1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
3 * Copyright (c) 2016-2018 Oracle. All rights reserved.
4 * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved.
5 * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved.
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the BSD-type
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
17 * Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
20 * Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials provided
23 * with the distribution.
25 * Neither the name of the Network Appliance, Inc. nor the names of
26 * its contributors may be used to endorse or promote products
27 * derived from this software without specific prior written
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 * Author: Tom Tucker <tom@opengridcomputing.com>
47 * The main entry point is svc_rdma_recvfrom. This is called from
48 * svc_recv when the transport indicates there is incoming data to
49 * be read. "Data Ready" is signaled when an RDMA Receive completes,
50 * or when a set of RDMA Reads complete.
52 * An svc_rqst is passed in. This structure contains an array of
53 * free pages (rq_pages) that will contain the incoming RPC message.
55 * Short messages are moved directly into svc_rqst::rq_arg, and
56 * the RPC Call is ready to be processed by the Upper Layer.
57 * svc_rdma_recvfrom returns the length of the RPC Call message,
58 * completing the reception of the RPC Call.
60 * However, when an incoming message has Read chunks,
61 * svc_rdma_recvfrom must post RDMA Reads to pull the RPC Call's
62 * data payload from the client. svc_rdma_recvfrom sets up the
63 * RDMA Reads using pages in svc_rqst::rq_pages, which are
64 * transferred to an svc_rdma_recv_ctxt for the duration of the
65 * I/O. svc_rdma_recvfrom then returns zero, since the RPC message
66 * is still not yet ready.
68 * When the Read chunk payloads have become available on the
69 * server, "Data Ready" is raised again, and svc_recv calls
70 * svc_rdma_recvfrom again. This second call may use a different
71 * svc_rqst than the first one, thus any information that needs
72 * to be preserved across these two calls is kept in an
75 * The second call to svc_rdma_recvfrom performs final assembly
76 * of the RPC Call message, using the RDMA Read sink pages kept in
77 * the svc_rdma_recv_ctxt. The xdr_buf is copied from the
78 * svc_rdma_recv_ctxt to the second svc_rqst. The second call returns
79 * the length of the completed RPC Call message.
83 * Pages under I/O must be transferred from the first svc_rqst to an
84 * svc_rdma_recv_ctxt before the first svc_rdma_recvfrom call returns.
86 * The first svc_rqst supplies pages for RDMA Reads. These are moved
87 * from rqstp::rq_pages into ctxt::pages. The consumed elements of
88 * the rq_pages array are set to NULL and refilled with the first
89 * svc_rdma_recvfrom call returns.
91 * During the second svc_rdma_recvfrom call, RDMA Read sink pages
92 * are transferred from the svc_rdma_recv_ctxt to the second svc_rqst
93 * (see rdma_read_complete() below).
96 #include <linux/slab.h>
97 #include <linux/spinlock.h>
98 #include <asm/unaligned.h>
99 #include <rdma/ib_verbs.h>
100 #include <rdma/rdma_cm.h>
102 #include <linux/sunrpc/xdr.h>
103 #include <linux/sunrpc/debug.h>
104 #include <linux/sunrpc/rpc_rdma.h>
105 #include <linux/sunrpc/svc_rdma.h>
107 #include "xprt_rdma.h"
108 #include <trace/events/rpcrdma.h>
110 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
112 static void svc_rdma_wc_receive(struct ib_cq
*cq
, struct ib_wc
*wc
);
114 static inline struct svc_rdma_recv_ctxt
*
115 svc_rdma_next_recv_ctxt(struct list_head
*list
)
117 return list_first_entry_or_null(list
, struct svc_rdma_recv_ctxt
,
121 static void svc_rdma_recv_cid_init(struct svcxprt_rdma
*rdma
,
122 struct rpc_rdma_cid
*cid
)
124 cid
->ci_queue_id
= rdma
->sc_rq_cq
->res
.id
;
125 cid
->ci_completion_id
= atomic_inc_return(&rdma
->sc_completion_ids
);
128 static struct svc_rdma_recv_ctxt
*
129 svc_rdma_recv_ctxt_alloc(struct svcxprt_rdma
*rdma
)
131 struct svc_rdma_recv_ctxt
*ctxt
;
135 ctxt
= kmalloc(sizeof(*ctxt
), GFP_KERNEL
);
138 buffer
= kmalloc(rdma
->sc_max_req_size
, GFP_KERNEL
);
141 addr
= ib_dma_map_single(rdma
->sc_pd
->device
, buffer
,
142 rdma
->sc_max_req_size
, DMA_FROM_DEVICE
);
143 if (ib_dma_mapping_error(rdma
->sc_pd
->device
, addr
))
146 svc_rdma_recv_cid_init(rdma
, &ctxt
->rc_cid
);
147 pcl_init(&ctxt
->rc_call_pcl
);
148 pcl_init(&ctxt
->rc_read_pcl
);
149 pcl_init(&ctxt
->rc_write_pcl
);
150 pcl_init(&ctxt
->rc_reply_pcl
);
152 ctxt
->rc_recv_wr
.next
= NULL
;
153 ctxt
->rc_recv_wr
.wr_cqe
= &ctxt
->rc_cqe
;
154 ctxt
->rc_recv_wr
.sg_list
= &ctxt
->rc_recv_sge
;
155 ctxt
->rc_recv_wr
.num_sge
= 1;
156 ctxt
->rc_cqe
.done
= svc_rdma_wc_receive
;
157 ctxt
->rc_recv_sge
.addr
= addr
;
158 ctxt
->rc_recv_sge
.length
= rdma
->sc_max_req_size
;
159 ctxt
->rc_recv_sge
.lkey
= rdma
->sc_pd
->local_dma_lkey
;
160 ctxt
->rc_recv_buf
= buffer
;
161 ctxt
->rc_temp
= false;
172 static void svc_rdma_recv_ctxt_destroy(struct svcxprt_rdma
*rdma
,
173 struct svc_rdma_recv_ctxt
*ctxt
)
175 ib_dma_unmap_single(rdma
->sc_pd
->device
, ctxt
->rc_recv_sge
.addr
,
176 ctxt
->rc_recv_sge
.length
, DMA_FROM_DEVICE
);
177 kfree(ctxt
->rc_recv_buf
);
182 * svc_rdma_recv_ctxts_destroy - Release all recv_ctxt's for an xprt
183 * @rdma: svcxprt_rdma being torn down
186 void svc_rdma_recv_ctxts_destroy(struct svcxprt_rdma
*rdma
)
188 struct svc_rdma_recv_ctxt
*ctxt
;
189 struct llist_node
*node
;
191 while ((node
= llist_del_first(&rdma
->sc_recv_ctxts
))) {
192 ctxt
= llist_entry(node
, struct svc_rdma_recv_ctxt
, rc_node
);
193 svc_rdma_recv_ctxt_destroy(rdma
, ctxt
);
198 * svc_rdma_recv_ctxt_get - Allocate a recv_ctxt
199 * @rdma: controlling svcxprt_rdma
201 * Returns a recv_ctxt or (rarely) NULL if none are available.
203 struct svc_rdma_recv_ctxt
*svc_rdma_recv_ctxt_get(struct svcxprt_rdma
*rdma
)
205 struct svc_rdma_recv_ctxt
*ctxt
;
206 struct llist_node
*node
;
208 node
= llist_del_first(&rdma
->sc_recv_ctxts
);
211 ctxt
= llist_entry(node
, struct svc_rdma_recv_ctxt
, rc_node
);
214 ctxt
->rc_page_count
= 0;
218 ctxt
= svc_rdma_recv_ctxt_alloc(rdma
);
225 * svc_rdma_recv_ctxt_put - Return recv_ctxt to free list
226 * @rdma: controlling svcxprt_rdma
227 * @ctxt: object to return to the free list
230 void svc_rdma_recv_ctxt_put(struct svcxprt_rdma
*rdma
,
231 struct svc_rdma_recv_ctxt
*ctxt
)
235 for (i
= 0; i
< ctxt
->rc_page_count
; i
++)
236 put_page(ctxt
->rc_pages
[i
]);
238 pcl_free(&ctxt
->rc_call_pcl
);
239 pcl_free(&ctxt
->rc_read_pcl
);
240 pcl_free(&ctxt
->rc_write_pcl
);
241 pcl_free(&ctxt
->rc_reply_pcl
);
244 llist_add(&ctxt
->rc_node
, &rdma
->sc_recv_ctxts
);
246 svc_rdma_recv_ctxt_destroy(rdma
, ctxt
);
250 * svc_rdma_release_rqst - Release transport-specific per-rqst resources
251 * @rqstp: svc_rqst being released
253 * Ensure that the recv_ctxt is released whether or not a Reply
254 * was sent. For example, the client could close the connection,
255 * or svc_process could drop an RPC, before the Reply is sent.
257 void svc_rdma_release_rqst(struct svc_rqst
*rqstp
)
259 struct svc_rdma_recv_ctxt
*ctxt
= rqstp
->rq_xprt_ctxt
;
260 struct svc_xprt
*xprt
= rqstp
->rq_xprt
;
261 struct svcxprt_rdma
*rdma
=
262 container_of(xprt
, struct svcxprt_rdma
, sc_xprt
);
264 rqstp
->rq_xprt_ctxt
= NULL
;
266 svc_rdma_recv_ctxt_put(rdma
, ctxt
);
269 static int __svc_rdma_post_recv(struct svcxprt_rdma
*rdma
,
270 struct svc_rdma_recv_ctxt
*ctxt
)
274 trace_svcrdma_post_recv(ctxt
);
275 ret
= ib_post_recv(rdma
->sc_qp
, &ctxt
->rc_recv_wr
, NULL
);
281 trace_svcrdma_rq_post_err(rdma
, ret
);
282 svc_rdma_recv_ctxt_put(rdma
, ctxt
);
286 static int svc_rdma_post_recv(struct svcxprt_rdma
*rdma
)
288 struct svc_rdma_recv_ctxt
*ctxt
;
290 if (test_bit(XPT_CLOSE
, &rdma
->sc_xprt
.xpt_flags
))
292 ctxt
= svc_rdma_recv_ctxt_get(rdma
);
295 return __svc_rdma_post_recv(rdma
, ctxt
);
299 * svc_rdma_post_recvs - Post initial set of Recv WRs
300 * @rdma: fresh svcxprt_rdma
302 * Returns true if successful, otherwise false.
304 bool svc_rdma_post_recvs(struct svcxprt_rdma
*rdma
)
306 struct svc_rdma_recv_ctxt
*ctxt
;
310 for (i
= 0; i
< rdma
->sc_max_requests
; i
++) {
311 ctxt
= svc_rdma_recv_ctxt_get(rdma
);
314 ctxt
->rc_temp
= true;
315 ret
= __svc_rdma_post_recv(rdma
, ctxt
);
323 * svc_rdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
324 * @cq: Completion Queue context
325 * @wc: Work Completion object
327 * NB: The svc_xprt/svcxprt_rdma is pinned whenever it's possible that
328 * the Receive completion handler could be running.
330 static void svc_rdma_wc_receive(struct ib_cq
*cq
, struct ib_wc
*wc
)
332 struct svcxprt_rdma
*rdma
= cq
->cq_context
;
333 struct ib_cqe
*cqe
= wc
->wr_cqe
;
334 struct svc_rdma_recv_ctxt
*ctxt
;
336 /* WARNING: Only wc->wr_cqe and wc->status are reliable */
337 ctxt
= container_of(cqe
, struct svc_rdma_recv_ctxt
, rc_cqe
);
339 trace_svcrdma_wc_receive(wc
, &ctxt
->rc_cid
);
340 if (wc
->status
!= IB_WC_SUCCESS
)
343 if (svc_rdma_post_recv(rdma
))
346 /* All wc fields are now known to be valid */
347 ctxt
->rc_byte_len
= wc
->byte_len
;
348 ib_dma_sync_single_for_cpu(rdma
->sc_pd
->device
,
349 ctxt
->rc_recv_sge
.addr
,
350 wc
->byte_len
, DMA_FROM_DEVICE
);
352 spin_lock(&rdma
->sc_rq_dto_lock
);
353 list_add_tail(&ctxt
->rc_list
, &rdma
->sc_rq_dto_q
);
354 /* Note the unlock pairs with the smp_rmb in svc_xprt_ready: */
355 set_bit(XPT_DATA
, &rdma
->sc_xprt
.xpt_flags
);
356 spin_unlock(&rdma
->sc_rq_dto_lock
);
357 if (!test_bit(RDMAXPRT_CONN_PENDING
, &rdma
->sc_flags
))
358 svc_xprt_enqueue(&rdma
->sc_xprt
);
363 svc_rdma_recv_ctxt_put(rdma
, ctxt
);
364 set_bit(XPT_CLOSE
, &rdma
->sc_xprt
.xpt_flags
);
365 svc_xprt_enqueue(&rdma
->sc_xprt
);
369 * svc_rdma_flush_recv_queues - Drain pending Receive work
370 * @rdma: svcxprt_rdma being shut down
373 void svc_rdma_flush_recv_queues(struct svcxprt_rdma
*rdma
)
375 struct svc_rdma_recv_ctxt
*ctxt
;
377 while ((ctxt
= svc_rdma_next_recv_ctxt(&rdma
->sc_read_complete_q
))) {
378 list_del(&ctxt
->rc_list
);
379 svc_rdma_recv_ctxt_put(rdma
, ctxt
);
381 while ((ctxt
= svc_rdma_next_recv_ctxt(&rdma
->sc_rq_dto_q
))) {
382 list_del(&ctxt
->rc_list
);
383 svc_rdma_recv_ctxt_put(rdma
, ctxt
);
387 static void svc_rdma_build_arg_xdr(struct svc_rqst
*rqstp
,
388 struct svc_rdma_recv_ctxt
*ctxt
)
390 struct xdr_buf
*arg
= &rqstp
->rq_arg
;
392 arg
->head
[0].iov_base
= ctxt
->rc_recv_buf
;
393 arg
->head
[0].iov_len
= ctxt
->rc_byte_len
;
394 arg
->tail
[0].iov_base
= NULL
;
395 arg
->tail
[0].iov_len
= 0;
398 arg
->buflen
= ctxt
->rc_byte_len
;
399 arg
->len
= ctxt
->rc_byte_len
;
403 * xdr_count_read_segments - Count number of Read segments in Read list
404 * @rctxt: Ingress receive context
405 * @p: Start of an un-decoded Read list
407 * Before allocating anything, ensure the ingress Read list is safe
410 * The segment count is limited to how many segments can fit in the
411 * transport header without overflowing the buffer. That's about 40
412 * Read segments for a 1KB inline threshold.
415 * %true: Read list is valid. @rctxt's xdr_stream is updated to point
416 * to the first byte past the Read list. rc_read_pcl and
417 * rc_call_pcl cl_count fields are set to the number of
418 * Read segments in the list.
419 * %false: Read list is corrupt. @rctxt's xdr_stream is left in an
422 static bool xdr_count_read_segments(struct svc_rdma_recv_ctxt
*rctxt
, __be32
*p
)
424 rctxt
->rc_call_pcl
.cl_count
= 0;
425 rctxt
->rc_read_pcl
.cl_count
= 0;
426 while (xdr_item_is_present(p
)) {
427 u32 position
, handle
, length
;
430 p
= xdr_inline_decode(&rctxt
->rc_stream
,
431 rpcrdma_readseg_maxsz
* sizeof(*p
));
435 xdr_decode_read_segment(p
, &position
, &handle
,
440 ++rctxt
->rc_read_pcl
.cl_count
;
442 ++rctxt
->rc_call_pcl
.cl_count
;
445 p
= xdr_inline_decode(&rctxt
->rc_stream
, sizeof(*p
));
452 /* Sanity check the Read list.
455 * - Read list does not overflow Receive buffer.
456 * - Chunk size limited by largest NFS data payload.
459 * %true: Read list is valid. @rctxt's xdr_stream is updated
460 * to point to the first byte past the Read list.
461 * %false: Read list is corrupt. @rctxt's xdr_stream is left
462 * in an unknown state.
464 static bool xdr_check_read_list(struct svc_rdma_recv_ctxt
*rctxt
)
468 p
= xdr_inline_decode(&rctxt
->rc_stream
, sizeof(*p
));
471 if (!xdr_count_read_segments(rctxt
, p
))
473 if (!pcl_alloc_call(rctxt
, p
))
475 return pcl_alloc_read(rctxt
, p
);
478 static bool xdr_check_write_chunk(struct svc_rdma_recv_ctxt
*rctxt
)
483 if (xdr_stream_decode_u32(&rctxt
->rc_stream
, &segcount
))
486 /* A bogus segcount causes this buffer overflow check to fail. */
487 p
= xdr_inline_decode(&rctxt
->rc_stream
,
488 segcount
* rpcrdma_segment_maxsz
* sizeof(*p
));
493 * xdr_count_write_chunks - Count number of Write chunks in Write list
494 * @rctxt: Received header and decoding state
495 * @p: start of an un-decoded Write list
497 * Before allocating anything, ensure the ingress Write list is
501 * %true: Write list is valid. @rctxt's xdr_stream is updated
502 * to point to the first byte past the Write list, and
503 * the number of Write chunks is in rc_write_pcl.cl_count.
504 * %false: Write list is corrupt. @rctxt's xdr_stream is left
505 * in an indeterminate state.
507 static bool xdr_count_write_chunks(struct svc_rdma_recv_ctxt
*rctxt
, __be32
*p
)
509 rctxt
->rc_write_pcl
.cl_count
= 0;
510 while (xdr_item_is_present(p
)) {
511 if (!xdr_check_write_chunk(rctxt
))
513 ++rctxt
->rc_write_pcl
.cl_count
;
514 p
= xdr_inline_decode(&rctxt
->rc_stream
, sizeof(*p
));
521 /* Sanity check the Write list.
523 * Implementation limits:
524 * - This implementation currently supports only one Write chunk.
527 * - Write list does not overflow Receive buffer.
528 * - Chunk size limited by largest NFS data payload.
531 * %true: Write list is valid. @rctxt's xdr_stream is updated
532 * to point to the first byte past the Write list.
533 * %false: Write list is corrupt. @rctxt's xdr_stream is left
534 * in an unknown state.
536 static bool xdr_check_write_list(struct svc_rdma_recv_ctxt
*rctxt
)
540 p
= xdr_inline_decode(&rctxt
->rc_stream
, sizeof(*p
));
543 if (!xdr_count_write_chunks(rctxt
, p
))
545 if (!pcl_alloc_write(rctxt
, &rctxt
->rc_write_pcl
, p
))
548 rctxt
->rc_cur_result_payload
= pcl_first_chunk(&rctxt
->rc_write_pcl
);
552 /* Sanity check the Reply chunk.
555 * - Reply chunk does not overflow Receive buffer.
556 * - Chunk size limited by largest NFS data payload.
559 * %true: Reply chunk is valid. @rctxt's xdr_stream is updated
560 * to point to the first byte past the Reply chunk.
561 * %false: Reply chunk is corrupt. @rctxt's xdr_stream is left
562 * in an unknown state.
564 static bool xdr_check_reply_chunk(struct svc_rdma_recv_ctxt
*rctxt
)
568 p
= xdr_inline_decode(&rctxt
->rc_stream
, sizeof(*p
));
572 if (!xdr_item_is_present(p
))
574 if (!xdr_check_write_chunk(rctxt
))
577 rctxt
->rc_reply_pcl
.cl_count
= 1;
578 return pcl_alloc_write(rctxt
, &rctxt
->rc_reply_pcl
, p
);
581 /* RPC-over-RDMA Version One private extension: Remote Invalidation.
582 * Responder's choice: requester signals it can handle Send With
583 * Invalidate, and responder chooses one R_key to invalidate.
585 * If there is exactly one distinct R_key in the received transport
586 * header, set rc_inv_rkey to that R_key. Otherwise, set it to zero.
588 static void svc_rdma_get_inv_rkey(struct svcxprt_rdma
*rdma
,
589 struct svc_rdma_recv_ctxt
*ctxt
)
591 struct svc_rdma_segment
*segment
;
592 struct svc_rdma_chunk
*chunk
;
595 ctxt
->rc_inv_rkey
= 0;
597 if (!rdma
->sc_snd_w_inv
)
601 pcl_for_each_chunk(chunk
, &ctxt
->rc_call_pcl
) {
602 pcl_for_each_segment(segment
, chunk
) {
604 inv_rkey
= segment
->rs_handle
;
605 else if (inv_rkey
!= segment
->rs_handle
)
609 pcl_for_each_chunk(chunk
, &ctxt
->rc_read_pcl
) {
610 pcl_for_each_segment(segment
, chunk
) {
612 inv_rkey
= segment
->rs_handle
;
613 else if (inv_rkey
!= segment
->rs_handle
)
617 pcl_for_each_chunk(chunk
, &ctxt
->rc_write_pcl
) {
618 pcl_for_each_segment(segment
, chunk
) {
620 inv_rkey
= segment
->rs_handle
;
621 else if (inv_rkey
!= segment
->rs_handle
)
625 pcl_for_each_chunk(chunk
, &ctxt
->rc_reply_pcl
) {
626 pcl_for_each_segment(segment
, chunk
) {
628 inv_rkey
= segment
->rs_handle
;
629 else if (inv_rkey
!= segment
->rs_handle
)
633 ctxt
->rc_inv_rkey
= inv_rkey
;
637 * svc_rdma_xdr_decode_req - Decode the transport header
638 * @rq_arg: xdr_buf containing ingress RPC/RDMA message
639 * @rctxt: state of decoding
641 * On entry, xdr->head[0].iov_base points to first byte of the
642 * RPC-over-RDMA transport header.
644 * On successful exit, head[0] points to first byte past the
645 * RPC-over-RDMA header. For RDMA_MSG, this is the RPC message.
647 * The length of the RPC-over-RDMA header is returned.
650 * - The transport header is entirely contained in the head iovec.
652 static int svc_rdma_xdr_decode_req(struct xdr_buf
*rq_arg
,
653 struct svc_rdma_recv_ctxt
*rctxt
)
655 __be32
*p
, *rdma_argp
;
656 unsigned int hdr_len
;
658 rdma_argp
= rq_arg
->head
[0].iov_base
;
659 xdr_init_decode(&rctxt
->rc_stream
, rq_arg
, rdma_argp
, NULL
);
661 p
= xdr_inline_decode(&rctxt
->rc_stream
,
662 rpcrdma_fixed_maxsz
* sizeof(*p
));
666 if (*p
!= rpcrdma_version
)
669 rctxt
->rc_msgtype
= *p
;
670 switch (rctxt
->rc_msgtype
) {
683 if (!xdr_check_read_list(rctxt
))
685 if (!xdr_check_write_list(rctxt
))
687 if (!xdr_check_reply_chunk(rctxt
))
690 rq_arg
->head
[0].iov_base
= rctxt
->rc_stream
.p
;
691 hdr_len
= xdr_stream_pos(&rctxt
->rc_stream
);
692 rq_arg
->head
[0].iov_len
-= hdr_len
;
693 rq_arg
->len
-= hdr_len
;
694 trace_svcrdma_decode_rqst(rctxt
, rdma_argp
, hdr_len
);
698 trace_svcrdma_decode_short_err(rctxt
, rq_arg
->len
);
702 trace_svcrdma_decode_badvers_err(rctxt
, rdma_argp
);
703 return -EPROTONOSUPPORT
;
706 trace_svcrdma_decode_drop_err(rctxt
, rdma_argp
);
710 trace_svcrdma_decode_badproc_err(rctxt
, rdma_argp
);
714 trace_svcrdma_decode_parse_err(rctxt
, rdma_argp
);
718 static void rdma_read_complete(struct svc_rqst
*rqstp
,
719 struct svc_rdma_recv_ctxt
*head
)
723 /* Move Read chunk pages to rqstp so that they will be released
724 * when svc_process is done with them.
726 for (page_no
= 0; page_no
< head
->rc_page_count
; page_no
++) {
727 put_page(rqstp
->rq_pages
[page_no
]);
728 rqstp
->rq_pages
[page_no
] = head
->rc_pages
[page_no
];
730 head
->rc_page_count
= 0;
732 /* Point rq_arg.pages past header */
733 rqstp
->rq_arg
.pages
= &rqstp
->rq_pages
[head
->rc_hdr_count
];
734 rqstp
->rq_arg
.page_len
= head
->rc_arg
.page_len
;
736 /* rq_respages starts after the last arg page */
737 rqstp
->rq_respages
= &rqstp
->rq_pages
[page_no
];
738 rqstp
->rq_next_page
= rqstp
->rq_respages
+ 1;
740 /* Rebuild rq_arg head and tail. */
741 rqstp
->rq_arg
.head
[0] = head
->rc_arg
.head
[0];
742 rqstp
->rq_arg
.tail
[0] = head
->rc_arg
.tail
[0];
743 rqstp
->rq_arg
.len
= head
->rc_arg
.len
;
744 rqstp
->rq_arg
.buflen
= head
->rc_arg
.buflen
;
747 static void svc_rdma_send_error(struct svcxprt_rdma
*rdma
,
748 struct svc_rdma_recv_ctxt
*rctxt
,
751 struct svc_rdma_send_ctxt
*sctxt
;
753 sctxt
= svc_rdma_send_ctxt_get(rdma
);
756 svc_rdma_send_error_msg(rdma
, sctxt
, rctxt
, status
);
759 /* By convention, backchannel calls arrive via rdma_msg type
760 * messages, and never populate the chunk lists. This makes
761 * the RPC/RDMA header small and fixed in size, so it is
762 * straightforward to check the RPC header's direction field.
764 static bool svc_rdma_is_reverse_direction_reply(struct svc_xprt
*xprt
,
765 struct svc_rdma_recv_ctxt
*rctxt
)
767 __be32
*p
= rctxt
->rc_recv_buf
;
769 if (!xprt
->xpt_bc_xprt
)
772 if (rctxt
->rc_msgtype
!= rdma_msg
)
775 if (!pcl_is_empty(&rctxt
->rc_call_pcl
))
777 if (!pcl_is_empty(&rctxt
->rc_read_pcl
))
779 if (!pcl_is_empty(&rctxt
->rc_write_pcl
))
781 if (!pcl_is_empty(&rctxt
->rc_reply_pcl
))
784 /* RPC call direction */
785 if (*(p
+ 8) == cpu_to_be32(RPC_CALL
))
792 * svc_rdma_recvfrom - Receive an RPC call
793 * @rqstp: request structure into which to receive an RPC Call
796 * The positive number of bytes in the RPC Call message,
797 * %0 if there were no Calls ready to return,
798 * %-EINVAL if the Read chunk data is too large,
799 * %-ENOMEM if rdma_rw context pool was exhausted,
800 * %-ENOTCONN if posting failed (connection is lost),
801 * %-EIO if rdma_rw initialization failed (DMA mapping, etc).
803 * Called in a loop when XPT_DATA is set. XPT_DATA is cleared only
804 * when there are no remaining ctxt's to process.
806 * The next ctxt is removed from the "receive" lists.
808 * - If the ctxt completes a Read, then finish assembling the Call
809 * message and return the number of bytes in the message.
811 * - If the ctxt completes a Receive, then construct the Call
812 * message from the contents of the Receive buffer.
814 * - If there are no Read chunks in this message, then finish
815 * assembling the Call message and return the number of bytes
818 * - If there are Read chunks in this message, post Read WRs to
819 * pull that payload and return 0.
821 int svc_rdma_recvfrom(struct svc_rqst
*rqstp
)
823 struct svc_xprt
*xprt
= rqstp
->rq_xprt
;
824 struct svcxprt_rdma
*rdma_xprt
=
825 container_of(xprt
, struct svcxprt_rdma
, sc_xprt
);
826 struct svc_rdma_recv_ctxt
*ctxt
;
829 rqstp
->rq_xprt_ctxt
= NULL
;
831 spin_lock(&rdma_xprt
->sc_rq_dto_lock
);
832 ctxt
= svc_rdma_next_recv_ctxt(&rdma_xprt
->sc_read_complete_q
);
834 list_del(&ctxt
->rc_list
);
835 spin_unlock(&rdma_xprt
->sc_rq_dto_lock
);
836 rdma_read_complete(rqstp
, ctxt
);
839 ctxt
= svc_rdma_next_recv_ctxt(&rdma_xprt
->sc_rq_dto_q
);
841 /* No new incoming requests, terminate the loop */
842 clear_bit(XPT_DATA
, &xprt
->xpt_flags
);
843 spin_unlock(&rdma_xprt
->sc_rq_dto_lock
);
846 list_del(&ctxt
->rc_list
);
847 spin_unlock(&rdma_xprt
->sc_rq_dto_lock
);
849 atomic_inc(&rdma_stat_recv
);
851 svc_rdma_build_arg_xdr(rqstp
, ctxt
);
853 /* Prevent svc_xprt_release from releasing pages in rq_pages
854 * if we return 0 or an error.
856 rqstp
->rq_respages
= rqstp
->rq_pages
;
857 rqstp
->rq_next_page
= rqstp
->rq_respages
;
859 ret
= svc_rdma_xdr_decode_req(&rqstp
->rq_arg
, ctxt
);
864 rqstp
->rq_xprt_hlen
= ret
;
866 if (svc_rdma_is_reverse_direction_reply(xprt
, ctxt
))
867 goto out_backchannel
;
869 svc_rdma_get_inv_rkey(rdma_xprt
, ctxt
);
871 if (!pcl_is_empty(&ctxt
->rc_read_pcl
) ||
872 !pcl_is_empty(&ctxt
->rc_call_pcl
))
876 rqstp
->rq_xprt_ctxt
= ctxt
;
877 rqstp
->rq_prot
= IPPROTO_MAX
;
878 svc_xprt_copy_addrs(rqstp
, xprt
);
879 return rqstp
->rq_arg
.len
;
882 ret
= svc_rdma_process_read_list(rdma_xprt
, rqstp
, ctxt
);
888 svc_rdma_send_error(rdma_xprt
, ctxt
, ret
);
889 svc_rdma_recv_ctxt_put(rdma_xprt
, ctxt
);
894 svc_rdma_send_error(rdma_xprt
, ctxt
, ret
);
895 svc_rdma_recv_ctxt_put(rdma_xprt
, ctxt
);
899 svc_rdma_handle_bc_reply(rqstp
, ctxt
);
901 svc_rdma_recv_ctxt_put(rdma_xprt
, ctxt
);