
, max_cap
);
476 static inline bool rt_task_fits_capacity(struct task_struct
*p
, int cpu
)
482 #ifdef CONFIG_RT_GROUP_SCHED
484 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
489 return rt_rq
->rt_runtime
;
492 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
494 return ktime_to_ns(rt_rq
->tg
->rt_bandwidth
.rt_period
);
497 typedef struct task_group
*rt_rq_iter_t
;
499 static inline struct task_group
*next_task_group(struct task_group
*tg
)
502 tg
= list_entry_rcu(tg
->list
.next
,
503 typeof(struct task_group
), list
);
504 } while (&tg
->list
!= &task_groups
&& task_group_is_autogroup(tg
));
506 if (&tg
->list
== &task_groups
)
512 #define for_each_rt_rq(rt_rq, iter, rq) \
513 for (iter = container_of(&task_groups, typeof(*iter), list); \
514 (iter = next_task_group(iter)) && \
515 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
517 #define for_each_sched_rt_entity(rt_se) \
518 for (; rt_se; rt_se = rt_se->parent)
520 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
525 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
);
526 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
);
528 static void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
530 struct task_struct
*curr
= rq_of_rt_rq(rt_rq
)->curr
;
531 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
532 struct sched_rt_entity
*rt_se
;
534 int cpu
= cpu_of(rq
);
536 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
538 if (rt_rq
->rt_nr_running
) {
540 enqueue_top_rt_rq(rt_rq
);
541 else if (!on_rt_rq(rt_se
))
542 enqueue_rt_entity(rt_se
, 0);
544 if (rt_rq
->highest_prio
.curr
< curr
->prio
)
549 static void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
551 struct sched_rt_entity
*rt_se
;
552 int cpu
= cpu_of(rq_of_rt_rq(rt_rq
));
554 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
557 dequeue_top_rt_rq(rt_rq
);
558 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
559 cpufreq_update_util(rq_of_rt_rq(rt_rq
), 0);
561 else if (on_rt_rq(rt_se
))
562 dequeue_rt_entity(rt_se
, 0);
565 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
567 return rt_rq
->rt_throttled
&& !rt_rq
->rt_nr_boosted
;
570 static int rt_se_boosted(struct sched_rt_entity
*rt_se
)
572 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
573 struct task_struct
*p
;
576 return !!rt_rq
->rt_nr_boosted
;
578 p
= rt_task_of(rt_se
);
579 return p
->prio
!= p
->normal_prio
;
583 static inline const struct cpumask
*sched_rt_period_mask(void)
585 return this_rq()->rd
->span
;
588 static inline const struct cpumask
*sched_rt_period_mask(void)
590 return cpu_online_mask
;
595 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
597 return container_of(rt_b
, struct task_group
, rt_bandwidth
)->rt_rq
[cpu
];
600 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
602 return &rt_rq
->tg
->rt_bandwidth
;
605 #else /* !CONFIG_RT_GROUP_SCHED */
607 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
609 return rt_rq
->rt_runtime
;
612 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
614 return ktime_to_ns(def_rt_bandwidth
.rt_period
);
617 typedef struct rt_rq
*rt_rq_iter_t
;
619 #define for_each_rt_rq(rt_rq, iter, rq) \
620 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
622 #define for_each_sched_rt_entity(rt_se) \
623 for (; rt_se; rt_se = NULL)
625 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
630 static inline void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
632 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
634 if (!rt_rq
->rt_nr_running
)
637 enqueue_top_rt_rq(rt_rq
);
641 static inline void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
643 dequeue_top_rt_rq(rt_rq
);
646 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
648 return rt_rq
->rt_throttled
;
651 static inline const struct cpumask
*sched_rt_period_mask(void)
653 return cpu_online_mask
;
657 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
659 return &cpu_rq(cpu
)->rt
;
662 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
664 return &def_rt_bandwidth
;
667 #endif /* CONFIG_RT_GROUP_SCHED */
669 bool sched_rt_bandwidth_account(struct rt_rq
*rt_rq
)
671 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
673 return (hrtimer_active(&rt_b
->rt_period_timer
) ||
674 rt_rq
->rt_time
< rt_b
->rt_runtime
);
679 * We ran out of runtime, see if we can borrow some from our neighbours.
681 static void do_balance_runtime(struct rt_rq
*rt_rq
)
683 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
684 struct root_domain
*rd
= rq_of_rt_rq(rt_rq
)->rd
;
688 weight
= cpumask_weight(rd
->span
);
690 raw_spin_lock(&rt_b
->rt_runtime_lock
);
691 rt_period
= ktime_to_ns(rt_b
->rt_period
);
692 for_each_cpu(i
, rd
->span
) {
693 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
699 raw_spin_lock(&iter
->rt_runtime_lock
);
701 * Either all rqs have inf runtime and there's nothing to steal
702 * or __disable_runtime() below sets a specific rq to inf to
703 * indicate its been disabled and disalow stealing.
705 if (iter
->rt_runtime
== RUNTIME_INF
)
709 * From runqueues with spare time, take 1/n part of their
710 * spare time, but no more than our period.
712 diff
= iter
->rt_runtime
- iter
->rt_time
;
714 diff
= div_u64((u64
)diff
, weight
);
715 if (rt_rq
->rt_runtime
+ diff
> rt_period
)
716 diff
= rt_period
- rt_rq
->rt_runtime
;
717 iter
->rt_runtime
-= diff
;
718 rt_rq
->rt_runtime
+= diff
;
719 if (rt_rq
->rt_runtime
== rt_period
) {
720 raw_spin_unlock(&iter
->rt_runtime_lock
);
725 raw_spin_unlock(&iter
->rt_runtime_lock
);
727 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
731 * Ensure this RQ takes back all the runtime it lend to its neighbours.
733 static void __disable_runtime(struct rq
*rq
)
735 struct root_domain
*rd
= rq
->rd
;
739 if (unlikely(!scheduler_running
))
742 for_each_rt_rq(rt_rq
, iter
, rq
) {
743 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
747 raw_spin_lock(&rt_b
->rt_runtime_lock
);
748 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
750 * Either we're all inf and nobody needs to borrow, or we're
751 * already disabled and thus have nothing to do, or we have
752 * exactly the right amount of runtime to take out.
754 if (rt_rq
->rt_runtime
== RUNTIME_INF
||
755 rt_rq
->rt_runtime
== rt_b
->rt_runtime
)
757 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
760 * Calculate the difference between what we started out with
761 * and what we current have, that's the amount of runtime
762 * we lend and now have to reclaim.
764 want
= rt_b
->rt_runtime
- rt_rq
->rt_runtime
;
767 * Greedy reclaim, take back as much as we can.
769 for_each_cpu(i
, rd
->span
) {
770 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
774 * Can't reclaim from ourselves or disabled runqueues.
776 if (iter
== rt_rq
|| iter
->rt_runtime
== RUNTIME_INF
)
779 raw_spin_lock(&iter
->rt_runtime_lock
);
781 diff
= min_t(s64
, iter
->rt_runtime
, want
);
782 iter
->rt_runtime
-= diff
;
785 iter
->rt_runtime
-= want
;
788 raw_spin_unlock(&iter
->rt_runtime_lock
);
794 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
796 * We cannot be left wanting - that would mean some runtime
797 * leaked out of the system.
802 * Disable all the borrow logic by pretending we have inf
803 * runtime - in which case borrowing doesn't make sense.
805 rt_rq
->rt_runtime
= RUNTIME_INF
;
806 rt_rq
->rt_throttled
= 0;
807 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
808 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
810 /* Make rt_rq available for pick_next_task() */
811 sched_rt_rq_enqueue(rt_rq
);
815 static void __enable_runtime(struct rq
*rq
)
820 if (unlikely(!scheduler_running
))
824 * Reset each runqueue's bandwidth settings
826 for_each_rt_rq(rt_rq
, iter
, rq
) {
827 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
829 raw_spin_lock(&rt_b
->rt_runtime_lock
);
830 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
831 rt_rq
->rt_runtime
= rt_b
->rt_runtime
;
833 rt_rq
->rt_throttled
= 0;
834 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
835 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
839 static void balance_runtime(struct rt_rq
*rt_rq
)
841 if (!sched_feat(RT_RUNTIME_SHARE
))
844 if (rt_rq
->rt_time
> rt_rq
->rt_runtime
) {
845 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
846 do_balance_runtime(rt_rq
);
847 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
850 #else /* !CONFIG_SMP */
851 static inline void balance_runtime(struct rt_rq
*rt_rq
) {}
852 #endif /* CONFIG_SMP */
854 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
)
856 int i
, idle
= 1, throttled
= 0;
857 const struct cpumask
*span
;
859 span
= sched_rt_period_mask();
860 #ifdef CONFIG_RT_GROUP_SCHED
862 * FIXME: isolated CPUs should really leave the root task group,
863 * whether they are isolcpus or were isolated via cpusets, lest
864 * the timer run on a CPU which does not service all runqueues,
865 * potentially leaving other CPUs indefinitely throttled. If
866 * isolation is really required, the user will turn the throttle
867 * off to kill the perturbations it causes anyway. Meanwhile,
868 * this maintains functionality for boot and/or troubleshooting.
870 if (rt_b
== &root_task_group
.rt_bandwidth
)
871 span
= cpu_online_mask
;
873 for_each_cpu(i
, span
) {
875 struct rt_rq
*rt_rq
= sched_rt_period_rt_rq(rt_b
, i
);
876 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
880 * When span == cpu_online_mask, taking each rq->lock
881 * can be time-consuming. Try to avoid it when possible.
883 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
884 if (!sched_feat(RT_RUNTIME_SHARE
) && rt_rq
->rt_runtime
!= RUNTIME_INF
)
885 rt_rq
->rt_runtime
= rt_b
->rt_runtime
;
886 skip
= !rt_rq
->rt_time
&& !rt_rq
->rt_nr_running
;
887 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
891 raw_spin_lock(&rq
->lock
);
894 if (rt_rq
->rt_time
) {
897 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
898 if (rt_rq
->rt_throttled
)
899 balance_runtime(rt_rq
);
900 runtime
= rt_rq
->rt_runtime
;
901 rt_rq
->rt_time
-= min(rt_rq
->rt_time
, overrun
*runtime
);
902 if (rt_rq
->rt_throttled
&& rt_rq
->rt_time
< runtime
) {
903 rt_rq
->rt_throttled
= 0;
907 * When we're idle and a woken (rt) task is
908 * throttled check_preempt_curr() will set
909 * skip_update and the time between the wakeup
910 * and this unthrottle will get accounted as
913 if (rt_rq
->rt_nr_running
&& rq
->curr
== rq
->idle
)
914 rq_clock_cancel_skipupdate(rq
);
916 if (rt_rq
->rt_time
|| rt_rq
->rt_nr_running
)
918 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
919 } else if (rt_rq
->rt_nr_running
) {
921 if (!rt_rq_throttled(rt_rq
))
924 if (rt_rq
->rt_throttled
)
928 sched_rt_rq_enqueue(rt_rq
);
929 raw_spin_unlock(&rq
->lock
);
932 if (!throttled
&& (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
))
938 static inline int rt_se_prio(struct sched_rt_entity
*rt_se
)
940 #ifdef CONFIG_RT_GROUP_SCHED
941 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
944 return rt_rq
->highest_prio
.curr
;
947 return rt_task_of(rt_se
)->prio
;
950 static int sched_rt_runtime_exceeded(struct rt_rq
*rt_rq
)
952 u64 runtime
= sched_rt_runtime(rt_rq
);
954 if (rt_rq
->rt_throttled
)
955 return rt_rq_throttled(rt_rq
);
957 if (runtime
>= sched_rt_period(rt_rq
))
960 balance_runtime(rt_rq
);
961 runtime
= sched_rt_runtime(rt_rq
);
962 if (runtime
== RUNTIME_INF
)
965 if (rt_rq
->rt_time
> runtime
) {
966 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
969 * Don't actually throttle groups that have no runtime assigned
970 * but accrue some time due to boosting.
972 if (likely(rt_b
->rt_runtime
)) {
973 rt_rq
->rt_throttled
= 1;
974 printk_deferred_once("sched: RT throttling activated\n");
977 * In case we did anyway, make it go away,
978 * replenishment is a joke, since it will replenish us
984 if (rt_rq_throttled(rt_rq
)) {
985 sched_rt_rq_dequeue(rt_rq
);
994 * Update the current task's runtime statistics. Skip current tasks that
995 * are not in our scheduling class.
997 static void update_curr_rt(struct rq
*rq
)
999 struct task_struct
*curr
= rq
->curr
;
1000 struct sched_rt_entity
*rt_se
= &curr
->rt
;
1004 if (curr
->sched_class
!= &rt_sched_class
)
1007 now
= rq_clock_task(rq
);
1008 delta_exec
= now
- curr
->se
.exec_start
;
1009 if (unlikely((s64
)delta_exec
<= 0))
1012 schedstat_set(curr
->se
.statistics
.exec_max
,
1013 max(curr
->se
.statistics
.exec_max
, delta_exec
));
1015 curr
->se
.sum_exec_runtime
+= delta_exec
;
1016 account_group_exec_runtime(curr
, delta_exec
);
1018 curr
->se
.exec_start
= now
;
1019 cgroup_account_cputime(curr
, delta_exec
);
1021 if (!rt_bandwidth_enabled())
1024 for_each_sched_rt_entity(rt_se
) {
1025 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1027 if (sched_rt_runtime(rt_rq
) != RUNTIME_INF
) {
1028 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
1029 rt_rq
->rt_time
+= delta_exec
;
1030 if (sched_rt_runtime_exceeded(rt_rq
))
1032 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
1038 dequeue_top_rt_rq(struct rt_rq
*rt_rq
)
1040 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
1042 BUG_ON(&rq
->rt
!= rt_rq
);
1044 if (!rt_rq
->rt_queued
)
1047 BUG_ON(!rq
->nr_running
);
1049 sub_nr_running(rq
, rt_rq
->rt_nr_running
);
1050 rt_rq
->rt_queued
= 0;
1055 enqueue_top_rt_rq(struct rt_rq
*rt_rq
)
1057 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
1059 BUG_ON(&rq
->rt
!= rt_rq
);
1061 if (rt_rq
->rt_queued
)
1064 if (rt_rq_throttled(rt_rq
))
1067 if (rt_rq
->rt_nr_running
) {
1068 add_nr_running(rq
, rt_rq
->rt_nr_running
);
1069 rt_rq
->rt_queued
= 1;
1072 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1073 cpufreq_update_util(rq
, 0);
1076 #if defined CONFIG_SMP
1079 inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
1081 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
1083 #ifdef CONFIG_RT_GROUP_SCHED
1085 * Change rq's cpupri only if rt_rq is the top queue.
1087 if (&rq
->rt
!= rt_rq
)
1090 if (rq
->online
&& prio
< prev_prio
)
1091 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, prio
);
1095 dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
1097 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
1099 #ifdef CONFIG_RT_GROUP_SCHED
1101 * Change rq's cpupri only if rt_rq is the top queue.
1103 if (&rq
->rt
!= rt_rq
)
1106 if (rq
->online
&& rt_rq
->highest_prio
.curr
!= prev_prio
)
1107 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rt_rq
->highest_prio
.curr
);
1110 #else /* CONFIG_SMP */
1113 void inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
1115 void dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
1117 #endif /* CONFIG_SMP */
1119 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1121 inc_rt_prio(struct rt_rq
*rt_rq
, int prio
)
1123 int prev_prio
= rt_rq
->highest_prio
.curr
;
1125 if (prio
< prev_prio
)
1126 rt_rq
->highest_prio
.curr
= prio
;
1128 inc_rt_prio_smp(rt_rq
, prio
, prev_prio
);
1132 dec_rt_prio(struct rt_rq
*rt_rq
, int prio
)
1134 int prev_prio
= rt_rq
->highest_prio
.curr
;
1136 if (rt_rq
->rt_nr_running
) {
1138 WARN_ON(prio
< prev_prio
);
1141 * This may have been our highest task, and therefore
1142 * we may have some recomputation to do
1144 if (prio
== prev_prio
) {
1145 struct rt_prio_array
*array
= &rt_rq
->active
;
1147 rt_rq
->highest_prio
.curr
=
1148 sched_find_first_bit(array
->bitmap
);
1152 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
-1;
1155 dec_rt_prio_smp(rt_rq
, prio
, prev_prio
);
1160 static inline void inc_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
1161 static inline void dec_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
1163 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1165 #ifdef CONFIG_RT_GROUP_SCHED
1168 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1170 if (rt_se_boosted(rt_se
))
1171 rt_rq
->rt_nr_boosted
++;
1174 start_rt_bandwidth(&rt_rq
->tg
->rt_bandwidth
);
1178 dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1180 if (rt_se_boosted(rt_se
))
1181 rt_rq
->rt_nr_boosted
--;
1183 WARN_ON(!rt_rq
->rt_nr_running
&& rt_rq
->rt_nr_boosted
);
1186 #else /* CONFIG_RT_GROUP_SCHED */
1189 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1191 start_rt_bandwidth(&def_rt_bandwidth
);
1195 void dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
) {}
1197 #endif /* CONFIG_RT_GROUP_SCHED */
1200 unsigned int rt_se_nr_running(struct sched_rt_entity
*rt_se
)
1202 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1205 return group_rq
->rt_nr_running
;
1211 unsigned int rt_se_rr_nr_running(struct sched_rt_entity
*rt_se
)
1213 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1214 struct task_struct
*tsk
;
1217 return group_rq
->rr_nr_running
;
1219 tsk
= rt_task_of(rt_se
);
1221 return (tsk
->policy
== SCHED_RR
) ? 1 : 0;
1225 void inc_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1227 int prio
= rt_se_prio(rt_se
);
1229 WARN_ON(!rt_prio(prio
));
1230 rt_rq
->rt_nr_running
+= rt_se_nr_running(rt_se
);
1231 rt_rq
->rr_nr_running
+= rt_se_rr_nr_running(rt_se
);
1233 inc_rt_prio(rt_rq
, prio
);
1234 inc_rt_migration(rt_se
, rt_rq
);
1235 inc_rt_group(rt_se
, rt_rq
);
1239 void dec_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1241 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
1242 WARN_ON(!rt_rq
->rt_nr_running
);
1243 rt_rq
->rt_nr_running
-= rt_se_nr_running(rt_se
);
1244 rt_rq
->rr_nr_running
-= rt_se_rr_nr_running(rt_se
);
1246 dec_rt_prio(rt_rq
, rt_se_prio(rt_se
));
1247 dec_rt_migration(rt_se
, rt_rq
);
1248 dec_rt_group(rt_se
, rt_rq
);
1252 * Change rt_se->run_list location unless SAVE && !MOVE
1254 * assumes ENQUEUE/DEQUEUE flags match
1256 static inline bool move_entity(unsigned int flags
)
1258 if ((flags
& (DEQUEUE_SAVE
| DEQUEUE_MOVE
)) == DEQUEUE_SAVE
)
1264 static void __delist_rt_entity(struct sched_rt_entity
*rt_se
, struct rt_prio_array
*array
)
1266 list_del_init(&rt_se
->run_list
);
1268 if (list_empty(array
->queue
+ rt_se_prio(rt_se
)))
1269 __clear_bit(rt_se_prio(rt_se
), array
->bitmap
);
1274 static void __enqueue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1276 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1277 struct rt_prio_array
*array
= &rt_rq
->active
;
1278 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1279 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
1282 * Don't enqueue the group if its throttled, or when empty.
1283 * The latter is a consequence of the former when a child group
1284 * get throttled and the current group doesn't have any other
1287 if (group_rq
&& (rt_rq_throttled(group_rq
) || !group_rq
->rt_nr_running
)) {
1289 __delist_rt_entity(rt_se
, array
);
1293 if (move_entity(flags
)) {
1294 WARN_ON_ONCE(rt_se
->on_list
);
1295 if (flags
& ENQUEUE_HEAD
)
1296 list_add(&rt_se
->run_list
, queue
);
1298 list_add_tail(&rt_se
->run_list
, queue
);
1300 __set_bit(rt_se_prio(rt_se
), array
->bitmap
);
1305 inc_rt_tasks(rt_se
, rt_rq
);
1308 static void __dequeue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1310 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1311 struct rt_prio_array
*array
= &rt_rq
->active
;
1313 if (move_entity(flags
)) {
1314 WARN_ON_ONCE(!rt_se
->on_list
);
1315 __delist_rt_entity(rt_se
, array
);
1319 dec_rt_tasks(rt_se
, rt_rq
);
1323 * Because the prio of an upper entry depends on the lower
1324 * entries, we must remove entries top - down.
1326 static void dequeue_rt_stack(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1328 struct sched_rt_entity
*back
= NULL
;
1330 for_each_sched_rt_entity(rt_se
) {
1335 dequeue_top_rt_rq(rt_rq_of_se(back
));
1337 for (rt_se
= back
; rt_se
; rt_se
= rt_se
->back
) {
1338 if (on_rt_rq(rt_se
))
1339 __dequeue_rt_entity(rt_se
, flags
);
1343 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1345 struct rq
*rq
= rq_of_rt_se(rt_se
);
1347 dequeue_rt_stack(rt_se
, flags
);
1348 for_each_sched_rt_entity(rt_se
)
1349 __enqueue_rt_entity(rt_se
, flags
);
1350 enqueue_top_rt_rq(&rq
->rt
);
1353 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
, unsigned int flags
)
1355 struct rq
*rq
= rq_of_rt_se(rt_se
);
1357 dequeue_rt_stack(rt_se
, flags
);
1359 for_each_sched_rt_entity(rt_se
) {
1360 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
1362 if (rt_rq
&& rt_rq
->rt_nr_running
)
1363 __enqueue_rt_entity(rt_se
, flags
);
1365 enqueue_top_rt_rq(&rq
->rt
);
1369 * Adding/removing a task to/from a priority array:
1372 enqueue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1374 struct sched_rt_entity
*rt_se
= &p
->rt
;
1376 if (flags
& ENQUEUE_WAKEUP
)
1379 enqueue_rt_entity(rt_se
, flags
);
1381 if (!task_current(rq
, p
) && p
->nr_cpus_allowed
> 1)
1382 enqueue_pushable_task(rq
, p
);
1385 static void dequeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1387 struct sched_rt_entity
*rt_se
= &p
->rt
;
1390 dequeue_rt_entity(rt_se
, flags
);
1392 dequeue_pushable_task(rq
, p
);
1396 * Put task to the head or the end of the run list without the overhead of
1397 * dequeue followed by enqueue.
1400 requeue_rt_entity(struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
, int head
)
1402 if (on_rt_rq(rt_se
)) {
1403 struct rt_prio_array
*array
= &rt_rq
->active
;
1404 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
1407 list_move(&rt_se
->run_list
, queue
);
1409 list_move_tail(&rt_se
->run_list
, queue
);
1413 static void requeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int head
)
1415 struct sched_rt_entity
*rt_se
= &p
->rt
;
1416 struct rt_rq
*rt_rq
;
1418 for_each_sched_rt_entity(rt_se
) {
1419 rt_rq
= rt_rq_of_se(rt_se
);
1420 requeue_rt_entity(rt_rq
, rt_se
, head
);
1424 static void yield_task_rt(struct rq
*rq
)
1426 requeue_task_rt(rq
, rq
->curr
, 0);
1430 static int find_lowest_rq(struct task_struct
*task
);
1433 select_task_rq_rt(struct task_struct
*p
, int cpu
, int flags
)
1435 struct task_struct
*curr
;
1439 /* For anything but wake ups, just return the task_cpu */
1440 if (!(flags
& (WF_TTWU
| WF_FORK
)))
1446 curr
= READ_ONCE(rq
->curr
); /* unlocked access */
1449 * If the current task on @p's runqueue is an RT task, then
1450 * try to see if we can wake this RT task up on another
1451 * runqueue. Otherwise simply start this RT task
1452 * on its current runqueue.
1454 * We want to avoid overloading runqueues. If the woken
1455 * task is a higher priority, then it will stay on this CPU
1456 * and the lower prio task should be moved to another CPU.
1457 * Even though this will probably make the lower prio task
1458 * lose its cache, we do not want to bounce a higher task
1459 * around just because it gave up its CPU, perhaps for a
1462 * For equal prio tasks, we just let the scheduler sort it out.
1464 * Otherwise, just let it ride on the affined RQ and the
1465 * post-schedule router will push the preempted task away
1467 * This test is optimistic, if we get it wrong the load-balancer
1468 * will have to sort it out.
1470 * We take into account the capacity of the CPU to ensure it fits the
1471 * requirement of the task - which is only important on heterogeneous
1472 * systems like big.LITTLE.
1475 unlikely(rt_task(curr
)) &&
1476 (curr
->nr_cpus_allowed
< 2 || curr
->prio
<= p
->prio
);
1478 if (test
|| !rt_task_fits_capacity(p
, cpu
)) {
1479 int target
= find_lowest_rq(p
);
1482 * Bail out if we were forcing a migration to find a better
1483 * fitting CPU but our search failed.
1485 if (!test
&& target
!= -1 && !rt_task_fits_capacity(p
, target
))
1489 * Don't bother moving it if the destination CPU is
1490 * not running a lower priority task.
1493 p
->prio
< cpu_rq(target
)->rt
.highest_prio
.curr
)
1504 static void check_preempt_equal_prio(struct rq
*rq
, struct task_struct
*p
)
1507 * Current can't be migrated, useless to reschedule,
1508 * let's hope p can move out.
1510 if (rq
->curr
->nr_cpus_allowed
== 1 ||
1511 !cpupri_find(&rq
->rd
->cpupri
, rq
->curr
, NULL
))
1515 * p is migratable, so let's not schedule it and
1516 * see if it is pushed or pulled somewhere else.
1518 if (p
->nr_cpus_allowed
!= 1 &&
1519 cpupri_find(&rq
->rd
->cpupri
, p
, NULL
))
1523 * There appear to be other CPUs that can accept
1524 * the current task but none can run 'p', so lets reschedule
1525 * to try and push the current task away:
1527 requeue_task_rt(rq
, p
, 1);
1531 static int balance_rt(struct rq
*rq
, struct task_struct
*p
, struct rq_flags
*rf
)
1533 if (!on_rt_rq(&p
->rt
) && need_pull_rt_task(rq
, p
)) {
1535 * This is OK, because current is on_cpu, which avoids it being
1536 * picked for load-balance and preemption/IRQs are still
1537 * disabled avoiding further scheduler activity on it and we've
1538 * not yet started the picking loop.
1540 rq_unpin_lock(rq
, rf
);
1542 rq_repin_lock(rq
, rf
);
1545 return sched_stop_runnable(rq
) || sched_dl_runnable(rq
) || sched_rt_runnable(rq
);
1547 #endif /* CONFIG_SMP */
1550 * Preempt the current task with a newly woken task if needed:
1552 static void check_preempt_curr_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1554 if (p
->prio
< rq
->curr
->prio
) {
1563 * - the newly woken task is of equal priority to the current task
1564 * - the newly woken task is non-migratable while current is migratable
1565 * - current will be preempted on the next reschedule
1567 * we should check to see if current can readily move to a different
1568 * cpu. If so, we will reschedule to allow the push logic to try
1569 * to move current somewhere else, making room for our non-migratable
1572 if (p
->prio
== rq
->curr
->prio
&& !test_tsk_need_resched(rq
->curr
))
1573 check_preempt_equal_prio(rq
, p
);
1577 static inline void set_next_task_rt(struct rq
*rq
, struct task_struct
*p
, bool first
)
1579 p
->se
.exec_start
= rq_clock_task(rq
);
1581 /* The running task is never eligible for pushing */
1582 dequeue_pushable_task(rq
, p
);
1588 * If prev task was rt, put_prev_task() has already updated the
1589 * utilization. We only care of the case where we start to schedule a
1592 if (rq
->curr
->sched_class
!= &rt_sched_class
)
1593 update_rt_rq_load_avg(rq_clock_pelt(rq
), rq
, 0);
1595 rt_queue_push_tasks(rq
);
1598 static struct sched_rt_entity
*pick_next_rt_entity(struct rq
*rq
,
1599 struct rt_rq
*rt_rq
)
1601 struct rt_prio_array
*array
= &rt_rq
->active
;
1602 struct sched_rt_entity
*next
= NULL
;
1603 struct list_head
*queue
;
1606 idx
= sched_find_first_bit(array
->bitmap
);
1607 BUG_ON(idx
>= MAX_RT_PRIO
);
1609 queue
= array
->queue
+ idx
;
1610 next
= list_entry(queue
->next
, struct sched_rt_entity
, run_list
);
1615 static struct task_struct
*_pick_next_task_rt(struct rq
*rq
)
1617 struct sched_rt_entity
*rt_se
;
1618 struct rt_rq
*rt_rq
= &rq
->rt
;
1621 rt_se
= pick_next_rt_entity(rq
, rt_rq
);
1623 rt_rq
= group_rt_rq(rt_se
);
1626 return rt_task_of(rt_se
);
1629 static struct task_struct
*pick_next_task_rt(struct rq
*rq
)
1631 struct task_struct
*p
;
1633 if (!sched_rt_runnable(rq
))
1636 p
= _pick_next_task_rt(rq
);
1637 set_next_task_rt(rq
, p
, true);
1641 static void put_prev_task_rt(struct rq
*rq
, struct task_struct
*p
)
1645 update_rt_rq_load_avg(rq_clock_pelt(rq
), rq
, 1);
1648 * The previous task needs to be made eligible for pushing
1649 * if it is still active
1651 if (on_rt_rq(&p
->rt
) && p
->nr_cpus_allowed
> 1)
1652 enqueue_pushable_task(rq
, p
);
1657 /* Only try algorithms three times */
1658 #define RT_MAX_TRIES 3
1660 static int pick_rt_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1662 if (!task_running(rq
, p
) &&
1663 cpumask_test_cpu(cpu
, &p
->cpus_mask
))
1670 * Return the highest pushable rq's task, which is suitable to be executed
1671 * on the CPU, NULL otherwise
1673 static struct task_struct
*pick_highest_pushable_task(struct rq
*rq
, int cpu
)
1675 struct plist_head
*head
= &rq
->rt
.pushable_tasks
;
1676 struct task_struct
*p
;
1678 if (!has_pushable_tasks(rq
))
1681 plist_for_each_entry(p
, head
, pushable_tasks
) {
1682 if (pick_rt_task(rq
, p
, cpu
))
1689 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask
);
1691 static int find_lowest_rq(struct task_struct
*task
)
1693 struct sched_domain
*sd
;
1694 struct cpumask
*lowest_mask
= this_cpu_cpumask_var_ptr(local_cpu_mask
);
1695 int this_cpu
= smp_processor_id();
1696 int cpu
= task_cpu(task
);
1699 /* Make sure the mask is initialized first */
1700 if (unlikely(!lowest_mask
))
1703 if (task
->nr_cpus_allowed
== 1)
1704 return -1; /* No other targets possible */
1707 * If we're on asym system ensure we consider the different capacities
1708 * of the CPUs when searching for the lowest_mask.
1710 if (static_branch_unlikely(&sched_asym_cpucapacity
)) {
1712 ret
= cpupri_find_fitness(&task_rq(task
)->rd
->cpupri
,
1714 rt_task_fits_capacity
);
1717 ret
= cpupri_find(&task_rq(task
)->rd
->cpupri
,
1722 return -1; /* No targets found */
1725 * At this point we have built a mask of CPUs representing the
1726 * lowest priority tasks in the system. Now we want to elect
1727 * the best one based on our affinity and topology.
1729 * We prioritize the last CPU that the task executed on since
1730 * it is most likely cache-hot in that location.
1732 if (cpumask_test_cpu(cpu
, lowest_mask
))
1736 * Otherwise, we consult the sched_domains span maps to figure
1737 * out which CPU is logically closest to our hot cache data.
1739 if (!cpumask_test_cpu(this_cpu
, lowest_mask
))
1740 this_cpu
= -1; /* Skip this_cpu opt if not among lowest */
1743 for_each_domain(cpu
, sd
) {
1744 if (sd
->flags
& SD_WAKE_AFFINE
) {
1748 * "this_cpu" is cheaper to preempt than a
1751 if (this_cpu
!= -1 &&
1752 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
1757 best_cpu
= cpumask_any_and_distribute(lowest_mask
,
1758 sched_domain_span(sd
));
1759 if (best_cpu
< nr_cpu_ids
) {
1768 * And finally, if there were no matches within the domains
1769 * just give the caller *something* to work with from the compatible
1775 cpu
= cpumask_any_distribute(lowest_mask
);
1776 if (cpu
< nr_cpu_ids
)
1782 /* Will lock the rq it finds */
1783 static struct rq
*find_lock_lowest_rq(struct task_struct
*task
, struct rq
*rq
)
1785 struct rq
*lowest_rq
= NULL
;
1789 for (tries
= 0; tries
< RT_MAX_TRIES
; tries
++) {
1790 cpu
= find_lowest_rq(task
);
1792 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1795 lowest_rq
= cpu_rq(cpu
);
1797 if (lowest_rq
->rt
.highest_prio
.curr
<= task
->prio
) {
1799 * Target rq has tasks of equal or higher priority,
1800 * retrying does not release any lock and is unlikely
1801 * to yield a different result.
1807 /* if the prio of this runqueue changed, try again */
1808 if (double_lock_balance(rq
, lowest_rq
)) {
1810 * We had to unlock the run queue. In
1811 * the mean time, task could have
1812 * migrated already or had its affinity changed.
1813 * Also make sure that it wasn't scheduled on its rq.
1815 if (unlikely(task_rq(task
) != rq
||
1816 !cpumask_test_cpu(lowest_rq
->cpu
, &task
->cpus_mask
) ||
1817 task_running(rq
, task
) ||
1819 !task_on_rq_queued(task
))) {
1821 double_unlock_balance(rq
, lowest_rq
);
1827 /* If this rq is still suitable use it. */
1828 if (lowest_rq
->rt
.highest_prio
.curr
> task
->prio
)
1832 double_unlock_balance(rq
, lowest_rq
);
1839 static struct task_struct
*pick_next_pushable_task(struct rq
*rq
)
1841 struct task_struct
*p
;
1843 if (!has_pushable_tasks(rq
))
1846 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
1847 struct task_struct
, pushable_tasks
);
1849 BUG_ON(rq
->cpu
!= task_cpu(p
));
1850 BUG_ON(task_current(rq
, p
));
1851 BUG_ON(p
->nr_cpus_allowed
<= 1);
1853 BUG_ON(!task_on_rq_queued(p
));
1854 BUG_ON(!rt_task(p
));
1860 * If the current CPU has more than one RT task, see if the non
1861 * running task can migrate over to a CPU that is running a task
1862 * of lesser priority.
1864 static int push_rt_task(struct rq
*rq
, bool pull
)
1866 struct task_struct
*next_task
;
1867 struct rq
*lowest_rq
;
1870 if (!rq
->rt
.overloaded
)
1873 next_task
= pick_next_pushable_task(rq
);
1878 if (is_migration_disabled(next_task
)) {
1879 struct task_struct
*push_task
= NULL
;
1882 if (!pull
|| rq
->push_busy
)
1885 cpu
= find_lowest_rq(rq
->curr
);
1886 if (cpu
== -1 || cpu
== rq
->cpu
)
1890 * Given we found a CPU with lower priority than @next_task,
1891 * therefore it should be running. However we cannot migrate it
1892 * to this other CPU, instead attempt to push the current
1893 * running task on this CPU away.
1895 push_task
= get_push_task(rq
);
1897 raw_spin_unlock(&rq
->lock
);
1898 stop_one_cpu_nowait(rq
->cpu
, push_cpu_stop
,
1899 push_task
, &rq
->push_work
);
1900 raw_spin_lock(&rq
->lock
);
1906 if (WARN_ON(next_task
== rq
->curr
))
1910 * It's possible that the next_task slipped in of
1911 * higher priority than current. If that's the case
1912 * just reschedule current.
1914 if (unlikely(next_task
->prio
< rq
->curr
->prio
)) {
1919 /* We might release rq lock */
1920 get_task_struct(next_task
);
1922 /* find_lock_lowest_rq locks the rq if found */
1923 lowest_rq
= find_lock_lowest_rq(next_task
, rq
);
1925 struct task_struct
*task
;
1927 * find_lock_lowest_rq releases rq->lock
1928 * so it is possible that next_task has migrated.
1930 * We need to make sure that the task is still on the same
1931 * run-queue and is also still the next task eligible for
1934 task
= pick_next_pushable_task(rq
);
1935 if (task
== next_task
) {
1937 * The task hasn't migrated, and is still the next
1938 * eligible task, but we failed to find a run-queue
1939 * to push it to. Do not retry in this case, since
1940 * other CPUs will pull from us when ready.
1946 /* No more tasks, just exit */
1950 * Something has shifted, try again.
1952 put_task_struct(next_task
);
1957 deactivate_task(rq
, next_task
, 0);
1958 set_task_cpu(next_task
, lowest_rq
->cpu
);
1959 activate_task(lowest_rq
, next_task
, 0);
1960 resched_curr(lowest_rq
);
1963 double_unlock_balance(rq
, lowest_rq
);
1965 put_task_struct(next_task
);
1970 static void push_rt_tasks(struct rq
*rq
)
1972 /* push_rt_task will return true if it moved an RT */
1973 while (push_rt_task(rq
, false))
1977 #ifdef HAVE_RT_PUSH_IPI
1980 * When a high priority task schedules out from a CPU and a lower priority
1981 * task is scheduled in, a check is made to see if there's any RT tasks
1982 * on other CPUs that are waiting to run because a higher priority RT task
1983 * is currently running on its CPU. In this case, the CPU with multiple RT
1984 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1985 * up that may be able to run one of its non-running queued RT tasks.
1987 * All CPUs with overloaded RT tasks need to be notified as there is currently
1988 * no way to know which of these CPUs have the highest priority task waiting
1989 * to run. Instead of trying to take a spinlock on each of these CPUs,
1990 * which has shown to cause large latency when done on machines with many
1991 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1992 * RT tasks waiting to run.
1994 * Just sending an IPI to each of the CPUs is also an issue, as on large
1995 * count CPU machines, this can cause an IPI storm on a CPU, especially
1996 * if its the only CPU with multiple RT tasks queued, and a large number
1997 * of CPUs scheduling a lower priority task at the same time.
1999 * Each root domain has its own irq work function that can iterate over
2000 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2001 * tassk must be checked if there's one or many CPUs that are lowering
2002 * their priority, there's a single irq work iterator that will try to
2003 * push off RT tasks that are waiting to run.
2005 * When a CPU schedules a lower priority task, it will kick off the
2006 * irq work iterator that will jump to each CPU with overloaded RT tasks.
2007 * As it only takes the first CPU that schedules a lower priority task
2008 * to start the process, the rto_start variable is incremented and if
2009 * the atomic result is one, then that CPU will try to take the rto_lock.
2010 * This prevents high contention on the lock as the process handles all
2011 * CPUs scheduling lower priority tasks.
2013 * All CPUs that are scheduling a lower priority task will increment the
2014 * rt_loop_next variable. This will make sure that the irq work iterator
2015 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2016 * priority task, even if the iterator is in the middle of a scan. Incrementing
2017 * the rt_loop_next will cause the iterator to perform another scan.
2020 static int rto_next_cpu(struct root_domain
*rd
)
2026 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2027 * rt_next_cpu() will simply return the first CPU found in
2030 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2031 * will return the next CPU found in the rto_mask.
2033 * If there are no more CPUs left in the rto_mask, then a check is made
2034 * against rto_loop and rto_loop_next. rto_loop is only updated with
2035 * the rto_lock held, but any CPU may increment the rto_loop_next
2036 * without any locking.
2040 /* When rto_cpu is -1 this acts like cpumask_first() */
2041 cpu
= cpumask_next(rd
->rto_cpu
, rd
->rto_mask
);
2045 if (cpu
< nr_cpu_ids
)
2051 * ACQUIRE ensures we see the @rto_mask changes
2052 * made prior to the @next value observed.
2054 * Matches WMB in rt_set_overload().
2056 next
= atomic_read_acquire(&rd
->rto_loop_next
);
2058 if (rd
->rto_loop
== next
)
2061 rd
->rto_loop
= next
;
2067 static inline bool rto_start_trylock(atomic_t
*v
)
2069 return !atomic_cmpxchg_acquire(v
, 0, 1);
2072 static inline void rto_start_unlock(atomic_t
*v
)
2074 atomic_set_release(v
, 0);
2077 static void tell_cpu_to_push(struct rq
*rq
)
2081 /* Keep the loop going if the IPI is currently active */
2082 atomic_inc(&rq
->rd
->rto_loop_next
);
2084 /* Only one CPU can initiate a loop at a time */
2085 if (!rto_start_trylock(&rq
->rd
->rto_loop_start
))
2088 raw_spin_lock(&rq
->rd
->rto_lock
);
2091 * The rto_cpu is updated under the lock, if it has a valid CPU
2092 * then the IPI is still running and will continue due to the
2093 * update to loop_next, and nothing needs to be done here.
2094 * Otherwise it is finishing up and an ipi needs to be sent.
2096 if (rq
->rd
->rto_cpu
< 0)
2097 cpu
= rto_next_cpu(rq
->rd
);
2099 raw_spin_unlock(&rq
->rd
->rto_lock
);
2101 rto_start_unlock(&rq
->rd
->rto_loop_start
);
2104 /* Make sure the rd does not get freed while pushing */
2105 sched_get_rd(rq
->rd
);
2106 irq_work_queue_on(&rq
->rd
->rto_push_work
, cpu
);
2110 /* Called from hardirq context */
2111 void rto_push_irq_work_func(struct irq_work
*work
)
2113 struct root_domain
*rd
=
2114 container_of(work
, struct root_domain
, rto_push_work
);
2121 * We do not need to grab the lock to check for has_pushable_tasks.
2122 * When it gets updated, a check is made if a push is possible.
2124 if (has_pushable_tasks(rq
)) {
2125 raw_spin_lock(&rq
->lock
);
2126 while (push_rt_task(rq
, true))
2128 raw_spin_unlock(&rq
->lock
);
2131 raw_spin_lock(&rd
->rto_lock
);
2133 /* Pass the IPI to the next rt overloaded queue */
2134 cpu
= rto_next_cpu(rd
);
2136 raw_spin_unlock(&rd
->rto_lock
);
2143 /* Try the next RT overloaded CPU */
2144 irq_work_queue_on(&rd
->rto_push_work
, cpu
);
2146 #endif /* HAVE_RT_PUSH_IPI */
2148 static void pull_rt_task(struct rq
*this_rq
)
2150 int this_cpu
= this_rq
->cpu
, cpu
;
2151 bool resched
= false;
2152 struct task_struct
*p
, *push_task
;
2154 int rt_overload_count
= rt_overloaded(this_rq
);
2156 if (likely(!rt_overload_count
))
2160 * Match the barrier from rt_set_overloaded; this guarantees that if we
2161 * see overloaded we must also see the rto_mask bit.
2165 /* If we are the only overloaded CPU do nothing */
2166 if (rt_overload_count
== 1 &&
2167 cpumask_test_cpu(this_rq
->cpu
, this_rq
->rd
->rto_mask
))
2170 #ifdef HAVE_RT_PUSH_IPI
2171 if (sched_feat(RT_PUSH_IPI
)) {
2172 tell_cpu_to_push(this_rq
);
2177 for_each_cpu(cpu
, this_rq
->rd
->rto_mask
) {
2178 if (this_cpu
== cpu
)
2181 src_rq
= cpu_rq(cpu
);
2184 * Don't bother taking the src_rq->lock if the next highest
2185 * task is known to be lower-priority than our current task.
2186 * This may look racy, but if this value is about to go
2187 * logically higher, the src_rq will push this task away.
2188 * And if its going logically lower, we do not care
2190 if (src_rq
->rt
.highest_prio
.next
>=
2191 this_rq
->rt
.highest_prio
.curr
)
2195 * We can potentially drop this_rq's lock in
2196 * double_lock_balance, and another CPU could
2200 double_lock_balance(this_rq
, src_rq
);
2203 * We can pull only a task, which is pushable
2204 * on its rq, and no others.
2206 p
= pick_highest_pushable_task(src_rq
, this_cpu
);
2209 * Do we have an RT task that preempts
2210 * the to-be-scheduled task?
2212 if (p
&& (p
->prio
< this_rq
->rt
.highest_prio
.curr
)) {
2213 WARN_ON(p
== src_rq
->curr
);
2214 WARN_ON(!task_on_rq_queued(p
));
2217 * There's a chance that p is higher in priority
2218 * than what's currently running on its CPU.
2219 * This is just that p is wakeing up and hasn't
2220 * had a chance to schedule. We only pull
2221 * p if it is lower in priority than the
2222 * current task on the run queue
2224 if (p
->prio
< src_rq
->curr
->prio
)
2227 if (is_migration_disabled(p
)) {
2228 push_task
= get_push_task(src_rq
);
2230 deactivate_task(src_rq
, p
, 0);
2231 set_task_cpu(p
, this_cpu
);
2232 activate_task(this_rq
, p
, 0);
2236 * We continue with the search, just in
2237 * case there's an even higher prio task
2238 * in another runqueue. (low likelihood
2243 double_unlock_balance(this_rq
, src_rq
);
2246 raw_spin_unlock(&this_rq
->lock
);
2247 stop_one_cpu_nowait(src_rq
->cpu
, push_cpu_stop
,
2248 push_task
, &src_rq
->push_work
);
2249 raw_spin_lock(&this_rq
->lock
);
2254 resched_curr(this_rq
);
2258 * If we are not running and we are not going to reschedule soon, we should
2259 * try to push tasks away now
2261 static void task_woken_rt(struct rq
*rq
, struct task_struct
*p
)
2263 bool need_to_push
= !task_running(rq
, p
) &&
2264 !test_tsk_need_resched(rq
->curr
) &&
2265 p
->nr_cpus_allowed
> 1 &&
2266 (dl_task(rq
->curr
) || rt_task(rq
->curr
)) &&
2267 (rq
->curr
->nr_cpus_allowed
< 2 ||
2268 rq
->curr
->prio
<= p
->prio
);
2274 /* Assumes rq->lock is held */
2275 static void rq_online_rt(struct rq
*rq
)
2277 if (rq
->rt
.overloaded
)
2278 rt_set_overload(rq
);
2280 __enable_runtime(rq
);
2282 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rq
->rt
.highest_prio
.curr
);
2285 /* Assumes rq->lock is held */
2286 static void rq_offline_rt(struct rq
*rq
)
2288 if (rq
->rt
.overloaded
)
2289 rt_clear_overload(rq
);
2291 __disable_runtime(rq
);
2293 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, CPUPRI_INVALID
);
2297 * When switch from the rt queue, we bring ourselves to a position
2298 * that we might want to pull RT tasks from other runqueues.
2300 static void switched_from_rt(struct rq
*rq
, struct task_struct
*p
)
2303 * If there are other RT tasks then we will reschedule
2304 * and the scheduling of the other RT tasks will handle
2305 * the balancing. But if we are the last RT task
2306 * we may need to handle the pulling of RT tasks
2309 if (!task_on_rq_queued(p
) || rq
->rt
.rt_nr_running
)
2312 rt_queue_pull_task(rq
);
2315 void __init
init_sched_rt_class(void)
2319 for_each_possible_cpu(i
) {
2320 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask
, i
),
2321 GFP_KERNEL
, cpu_to_node(i
));
2324 #endif /* CONFIG_SMP */
2327 * When switching a task to RT, we may overload the runqueue
2328 * with RT tasks. In this case we try to push them off to
2331 static void switched_to_rt(struct rq
*rq
, struct task_struct
*p
)
2334 * If we are already running, then there's nothing
2335 * that needs to be done. But if we are not running
2336 * we may need to preempt the current running task.
2337 * If that current running task is also an RT task
2338 * then see if we can move to another run queue.
2340 if (task_on_rq_queued(p
) && rq
->curr
!= p
) {
2342 if (p
->nr_cpus_allowed
> 1 && rq
->rt
.overloaded
)
2343 rt_queue_push_tasks(rq
);
2344 #endif /* CONFIG_SMP */
2345 if (p
->prio
< rq
->curr
->prio
&& cpu_online(cpu_of(rq
)))
2351 * Priority of the task has changed. This may cause
2352 * us to initiate a push or pull.
2355 prio_changed_rt(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
2357 if (!task_on_rq_queued(p
))
2360 if (rq
->curr
== p
) {
2363 * If our priority decreases while running, we
2364 * may need to pull tasks to this runqueue.
2366 if (oldprio
< p
->prio
)
2367 rt_queue_pull_task(rq
);
2370 * If there's a higher priority task waiting to run
2373 if (p
->prio
> rq
->rt
.highest_prio
.curr
)
2376 /* For UP simply resched on drop of prio */
2377 if (oldprio
< p
->prio
)
2379 #endif /* CONFIG_SMP */
2382 * This task is not running, but if it is
2383 * greater than the current running task
2386 if (p
->prio
< rq
->curr
->prio
)
2391 #ifdef CONFIG_POSIX_TIMERS
2392 static void watchdog(struct rq
*rq
, struct task_struct
*p
)
2394 unsigned long soft
, hard
;
2396 /* max may change after cur was read, this will be fixed next tick */
2397 soft
= task_rlimit(p
, RLIMIT_RTTIME
);
2398 hard
= task_rlimit_max(p
, RLIMIT_RTTIME
);
2400 if (soft
!= RLIM_INFINITY
) {
2403 if (p
->rt
.watchdog_stamp
!= jiffies
) {
2405 p
->rt
.watchdog_stamp
= jiffies
;
2408 next
= DIV_ROUND_UP(min(soft
, hard
), USEC_PER_SEC
/HZ
);
2409 if (p
->rt
.timeout
> next
) {
2410 posix_cputimers_rt_watchdog(&p
->posix_cputimers
,
2411 p
->se
.sum_exec_runtime
);
2416 static inline void watchdog(struct rq
*rq
, struct task_struct
*p
) { }
2420 * scheduler tick hitting a task of our scheduling class.
2422 * NOTE: This function can be called remotely by the tick offload that
2423 * goes along full dynticks. Therefore no local assumption can be made
2424 * and everything must be accessed through the @rq and @curr passed in
2427 static void task_tick_rt(struct rq
*rq
, struct task_struct
*p
, int queued
)
2429 struct sched_rt_entity
*rt_se
= &p
->rt
;
2432 update_rt_rq_load_avg(rq_clock_pelt(rq
), rq
, 1);
2437 * RR tasks need a special form of timeslice management.
2438 * FIFO tasks have no timeslices.
2440 if (p
->policy
!= SCHED_RR
)
2443 if (--p
->rt
.time_slice
)
2446 p
->rt
.time_slice
= sched_rr_timeslice
;
2449 * Requeue to the end of queue if we (and all of our ancestors) are not
2450 * the only element on the queue
2452 for_each_sched_rt_entity(rt_se
) {
2453 if (rt_se
->run_list
.prev
!= rt_se
->run_list
.next
) {
2454 requeue_task_rt(rq
, p
, 0);
2461 static unsigned int get_rr_interval_rt(struct rq
*rq
, struct task_struct
*task
)
2464 * Time slice is 0 for SCHED_FIFO tasks
2466 if (task
->policy
== SCHED_RR
)
2467 return sched_rr_timeslice
;
2472 DEFINE_SCHED_CLASS(rt
) = {
2474 .enqueue_task
= enqueue_task_rt
,
2475 .dequeue_task
= dequeue_task_rt
,
2476 .yield_task
= yield_task_rt
,
2478 .check_preempt_curr
= check_preempt_curr_rt
,
2480 .pick_next_task
= pick_next_task_rt
,
2481 .put_prev_task
= put_prev_task_rt
,
2482 .set_next_task
= set_next_task_rt
,
2485 .balance
= balance_rt
,
2486 .select_task_rq
= select_task_rq_rt
,
2487 .set_cpus_allowed
= set_cpus_allowed_common
,
2488 .rq_online
= rq_online_rt
,
2489 .rq_offline
= rq_offline_rt
,
2490 .task_woken
= task_woken_rt
,
2491 .switched_from
= switched_from_rt
,
2492 .find_lock_rq
= find_lock_lowest_rq
,
2495 .task_tick
= task_tick_rt
,
2497 .get_rr_interval
= get_rr_interval_rt
,
2499 .prio_changed
= prio_changed_rt
,
2500 .switched_to
= switched_to_rt
,
2502 .update_curr
= update_curr_rt
,
2504 #ifdef CONFIG_UCLAMP_TASK
2505 .uclamp_enabled
= 1,
2509 #ifdef CONFIG_RT_GROUP_SCHED
2511 * Ensure that the real time constraints are schedulable.
2513 static DEFINE_MUTEX(rt_constraints_mutex
);
2515 static inline int tg_has_rt_tasks(struct task_group
*tg
)
2517 struct task_struct
*task
;
2518 struct css_task_iter it
;
2522 * Autogroups do not have RT tasks; see autogroup_create().
2524 if (task_group_is_autogroup(tg
))
2527 css_task_iter_start(&tg
->css
, 0, &it
);
2528 while (!ret
&& (task
= css_task_iter_next(&it
)))
2529 ret
|= rt_task(task
);
2530 css_task_iter_end(&it
);
2535 struct rt_schedulable_data
{
2536 struct task_group
*tg
;
2541 static int tg_rt_schedulable(struct task_group
*tg
, void *data
)
2543 struct rt_schedulable_data
*d
= data
;
2544 struct task_group
*child
;
2545 unsigned long total
, sum
= 0;
2546 u64 period
, runtime
;
2548 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
2549 runtime
= tg
->rt_bandwidth
.rt_runtime
;
2552 period
= d
->rt_period
;
2553 runtime
= d
->rt_runtime
;
2557 * Cannot have more runtime than the period.
2559 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
2563 * Ensure we don't starve existing RT tasks if runtime turns zero.
2565 if (rt_bandwidth_enabled() && !runtime
&&
2566 tg
->rt_bandwidth
.rt_runtime
&& tg_has_rt_tasks(tg
))
2569 total
= to_ratio(period
, runtime
);
2572 * Nobody can have more than the global setting allows.
2574 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
2578 * The sum of our children's runtime should not exceed our own.
2580 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
2581 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
2582 runtime
= child
->rt_bandwidth
.rt_runtime
;
2584 if (child
== d
->tg
) {
2585 period
= d
->rt_period
;
2586 runtime
= d
->rt_runtime
;
2589 sum
+= to_ratio(period
, runtime
);
2598 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
2602 struct rt_schedulable_data data
= {
2604 .rt_period
= period
,
2605 .rt_runtime
= runtime
,
2609 ret
= walk_tg_tree(tg_rt_schedulable
, tg_nop
, &data
);
2615 static int tg_set_rt_bandwidth(struct task_group
*tg
,
2616 u64 rt_period
, u64 rt_runtime
)
2621 * Disallowing the root group RT runtime is BAD, it would disallow the
2622 * kernel creating (and or operating) RT threads.
2624 if (tg
== &root_task_group
&& rt_runtime
== 0)
2627 /* No period doesn't make any sense. */
2632 * Bound quota to defend quota against overflow during bandwidth shift.
2634 if (rt_runtime
!= RUNTIME_INF
&& rt_runtime
> max_rt_runtime
)
2637 mutex_lock(&rt_constraints_mutex
);
2638 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
2642 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
2643 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
2644 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
2646 for_each_possible_cpu(i
) {
2647 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
2649 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
2650 rt_rq
->rt_runtime
= rt_runtime
;
2651 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
2653 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
2655 mutex_unlock(&rt_constraints_mutex
);
2660 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
2662 u64 rt_runtime
, rt_period
;
2664 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
2665 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
2666 if (rt_runtime_us
< 0)
2667 rt_runtime
= RUNTIME_INF
;
2668 else if ((u64
)rt_runtime_us
> U64_MAX
/ NSEC_PER_USEC
)
2671 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
2674 long sched_group_rt_runtime(struct task_group
*tg
)
2678 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
2681 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
2682 do_div(rt_runtime_us
, NSEC_PER_USEC
);
2683 return rt_runtime_us
;
2686 int sched_group_set_rt_period(struct task_group
*tg
, u64 rt_period_us
)
2688 u64 rt_runtime
, rt_period
;
2690 if (rt_period_us
> U64_MAX
/ NSEC_PER_USEC
)
2693 rt_period
= rt_period_us
* NSEC_PER_USEC
;
2694 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
2696 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
2699 long sched_group_rt_period(struct task_group
*tg
)
2703 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
2704 do_div(rt_period_us
, NSEC_PER_USEC
);
2705 return rt_period_us
;
2708 static int sched_rt_global_constraints(void)
2712 mutex_lock(&rt_constraints_mutex
);
2713 ret
= __rt_schedulable(NULL
, 0, 0);
2714 mutex_unlock(&rt_constraints_mutex
);
2719 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
2721 /* Don't accept realtime tasks when there is no way for them to run */
2722 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
2728 #else /* !CONFIG_RT_GROUP_SCHED */
2729 static int sched_rt_global_constraints(void)
2731 unsigned long flags
;
2734 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
2735 for_each_possible_cpu(i
) {
2736 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
2738 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
2739 rt_rq
->rt_runtime
= global_rt_runtime();
2740 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
2742 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
2746 #endif /* CONFIG_RT_GROUP_SCHED */
2748 static int sched_rt_global_validate(void)
2750 if (sysctl_sched_rt_period
<= 0)
2753 if ((sysctl_sched_rt_runtime
!= RUNTIME_INF
) &&
2754 ((sysctl_sched_rt_runtime
> sysctl_sched_rt_period
) ||
2755 ((u64
)sysctl_sched_rt_runtime
*
2756 NSEC_PER_USEC
> max_rt_runtime
)))
2762 static void sched_rt_do_global(void)
2764 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
2765 def_rt_bandwidth
.rt_period
= ns_to_ktime(global_rt_period());
2768 int sched_rt_handler(struct ctl_table
*table
, int write
, void *buffer
,
2769 size_t *lenp
, loff_t
*ppos
)
2771 int old_period
, old_runtime
;
2772 static DEFINE_MUTEX(mutex
);
2776 old_period
= sysctl_sched_rt_period
;
2777 old_runtime
= sysctl_sched_rt_runtime
;
2779 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
2781 if (!ret
&& write
) {
2782 ret
= sched_rt_global_validate();
2786 ret
= sched_dl_global_validate();
2790 ret
= sched_rt_global_constraints();
2794 sched_rt_do_global();
2795 sched_dl_do_global();
2799 sysctl_sched_rt_period
= old_period
;
2800 sysctl_sched_rt_runtime
= old_runtime
;
2802 mutex_unlock(&mutex
);
2807 int sched_rr_handler(struct ctl_table
*table
, int write
, void *buffer
,
2808 size_t *lenp
, loff_t
*ppos
)
2811 static DEFINE_MUTEX(mutex
);
2814 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
2816 * Make sure that internally we keep jiffies.
2817 * Also, writing zero resets the timeslice to default:
2819 if (!ret
&& write
) {
2820 sched_rr_timeslice
=
2821 sysctl_sched_rr_timeslice
<= 0 ? RR_TIMESLICE
:
2822 msecs_to_jiffies(sysctl_sched_rr_timeslice
);
2824 mutex_unlock(&mutex
);
2829 #ifdef CONFIG_SCHED_DEBUG
2830 void print_rt_stats(struct seq_file
*m
, int cpu
)
2833 struct rt_rq
*rt_rq
;
2836 for_each_rt_rq(rt_rq
, iter
, cpu_rq(cpu
))
2837 print_rt_rq(m
, cpu
, rt_rq
);
2840 #endif /* CONFIG_SCHED_DEBUG */