WIP FPC-III support
[linux/fpc-iii.git] / kernel / sched / rt.c
blobdbe4629cf7ba46211746531a2fd72c3ec11f1970
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
6 #include "sched.h"
8 #include "pelt.h"
10 int sched_rr_timeslice = RR_TIMESLICE;
11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
12 /* More than 4 hours if BW_SHIFT equals 20. */
13 static const u64 max_rt_runtime = MAX_BW;
15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
17 struct rt_bandwidth def_rt_bandwidth;
19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
21 struct rt_bandwidth *rt_b =
22 container_of(timer, struct rt_bandwidth, rt_period_timer);
23 int idle = 0;
24 int overrun;
26 raw_spin_lock(&rt_b->rt_runtime_lock);
27 for (;;) {
28 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
29 if (!overrun)
30 break;
32 raw_spin_unlock(&rt_b->rt_runtime_lock);
33 idle = do_sched_rt_period_timer(rt_b, overrun);
34 raw_spin_lock(&rt_b->rt_runtime_lock);
36 if (idle)
37 rt_b->rt_period_active = 0;
38 raw_spin_unlock(&rt_b->rt_runtime_lock);
40 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
45 rt_b->rt_period = ns_to_ktime(period);
46 rt_b->rt_runtime = runtime;
48 raw_spin_lock_init(&rt_b->rt_runtime_lock);
50 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
51 HRTIMER_MODE_REL_HARD);
52 rt_b->rt_period_timer.function = sched_rt_period_timer;
55 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
57 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
58 return;
60 raw_spin_lock(&rt_b->rt_runtime_lock);
61 if (!rt_b->rt_period_active) {
62 rt_b->rt_period_active = 1;
64 * SCHED_DEADLINE updates the bandwidth, as a run away
65 * RT task with a DL task could hog a CPU. But DL does
66 * not reset the period. If a deadline task was running
67 * without an RT task running, it can cause RT tasks to
68 * throttle when they start up. Kick the timer right away
69 * to update the period.
71 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
72 hrtimer_start_expires(&rt_b->rt_period_timer,
73 HRTIMER_MODE_ABS_PINNED_HARD);
75 raw_spin_unlock(&rt_b->rt_runtime_lock);
78 void init_rt_rq(struct rt_rq *rt_rq)
80 struct rt_prio_array *array;
81 int i;
83 array = &rt_rq->active;
84 for (i = 0; i < MAX_RT_PRIO; i++) {
85 INIT_LIST_HEAD(array->queue + i);
86 __clear_bit(i, array->bitmap);
88 /* delimiter for bitsearch: */
89 __set_bit(MAX_RT_PRIO, array->bitmap);
91 #if defined CONFIG_SMP
92 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
93 rt_rq->highest_prio.next = MAX_RT_PRIO-1;
94 rt_rq->rt_nr_migratory = 0;
95 rt_rq->overloaded = 0;
96 plist_head_init(&rt_rq->pushable_tasks);
97 #endif /* CONFIG_SMP */
98 /* We start is dequeued state, because no RT tasks are queued */
99 rt_rq->rt_queued = 0;
101 rt_rq->rt_time = 0;
102 rt_rq->rt_throttled = 0;
103 rt_rq->rt_runtime = 0;
104 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
107 #ifdef CONFIG_RT_GROUP_SCHED
108 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
110 hrtimer_cancel(&rt_b->rt_period_timer);
113 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
115 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
117 #ifdef CONFIG_SCHED_DEBUG
118 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
119 #endif
120 return container_of(rt_se, struct task_struct, rt);
123 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
125 return rt_rq->rq;
128 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
130 return rt_se->rt_rq;
133 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
135 struct rt_rq *rt_rq = rt_se->rt_rq;
137 return rt_rq->rq;
140 void free_rt_sched_group(struct task_group *tg)
142 int i;
144 if (tg->rt_se)
145 destroy_rt_bandwidth(&tg->rt_bandwidth);
147 for_each_possible_cpu(i) {
148 if (tg->rt_rq)
149 kfree(tg->rt_rq[i]);
150 if (tg->rt_se)
151 kfree(tg->rt_se[i]);
154 kfree(tg->rt_rq);
155 kfree(tg->rt_se);
158 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
159 struct sched_rt_entity *rt_se, int cpu,
160 struct sched_rt_entity *parent)
162 struct rq *rq = cpu_rq(cpu);
164 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
165 rt_rq->rt_nr_boosted = 0;
166 rt_rq->rq = rq;
167 rt_rq->tg = tg;
169 tg->rt_rq[cpu] = rt_rq;
170 tg->rt_se[cpu] = rt_se;
172 if (!rt_se)
173 return;
175 if (!parent)
176 rt_se->rt_rq = &rq->rt;
177 else
178 rt_se->rt_rq = parent->my_q;
180 rt_se->my_q = rt_rq;
181 rt_se->parent = parent;
182 INIT_LIST_HEAD(&rt_se->run_list);
185 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
187 struct rt_rq *rt_rq;
188 struct sched_rt_entity *rt_se;
189 int i;
191 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
192 if (!tg->rt_rq)
193 goto err;
194 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
195 if (!tg->rt_se)
196 goto err;
198 init_rt_bandwidth(&tg->rt_bandwidth,
199 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
201 for_each_possible_cpu(i) {
202 rt_rq = kzalloc_node(sizeof(struct rt_rq),
203 GFP_KERNEL, cpu_to_node(i));
204 if (!rt_rq)
205 goto err;
207 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
208 GFP_KERNEL, cpu_to_node(i));
209 if (!rt_se)
210 goto err_free_rq;
212 init_rt_rq(rt_rq);
213 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
214 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
217 return 1;
219 err_free_rq:
220 kfree(rt_rq);
221 err:
222 return 0;
225 #else /* CONFIG_RT_GROUP_SCHED */
227 #define rt_entity_is_task(rt_se) (1)
229 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
231 return container_of(rt_se, struct task_struct, rt);
234 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
236 return container_of(rt_rq, struct rq, rt);
239 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
241 struct task_struct *p = rt_task_of(rt_se);
243 return task_rq(p);
246 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
248 struct rq *rq = rq_of_rt_se(rt_se);
250 return &rq->rt;
253 void free_rt_sched_group(struct task_group *tg) { }
255 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
257 return 1;
259 #endif /* CONFIG_RT_GROUP_SCHED */
261 #ifdef CONFIG_SMP
263 static void pull_rt_task(struct rq *this_rq);
265 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
267 /* Try to pull RT tasks here if we lower this rq's prio */
268 return rq->online && rq->rt.highest_prio.curr > prev->prio;
271 static inline int rt_overloaded(struct rq *rq)
273 return atomic_read(&rq->rd->rto_count);
276 static inline void rt_set_overload(struct rq *rq)
278 if (!rq->online)
279 return;
281 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
283 * Make sure the mask is visible before we set
284 * the overload count. That is checked to determine
285 * if we should look at the mask. It would be a shame
286 * if we looked at the mask, but the mask was not
287 * updated yet.
289 * Matched by the barrier in pull_rt_task().
291 smp_wmb();
292 atomic_inc(&rq->rd->rto_count);
295 static inline void rt_clear_overload(struct rq *rq)
297 if (!rq->online)
298 return;
300 /* the order here really doesn't matter */
301 atomic_dec(&rq->rd->rto_count);
302 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
305 static void update_rt_migration(struct rt_rq *rt_rq)
307 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
308 if (!rt_rq->overloaded) {
309 rt_set_overload(rq_of_rt_rq(rt_rq));
310 rt_rq->overloaded = 1;
312 } else if (rt_rq->overloaded) {
313 rt_clear_overload(rq_of_rt_rq(rt_rq));
314 rt_rq->overloaded = 0;
318 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
320 struct task_struct *p;
322 if (!rt_entity_is_task(rt_se))
323 return;
325 p = rt_task_of(rt_se);
326 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
328 rt_rq->rt_nr_total++;
329 if (p->nr_cpus_allowed > 1)
330 rt_rq->rt_nr_migratory++;
332 update_rt_migration(rt_rq);
335 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
337 struct task_struct *p;
339 if (!rt_entity_is_task(rt_se))
340 return;
342 p = rt_task_of(rt_se);
343 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
345 rt_rq->rt_nr_total--;
346 if (p->nr_cpus_allowed > 1)
347 rt_rq->rt_nr_migratory--;
349 update_rt_migration(rt_rq);
352 static inline int has_pushable_tasks(struct rq *rq)
354 return !plist_head_empty(&rq->rt.pushable_tasks);
357 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
358 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
360 static void push_rt_tasks(struct rq *);
361 static void pull_rt_task(struct rq *);
363 static inline void rt_queue_push_tasks(struct rq *rq)
365 if (!has_pushable_tasks(rq))
366 return;
368 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
371 static inline void rt_queue_pull_task(struct rq *rq)
373 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
376 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
378 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
379 plist_node_init(&p->pushable_tasks, p->prio);
380 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
382 /* Update the highest prio pushable task */
383 if (p->prio < rq->rt.highest_prio.next)
384 rq->rt.highest_prio.next = p->prio;
387 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
389 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
391 /* Update the new highest prio pushable task */
392 if (has_pushable_tasks(rq)) {
393 p = plist_first_entry(&rq->rt.pushable_tasks,
394 struct task_struct, pushable_tasks);
395 rq->rt.highest_prio.next = p->prio;
396 } else {
397 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
401 #else
403 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
407 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
411 static inline
412 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
416 static inline
417 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
421 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
423 return false;
426 static inline void pull_rt_task(struct rq *this_rq)
430 static inline void rt_queue_push_tasks(struct rq *rq)
433 #endif /* CONFIG_SMP */
435 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
436 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
438 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
440 return rt_se->on_rq;
443 #ifdef CONFIG_UCLAMP_TASK
445 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
446 * settings.
448 * This check is only important for heterogeneous systems where uclamp_min value
449 * is higher than the capacity of a @cpu. For non-heterogeneous system this
450 * function will always return true.
452 * The function will return true if the capacity of the @cpu is >= the
453 * uclamp_min and false otherwise.
455 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
456 * > uclamp_max.
458 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
460 unsigned int min_cap;
461 unsigned int max_cap;
462 unsigned int cpu_cap;
464 /* Only heterogeneous systems can benefit from this check */
465 if (!static_branch_unlikely(&sched_asym_cpucapacity))
466 return true;
468 min_cap = uclamp_eff_value(p, UCLAMP_MIN);
469 max_cap = uclamp_eff_value(p, UCLAMP_MAX);
471 cpu_cap = capacity_orig_of(cpu);
473 return cpu_cap >= min(min_cap, max_cap);
475 #else
476 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
478 return true;
480 #endif
482 #ifdef CONFIG_RT_GROUP_SCHED
484 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
486 if (!rt_rq->tg)
487 return RUNTIME_INF;
489 return rt_rq->rt_runtime;
492 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
494 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
497 typedef struct task_group *rt_rq_iter_t;
499 static inline struct task_group *next_task_group(struct task_group *tg)
501 do {
502 tg = list_entry_rcu(tg->list.next,
503 typeof(struct task_group), list);
504 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
506 if (&tg->list == &task_groups)
507 tg = NULL;
509 return tg;
512 #define for_each_rt_rq(rt_rq, iter, rq) \
513 for (iter = container_of(&task_groups, typeof(*iter), list); \
514 (iter = next_task_group(iter)) && \
515 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
517 #define for_each_sched_rt_entity(rt_se) \
518 for (; rt_se; rt_se = rt_se->parent)
520 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
522 return rt_se->my_q;
525 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
526 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
528 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
530 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
531 struct rq *rq = rq_of_rt_rq(rt_rq);
532 struct sched_rt_entity *rt_se;
534 int cpu = cpu_of(rq);
536 rt_se = rt_rq->tg->rt_se[cpu];
538 if (rt_rq->rt_nr_running) {
539 if (!rt_se)
540 enqueue_top_rt_rq(rt_rq);
541 else if (!on_rt_rq(rt_se))
542 enqueue_rt_entity(rt_se, 0);
544 if (rt_rq->highest_prio.curr < curr->prio)
545 resched_curr(rq);
549 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
551 struct sched_rt_entity *rt_se;
552 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
554 rt_se = rt_rq->tg->rt_se[cpu];
556 if (!rt_se) {
557 dequeue_top_rt_rq(rt_rq);
558 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
559 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
561 else if (on_rt_rq(rt_se))
562 dequeue_rt_entity(rt_se, 0);
565 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
567 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
570 static int rt_se_boosted(struct sched_rt_entity *rt_se)
572 struct rt_rq *rt_rq = group_rt_rq(rt_se);
573 struct task_struct *p;
575 if (rt_rq)
576 return !!rt_rq->rt_nr_boosted;
578 p = rt_task_of(rt_se);
579 return p->prio != p->normal_prio;
582 #ifdef CONFIG_SMP
583 static inline const struct cpumask *sched_rt_period_mask(void)
585 return this_rq()->rd->span;
587 #else
588 static inline const struct cpumask *sched_rt_period_mask(void)
590 return cpu_online_mask;
592 #endif
594 static inline
595 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
597 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
600 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
602 return &rt_rq->tg->rt_bandwidth;
605 #else /* !CONFIG_RT_GROUP_SCHED */
607 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
609 return rt_rq->rt_runtime;
612 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
614 return ktime_to_ns(def_rt_bandwidth.rt_period);
617 typedef struct rt_rq *rt_rq_iter_t;
619 #define for_each_rt_rq(rt_rq, iter, rq) \
620 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
622 #define for_each_sched_rt_entity(rt_se) \
623 for (; rt_se; rt_se = NULL)
625 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
627 return NULL;
630 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
632 struct rq *rq = rq_of_rt_rq(rt_rq);
634 if (!rt_rq->rt_nr_running)
635 return;
637 enqueue_top_rt_rq(rt_rq);
638 resched_curr(rq);
641 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
643 dequeue_top_rt_rq(rt_rq);
646 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
648 return rt_rq->rt_throttled;
651 static inline const struct cpumask *sched_rt_period_mask(void)
653 return cpu_online_mask;
656 static inline
657 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
659 return &cpu_rq(cpu)->rt;
662 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
664 return &def_rt_bandwidth;
667 #endif /* CONFIG_RT_GROUP_SCHED */
669 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
671 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
673 return (hrtimer_active(&rt_b->rt_period_timer) ||
674 rt_rq->rt_time < rt_b->rt_runtime);
677 #ifdef CONFIG_SMP
679 * We ran out of runtime, see if we can borrow some from our neighbours.
681 static void do_balance_runtime(struct rt_rq *rt_rq)
683 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
684 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
685 int i, weight;
686 u64 rt_period;
688 weight = cpumask_weight(rd->span);
690 raw_spin_lock(&rt_b->rt_runtime_lock);
691 rt_period = ktime_to_ns(rt_b->rt_period);
692 for_each_cpu(i, rd->span) {
693 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
694 s64 diff;
696 if (iter == rt_rq)
697 continue;
699 raw_spin_lock(&iter->rt_runtime_lock);
701 * Either all rqs have inf runtime and there's nothing to steal
702 * or __disable_runtime() below sets a specific rq to inf to
703 * indicate its been disabled and disalow stealing.
705 if (iter->rt_runtime == RUNTIME_INF)
706 goto next;
709 * From runqueues with spare time, take 1/n part of their
710 * spare time, but no more than our period.
712 diff = iter->rt_runtime - iter->rt_time;
713 if (diff > 0) {
714 diff = div_u64((u64)diff, weight);
715 if (rt_rq->rt_runtime + diff > rt_period)
716 diff = rt_period - rt_rq->rt_runtime;
717 iter->rt_runtime -= diff;
718 rt_rq->rt_runtime += diff;
719 if (rt_rq->rt_runtime == rt_period) {
720 raw_spin_unlock(&iter->rt_runtime_lock);
721 break;
724 next:
725 raw_spin_unlock(&iter->rt_runtime_lock);
727 raw_spin_unlock(&rt_b->rt_runtime_lock);
731 * Ensure this RQ takes back all the runtime it lend to its neighbours.
733 static void __disable_runtime(struct rq *rq)
735 struct root_domain *rd = rq->rd;
736 rt_rq_iter_t iter;
737 struct rt_rq *rt_rq;
739 if (unlikely(!scheduler_running))
740 return;
742 for_each_rt_rq(rt_rq, iter, rq) {
743 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
744 s64 want;
745 int i;
747 raw_spin_lock(&rt_b->rt_runtime_lock);
748 raw_spin_lock(&rt_rq->rt_runtime_lock);
750 * Either we're all inf and nobody needs to borrow, or we're
751 * already disabled and thus have nothing to do, or we have
752 * exactly the right amount of runtime to take out.
754 if (rt_rq->rt_runtime == RUNTIME_INF ||
755 rt_rq->rt_runtime == rt_b->rt_runtime)
756 goto balanced;
757 raw_spin_unlock(&rt_rq->rt_runtime_lock);
760 * Calculate the difference between what we started out with
761 * and what we current have, that's the amount of runtime
762 * we lend and now have to reclaim.
764 want = rt_b->rt_runtime - rt_rq->rt_runtime;
767 * Greedy reclaim, take back as much as we can.
769 for_each_cpu(i, rd->span) {
770 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
771 s64 diff;
774 * Can't reclaim from ourselves or disabled runqueues.
776 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
777 continue;
779 raw_spin_lock(&iter->rt_runtime_lock);
780 if (want > 0) {
781 diff = min_t(s64, iter->rt_runtime, want);
782 iter->rt_runtime -= diff;
783 want -= diff;
784 } else {
785 iter->rt_runtime -= want;
786 want -= want;
788 raw_spin_unlock(&iter->rt_runtime_lock);
790 if (!want)
791 break;
794 raw_spin_lock(&rt_rq->rt_runtime_lock);
796 * We cannot be left wanting - that would mean some runtime
797 * leaked out of the system.
799 BUG_ON(want);
800 balanced:
802 * Disable all the borrow logic by pretending we have inf
803 * runtime - in which case borrowing doesn't make sense.
805 rt_rq->rt_runtime = RUNTIME_INF;
806 rt_rq->rt_throttled = 0;
807 raw_spin_unlock(&rt_rq->rt_runtime_lock);
808 raw_spin_unlock(&rt_b->rt_runtime_lock);
810 /* Make rt_rq available for pick_next_task() */
811 sched_rt_rq_enqueue(rt_rq);
815 static void __enable_runtime(struct rq *rq)
817 rt_rq_iter_t iter;
818 struct rt_rq *rt_rq;
820 if (unlikely(!scheduler_running))
821 return;
824 * Reset each runqueue's bandwidth settings
826 for_each_rt_rq(rt_rq, iter, rq) {
827 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
829 raw_spin_lock(&rt_b->rt_runtime_lock);
830 raw_spin_lock(&rt_rq->rt_runtime_lock);
831 rt_rq->rt_runtime = rt_b->rt_runtime;
832 rt_rq->rt_time = 0;
833 rt_rq->rt_throttled = 0;
834 raw_spin_unlock(&rt_rq->rt_runtime_lock);
835 raw_spin_unlock(&rt_b->rt_runtime_lock);
839 static void balance_runtime(struct rt_rq *rt_rq)
841 if (!sched_feat(RT_RUNTIME_SHARE))
842 return;
844 if (rt_rq->rt_time > rt_rq->rt_runtime) {
845 raw_spin_unlock(&rt_rq->rt_runtime_lock);
846 do_balance_runtime(rt_rq);
847 raw_spin_lock(&rt_rq->rt_runtime_lock);
850 #else /* !CONFIG_SMP */
851 static inline void balance_runtime(struct rt_rq *rt_rq) {}
852 #endif /* CONFIG_SMP */
854 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
856 int i, idle = 1, throttled = 0;
857 const struct cpumask *span;
859 span = sched_rt_period_mask();
860 #ifdef CONFIG_RT_GROUP_SCHED
862 * FIXME: isolated CPUs should really leave the root task group,
863 * whether they are isolcpus or were isolated via cpusets, lest
864 * the timer run on a CPU which does not service all runqueues,
865 * potentially leaving other CPUs indefinitely throttled. If
866 * isolation is really required, the user will turn the throttle
867 * off to kill the perturbations it causes anyway. Meanwhile,
868 * this maintains functionality for boot and/or troubleshooting.
870 if (rt_b == &root_task_group.rt_bandwidth)
871 span = cpu_online_mask;
872 #endif
873 for_each_cpu(i, span) {
874 int enqueue = 0;
875 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
876 struct rq *rq = rq_of_rt_rq(rt_rq);
877 int skip;
880 * When span == cpu_online_mask, taking each rq->lock
881 * can be time-consuming. Try to avoid it when possible.
883 raw_spin_lock(&rt_rq->rt_runtime_lock);
884 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
885 rt_rq->rt_runtime = rt_b->rt_runtime;
886 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
887 raw_spin_unlock(&rt_rq->rt_runtime_lock);
888 if (skip)
889 continue;
891 raw_spin_lock(&rq->lock);
892 update_rq_clock(rq);
894 if (rt_rq->rt_time) {
895 u64 runtime;
897 raw_spin_lock(&rt_rq->rt_runtime_lock);
898 if (rt_rq->rt_throttled)
899 balance_runtime(rt_rq);
900 runtime = rt_rq->rt_runtime;
901 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
902 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
903 rt_rq->rt_throttled = 0;
904 enqueue = 1;
907 * When we're idle and a woken (rt) task is
908 * throttled check_preempt_curr() will set
909 * skip_update and the time between the wakeup
910 * and this unthrottle will get accounted as
911 * 'runtime'.
913 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
914 rq_clock_cancel_skipupdate(rq);
916 if (rt_rq->rt_time || rt_rq->rt_nr_running)
917 idle = 0;
918 raw_spin_unlock(&rt_rq->rt_runtime_lock);
919 } else if (rt_rq->rt_nr_running) {
920 idle = 0;
921 if (!rt_rq_throttled(rt_rq))
922 enqueue = 1;
924 if (rt_rq->rt_throttled)
925 throttled = 1;
927 if (enqueue)
928 sched_rt_rq_enqueue(rt_rq);
929 raw_spin_unlock(&rq->lock);
932 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
933 return 1;
935 return idle;
938 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
940 #ifdef CONFIG_RT_GROUP_SCHED
941 struct rt_rq *rt_rq = group_rt_rq(rt_se);
943 if (rt_rq)
944 return rt_rq->highest_prio.curr;
945 #endif
947 return rt_task_of(rt_se)->prio;
950 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
952 u64 runtime = sched_rt_runtime(rt_rq);
954 if (rt_rq->rt_throttled)
955 return rt_rq_throttled(rt_rq);
957 if (runtime >= sched_rt_period(rt_rq))
958 return 0;
960 balance_runtime(rt_rq);
961 runtime = sched_rt_runtime(rt_rq);
962 if (runtime == RUNTIME_INF)
963 return 0;
965 if (rt_rq->rt_time > runtime) {
966 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
969 * Don't actually throttle groups that have no runtime assigned
970 * but accrue some time due to boosting.
972 if (likely(rt_b->rt_runtime)) {
973 rt_rq->rt_throttled = 1;
974 printk_deferred_once("sched: RT throttling activated\n");
975 } else {
977 * In case we did anyway, make it go away,
978 * replenishment is a joke, since it will replenish us
979 * with exactly 0 ns.
981 rt_rq->rt_time = 0;
984 if (rt_rq_throttled(rt_rq)) {
985 sched_rt_rq_dequeue(rt_rq);
986 return 1;
990 return 0;
994 * Update the current task's runtime statistics. Skip current tasks that
995 * are not in our scheduling class.
997 static void update_curr_rt(struct rq *rq)
999 struct task_struct *curr = rq->curr;
1000 struct sched_rt_entity *rt_se = &curr->rt;
1001 u64 delta_exec;
1002 u64 now;
1004 if (curr->sched_class != &rt_sched_class)
1005 return;
1007 now = rq_clock_task(rq);
1008 delta_exec = now - curr->se.exec_start;
1009 if (unlikely((s64)delta_exec <= 0))
1010 return;
1012 schedstat_set(curr->se.statistics.exec_max,
1013 max(curr->se.statistics.exec_max, delta_exec));
1015 curr->se.sum_exec_runtime += delta_exec;
1016 account_group_exec_runtime(curr, delta_exec);
1018 curr->se.exec_start = now;
1019 cgroup_account_cputime(curr, delta_exec);
1021 if (!rt_bandwidth_enabled())
1022 return;
1024 for_each_sched_rt_entity(rt_se) {
1025 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1027 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1028 raw_spin_lock(&rt_rq->rt_runtime_lock);
1029 rt_rq->rt_time += delta_exec;
1030 if (sched_rt_runtime_exceeded(rt_rq))
1031 resched_curr(rq);
1032 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1037 static void
1038 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1040 struct rq *rq = rq_of_rt_rq(rt_rq);
1042 BUG_ON(&rq->rt != rt_rq);
1044 if (!rt_rq->rt_queued)
1045 return;
1047 BUG_ON(!rq->nr_running);
1049 sub_nr_running(rq, rt_rq->rt_nr_running);
1050 rt_rq->rt_queued = 0;
1054 static void
1055 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1057 struct rq *rq = rq_of_rt_rq(rt_rq);
1059 BUG_ON(&rq->rt != rt_rq);
1061 if (rt_rq->rt_queued)
1062 return;
1064 if (rt_rq_throttled(rt_rq))
1065 return;
1067 if (rt_rq->rt_nr_running) {
1068 add_nr_running(rq, rt_rq->rt_nr_running);
1069 rt_rq->rt_queued = 1;
1072 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1073 cpufreq_update_util(rq, 0);
1076 #if defined CONFIG_SMP
1078 static void
1079 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1081 struct rq *rq = rq_of_rt_rq(rt_rq);
1083 #ifdef CONFIG_RT_GROUP_SCHED
1085 * Change rq's cpupri only if rt_rq is the top queue.
1087 if (&rq->rt != rt_rq)
1088 return;
1089 #endif
1090 if (rq->online && prio < prev_prio)
1091 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1094 static void
1095 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1097 struct rq *rq = rq_of_rt_rq(rt_rq);
1099 #ifdef CONFIG_RT_GROUP_SCHED
1101 * Change rq's cpupri only if rt_rq is the top queue.
1103 if (&rq->rt != rt_rq)
1104 return;
1105 #endif
1106 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1107 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1110 #else /* CONFIG_SMP */
1112 static inline
1113 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1114 static inline
1115 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1117 #endif /* CONFIG_SMP */
1119 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1120 static void
1121 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1123 int prev_prio = rt_rq->highest_prio.curr;
1125 if (prio < prev_prio)
1126 rt_rq->highest_prio.curr = prio;
1128 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1131 static void
1132 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1134 int prev_prio = rt_rq->highest_prio.curr;
1136 if (rt_rq->rt_nr_running) {
1138 WARN_ON(prio < prev_prio);
1141 * This may have been our highest task, and therefore
1142 * we may have some recomputation to do
1144 if (prio == prev_prio) {
1145 struct rt_prio_array *array = &rt_rq->active;
1147 rt_rq->highest_prio.curr =
1148 sched_find_first_bit(array->bitmap);
1151 } else {
1152 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1155 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1158 #else
1160 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1161 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1163 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1165 #ifdef CONFIG_RT_GROUP_SCHED
1167 static void
1168 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1170 if (rt_se_boosted(rt_se))
1171 rt_rq->rt_nr_boosted++;
1173 if (rt_rq->tg)
1174 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1177 static void
1178 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1180 if (rt_se_boosted(rt_se))
1181 rt_rq->rt_nr_boosted--;
1183 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1186 #else /* CONFIG_RT_GROUP_SCHED */
1188 static void
1189 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1191 start_rt_bandwidth(&def_rt_bandwidth);
1194 static inline
1195 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1197 #endif /* CONFIG_RT_GROUP_SCHED */
1199 static inline
1200 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1202 struct rt_rq *group_rq = group_rt_rq(rt_se);
1204 if (group_rq)
1205 return group_rq->rt_nr_running;
1206 else
1207 return 1;
1210 static inline
1211 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1213 struct rt_rq *group_rq = group_rt_rq(rt_se);
1214 struct task_struct *tsk;
1216 if (group_rq)
1217 return group_rq->rr_nr_running;
1219 tsk = rt_task_of(rt_se);
1221 return (tsk->policy == SCHED_RR) ? 1 : 0;
1224 static inline
1225 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1227 int prio = rt_se_prio(rt_se);
1229 WARN_ON(!rt_prio(prio));
1230 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1231 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1233 inc_rt_prio(rt_rq, prio);
1234 inc_rt_migration(rt_se, rt_rq);
1235 inc_rt_group(rt_se, rt_rq);
1238 static inline
1239 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1241 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1242 WARN_ON(!rt_rq->rt_nr_running);
1243 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1244 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1246 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1247 dec_rt_migration(rt_se, rt_rq);
1248 dec_rt_group(rt_se, rt_rq);
1252 * Change rt_se->run_list location unless SAVE && !MOVE
1254 * assumes ENQUEUE/DEQUEUE flags match
1256 static inline bool move_entity(unsigned int flags)
1258 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1259 return false;
1261 return true;
1264 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1266 list_del_init(&rt_se->run_list);
1268 if (list_empty(array->queue + rt_se_prio(rt_se)))
1269 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1271 rt_se->on_list = 0;
1274 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1276 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1277 struct rt_prio_array *array = &rt_rq->active;
1278 struct rt_rq *group_rq = group_rt_rq(rt_se);
1279 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1282 * Don't enqueue the group if its throttled, or when empty.
1283 * The latter is a consequence of the former when a child group
1284 * get throttled and the current group doesn't have any other
1285 * active members.
1287 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1288 if (rt_se->on_list)
1289 __delist_rt_entity(rt_se, array);
1290 return;
1293 if (move_entity(flags)) {
1294 WARN_ON_ONCE(rt_se->on_list);
1295 if (flags & ENQUEUE_HEAD)
1296 list_add(&rt_se->run_list, queue);
1297 else
1298 list_add_tail(&rt_se->run_list, queue);
1300 __set_bit(rt_se_prio(rt_se), array->bitmap);
1301 rt_se->on_list = 1;
1303 rt_se->on_rq = 1;
1305 inc_rt_tasks(rt_se, rt_rq);
1308 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1310 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1311 struct rt_prio_array *array = &rt_rq->active;
1313 if (move_entity(flags)) {
1314 WARN_ON_ONCE(!rt_se->on_list);
1315 __delist_rt_entity(rt_se, array);
1317 rt_se->on_rq = 0;
1319 dec_rt_tasks(rt_se, rt_rq);
1323 * Because the prio of an upper entry depends on the lower
1324 * entries, we must remove entries top - down.
1326 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1328 struct sched_rt_entity *back = NULL;
1330 for_each_sched_rt_entity(rt_se) {
1331 rt_se->back = back;
1332 back = rt_se;
1335 dequeue_top_rt_rq(rt_rq_of_se(back));
1337 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1338 if (on_rt_rq(rt_se))
1339 __dequeue_rt_entity(rt_se, flags);
1343 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1345 struct rq *rq = rq_of_rt_se(rt_se);
1347 dequeue_rt_stack(rt_se, flags);
1348 for_each_sched_rt_entity(rt_se)
1349 __enqueue_rt_entity(rt_se, flags);
1350 enqueue_top_rt_rq(&rq->rt);
1353 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1355 struct rq *rq = rq_of_rt_se(rt_se);
1357 dequeue_rt_stack(rt_se, flags);
1359 for_each_sched_rt_entity(rt_se) {
1360 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1362 if (rt_rq && rt_rq->rt_nr_running)
1363 __enqueue_rt_entity(rt_se, flags);
1365 enqueue_top_rt_rq(&rq->rt);
1369 * Adding/removing a task to/from a priority array:
1371 static void
1372 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1374 struct sched_rt_entity *rt_se = &p->rt;
1376 if (flags & ENQUEUE_WAKEUP)
1377 rt_se->timeout = 0;
1379 enqueue_rt_entity(rt_se, flags);
1381 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1382 enqueue_pushable_task(rq, p);
1385 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1387 struct sched_rt_entity *rt_se = &p->rt;
1389 update_curr_rt(rq);
1390 dequeue_rt_entity(rt_se, flags);
1392 dequeue_pushable_task(rq, p);
1396 * Put task to the head or the end of the run list without the overhead of
1397 * dequeue followed by enqueue.
1399 static void
1400 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1402 if (on_rt_rq(rt_se)) {
1403 struct rt_prio_array *array = &rt_rq->active;
1404 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1406 if (head)
1407 list_move(&rt_se->run_list, queue);
1408 else
1409 list_move_tail(&rt_se->run_list, queue);
1413 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1415 struct sched_rt_entity *rt_se = &p->rt;
1416 struct rt_rq *rt_rq;
1418 for_each_sched_rt_entity(rt_se) {
1419 rt_rq = rt_rq_of_se(rt_se);
1420 requeue_rt_entity(rt_rq, rt_se, head);
1424 static void yield_task_rt(struct rq *rq)
1426 requeue_task_rt(rq, rq->curr, 0);
1429 #ifdef CONFIG_SMP
1430 static int find_lowest_rq(struct task_struct *task);
1432 static int
1433 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1435 struct task_struct *curr;
1436 struct rq *rq;
1437 bool test;
1439 /* For anything but wake ups, just return the task_cpu */
1440 if (!(flags & (WF_TTWU | WF_FORK)))
1441 goto out;
1443 rq = cpu_rq(cpu);
1445 rcu_read_lock();
1446 curr = READ_ONCE(rq->curr); /* unlocked access */
1449 * If the current task on @p's runqueue is an RT task, then
1450 * try to see if we can wake this RT task up on another
1451 * runqueue. Otherwise simply start this RT task
1452 * on its current runqueue.
1454 * We want to avoid overloading runqueues. If the woken
1455 * task is a higher priority, then it will stay on this CPU
1456 * and the lower prio task should be moved to another CPU.
1457 * Even though this will probably make the lower prio task
1458 * lose its cache, we do not want to bounce a higher task
1459 * around just because it gave up its CPU, perhaps for a
1460 * lock?
1462 * For equal prio tasks, we just let the scheduler sort it out.
1464 * Otherwise, just let it ride on the affined RQ and the
1465 * post-schedule router will push the preempted task away
1467 * This test is optimistic, if we get it wrong the load-balancer
1468 * will have to sort it out.
1470 * We take into account the capacity of the CPU to ensure it fits the
1471 * requirement of the task - which is only important on heterogeneous
1472 * systems like big.LITTLE.
1474 test = curr &&
1475 unlikely(rt_task(curr)) &&
1476 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1478 if (test || !rt_task_fits_capacity(p, cpu)) {
1479 int target = find_lowest_rq(p);
1482 * Bail out if we were forcing a migration to find a better
1483 * fitting CPU but our search failed.
1485 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1486 goto out_unlock;
1489 * Don't bother moving it if the destination CPU is
1490 * not running a lower priority task.
1492 if (target != -1 &&
1493 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1494 cpu = target;
1497 out_unlock:
1498 rcu_read_unlock();
1500 out:
1501 return cpu;
1504 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1507 * Current can't be migrated, useless to reschedule,
1508 * let's hope p can move out.
1510 if (rq->curr->nr_cpus_allowed == 1 ||
1511 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1512 return;
1515 * p is migratable, so let's not schedule it and
1516 * see if it is pushed or pulled somewhere else.
1518 if (p->nr_cpus_allowed != 1 &&
1519 cpupri_find(&rq->rd->cpupri, p, NULL))
1520 return;
1523 * There appear to be other CPUs that can accept
1524 * the current task but none can run 'p', so lets reschedule
1525 * to try and push the current task away:
1527 requeue_task_rt(rq, p, 1);
1528 resched_curr(rq);
1531 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1533 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1535 * This is OK, because current is on_cpu, which avoids it being
1536 * picked for load-balance and preemption/IRQs are still
1537 * disabled avoiding further scheduler activity on it and we've
1538 * not yet started the picking loop.
1540 rq_unpin_lock(rq, rf);
1541 pull_rt_task(rq);
1542 rq_repin_lock(rq, rf);
1545 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1547 #endif /* CONFIG_SMP */
1550 * Preempt the current task with a newly woken task if needed:
1552 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1554 if (p->prio < rq->curr->prio) {
1555 resched_curr(rq);
1556 return;
1559 #ifdef CONFIG_SMP
1561 * If:
1563 * - the newly woken task is of equal priority to the current task
1564 * - the newly woken task is non-migratable while current is migratable
1565 * - current will be preempted on the next reschedule
1567 * we should check to see if current can readily move to a different
1568 * cpu. If so, we will reschedule to allow the push logic to try
1569 * to move current somewhere else, making room for our non-migratable
1570 * task.
1572 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1573 check_preempt_equal_prio(rq, p);
1574 #endif
1577 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1579 p->se.exec_start = rq_clock_task(rq);
1581 /* The running task is never eligible for pushing */
1582 dequeue_pushable_task(rq, p);
1584 if (!first)
1585 return;
1588 * If prev task was rt, put_prev_task() has already updated the
1589 * utilization. We only care of the case where we start to schedule a
1590 * rt task
1592 if (rq->curr->sched_class != &rt_sched_class)
1593 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1595 rt_queue_push_tasks(rq);
1598 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1599 struct rt_rq *rt_rq)
1601 struct rt_prio_array *array = &rt_rq->active;
1602 struct sched_rt_entity *next = NULL;
1603 struct list_head *queue;
1604 int idx;
1606 idx = sched_find_first_bit(array->bitmap);
1607 BUG_ON(idx >= MAX_RT_PRIO);
1609 queue = array->queue + idx;
1610 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1612 return next;
1615 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1617 struct sched_rt_entity *rt_se;
1618 struct rt_rq *rt_rq = &rq->rt;
1620 do {
1621 rt_se = pick_next_rt_entity(rq, rt_rq);
1622 BUG_ON(!rt_se);
1623 rt_rq = group_rt_rq(rt_se);
1624 } while (rt_rq);
1626 return rt_task_of(rt_se);
1629 static struct task_struct *pick_next_task_rt(struct rq *rq)
1631 struct task_struct *p;
1633 if (!sched_rt_runnable(rq))
1634 return NULL;
1636 p = _pick_next_task_rt(rq);
1637 set_next_task_rt(rq, p, true);
1638 return p;
1641 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1643 update_curr_rt(rq);
1645 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1648 * The previous task needs to be made eligible for pushing
1649 * if it is still active
1651 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1652 enqueue_pushable_task(rq, p);
1655 #ifdef CONFIG_SMP
1657 /* Only try algorithms three times */
1658 #define RT_MAX_TRIES 3
1660 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1662 if (!task_running(rq, p) &&
1663 cpumask_test_cpu(cpu, &p->cpus_mask))
1664 return 1;
1666 return 0;
1670 * Return the highest pushable rq's task, which is suitable to be executed
1671 * on the CPU, NULL otherwise
1673 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1675 struct plist_head *head = &rq->rt.pushable_tasks;
1676 struct task_struct *p;
1678 if (!has_pushable_tasks(rq))
1679 return NULL;
1681 plist_for_each_entry(p, head, pushable_tasks) {
1682 if (pick_rt_task(rq, p, cpu))
1683 return p;
1686 return NULL;
1689 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1691 static int find_lowest_rq(struct task_struct *task)
1693 struct sched_domain *sd;
1694 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1695 int this_cpu = smp_processor_id();
1696 int cpu = task_cpu(task);
1697 int ret;
1699 /* Make sure the mask is initialized first */
1700 if (unlikely(!lowest_mask))
1701 return -1;
1703 if (task->nr_cpus_allowed == 1)
1704 return -1; /* No other targets possible */
1707 * If we're on asym system ensure we consider the different capacities
1708 * of the CPUs when searching for the lowest_mask.
1710 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1712 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1713 task, lowest_mask,
1714 rt_task_fits_capacity);
1715 } else {
1717 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1718 task, lowest_mask);
1721 if (!ret)
1722 return -1; /* No targets found */
1725 * At this point we have built a mask of CPUs representing the
1726 * lowest priority tasks in the system. Now we want to elect
1727 * the best one based on our affinity and topology.
1729 * We prioritize the last CPU that the task executed on since
1730 * it is most likely cache-hot in that location.
1732 if (cpumask_test_cpu(cpu, lowest_mask))
1733 return cpu;
1736 * Otherwise, we consult the sched_domains span maps to figure
1737 * out which CPU is logically closest to our hot cache data.
1739 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1740 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1742 rcu_read_lock();
1743 for_each_domain(cpu, sd) {
1744 if (sd->flags & SD_WAKE_AFFINE) {
1745 int best_cpu;
1748 * "this_cpu" is cheaper to preempt than a
1749 * remote processor.
1751 if (this_cpu != -1 &&
1752 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1753 rcu_read_unlock();
1754 return this_cpu;
1757 best_cpu = cpumask_any_and_distribute(lowest_mask,
1758 sched_domain_span(sd));
1759 if (best_cpu < nr_cpu_ids) {
1760 rcu_read_unlock();
1761 return best_cpu;
1765 rcu_read_unlock();
1768 * And finally, if there were no matches within the domains
1769 * just give the caller *something* to work with from the compatible
1770 * locations.
1772 if (this_cpu != -1)
1773 return this_cpu;
1775 cpu = cpumask_any_distribute(lowest_mask);
1776 if (cpu < nr_cpu_ids)
1777 return cpu;
1779 return -1;
1782 /* Will lock the rq it finds */
1783 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1785 struct rq *lowest_rq = NULL;
1786 int tries;
1787 int cpu;
1789 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1790 cpu = find_lowest_rq(task);
1792 if ((cpu == -1) || (cpu == rq->cpu))
1793 break;
1795 lowest_rq = cpu_rq(cpu);
1797 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1799 * Target rq has tasks of equal or higher priority,
1800 * retrying does not release any lock and is unlikely
1801 * to yield a different result.
1803 lowest_rq = NULL;
1804 break;
1807 /* if the prio of this runqueue changed, try again */
1808 if (double_lock_balance(rq, lowest_rq)) {
1810 * We had to unlock the run queue. In
1811 * the mean time, task could have
1812 * migrated already or had its affinity changed.
1813 * Also make sure that it wasn't scheduled on its rq.
1815 if (unlikely(task_rq(task) != rq ||
1816 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1817 task_running(rq, task) ||
1818 !rt_task(task) ||
1819 !task_on_rq_queued(task))) {
1821 double_unlock_balance(rq, lowest_rq);
1822 lowest_rq = NULL;
1823 break;
1827 /* If this rq is still suitable use it. */
1828 if (lowest_rq->rt.highest_prio.curr > task->prio)
1829 break;
1831 /* try again */
1832 double_unlock_balance(rq, lowest_rq);
1833 lowest_rq = NULL;
1836 return lowest_rq;
1839 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1841 struct task_struct *p;
1843 if (!has_pushable_tasks(rq))
1844 return NULL;
1846 p = plist_first_entry(&rq->rt.pushable_tasks,
1847 struct task_struct, pushable_tasks);
1849 BUG_ON(rq->cpu != task_cpu(p));
1850 BUG_ON(task_current(rq, p));
1851 BUG_ON(p->nr_cpus_allowed <= 1);
1853 BUG_ON(!task_on_rq_queued(p));
1854 BUG_ON(!rt_task(p));
1856 return p;
1860 * If the current CPU has more than one RT task, see if the non
1861 * running task can migrate over to a CPU that is running a task
1862 * of lesser priority.
1864 static int push_rt_task(struct rq *rq, bool pull)
1866 struct task_struct *next_task;
1867 struct rq *lowest_rq;
1868 int ret = 0;
1870 if (!rq->rt.overloaded)
1871 return 0;
1873 next_task = pick_next_pushable_task(rq);
1874 if (!next_task)
1875 return 0;
1877 retry:
1878 if (is_migration_disabled(next_task)) {
1879 struct task_struct *push_task = NULL;
1880 int cpu;
1882 if (!pull || rq->push_busy)
1883 return 0;
1885 cpu = find_lowest_rq(rq->curr);
1886 if (cpu == -1 || cpu == rq->cpu)
1887 return 0;
1890 * Given we found a CPU with lower priority than @next_task,
1891 * therefore it should be running. However we cannot migrate it
1892 * to this other CPU, instead attempt to push the current
1893 * running task on this CPU away.
1895 push_task = get_push_task(rq);
1896 if (push_task) {
1897 raw_spin_unlock(&rq->lock);
1898 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
1899 push_task, &rq->push_work);
1900 raw_spin_lock(&rq->lock);
1903 return 0;
1906 if (WARN_ON(next_task == rq->curr))
1907 return 0;
1910 * It's possible that the next_task slipped in of
1911 * higher priority than current. If that's the case
1912 * just reschedule current.
1914 if (unlikely(next_task->prio < rq->curr->prio)) {
1915 resched_curr(rq);
1916 return 0;
1919 /* We might release rq lock */
1920 get_task_struct(next_task);
1922 /* find_lock_lowest_rq locks the rq if found */
1923 lowest_rq = find_lock_lowest_rq(next_task, rq);
1924 if (!lowest_rq) {
1925 struct task_struct *task;
1927 * find_lock_lowest_rq releases rq->lock
1928 * so it is possible that next_task has migrated.
1930 * We need to make sure that the task is still on the same
1931 * run-queue and is also still the next task eligible for
1932 * pushing.
1934 task = pick_next_pushable_task(rq);
1935 if (task == next_task) {
1937 * The task hasn't migrated, and is still the next
1938 * eligible task, but we failed to find a run-queue
1939 * to push it to. Do not retry in this case, since
1940 * other CPUs will pull from us when ready.
1942 goto out;
1945 if (!task)
1946 /* No more tasks, just exit */
1947 goto out;
1950 * Something has shifted, try again.
1952 put_task_struct(next_task);
1953 next_task = task;
1954 goto retry;
1957 deactivate_task(rq, next_task, 0);
1958 set_task_cpu(next_task, lowest_rq->cpu);
1959 activate_task(lowest_rq, next_task, 0);
1960 resched_curr(lowest_rq);
1961 ret = 1;
1963 double_unlock_balance(rq, lowest_rq);
1964 out:
1965 put_task_struct(next_task);
1967 return ret;
1970 static void push_rt_tasks(struct rq *rq)
1972 /* push_rt_task will return true if it moved an RT */
1973 while (push_rt_task(rq, false))
1977 #ifdef HAVE_RT_PUSH_IPI
1980 * When a high priority task schedules out from a CPU and a lower priority
1981 * task is scheduled in, a check is made to see if there's any RT tasks
1982 * on other CPUs that are waiting to run because a higher priority RT task
1983 * is currently running on its CPU. In this case, the CPU with multiple RT
1984 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1985 * up that may be able to run one of its non-running queued RT tasks.
1987 * All CPUs with overloaded RT tasks need to be notified as there is currently
1988 * no way to know which of these CPUs have the highest priority task waiting
1989 * to run. Instead of trying to take a spinlock on each of these CPUs,
1990 * which has shown to cause large latency when done on machines with many
1991 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1992 * RT tasks waiting to run.
1994 * Just sending an IPI to each of the CPUs is also an issue, as on large
1995 * count CPU machines, this can cause an IPI storm on a CPU, especially
1996 * if its the only CPU with multiple RT tasks queued, and a large number
1997 * of CPUs scheduling a lower priority task at the same time.
1999 * Each root domain has its own irq work function that can iterate over
2000 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2001 * tassk must be checked if there's one or many CPUs that are lowering
2002 * their priority, there's a single irq work iterator that will try to
2003 * push off RT tasks that are waiting to run.
2005 * When a CPU schedules a lower priority task, it will kick off the
2006 * irq work iterator that will jump to each CPU with overloaded RT tasks.
2007 * As it only takes the first CPU that schedules a lower priority task
2008 * to start the process, the rto_start variable is incremented and if
2009 * the atomic result is one, then that CPU will try to take the rto_lock.
2010 * This prevents high contention on the lock as the process handles all
2011 * CPUs scheduling lower priority tasks.
2013 * All CPUs that are scheduling a lower priority task will increment the
2014 * rt_loop_next variable. This will make sure that the irq work iterator
2015 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2016 * priority task, even if the iterator is in the middle of a scan. Incrementing
2017 * the rt_loop_next will cause the iterator to perform another scan.
2020 static int rto_next_cpu(struct root_domain *rd)
2022 int next;
2023 int cpu;
2026 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2027 * rt_next_cpu() will simply return the first CPU found in
2028 * the rto_mask.
2030 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2031 * will return the next CPU found in the rto_mask.
2033 * If there are no more CPUs left in the rto_mask, then a check is made
2034 * against rto_loop and rto_loop_next. rto_loop is only updated with
2035 * the rto_lock held, but any CPU may increment the rto_loop_next
2036 * without any locking.
2038 for (;;) {
2040 /* When rto_cpu is -1 this acts like cpumask_first() */
2041 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2043 rd->rto_cpu = cpu;
2045 if (cpu < nr_cpu_ids)
2046 return cpu;
2048 rd->rto_cpu = -1;
2051 * ACQUIRE ensures we see the @rto_mask changes
2052 * made prior to the @next value observed.
2054 * Matches WMB in rt_set_overload().
2056 next = atomic_read_acquire(&rd->rto_loop_next);
2058 if (rd->rto_loop == next)
2059 break;
2061 rd->rto_loop = next;
2064 return -1;
2067 static inline bool rto_start_trylock(atomic_t *v)
2069 return !atomic_cmpxchg_acquire(v, 0, 1);
2072 static inline void rto_start_unlock(atomic_t *v)
2074 atomic_set_release(v, 0);
2077 static void tell_cpu_to_push(struct rq *rq)
2079 int cpu = -1;
2081 /* Keep the loop going if the IPI is currently active */
2082 atomic_inc(&rq->rd->rto_loop_next);
2084 /* Only one CPU can initiate a loop at a time */
2085 if (!rto_start_trylock(&rq->rd->rto_loop_start))
2086 return;
2088 raw_spin_lock(&rq->rd->rto_lock);
2091 * The rto_cpu is updated under the lock, if it has a valid CPU
2092 * then the IPI is still running and will continue due to the
2093 * update to loop_next, and nothing needs to be done here.
2094 * Otherwise it is finishing up and an ipi needs to be sent.
2096 if (rq->rd->rto_cpu < 0)
2097 cpu = rto_next_cpu(rq->rd);
2099 raw_spin_unlock(&rq->rd->rto_lock);
2101 rto_start_unlock(&rq->rd->rto_loop_start);
2103 if (cpu >= 0) {
2104 /* Make sure the rd does not get freed while pushing */
2105 sched_get_rd(rq->rd);
2106 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2110 /* Called from hardirq context */
2111 void rto_push_irq_work_func(struct irq_work *work)
2113 struct root_domain *rd =
2114 container_of(work, struct root_domain, rto_push_work);
2115 struct rq *rq;
2116 int cpu;
2118 rq = this_rq();
2121 * We do not need to grab the lock to check for has_pushable_tasks.
2122 * When it gets updated, a check is made if a push is possible.
2124 if (has_pushable_tasks(rq)) {
2125 raw_spin_lock(&rq->lock);
2126 while (push_rt_task(rq, true))
2128 raw_spin_unlock(&rq->lock);
2131 raw_spin_lock(&rd->rto_lock);
2133 /* Pass the IPI to the next rt overloaded queue */
2134 cpu = rto_next_cpu(rd);
2136 raw_spin_unlock(&rd->rto_lock);
2138 if (cpu < 0) {
2139 sched_put_rd(rd);
2140 return;
2143 /* Try the next RT overloaded CPU */
2144 irq_work_queue_on(&rd->rto_push_work, cpu);
2146 #endif /* HAVE_RT_PUSH_IPI */
2148 static void pull_rt_task(struct rq *this_rq)
2150 int this_cpu = this_rq->cpu, cpu;
2151 bool resched = false;
2152 struct task_struct *p, *push_task;
2153 struct rq *src_rq;
2154 int rt_overload_count = rt_overloaded(this_rq);
2156 if (likely(!rt_overload_count))
2157 return;
2160 * Match the barrier from rt_set_overloaded; this guarantees that if we
2161 * see overloaded we must also see the rto_mask bit.
2163 smp_rmb();
2165 /* If we are the only overloaded CPU do nothing */
2166 if (rt_overload_count == 1 &&
2167 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2168 return;
2170 #ifdef HAVE_RT_PUSH_IPI
2171 if (sched_feat(RT_PUSH_IPI)) {
2172 tell_cpu_to_push(this_rq);
2173 return;
2175 #endif
2177 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2178 if (this_cpu == cpu)
2179 continue;
2181 src_rq = cpu_rq(cpu);
2184 * Don't bother taking the src_rq->lock if the next highest
2185 * task is known to be lower-priority than our current task.
2186 * This may look racy, but if this value is about to go
2187 * logically higher, the src_rq will push this task away.
2188 * And if its going logically lower, we do not care
2190 if (src_rq->rt.highest_prio.next >=
2191 this_rq->rt.highest_prio.curr)
2192 continue;
2195 * We can potentially drop this_rq's lock in
2196 * double_lock_balance, and another CPU could
2197 * alter this_rq
2199 push_task = NULL;
2200 double_lock_balance(this_rq, src_rq);
2203 * We can pull only a task, which is pushable
2204 * on its rq, and no others.
2206 p = pick_highest_pushable_task(src_rq, this_cpu);
2209 * Do we have an RT task that preempts
2210 * the to-be-scheduled task?
2212 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2213 WARN_ON(p == src_rq->curr);
2214 WARN_ON(!task_on_rq_queued(p));
2217 * There's a chance that p is higher in priority
2218 * than what's currently running on its CPU.
2219 * This is just that p is wakeing up and hasn't
2220 * had a chance to schedule. We only pull
2221 * p if it is lower in priority than the
2222 * current task on the run queue
2224 if (p->prio < src_rq->curr->prio)
2225 goto skip;
2227 if (is_migration_disabled(p)) {
2228 push_task = get_push_task(src_rq);
2229 } else {
2230 deactivate_task(src_rq, p, 0);
2231 set_task_cpu(p, this_cpu);
2232 activate_task(this_rq, p, 0);
2233 resched = true;
2236 * We continue with the search, just in
2237 * case there's an even higher prio task
2238 * in another runqueue. (low likelihood
2239 * but possible)
2242 skip:
2243 double_unlock_balance(this_rq, src_rq);
2245 if (push_task) {
2246 raw_spin_unlock(&this_rq->lock);
2247 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2248 push_task, &src_rq->push_work);
2249 raw_spin_lock(&this_rq->lock);
2253 if (resched)
2254 resched_curr(this_rq);
2258 * If we are not running and we are not going to reschedule soon, we should
2259 * try to push tasks away now
2261 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2263 bool need_to_push = !task_running(rq, p) &&
2264 !test_tsk_need_resched(rq->curr) &&
2265 p->nr_cpus_allowed > 1 &&
2266 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2267 (rq->curr->nr_cpus_allowed < 2 ||
2268 rq->curr->prio <= p->prio);
2270 if (need_to_push)
2271 push_rt_tasks(rq);
2274 /* Assumes rq->lock is held */
2275 static void rq_online_rt(struct rq *rq)
2277 if (rq->rt.overloaded)
2278 rt_set_overload(rq);
2280 __enable_runtime(rq);
2282 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2285 /* Assumes rq->lock is held */
2286 static void rq_offline_rt(struct rq *rq)
2288 if (rq->rt.overloaded)
2289 rt_clear_overload(rq);
2291 __disable_runtime(rq);
2293 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2297 * When switch from the rt queue, we bring ourselves to a position
2298 * that we might want to pull RT tasks from other runqueues.
2300 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2303 * If there are other RT tasks then we will reschedule
2304 * and the scheduling of the other RT tasks will handle
2305 * the balancing. But if we are the last RT task
2306 * we may need to handle the pulling of RT tasks
2307 * now.
2309 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2310 return;
2312 rt_queue_pull_task(rq);
2315 void __init init_sched_rt_class(void)
2317 unsigned int i;
2319 for_each_possible_cpu(i) {
2320 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2321 GFP_KERNEL, cpu_to_node(i));
2324 #endif /* CONFIG_SMP */
2327 * When switching a task to RT, we may overload the runqueue
2328 * with RT tasks. In this case we try to push them off to
2329 * other runqueues.
2331 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2334 * If we are already running, then there's nothing
2335 * that needs to be done. But if we are not running
2336 * we may need to preempt the current running task.
2337 * If that current running task is also an RT task
2338 * then see if we can move to another run queue.
2340 if (task_on_rq_queued(p) && rq->curr != p) {
2341 #ifdef CONFIG_SMP
2342 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2343 rt_queue_push_tasks(rq);
2344 #endif /* CONFIG_SMP */
2345 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2346 resched_curr(rq);
2351 * Priority of the task has changed. This may cause
2352 * us to initiate a push or pull.
2354 static void
2355 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2357 if (!task_on_rq_queued(p))
2358 return;
2360 if (rq->curr == p) {
2361 #ifdef CONFIG_SMP
2363 * If our priority decreases while running, we
2364 * may need to pull tasks to this runqueue.
2366 if (oldprio < p->prio)
2367 rt_queue_pull_task(rq);
2370 * If there's a higher priority task waiting to run
2371 * then reschedule.
2373 if (p->prio > rq->rt.highest_prio.curr)
2374 resched_curr(rq);
2375 #else
2376 /* For UP simply resched on drop of prio */
2377 if (oldprio < p->prio)
2378 resched_curr(rq);
2379 #endif /* CONFIG_SMP */
2380 } else {
2382 * This task is not running, but if it is
2383 * greater than the current running task
2384 * then reschedule.
2386 if (p->prio < rq->curr->prio)
2387 resched_curr(rq);
2391 #ifdef CONFIG_POSIX_TIMERS
2392 static void watchdog(struct rq *rq, struct task_struct *p)
2394 unsigned long soft, hard;
2396 /* max may change after cur was read, this will be fixed next tick */
2397 soft = task_rlimit(p, RLIMIT_RTTIME);
2398 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2400 if (soft != RLIM_INFINITY) {
2401 unsigned long next;
2403 if (p->rt.watchdog_stamp != jiffies) {
2404 p->rt.timeout++;
2405 p->rt.watchdog_stamp = jiffies;
2408 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2409 if (p->rt.timeout > next) {
2410 posix_cputimers_rt_watchdog(&p->posix_cputimers,
2411 p->se.sum_exec_runtime);
2415 #else
2416 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2417 #endif
2420 * scheduler tick hitting a task of our scheduling class.
2422 * NOTE: This function can be called remotely by the tick offload that
2423 * goes along full dynticks. Therefore no local assumption can be made
2424 * and everything must be accessed through the @rq and @curr passed in
2425 * parameters.
2427 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2429 struct sched_rt_entity *rt_se = &p->rt;
2431 update_curr_rt(rq);
2432 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2434 watchdog(rq, p);
2437 * RR tasks need a special form of timeslice management.
2438 * FIFO tasks have no timeslices.
2440 if (p->policy != SCHED_RR)
2441 return;
2443 if (--p->rt.time_slice)
2444 return;
2446 p->rt.time_slice = sched_rr_timeslice;
2449 * Requeue to the end of queue if we (and all of our ancestors) are not
2450 * the only element on the queue
2452 for_each_sched_rt_entity(rt_se) {
2453 if (rt_se->run_list.prev != rt_se->run_list.next) {
2454 requeue_task_rt(rq, p, 0);
2455 resched_curr(rq);
2456 return;
2461 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2464 * Time slice is 0 for SCHED_FIFO tasks
2466 if (task->policy == SCHED_RR)
2467 return sched_rr_timeslice;
2468 else
2469 return 0;
2472 DEFINE_SCHED_CLASS(rt) = {
2474 .enqueue_task = enqueue_task_rt,
2475 .dequeue_task = dequeue_task_rt,
2476 .yield_task = yield_task_rt,
2478 .check_preempt_curr = check_preempt_curr_rt,
2480 .pick_next_task = pick_next_task_rt,
2481 .put_prev_task = put_prev_task_rt,
2482 .set_next_task = set_next_task_rt,
2484 #ifdef CONFIG_SMP
2485 .balance = balance_rt,
2486 .select_task_rq = select_task_rq_rt,
2487 .set_cpus_allowed = set_cpus_allowed_common,
2488 .rq_online = rq_online_rt,
2489 .rq_offline = rq_offline_rt,
2490 .task_woken = task_woken_rt,
2491 .switched_from = switched_from_rt,
2492 .find_lock_rq = find_lock_lowest_rq,
2493 #endif
2495 .task_tick = task_tick_rt,
2497 .get_rr_interval = get_rr_interval_rt,
2499 .prio_changed = prio_changed_rt,
2500 .switched_to = switched_to_rt,
2502 .update_curr = update_curr_rt,
2504 #ifdef CONFIG_UCLAMP_TASK
2505 .uclamp_enabled = 1,
2506 #endif
2509 #ifdef CONFIG_RT_GROUP_SCHED
2511 * Ensure that the real time constraints are schedulable.
2513 static DEFINE_MUTEX(rt_constraints_mutex);
2515 static inline int tg_has_rt_tasks(struct task_group *tg)
2517 struct task_struct *task;
2518 struct css_task_iter it;
2519 int ret = 0;
2522 * Autogroups do not have RT tasks; see autogroup_create().
2524 if (task_group_is_autogroup(tg))
2525 return 0;
2527 css_task_iter_start(&tg->css, 0, &it);
2528 while (!ret && (task = css_task_iter_next(&it)))
2529 ret |= rt_task(task);
2530 css_task_iter_end(&it);
2532 return ret;
2535 struct rt_schedulable_data {
2536 struct task_group *tg;
2537 u64 rt_period;
2538 u64 rt_runtime;
2541 static int tg_rt_schedulable(struct task_group *tg, void *data)
2543 struct rt_schedulable_data *d = data;
2544 struct task_group *child;
2545 unsigned long total, sum = 0;
2546 u64 period, runtime;
2548 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2549 runtime = tg->rt_bandwidth.rt_runtime;
2551 if (tg == d->tg) {
2552 period = d->rt_period;
2553 runtime = d->rt_runtime;
2557 * Cannot have more runtime than the period.
2559 if (runtime > period && runtime != RUNTIME_INF)
2560 return -EINVAL;
2563 * Ensure we don't starve existing RT tasks if runtime turns zero.
2565 if (rt_bandwidth_enabled() && !runtime &&
2566 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2567 return -EBUSY;
2569 total = to_ratio(period, runtime);
2572 * Nobody can have more than the global setting allows.
2574 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2575 return -EINVAL;
2578 * The sum of our children's runtime should not exceed our own.
2580 list_for_each_entry_rcu(child, &tg->children, siblings) {
2581 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2582 runtime = child->rt_bandwidth.rt_runtime;
2584 if (child == d->tg) {
2585 period = d->rt_period;
2586 runtime = d->rt_runtime;
2589 sum += to_ratio(period, runtime);
2592 if (sum > total)
2593 return -EINVAL;
2595 return 0;
2598 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2600 int ret;
2602 struct rt_schedulable_data data = {
2603 .tg = tg,
2604 .rt_period = period,
2605 .rt_runtime = runtime,
2608 rcu_read_lock();
2609 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2610 rcu_read_unlock();
2612 return ret;
2615 static int tg_set_rt_bandwidth(struct task_group *tg,
2616 u64 rt_period, u64 rt_runtime)
2618 int i, err = 0;
2621 * Disallowing the root group RT runtime is BAD, it would disallow the
2622 * kernel creating (and or operating) RT threads.
2624 if (tg == &root_task_group && rt_runtime == 0)
2625 return -EINVAL;
2627 /* No period doesn't make any sense. */
2628 if (rt_period == 0)
2629 return -EINVAL;
2632 * Bound quota to defend quota against overflow during bandwidth shift.
2634 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2635 return -EINVAL;
2637 mutex_lock(&rt_constraints_mutex);
2638 err = __rt_schedulable(tg, rt_period, rt_runtime);
2639 if (err)
2640 goto unlock;
2642 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2643 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2644 tg->rt_bandwidth.rt_runtime = rt_runtime;
2646 for_each_possible_cpu(i) {
2647 struct rt_rq *rt_rq = tg->rt_rq[i];
2649 raw_spin_lock(&rt_rq->rt_runtime_lock);
2650 rt_rq->rt_runtime = rt_runtime;
2651 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2653 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2654 unlock:
2655 mutex_unlock(&rt_constraints_mutex);
2657 return err;
2660 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2662 u64 rt_runtime, rt_period;
2664 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2665 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2666 if (rt_runtime_us < 0)
2667 rt_runtime = RUNTIME_INF;
2668 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2669 return -EINVAL;
2671 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2674 long sched_group_rt_runtime(struct task_group *tg)
2676 u64 rt_runtime_us;
2678 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2679 return -1;
2681 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2682 do_div(rt_runtime_us, NSEC_PER_USEC);
2683 return rt_runtime_us;
2686 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2688 u64 rt_runtime, rt_period;
2690 if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2691 return -EINVAL;
2693 rt_period = rt_period_us * NSEC_PER_USEC;
2694 rt_runtime = tg->rt_bandwidth.rt_runtime;
2696 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2699 long sched_group_rt_period(struct task_group *tg)
2701 u64 rt_period_us;
2703 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2704 do_div(rt_period_us, NSEC_PER_USEC);
2705 return rt_period_us;
2708 static int sched_rt_global_constraints(void)
2710 int ret = 0;
2712 mutex_lock(&rt_constraints_mutex);
2713 ret = __rt_schedulable(NULL, 0, 0);
2714 mutex_unlock(&rt_constraints_mutex);
2716 return ret;
2719 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2721 /* Don't accept realtime tasks when there is no way for them to run */
2722 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2723 return 0;
2725 return 1;
2728 #else /* !CONFIG_RT_GROUP_SCHED */
2729 static int sched_rt_global_constraints(void)
2731 unsigned long flags;
2732 int i;
2734 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2735 for_each_possible_cpu(i) {
2736 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2738 raw_spin_lock(&rt_rq->rt_runtime_lock);
2739 rt_rq->rt_runtime = global_rt_runtime();
2740 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2742 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2744 return 0;
2746 #endif /* CONFIG_RT_GROUP_SCHED */
2748 static int sched_rt_global_validate(void)
2750 if (sysctl_sched_rt_period <= 0)
2751 return -EINVAL;
2753 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2754 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2755 ((u64)sysctl_sched_rt_runtime *
2756 NSEC_PER_USEC > max_rt_runtime)))
2757 return -EINVAL;
2759 return 0;
2762 static void sched_rt_do_global(void)
2764 def_rt_bandwidth.rt_runtime = global_rt_runtime();
2765 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2768 int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2769 size_t *lenp, loff_t *ppos)
2771 int old_period, old_runtime;
2772 static DEFINE_MUTEX(mutex);
2773 int ret;
2775 mutex_lock(&mutex);
2776 old_period = sysctl_sched_rt_period;
2777 old_runtime = sysctl_sched_rt_runtime;
2779 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2781 if (!ret && write) {
2782 ret = sched_rt_global_validate();
2783 if (ret)
2784 goto undo;
2786 ret = sched_dl_global_validate();
2787 if (ret)
2788 goto undo;
2790 ret = sched_rt_global_constraints();
2791 if (ret)
2792 goto undo;
2794 sched_rt_do_global();
2795 sched_dl_do_global();
2797 if (0) {
2798 undo:
2799 sysctl_sched_rt_period = old_period;
2800 sysctl_sched_rt_runtime = old_runtime;
2802 mutex_unlock(&mutex);
2804 return ret;
2807 int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2808 size_t *lenp, loff_t *ppos)
2810 int ret;
2811 static DEFINE_MUTEX(mutex);
2813 mutex_lock(&mutex);
2814 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2816 * Make sure that internally we keep jiffies.
2817 * Also, writing zero resets the timeslice to default:
2819 if (!ret && write) {
2820 sched_rr_timeslice =
2821 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2822 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2824 mutex_unlock(&mutex);
2826 return ret;
2829 #ifdef CONFIG_SCHED_DEBUG
2830 void print_rt_stats(struct seq_file *m, int cpu)
2832 rt_rq_iter_t iter;
2833 struct rt_rq *rt_rq;
2835 rcu_read_lock();
2836 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2837 print_rt_rq(m, cpu, rt_rq);
2838 rcu_read_unlock();
2840 #endif /* CONFIG_SCHED_DEBUG */