WIP FPC-III support
[linux/fpc-iii.git] / sound / pci / ymfpci / ymfpci_main.c
blobcacc6a9d14c8b685b073bdeff5cb8529a5305e73
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Routines for control of YMF724/740/744/754 chips
5 */
7 #include <linux/delay.h>
8 #include <linux/firmware.h>
9 #include <linux/init.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/sched.h>
13 #include <linux/slab.h>
14 #include <linux/mutex.h>
15 #include <linux/module.h>
16 #include <linux/io.h>
18 #include <sound/core.h>
19 #include <sound/control.h>
20 #include <sound/info.h>
21 #include <sound/tlv.h>
22 #include "ymfpci.h"
23 #include <sound/asoundef.h>
24 #include <sound/mpu401.h>
26 #include <asm/byteorder.h>
29 * common I/O routines
32 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
34 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
36 return readb(chip->reg_area_virt + offset);
39 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
41 writeb(val, chip->reg_area_virt + offset);
44 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
46 return readw(chip->reg_area_virt + offset);
49 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
51 writew(val, chip->reg_area_virt + offset);
54 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
56 return readl(chip->reg_area_virt + offset);
59 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
61 writel(val, chip->reg_area_virt + offset);
64 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
66 unsigned long end_time;
67 u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
69 end_time = jiffies + msecs_to_jiffies(750);
70 do {
71 if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
72 return 0;
73 schedule_timeout_uninterruptible(1);
74 } while (time_before(jiffies, end_time));
75 dev_err(chip->card->dev,
76 "codec_ready: codec %i is not ready [0x%x]\n",
77 secondary, snd_ymfpci_readw(chip, reg));
78 return -EBUSY;
81 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
83 struct snd_ymfpci *chip = ac97->private_data;
84 u32 cmd;
86 snd_ymfpci_codec_ready(chip, 0);
87 cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
88 snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
91 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
93 struct snd_ymfpci *chip = ac97->private_data;
95 if (snd_ymfpci_codec_ready(chip, 0))
96 return ~0;
97 snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
98 if (snd_ymfpci_codec_ready(chip, 0))
99 return ~0;
100 if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
101 int i;
102 for (i = 0; i < 600; i++)
103 snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
105 return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
109 * Misc routines
112 static u32 snd_ymfpci_calc_delta(u32 rate)
114 switch (rate) {
115 case 8000: return 0x02aaab00;
116 case 11025: return 0x03accd00;
117 case 16000: return 0x05555500;
118 case 22050: return 0x07599a00;
119 case 32000: return 0x0aaaab00;
120 case 44100: return 0x0eb33300;
121 default: return ((rate << 16) / 375) << 5;
125 static const u32 def_rate[8] = {
126 100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
129 static u32 snd_ymfpci_calc_lpfK(u32 rate)
131 u32 i;
132 static const u32 val[8] = {
133 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
134 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
137 if (rate == 44100)
138 return 0x40000000; /* FIXME: What's the right value? */
139 for (i = 0; i < 8; i++)
140 if (rate <= def_rate[i])
141 return val[i];
142 return val[0];
145 static u32 snd_ymfpci_calc_lpfQ(u32 rate)
147 u32 i;
148 static const u32 val[8] = {
149 0x35280000, 0x34A70000, 0x32020000, 0x31770000,
150 0x31390000, 0x31C90000, 0x33D00000, 0x40000000
153 if (rate == 44100)
154 return 0x370A0000;
155 for (i = 0; i < 8; i++)
156 if (rate <= def_rate[i])
157 return val[i];
158 return val[0];
162 * Hardware start management
165 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
167 unsigned long flags;
169 spin_lock_irqsave(&chip->reg_lock, flags);
170 if (chip->start_count++ > 0)
171 goto __end;
172 snd_ymfpci_writel(chip, YDSXGR_MODE,
173 snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
174 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
175 __end:
176 spin_unlock_irqrestore(&chip->reg_lock, flags);
179 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
181 unsigned long flags;
182 long timeout = 1000;
184 spin_lock_irqsave(&chip->reg_lock, flags);
185 if (--chip->start_count > 0)
186 goto __end;
187 snd_ymfpci_writel(chip, YDSXGR_MODE,
188 snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
189 while (timeout-- > 0) {
190 if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
191 break;
193 if (atomic_read(&chip->interrupt_sleep_count)) {
194 atomic_set(&chip->interrupt_sleep_count, 0);
195 wake_up(&chip->interrupt_sleep);
197 __end:
198 spin_unlock_irqrestore(&chip->reg_lock, flags);
202 * Playback voice management
205 static int voice_alloc(struct snd_ymfpci *chip,
206 enum snd_ymfpci_voice_type type, int pair,
207 struct snd_ymfpci_voice **rvoice)
209 struct snd_ymfpci_voice *voice, *voice2;
210 int idx;
212 *rvoice = NULL;
213 for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
214 voice = &chip->voices[idx];
215 voice2 = pair ? &chip->voices[idx+1] : NULL;
216 if (voice->use || (voice2 && voice2->use))
217 continue;
218 voice->use = 1;
219 if (voice2)
220 voice2->use = 1;
221 switch (type) {
222 case YMFPCI_PCM:
223 voice->pcm = 1;
224 if (voice2)
225 voice2->pcm = 1;
226 break;
227 case YMFPCI_SYNTH:
228 voice->synth = 1;
229 break;
230 case YMFPCI_MIDI:
231 voice->midi = 1;
232 break;
234 snd_ymfpci_hw_start(chip);
235 if (voice2)
236 snd_ymfpci_hw_start(chip);
237 *rvoice = voice;
238 return 0;
240 return -ENOMEM;
243 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
244 enum snd_ymfpci_voice_type type, int pair,
245 struct snd_ymfpci_voice **rvoice)
247 unsigned long flags;
248 int result;
250 if (snd_BUG_ON(!rvoice))
251 return -EINVAL;
252 if (snd_BUG_ON(pair && type != YMFPCI_PCM))
253 return -EINVAL;
255 spin_lock_irqsave(&chip->voice_lock, flags);
256 for (;;) {
257 result = voice_alloc(chip, type, pair, rvoice);
258 if (result == 0 || type != YMFPCI_PCM)
259 break;
260 /* TODO: synth/midi voice deallocation */
261 break;
263 spin_unlock_irqrestore(&chip->voice_lock, flags);
264 return result;
267 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
269 unsigned long flags;
271 if (snd_BUG_ON(!pvoice))
272 return -EINVAL;
273 snd_ymfpci_hw_stop(chip);
274 spin_lock_irqsave(&chip->voice_lock, flags);
275 if (pvoice->number == chip->src441_used) {
276 chip->src441_used = -1;
277 pvoice->ypcm->use_441_slot = 0;
279 pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
280 pvoice->ypcm = NULL;
281 pvoice->interrupt = NULL;
282 spin_unlock_irqrestore(&chip->voice_lock, flags);
283 return 0;
287 * PCM part
290 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
292 struct snd_ymfpci_pcm *ypcm;
293 u32 pos, delta;
295 if ((ypcm = voice->ypcm) == NULL)
296 return;
297 if (ypcm->substream == NULL)
298 return;
299 spin_lock(&chip->reg_lock);
300 if (ypcm->running) {
301 pos = le32_to_cpu(voice->bank[chip->active_bank].start);
302 if (pos < ypcm->last_pos)
303 delta = pos + (ypcm->buffer_size - ypcm->last_pos);
304 else
305 delta = pos - ypcm->last_pos;
306 ypcm->period_pos += delta;
307 ypcm->last_pos = pos;
308 if (ypcm->period_pos >= ypcm->period_size) {
310 dev_dbg(chip->card->dev,
311 "done - active_bank = 0x%x, start = 0x%x\n",
312 chip->active_bank,
313 voice->bank[chip->active_bank].start);
315 ypcm->period_pos %= ypcm->period_size;
316 spin_unlock(&chip->reg_lock);
317 snd_pcm_period_elapsed(ypcm->substream);
318 spin_lock(&chip->reg_lock);
321 if (unlikely(ypcm->update_pcm_vol)) {
322 unsigned int subs = ypcm->substream->number;
323 unsigned int next_bank = 1 - chip->active_bank;
324 struct snd_ymfpci_playback_bank *bank;
325 __le32 volume;
327 bank = &voice->bank[next_bank];
328 volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
329 bank->left_gain_end = volume;
330 if (ypcm->output_rear)
331 bank->eff2_gain_end = volume;
332 if (ypcm->voices[1])
333 bank = &ypcm->voices[1]->bank[next_bank];
334 volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
335 bank->right_gain_end = volume;
336 if (ypcm->output_rear)
337 bank->eff3_gain_end = volume;
338 ypcm->update_pcm_vol--;
341 spin_unlock(&chip->reg_lock);
344 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
346 struct snd_pcm_runtime *runtime = substream->runtime;
347 struct snd_ymfpci_pcm *ypcm = runtime->private_data;
348 struct snd_ymfpci *chip = ypcm->chip;
349 u32 pos, delta;
351 spin_lock(&chip->reg_lock);
352 if (ypcm->running) {
353 pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
354 if (pos < ypcm->last_pos)
355 delta = pos + (ypcm->buffer_size - ypcm->last_pos);
356 else
357 delta = pos - ypcm->last_pos;
358 ypcm->period_pos += delta;
359 ypcm->last_pos = pos;
360 if (ypcm->period_pos >= ypcm->period_size) {
361 ypcm->period_pos %= ypcm->period_size;
363 dev_dbg(chip->card->dev,
364 "done - active_bank = 0x%x, start = 0x%x\n",
365 chip->active_bank,
366 voice->bank[chip->active_bank].start);
368 spin_unlock(&chip->reg_lock);
369 snd_pcm_period_elapsed(substream);
370 spin_lock(&chip->reg_lock);
373 spin_unlock(&chip->reg_lock);
376 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
377 int cmd)
379 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
380 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
381 struct snd_kcontrol *kctl = NULL;
382 int result = 0;
384 spin_lock(&chip->reg_lock);
385 if (ypcm->voices[0] == NULL) {
386 result = -EINVAL;
387 goto __unlock;
389 switch (cmd) {
390 case SNDRV_PCM_TRIGGER_START:
391 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
392 case SNDRV_PCM_TRIGGER_RESUME:
393 chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
394 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
395 chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
396 ypcm->running = 1;
397 break;
398 case SNDRV_PCM_TRIGGER_STOP:
399 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
400 kctl = chip->pcm_mixer[substream->number].ctl;
401 kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
403 fallthrough;
404 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
405 case SNDRV_PCM_TRIGGER_SUSPEND:
406 chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
407 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
408 chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
409 ypcm->running = 0;
410 break;
411 default:
412 result = -EINVAL;
413 break;
415 __unlock:
416 spin_unlock(&chip->reg_lock);
417 if (kctl)
418 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
419 return result;
421 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
422 int cmd)
424 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
425 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
426 int result = 0;
427 u32 tmp;
429 spin_lock(&chip->reg_lock);
430 switch (cmd) {
431 case SNDRV_PCM_TRIGGER_START:
432 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
433 case SNDRV_PCM_TRIGGER_RESUME:
434 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
435 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
436 ypcm->running = 1;
437 break;
438 case SNDRV_PCM_TRIGGER_STOP:
439 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
440 case SNDRV_PCM_TRIGGER_SUSPEND:
441 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
442 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
443 ypcm->running = 0;
444 break;
445 default:
446 result = -EINVAL;
447 break;
449 spin_unlock(&chip->reg_lock);
450 return result;
453 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
455 int err;
457 if (ypcm->voices[1] != NULL && voices < 2) {
458 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
459 ypcm->voices[1] = NULL;
461 if (voices == 1 && ypcm->voices[0] != NULL)
462 return 0; /* already allocated */
463 if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
464 return 0; /* already allocated */
465 if (voices > 1) {
466 if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
467 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
468 ypcm->voices[0] = NULL;
471 err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
472 if (err < 0)
473 return err;
474 ypcm->voices[0]->ypcm = ypcm;
475 ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
476 if (voices > 1) {
477 ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
478 ypcm->voices[1]->ypcm = ypcm;
480 return 0;
483 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
484 struct snd_pcm_runtime *runtime,
485 int has_pcm_volume)
487 struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
488 u32 format;
489 u32 delta = snd_ymfpci_calc_delta(runtime->rate);
490 u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
491 u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
492 struct snd_ymfpci_playback_bank *bank;
493 unsigned int nbank;
494 __le32 vol_left, vol_right;
495 u8 use_left, use_right;
496 unsigned long flags;
498 if (snd_BUG_ON(!voice))
499 return;
500 if (runtime->channels == 1) {
501 use_left = 1;
502 use_right = 1;
503 } else {
504 use_left = (voiceidx & 1) == 0;
505 use_right = !use_left;
507 if (has_pcm_volume) {
508 vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
509 [ypcm->substream->number].left << 15);
510 vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
511 [ypcm->substream->number].right << 15);
512 } else {
513 vol_left = cpu_to_le32(0x40000000);
514 vol_right = cpu_to_le32(0x40000000);
516 spin_lock_irqsave(&ypcm->chip->voice_lock, flags);
517 format = runtime->channels == 2 ? 0x00010000 : 0;
518 if (snd_pcm_format_width(runtime->format) == 8)
519 format |= 0x80000000;
520 else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
521 runtime->rate == 44100 && runtime->channels == 2 &&
522 voiceidx == 0 && (ypcm->chip->src441_used == -1 ||
523 ypcm->chip->src441_used == voice->number)) {
524 ypcm->chip->src441_used = voice->number;
525 ypcm->use_441_slot = 1;
526 format |= 0x10000000;
528 if (ypcm->chip->src441_used == voice->number &&
529 (format & 0x10000000) == 0) {
530 ypcm->chip->src441_used = -1;
531 ypcm->use_441_slot = 0;
533 if (runtime->channels == 2 && (voiceidx & 1) != 0)
534 format |= 1;
535 spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags);
536 for (nbank = 0; nbank < 2; nbank++) {
537 bank = &voice->bank[nbank];
538 memset(bank, 0, sizeof(*bank));
539 bank->format = cpu_to_le32(format);
540 bank->base = cpu_to_le32(runtime->dma_addr);
541 bank->loop_end = cpu_to_le32(ypcm->buffer_size);
542 bank->lpfQ = cpu_to_le32(lpfQ);
543 bank->delta =
544 bank->delta_end = cpu_to_le32(delta);
545 bank->lpfK =
546 bank->lpfK_end = cpu_to_le32(lpfK);
547 bank->eg_gain =
548 bank->eg_gain_end = cpu_to_le32(0x40000000);
550 if (ypcm->output_front) {
551 if (use_left) {
552 bank->left_gain =
553 bank->left_gain_end = vol_left;
555 if (use_right) {
556 bank->right_gain =
557 bank->right_gain_end = vol_right;
560 if (ypcm->output_rear) {
561 if (!ypcm->swap_rear) {
562 if (use_left) {
563 bank->eff2_gain =
564 bank->eff2_gain_end = vol_left;
566 if (use_right) {
567 bank->eff3_gain =
568 bank->eff3_gain_end = vol_right;
570 } else {
571 /* The SPDIF out channels seem to be swapped, so we have
572 * to swap them here, too. The rear analog out channels
573 * will be wrong, but otherwise AC3 would not work.
575 if (use_left) {
576 bank->eff3_gain =
577 bank->eff3_gain_end = vol_left;
579 if (use_right) {
580 bank->eff2_gain =
581 bank->eff2_gain_end = vol_right;
588 static int snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
590 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, &chip->pci->dev,
591 4096, &chip->ac3_tmp_base) < 0)
592 return -ENOMEM;
594 chip->bank_effect[3][0]->base =
595 chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
596 chip->bank_effect[3][0]->loop_end =
597 chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
598 chip->bank_effect[4][0]->base =
599 chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
600 chip->bank_effect[4][0]->loop_end =
601 chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
603 spin_lock_irq(&chip->reg_lock);
604 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
605 snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
606 spin_unlock_irq(&chip->reg_lock);
607 return 0;
610 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
612 spin_lock_irq(&chip->reg_lock);
613 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
614 snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
615 spin_unlock_irq(&chip->reg_lock);
616 // snd_ymfpci_irq_wait(chip);
617 if (chip->ac3_tmp_base.area) {
618 snd_dma_free_pages(&chip->ac3_tmp_base);
619 chip->ac3_tmp_base.area = NULL;
621 return 0;
624 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
625 struct snd_pcm_hw_params *hw_params)
627 struct snd_pcm_runtime *runtime = substream->runtime;
628 struct snd_ymfpci_pcm *ypcm = runtime->private_data;
629 int err;
631 if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0)
632 return err;
633 return 0;
636 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
638 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
639 struct snd_pcm_runtime *runtime = substream->runtime;
640 struct snd_ymfpci_pcm *ypcm;
642 if (runtime->private_data == NULL)
643 return 0;
644 ypcm = runtime->private_data;
646 /* wait, until the PCI operations are not finished */
647 snd_ymfpci_irq_wait(chip);
648 if (ypcm->voices[1]) {
649 snd_ymfpci_voice_free(chip, ypcm->voices[1]);
650 ypcm->voices[1] = NULL;
652 if (ypcm->voices[0]) {
653 snd_ymfpci_voice_free(chip, ypcm->voices[0]);
654 ypcm->voices[0] = NULL;
656 return 0;
659 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
661 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
662 struct snd_pcm_runtime *runtime = substream->runtime;
663 struct snd_ymfpci_pcm *ypcm = runtime->private_data;
664 struct snd_kcontrol *kctl;
665 unsigned int nvoice;
667 ypcm->period_size = runtime->period_size;
668 ypcm->buffer_size = runtime->buffer_size;
669 ypcm->period_pos = 0;
670 ypcm->last_pos = 0;
671 for (nvoice = 0; nvoice < runtime->channels; nvoice++)
672 snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
673 substream->pcm == chip->pcm);
675 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
676 kctl = chip->pcm_mixer[substream->number].ctl;
677 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
678 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
680 return 0;
683 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
685 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
687 /* wait, until the PCI operations are not finished */
688 snd_ymfpci_irq_wait(chip);
689 return 0;
692 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
694 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
695 struct snd_pcm_runtime *runtime = substream->runtime;
696 struct snd_ymfpci_pcm *ypcm = runtime->private_data;
697 struct snd_ymfpci_capture_bank * bank;
698 int nbank;
699 u32 rate, format;
701 ypcm->period_size = runtime->period_size;
702 ypcm->buffer_size = runtime->buffer_size;
703 ypcm->period_pos = 0;
704 ypcm->last_pos = 0;
705 ypcm->shift = 0;
706 rate = ((48000 * 4096) / runtime->rate) - 1;
707 format = 0;
708 if (runtime->channels == 2) {
709 format |= 2;
710 ypcm->shift++;
712 if (snd_pcm_format_width(runtime->format) == 8)
713 format |= 1;
714 else
715 ypcm->shift++;
716 switch (ypcm->capture_bank_number) {
717 case 0:
718 snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
719 snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
720 break;
721 case 1:
722 snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
723 snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
724 break;
726 for (nbank = 0; nbank < 2; nbank++) {
727 bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
728 bank->base = cpu_to_le32(runtime->dma_addr);
729 bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
730 bank->start = 0;
731 bank->num_of_loops = 0;
733 return 0;
736 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
738 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
739 struct snd_pcm_runtime *runtime = substream->runtime;
740 struct snd_ymfpci_pcm *ypcm = runtime->private_data;
741 struct snd_ymfpci_voice *voice = ypcm->voices[0];
743 if (!(ypcm->running && voice))
744 return 0;
745 return le32_to_cpu(voice->bank[chip->active_bank].start);
748 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
750 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
751 struct snd_pcm_runtime *runtime = substream->runtime;
752 struct snd_ymfpci_pcm *ypcm = runtime->private_data;
754 if (!ypcm->running)
755 return 0;
756 return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
759 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
761 wait_queue_entry_t wait;
762 int loops = 4;
764 while (loops-- > 0) {
765 if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
766 continue;
767 init_waitqueue_entry(&wait, current);
768 add_wait_queue(&chip->interrupt_sleep, &wait);
769 atomic_inc(&chip->interrupt_sleep_count);
770 schedule_timeout_uninterruptible(msecs_to_jiffies(50));
771 remove_wait_queue(&chip->interrupt_sleep, &wait);
775 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
777 struct snd_ymfpci *chip = dev_id;
778 u32 status, nvoice, mode;
779 struct snd_ymfpci_voice *voice;
781 status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
782 if (status & 0x80000000) {
783 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
784 spin_lock(&chip->voice_lock);
785 for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
786 voice = &chip->voices[nvoice];
787 if (voice->interrupt)
788 voice->interrupt(chip, voice);
790 for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
791 if (chip->capture_substream[nvoice])
792 snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
794 #if 0
795 for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
796 if (chip->effect_substream[nvoice])
797 snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
799 #endif
800 spin_unlock(&chip->voice_lock);
801 spin_lock(&chip->reg_lock);
802 snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
803 mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
804 snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
805 spin_unlock(&chip->reg_lock);
807 if (atomic_read(&chip->interrupt_sleep_count)) {
808 atomic_set(&chip->interrupt_sleep_count, 0);
809 wake_up(&chip->interrupt_sleep);
813 status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
814 if (status & 1) {
815 if (chip->timer)
816 snd_timer_interrupt(chip->timer, chip->timer_ticks);
818 snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
820 if (chip->rawmidi)
821 snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
822 return IRQ_HANDLED;
825 static const struct snd_pcm_hardware snd_ymfpci_playback =
827 .info = (SNDRV_PCM_INFO_MMAP |
828 SNDRV_PCM_INFO_MMAP_VALID |
829 SNDRV_PCM_INFO_INTERLEAVED |
830 SNDRV_PCM_INFO_BLOCK_TRANSFER |
831 SNDRV_PCM_INFO_PAUSE |
832 SNDRV_PCM_INFO_RESUME),
833 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
834 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
835 .rate_min = 8000,
836 .rate_max = 48000,
837 .channels_min = 1,
838 .channels_max = 2,
839 .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */
840 .period_bytes_min = 64,
841 .period_bytes_max = 256 * 1024, /* FIXME: enough? */
842 .periods_min = 3,
843 .periods_max = 1024,
844 .fifo_size = 0,
847 static const struct snd_pcm_hardware snd_ymfpci_capture =
849 .info = (SNDRV_PCM_INFO_MMAP |
850 SNDRV_PCM_INFO_MMAP_VALID |
851 SNDRV_PCM_INFO_INTERLEAVED |
852 SNDRV_PCM_INFO_BLOCK_TRANSFER |
853 SNDRV_PCM_INFO_PAUSE |
854 SNDRV_PCM_INFO_RESUME),
855 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
856 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
857 .rate_min = 8000,
858 .rate_max = 48000,
859 .channels_min = 1,
860 .channels_max = 2,
861 .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */
862 .period_bytes_min = 64,
863 .period_bytes_max = 256 * 1024, /* FIXME: enough? */
864 .periods_min = 3,
865 .periods_max = 1024,
866 .fifo_size = 0,
869 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
871 kfree(runtime->private_data);
874 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
876 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
877 struct snd_pcm_runtime *runtime = substream->runtime;
878 struct snd_ymfpci_pcm *ypcm;
879 int err;
881 runtime->hw = snd_ymfpci_playback;
882 /* FIXME? True value is 256/48 = 5.33333 ms */
883 err = snd_pcm_hw_constraint_minmax(runtime,
884 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
885 5334, UINT_MAX);
886 if (err < 0)
887 return err;
888 err = snd_pcm_hw_rule_noresample(runtime, 48000);
889 if (err < 0)
890 return err;
892 ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
893 if (ypcm == NULL)
894 return -ENOMEM;
895 ypcm->chip = chip;
896 ypcm->type = PLAYBACK_VOICE;
897 ypcm->substream = substream;
898 runtime->private_data = ypcm;
899 runtime->private_free = snd_ymfpci_pcm_free_substream;
900 return 0;
903 /* call with spinlock held */
904 static void ymfpci_open_extension(struct snd_ymfpci *chip)
906 if (! chip->rear_opened) {
907 if (! chip->spdif_opened) /* set AC3 */
908 snd_ymfpci_writel(chip, YDSXGR_MODE,
909 snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
910 /* enable second codec (4CHEN) */
911 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
912 (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
916 /* call with spinlock held */
917 static void ymfpci_close_extension(struct snd_ymfpci *chip)
919 if (! chip->rear_opened) {
920 if (! chip->spdif_opened)
921 snd_ymfpci_writel(chip, YDSXGR_MODE,
922 snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
923 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
924 (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
928 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
930 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
931 struct snd_pcm_runtime *runtime = substream->runtime;
932 struct snd_ymfpci_pcm *ypcm;
933 int err;
935 if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
936 return err;
937 ypcm = runtime->private_data;
938 ypcm->output_front = 1;
939 ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
940 ypcm->swap_rear = 0;
941 spin_lock_irq(&chip->reg_lock);
942 if (ypcm->output_rear) {
943 ymfpci_open_extension(chip);
944 chip->rear_opened++;
946 spin_unlock_irq(&chip->reg_lock);
947 return 0;
950 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
952 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
953 struct snd_pcm_runtime *runtime = substream->runtime;
954 struct snd_ymfpci_pcm *ypcm;
955 int err;
957 if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
958 return err;
959 ypcm = runtime->private_data;
960 ypcm->output_front = 0;
961 ypcm->output_rear = 1;
962 ypcm->swap_rear = 1;
963 spin_lock_irq(&chip->reg_lock);
964 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
965 snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
966 ymfpci_open_extension(chip);
967 chip->spdif_pcm_bits = chip->spdif_bits;
968 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
969 chip->spdif_opened++;
970 spin_unlock_irq(&chip->reg_lock);
972 chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
973 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
974 SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
975 return 0;
978 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
980 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
981 struct snd_pcm_runtime *runtime = substream->runtime;
982 struct snd_ymfpci_pcm *ypcm;
983 int err;
985 if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
986 return err;
987 ypcm = runtime->private_data;
988 ypcm->output_front = 0;
989 ypcm->output_rear = 1;
990 ypcm->swap_rear = 0;
991 spin_lock_irq(&chip->reg_lock);
992 ymfpci_open_extension(chip);
993 chip->rear_opened++;
994 spin_unlock_irq(&chip->reg_lock);
995 return 0;
998 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
999 u32 capture_bank_number)
1001 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1002 struct snd_pcm_runtime *runtime = substream->runtime;
1003 struct snd_ymfpci_pcm *ypcm;
1004 int err;
1006 runtime->hw = snd_ymfpci_capture;
1007 /* FIXME? True value is 256/48 = 5.33333 ms */
1008 err = snd_pcm_hw_constraint_minmax(runtime,
1009 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1010 5334, UINT_MAX);
1011 if (err < 0)
1012 return err;
1013 err = snd_pcm_hw_rule_noresample(runtime, 48000);
1014 if (err < 0)
1015 return err;
1017 ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
1018 if (ypcm == NULL)
1019 return -ENOMEM;
1020 ypcm->chip = chip;
1021 ypcm->type = capture_bank_number + CAPTURE_REC;
1022 ypcm->substream = substream;
1023 ypcm->capture_bank_number = capture_bank_number;
1024 chip->capture_substream[capture_bank_number] = substream;
1025 runtime->private_data = ypcm;
1026 runtime->private_free = snd_ymfpci_pcm_free_substream;
1027 snd_ymfpci_hw_start(chip);
1028 return 0;
1031 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
1033 return snd_ymfpci_capture_open(substream, 0);
1036 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
1038 return snd_ymfpci_capture_open(substream, 1);
1041 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
1043 return 0;
1046 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
1048 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1049 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1051 spin_lock_irq(&chip->reg_lock);
1052 if (ypcm->output_rear && chip->rear_opened > 0) {
1053 chip->rear_opened--;
1054 ymfpci_close_extension(chip);
1056 spin_unlock_irq(&chip->reg_lock);
1057 return snd_ymfpci_playback_close_1(substream);
1060 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
1062 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1064 spin_lock_irq(&chip->reg_lock);
1065 chip->spdif_opened = 0;
1066 ymfpci_close_extension(chip);
1067 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
1068 snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
1069 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1070 spin_unlock_irq(&chip->reg_lock);
1071 chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1072 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
1073 SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
1074 return snd_ymfpci_playback_close_1(substream);
1077 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
1079 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1081 spin_lock_irq(&chip->reg_lock);
1082 if (chip->rear_opened > 0) {
1083 chip->rear_opened--;
1084 ymfpci_close_extension(chip);
1086 spin_unlock_irq(&chip->reg_lock);
1087 return snd_ymfpci_playback_close_1(substream);
1090 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
1092 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1093 struct snd_pcm_runtime *runtime = substream->runtime;
1094 struct snd_ymfpci_pcm *ypcm = runtime->private_data;
1096 if (ypcm != NULL) {
1097 chip->capture_substream[ypcm->capture_bank_number] = NULL;
1098 snd_ymfpci_hw_stop(chip);
1100 return 0;
1103 static const struct snd_pcm_ops snd_ymfpci_playback_ops = {
1104 .open = snd_ymfpci_playback_open,
1105 .close = snd_ymfpci_playback_close,
1106 .hw_params = snd_ymfpci_playback_hw_params,
1107 .hw_free = snd_ymfpci_playback_hw_free,
1108 .prepare = snd_ymfpci_playback_prepare,
1109 .trigger = snd_ymfpci_playback_trigger,
1110 .pointer = snd_ymfpci_playback_pointer,
1113 static const struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
1114 .open = snd_ymfpci_capture_rec_open,
1115 .close = snd_ymfpci_capture_close,
1116 .hw_free = snd_ymfpci_capture_hw_free,
1117 .prepare = snd_ymfpci_capture_prepare,
1118 .trigger = snd_ymfpci_capture_trigger,
1119 .pointer = snd_ymfpci_capture_pointer,
1122 int snd_ymfpci_pcm(struct snd_ymfpci *chip, int device)
1124 struct snd_pcm *pcm;
1125 int err;
1127 if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0)
1128 return err;
1129 pcm->private_data = chip;
1131 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
1132 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
1134 /* global setup */
1135 pcm->info_flags = 0;
1136 strcpy(pcm->name, "YMFPCI");
1137 chip->pcm = pcm;
1139 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1140 &chip->pci->dev, 64*1024, 256*1024);
1142 return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1143 snd_pcm_std_chmaps, 2, 0, NULL);
1146 static const struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
1147 .open = snd_ymfpci_capture_ac97_open,
1148 .close = snd_ymfpci_capture_close,
1149 .hw_free = snd_ymfpci_capture_hw_free,
1150 .prepare = snd_ymfpci_capture_prepare,
1151 .trigger = snd_ymfpci_capture_trigger,
1152 .pointer = snd_ymfpci_capture_pointer,
1155 int snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device)
1157 struct snd_pcm *pcm;
1158 int err;
1160 if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0)
1161 return err;
1162 pcm->private_data = chip;
1164 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
1166 /* global setup */
1167 pcm->info_flags = 0;
1168 sprintf(pcm->name, "YMFPCI - %s",
1169 chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
1170 chip->pcm2 = pcm;
1172 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1173 &chip->pci->dev, 64*1024, 256*1024);
1175 return 0;
1178 static const struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
1179 .open = snd_ymfpci_playback_spdif_open,
1180 .close = snd_ymfpci_playback_spdif_close,
1181 .hw_params = snd_ymfpci_playback_hw_params,
1182 .hw_free = snd_ymfpci_playback_hw_free,
1183 .prepare = snd_ymfpci_playback_prepare,
1184 .trigger = snd_ymfpci_playback_trigger,
1185 .pointer = snd_ymfpci_playback_pointer,
1188 int snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device)
1190 struct snd_pcm *pcm;
1191 int err;
1193 if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0)
1194 return err;
1195 pcm->private_data = chip;
1197 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
1199 /* global setup */
1200 pcm->info_flags = 0;
1201 strcpy(pcm->name, "YMFPCI - IEC958");
1202 chip->pcm_spdif = pcm;
1204 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1205 &chip->pci->dev, 64*1024, 256*1024);
1207 return 0;
1210 static const struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
1211 .open = snd_ymfpci_playback_4ch_open,
1212 .close = snd_ymfpci_playback_4ch_close,
1213 .hw_params = snd_ymfpci_playback_hw_params,
1214 .hw_free = snd_ymfpci_playback_hw_free,
1215 .prepare = snd_ymfpci_playback_prepare,
1216 .trigger = snd_ymfpci_playback_trigger,
1217 .pointer = snd_ymfpci_playback_pointer,
1220 static const struct snd_pcm_chmap_elem surround_map[] = {
1221 { .channels = 1,
1222 .map = { SNDRV_CHMAP_MONO } },
1223 { .channels = 2,
1224 .map = { SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
1228 int snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device)
1230 struct snd_pcm *pcm;
1231 int err;
1233 if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0)
1234 return err;
1235 pcm->private_data = chip;
1237 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
1239 /* global setup */
1240 pcm->info_flags = 0;
1241 strcpy(pcm->name, "YMFPCI - Rear PCM");
1242 chip->pcm_4ch = pcm;
1244 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1245 &chip->pci->dev, 64*1024, 256*1024);
1247 return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1248 surround_map, 2, 0, NULL);
1251 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1253 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1254 uinfo->count = 1;
1255 return 0;
1258 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
1259 struct snd_ctl_elem_value *ucontrol)
1261 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1263 spin_lock_irq(&chip->reg_lock);
1264 ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
1265 ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
1266 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1267 spin_unlock_irq(&chip->reg_lock);
1268 return 0;
1271 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
1272 struct snd_ctl_elem_value *ucontrol)
1274 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1275 unsigned int val;
1276 int change;
1278 val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1279 (ucontrol->value.iec958.status[1] << 8);
1280 spin_lock_irq(&chip->reg_lock);
1281 change = chip->spdif_bits != val;
1282 chip->spdif_bits = val;
1283 if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
1284 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1285 spin_unlock_irq(&chip->reg_lock);
1286 return change;
1289 static const struct snd_kcontrol_new snd_ymfpci_spdif_default =
1291 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1292 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1293 .info = snd_ymfpci_spdif_default_info,
1294 .get = snd_ymfpci_spdif_default_get,
1295 .put = snd_ymfpci_spdif_default_put
1298 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1300 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1301 uinfo->count = 1;
1302 return 0;
1305 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1306 struct snd_ctl_elem_value *ucontrol)
1308 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1310 spin_lock_irq(&chip->reg_lock);
1311 ucontrol->value.iec958.status[0] = 0x3e;
1312 ucontrol->value.iec958.status[1] = 0xff;
1313 spin_unlock_irq(&chip->reg_lock);
1314 return 0;
1317 static const struct snd_kcontrol_new snd_ymfpci_spdif_mask =
1319 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1320 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1321 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1322 .info = snd_ymfpci_spdif_mask_info,
1323 .get = snd_ymfpci_spdif_mask_get,
1326 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1328 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1329 uinfo->count = 1;
1330 return 0;
1333 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1334 struct snd_ctl_elem_value *ucontrol)
1336 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1338 spin_lock_irq(&chip->reg_lock);
1339 ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
1340 ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
1341 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1342 spin_unlock_irq(&chip->reg_lock);
1343 return 0;
1346 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1347 struct snd_ctl_elem_value *ucontrol)
1349 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1350 unsigned int val;
1351 int change;
1353 val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1354 (ucontrol->value.iec958.status[1] << 8);
1355 spin_lock_irq(&chip->reg_lock);
1356 change = chip->spdif_pcm_bits != val;
1357 chip->spdif_pcm_bits = val;
1358 if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
1359 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
1360 spin_unlock_irq(&chip->reg_lock);
1361 return change;
1364 static const struct snd_kcontrol_new snd_ymfpci_spdif_stream =
1366 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1367 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1368 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1369 .info = snd_ymfpci_spdif_stream_info,
1370 .get = snd_ymfpci_spdif_stream_get,
1371 .put = snd_ymfpci_spdif_stream_put
1374 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
1376 static const char *const texts[3] = {"AC'97", "IEC958", "ZV Port"};
1378 return snd_ctl_enum_info(info, 1, 3, texts);
1381 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1383 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1384 u16 reg;
1386 spin_lock_irq(&chip->reg_lock);
1387 reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1388 spin_unlock_irq(&chip->reg_lock);
1389 if (!(reg & 0x100))
1390 value->value.enumerated.item[0] = 0;
1391 else
1392 value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
1393 return 0;
1396 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1398 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1399 u16 reg, old_reg;
1401 spin_lock_irq(&chip->reg_lock);
1402 old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1403 if (value->value.enumerated.item[0] == 0)
1404 reg = old_reg & ~0x100;
1405 else
1406 reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
1407 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
1408 spin_unlock_irq(&chip->reg_lock);
1409 return reg != old_reg;
1412 static const struct snd_kcontrol_new snd_ymfpci_drec_source = {
1413 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1414 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1415 .name = "Direct Recording Source",
1416 .info = snd_ymfpci_drec_source_info,
1417 .get = snd_ymfpci_drec_source_get,
1418 .put = snd_ymfpci_drec_source_put
1422 * Mixer controls
1425 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \
1426 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1427 .info = snd_ymfpci_info_single, \
1428 .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
1429 .private_value = ((reg) | ((shift) << 16)) }
1431 #define snd_ymfpci_info_single snd_ctl_boolean_mono_info
1433 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
1434 struct snd_ctl_elem_value *ucontrol)
1436 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1437 int reg = kcontrol->private_value & 0xffff;
1438 unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1439 unsigned int mask = 1;
1441 switch (reg) {
1442 case YDSXGR_SPDIFOUTCTRL: break;
1443 case YDSXGR_SPDIFINCTRL: break;
1444 default: return -EINVAL;
1446 ucontrol->value.integer.value[0] =
1447 (snd_ymfpci_readl(chip, reg) >> shift) & mask;
1448 return 0;
1451 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
1452 struct snd_ctl_elem_value *ucontrol)
1454 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1455 int reg = kcontrol->private_value & 0xffff;
1456 unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1457 unsigned int mask = 1;
1458 int change;
1459 unsigned int val, oval;
1461 switch (reg) {
1462 case YDSXGR_SPDIFOUTCTRL: break;
1463 case YDSXGR_SPDIFINCTRL: break;
1464 default: return -EINVAL;
1466 val = (ucontrol->value.integer.value[0] & mask);
1467 val <<= shift;
1468 spin_lock_irq(&chip->reg_lock);
1469 oval = snd_ymfpci_readl(chip, reg);
1470 val = (oval & ~(mask << shift)) | val;
1471 change = val != oval;
1472 snd_ymfpci_writel(chip, reg, val);
1473 spin_unlock_irq(&chip->reg_lock);
1474 return change;
1477 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);
1479 #define YMFPCI_DOUBLE(xname, xindex, reg) \
1480 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1481 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1482 .info = snd_ymfpci_info_double, \
1483 .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
1484 .private_value = reg, \
1485 .tlv = { .p = db_scale_native } }
1487 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1489 unsigned int reg = kcontrol->private_value;
1491 if (reg < 0x80 || reg >= 0xc0)
1492 return -EINVAL;
1493 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1494 uinfo->count = 2;
1495 uinfo->value.integer.min = 0;
1496 uinfo->value.integer.max = 16383;
1497 return 0;
1500 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1502 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1503 unsigned int reg = kcontrol->private_value;
1504 unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1505 unsigned int val;
1507 if (reg < 0x80 || reg >= 0xc0)
1508 return -EINVAL;
1509 spin_lock_irq(&chip->reg_lock);
1510 val = snd_ymfpci_readl(chip, reg);
1511 spin_unlock_irq(&chip->reg_lock);
1512 ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
1513 ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
1514 return 0;
1517 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1519 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1520 unsigned int reg = kcontrol->private_value;
1521 unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1522 int change;
1523 unsigned int val1, val2, oval;
1525 if (reg < 0x80 || reg >= 0xc0)
1526 return -EINVAL;
1527 val1 = ucontrol->value.integer.value[0] & mask;
1528 val2 = ucontrol->value.integer.value[1] & mask;
1529 val1 <<= shift_left;
1530 val2 <<= shift_right;
1531 spin_lock_irq(&chip->reg_lock);
1532 oval = snd_ymfpci_readl(chip, reg);
1533 val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
1534 change = val1 != oval;
1535 snd_ymfpci_writel(chip, reg, val1);
1536 spin_unlock_irq(&chip->reg_lock);
1537 return change;
1540 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol,
1541 struct snd_ctl_elem_value *ucontrol)
1543 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1544 unsigned int reg = YDSXGR_NATIVEDACOUTVOL;
1545 unsigned int reg2 = YDSXGR_BUF441OUTVOL;
1546 int change;
1547 unsigned int value, oval;
1549 value = ucontrol->value.integer.value[0] & 0x3fff;
1550 value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16;
1551 spin_lock_irq(&chip->reg_lock);
1552 oval = snd_ymfpci_readl(chip, reg);
1553 change = value != oval;
1554 snd_ymfpci_writel(chip, reg, value);
1555 snd_ymfpci_writel(chip, reg2, value);
1556 spin_unlock_irq(&chip->reg_lock);
1557 return change;
1561 * 4ch duplication
1563 #define snd_ymfpci_info_dup4ch snd_ctl_boolean_mono_info
1565 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1567 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1568 ucontrol->value.integer.value[0] = chip->mode_dup4ch;
1569 return 0;
1572 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1574 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1575 int change;
1576 change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
1577 if (change)
1578 chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
1579 return change;
1582 static const struct snd_kcontrol_new snd_ymfpci_dup4ch = {
1583 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1584 .name = "4ch Duplication",
1585 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1586 .info = snd_ymfpci_info_dup4ch,
1587 .get = snd_ymfpci_get_dup4ch,
1588 .put = snd_ymfpci_put_dup4ch,
1591 static const struct snd_kcontrol_new snd_ymfpci_controls[] = {
1593 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1594 .name = "Wave Playback Volume",
1595 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1596 SNDRV_CTL_ELEM_ACCESS_TLV_READ,
1597 .info = snd_ymfpci_info_double,
1598 .get = snd_ymfpci_get_double,
1599 .put = snd_ymfpci_put_nativedacvol,
1600 .private_value = YDSXGR_NATIVEDACOUTVOL,
1601 .tlv = { .p = db_scale_native },
1603 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
1604 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
1605 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
1606 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
1607 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
1608 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
1609 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
1610 YMFPCI_DOUBLE("FM Legacy Playback Volume", 0, YDSXGR_LEGACYOUTVOL),
1611 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
1612 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
1613 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
1614 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
1615 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
1616 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
1617 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
1622 * GPIO
1625 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
1627 u16 reg, mode;
1628 unsigned long flags;
1630 spin_lock_irqsave(&chip->reg_lock, flags);
1631 reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1632 reg &= ~(1 << (pin + 8));
1633 reg |= (1 << pin);
1634 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1635 /* set the level mode for input line */
1636 mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
1637 mode &= ~(3 << (pin * 2));
1638 snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
1639 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1640 mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
1641 spin_unlock_irqrestore(&chip->reg_lock, flags);
1642 return (mode >> pin) & 1;
1645 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
1647 u16 reg;
1648 unsigned long flags;
1650 spin_lock_irqsave(&chip->reg_lock, flags);
1651 reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1652 reg &= ~(1 << pin);
1653 reg &= ~(1 << (pin + 8));
1654 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1655 snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
1656 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1657 spin_unlock_irqrestore(&chip->reg_lock, flags);
1659 return 0;
1662 #define snd_ymfpci_gpio_sw_info snd_ctl_boolean_mono_info
1664 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1666 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1667 int pin = (int)kcontrol->private_value;
1668 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1669 return 0;
1672 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1674 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1675 int pin = (int)kcontrol->private_value;
1677 if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
1678 snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
1679 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1680 return 1;
1682 return 0;
1685 static const struct snd_kcontrol_new snd_ymfpci_rear_shared = {
1686 .name = "Shared Rear/Line-In Switch",
1687 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1688 .info = snd_ymfpci_gpio_sw_info,
1689 .get = snd_ymfpci_gpio_sw_get,
1690 .put = snd_ymfpci_gpio_sw_put,
1691 .private_value = 2,
1695 * PCM voice volume
1698 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
1699 struct snd_ctl_elem_info *uinfo)
1701 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1702 uinfo->count = 2;
1703 uinfo->value.integer.min = 0;
1704 uinfo->value.integer.max = 0x8000;
1705 return 0;
1708 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
1709 struct snd_ctl_elem_value *ucontrol)
1711 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1712 unsigned int subs = kcontrol->id.subdevice;
1714 ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
1715 ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
1716 return 0;
1719 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
1720 struct snd_ctl_elem_value *ucontrol)
1722 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1723 unsigned int subs = kcontrol->id.subdevice;
1724 struct snd_pcm_substream *substream;
1725 unsigned long flags;
1727 if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
1728 ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
1729 chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
1730 chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
1731 if (chip->pcm_mixer[subs].left > 0x8000)
1732 chip->pcm_mixer[subs].left = 0x8000;
1733 if (chip->pcm_mixer[subs].right > 0x8000)
1734 chip->pcm_mixer[subs].right = 0x8000;
1736 substream = (struct snd_pcm_substream *)kcontrol->private_value;
1737 spin_lock_irqsave(&chip->voice_lock, flags);
1738 if (substream->runtime && substream->runtime->private_data) {
1739 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1740 if (!ypcm->use_441_slot)
1741 ypcm->update_pcm_vol = 2;
1743 spin_unlock_irqrestore(&chip->voice_lock, flags);
1744 return 1;
1746 return 0;
1749 static const struct snd_kcontrol_new snd_ymfpci_pcm_volume = {
1750 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1751 .name = "PCM Playback Volume",
1752 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1753 SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1754 .info = snd_ymfpci_pcm_vol_info,
1755 .get = snd_ymfpci_pcm_vol_get,
1756 .put = snd_ymfpci_pcm_vol_put,
1761 * Mixer routines
1764 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1766 struct snd_ymfpci *chip = bus->private_data;
1767 chip->ac97_bus = NULL;
1770 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
1772 struct snd_ymfpci *chip = ac97->private_data;
1773 chip->ac97 = NULL;
1776 int snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
1778 struct snd_ac97_template ac97;
1779 struct snd_kcontrol *kctl;
1780 struct snd_pcm_substream *substream;
1781 unsigned int idx;
1782 int err;
1783 static const struct snd_ac97_bus_ops ops = {
1784 .write = snd_ymfpci_codec_write,
1785 .read = snd_ymfpci_codec_read,
1788 if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1789 return err;
1790 chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
1791 chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
1793 memset(&ac97, 0, sizeof(ac97));
1794 ac97.private_data = chip;
1795 ac97.private_free = snd_ymfpci_mixer_free_ac97;
1796 if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1797 return err;
1799 /* to be sure */
1800 snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
1801 AC97_EA_VRA|AC97_EA_VRM, 0);
1803 for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
1804 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0)
1805 return err;
1807 if (chip->ac97->ext_id & AC97_EI_SDAC) {
1808 kctl = snd_ctl_new1(&snd_ymfpci_dup4ch, chip);
1809 err = snd_ctl_add(chip->card, kctl);
1810 if (err < 0)
1811 return err;
1814 /* add S/PDIF control */
1815 if (snd_BUG_ON(!chip->pcm_spdif))
1816 return -ENXIO;
1817 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0)
1818 return err;
1819 kctl->id.device = chip->pcm_spdif->device;
1820 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0)
1821 return err;
1822 kctl->id.device = chip->pcm_spdif->device;
1823 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0)
1824 return err;
1825 kctl->id.device = chip->pcm_spdif->device;
1826 chip->spdif_pcm_ctl = kctl;
1828 /* direct recording source */
1829 if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
1830 (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0)
1831 return err;
1834 * shared rear/line-in
1836 if (rear_switch) {
1837 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0)
1838 return err;
1841 /* per-voice volume */
1842 substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
1843 for (idx = 0; idx < 32; ++idx) {
1844 kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
1845 if (!kctl)
1846 return -ENOMEM;
1847 kctl->id.device = chip->pcm->device;
1848 kctl->id.subdevice = idx;
1849 kctl->private_value = (unsigned long)substream;
1850 if ((err = snd_ctl_add(chip->card, kctl)) < 0)
1851 return err;
1852 chip->pcm_mixer[idx].left = 0x8000;
1853 chip->pcm_mixer[idx].right = 0x8000;
1854 chip->pcm_mixer[idx].ctl = kctl;
1855 substream = substream->next;
1858 return 0;
1863 * timer
1866 static int snd_ymfpci_timer_start(struct snd_timer *timer)
1868 struct snd_ymfpci *chip;
1869 unsigned long flags;
1870 unsigned int count;
1872 chip = snd_timer_chip(timer);
1873 spin_lock_irqsave(&chip->reg_lock, flags);
1874 if (timer->sticks > 1) {
1875 chip->timer_ticks = timer->sticks;
1876 count = timer->sticks - 1;
1877 } else {
1879 * Divisor 1 is not allowed; fake it by using divisor 2 and
1880 * counting two ticks for each interrupt.
1882 chip->timer_ticks = 2;
1883 count = 2 - 1;
1885 snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
1886 snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
1887 spin_unlock_irqrestore(&chip->reg_lock, flags);
1888 return 0;
1891 static int snd_ymfpci_timer_stop(struct snd_timer *timer)
1893 struct snd_ymfpci *chip;
1894 unsigned long flags;
1896 chip = snd_timer_chip(timer);
1897 spin_lock_irqsave(&chip->reg_lock, flags);
1898 snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
1899 spin_unlock_irqrestore(&chip->reg_lock, flags);
1900 return 0;
1903 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
1904 unsigned long *num, unsigned long *den)
1906 *num = 1;
1907 *den = 96000;
1908 return 0;
1911 static const struct snd_timer_hardware snd_ymfpci_timer_hw = {
1912 .flags = SNDRV_TIMER_HW_AUTO,
1913 .resolution = 10417, /* 1 / 96 kHz = 10.41666...us */
1914 .ticks = 0x10000,
1915 .start = snd_ymfpci_timer_start,
1916 .stop = snd_ymfpci_timer_stop,
1917 .precise_resolution = snd_ymfpci_timer_precise_resolution,
1920 int snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
1922 struct snd_timer *timer = NULL;
1923 struct snd_timer_id tid;
1924 int err;
1926 tid.dev_class = SNDRV_TIMER_CLASS_CARD;
1927 tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
1928 tid.card = chip->card->number;
1929 tid.device = device;
1930 tid.subdevice = 0;
1931 if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) {
1932 strcpy(timer->name, "YMFPCI timer");
1933 timer->private_data = chip;
1934 timer->hw = snd_ymfpci_timer_hw;
1936 chip->timer = timer;
1937 return err;
1942 * proc interface
1945 static void snd_ymfpci_proc_read(struct snd_info_entry *entry,
1946 struct snd_info_buffer *buffer)
1948 struct snd_ymfpci *chip = entry->private_data;
1949 int i;
1951 snd_iprintf(buffer, "YMFPCI\n\n");
1952 for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
1953 snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
1956 static int snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
1958 return snd_card_ro_proc_new(card, "ymfpci", chip, snd_ymfpci_proc_read);
1962 * initialization routines
1965 static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
1967 u8 cmd;
1969 pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
1970 #if 0 // force to reset
1971 if (cmd & 0x03) {
1972 #endif
1973 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1974 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
1975 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1976 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
1977 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
1978 #if 0
1980 #endif
1983 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
1985 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
1988 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
1990 u32 val;
1991 int timeout = 1000;
1993 val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
1994 if (val)
1995 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
1996 while (timeout-- > 0) {
1997 val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
1998 if ((val & 0x00000002) == 0)
1999 break;
2003 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
2005 int err, is_1e;
2006 const char *name;
2008 err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw",
2009 &chip->pci->dev);
2010 if (err >= 0) {
2011 if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) {
2012 dev_err(chip->card->dev,
2013 "DSP microcode has wrong size\n");
2014 err = -EINVAL;
2017 if (err < 0)
2018 return err;
2019 is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
2020 chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
2021 chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
2022 chip->device_id == PCI_DEVICE_ID_YAMAHA_754;
2023 name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw";
2024 err = request_firmware(&chip->controller_microcode, name,
2025 &chip->pci->dev);
2026 if (err >= 0) {
2027 if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) {
2028 dev_err(chip->card->dev,
2029 "controller microcode has wrong size\n");
2030 err = -EINVAL;
2033 if (err < 0)
2034 return err;
2035 return 0;
2038 MODULE_FIRMWARE("yamaha/ds1_dsp.fw");
2039 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw");
2040 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw");
2042 static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
2044 int i;
2045 u16 ctrl;
2046 const __le32 *inst;
2048 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
2049 snd_ymfpci_disable_dsp(chip);
2050 snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
2051 snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
2052 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
2053 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
2054 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
2055 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
2056 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
2057 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2058 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2060 /* setup DSP instruction code */
2061 inst = (const __le32 *)chip->dsp_microcode->data;
2062 for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
2063 snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2),
2064 le32_to_cpu(inst[i]));
2066 /* setup control instruction code */
2067 inst = (const __le32 *)chip->controller_microcode->data;
2068 for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
2069 snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2),
2070 le32_to_cpu(inst[i]));
2072 snd_ymfpci_enable_dsp(chip);
2075 static int snd_ymfpci_memalloc(struct snd_ymfpci *chip)
2077 long size, playback_ctrl_size;
2078 int voice, bank, reg;
2079 u8 *ptr;
2080 dma_addr_t ptr_addr;
2082 playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
2083 chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
2084 chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
2085 chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
2086 chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
2088 size = ALIGN(playback_ctrl_size, 0x100) +
2089 ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
2090 ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
2091 ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
2092 chip->work_size;
2093 /* work_ptr must be aligned to 256 bytes, but it's already
2094 covered with the kernel page allocation mechanism */
2095 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, &chip->pci->dev,
2096 size, &chip->work_ptr) < 0)
2097 return -ENOMEM;
2098 ptr = chip->work_ptr.area;
2099 ptr_addr = chip->work_ptr.addr;
2100 memset(ptr, 0, size); /* for sure */
2102 chip->bank_base_playback = ptr;
2103 chip->bank_base_playback_addr = ptr_addr;
2104 chip->ctrl_playback = (__le32 *)ptr;
2105 chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
2106 ptr += ALIGN(playback_ctrl_size, 0x100);
2107 ptr_addr += ALIGN(playback_ctrl_size, 0x100);
2108 for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
2109 chip->voices[voice].number = voice;
2110 chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
2111 chip->voices[voice].bank_addr = ptr_addr;
2112 for (bank = 0; bank < 2; bank++) {
2113 chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
2114 ptr += chip->bank_size_playback;
2115 ptr_addr += chip->bank_size_playback;
2118 ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2119 ptr_addr = ALIGN(ptr_addr, 0x100);
2120 chip->bank_base_capture = ptr;
2121 chip->bank_base_capture_addr = ptr_addr;
2122 for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
2123 for (bank = 0; bank < 2; bank++) {
2124 chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
2125 ptr += chip->bank_size_capture;
2126 ptr_addr += chip->bank_size_capture;
2128 ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2129 ptr_addr = ALIGN(ptr_addr, 0x100);
2130 chip->bank_base_effect = ptr;
2131 chip->bank_base_effect_addr = ptr_addr;
2132 for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
2133 for (bank = 0; bank < 2; bank++) {
2134 chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
2135 ptr += chip->bank_size_effect;
2136 ptr_addr += chip->bank_size_effect;
2138 ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2139 ptr_addr = ALIGN(ptr_addr, 0x100);
2140 chip->work_base = ptr;
2141 chip->work_base_addr = ptr_addr;
2143 snd_BUG_ON(ptr + chip->work_size !=
2144 chip->work_ptr.area + chip->work_ptr.bytes);
2146 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
2147 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
2148 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
2149 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
2150 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
2152 /* S/PDIF output initialization */
2153 chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
2154 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
2155 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
2157 /* S/PDIF input initialization */
2158 snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
2160 /* digital mixer setup */
2161 for (reg = 0x80; reg < 0xc0; reg += 4)
2162 snd_ymfpci_writel(chip, reg, 0);
2163 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
2164 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff);
2165 snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
2166 snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
2167 snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
2168 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
2169 snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
2170 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
2172 return 0;
2175 static int snd_ymfpci_free(struct snd_ymfpci *chip)
2177 u16 ctrl;
2179 if (snd_BUG_ON(!chip))
2180 return -EINVAL;
2182 if (chip->res_reg_area) { /* don't touch busy hardware */
2183 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2184 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2185 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
2186 snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
2187 snd_ymfpci_disable_dsp(chip);
2188 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
2189 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
2190 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
2191 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
2192 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
2193 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2194 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2197 snd_ymfpci_ac3_done(chip);
2199 /* Set PCI device to D3 state */
2200 #if 0
2201 /* FIXME: temporarily disabled, otherwise we cannot fire up
2202 * the chip again unless reboot. ACPI bug?
2204 pci_set_power_state(chip->pci, PCI_D3hot);
2205 #endif
2207 #ifdef CONFIG_PM_SLEEP
2208 kfree(chip->saved_regs);
2209 #endif
2210 if (chip->irq >= 0)
2211 free_irq(chip->irq, chip);
2212 release_and_free_resource(chip->mpu_res);
2213 release_and_free_resource(chip->fm_res);
2214 snd_ymfpci_free_gameport(chip);
2215 iounmap(chip->reg_area_virt);
2216 if (chip->work_ptr.area)
2217 snd_dma_free_pages(&chip->work_ptr);
2219 release_and_free_resource(chip->res_reg_area);
2221 pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
2223 pci_disable_device(chip->pci);
2224 release_firmware(chip->dsp_microcode);
2225 release_firmware(chip->controller_microcode);
2226 kfree(chip);
2227 return 0;
2230 static int snd_ymfpci_dev_free(struct snd_device *device)
2232 struct snd_ymfpci *chip = device->device_data;
2233 return snd_ymfpci_free(chip);
2236 #ifdef CONFIG_PM_SLEEP
2237 static const int saved_regs_index[] = {
2238 /* spdif */
2239 YDSXGR_SPDIFOUTCTRL,
2240 YDSXGR_SPDIFOUTSTATUS,
2241 YDSXGR_SPDIFINCTRL,
2242 /* volumes */
2243 YDSXGR_PRIADCLOOPVOL,
2244 YDSXGR_NATIVEDACINVOL,
2245 YDSXGR_NATIVEDACOUTVOL,
2246 YDSXGR_BUF441OUTVOL,
2247 YDSXGR_NATIVEADCINVOL,
2248 YDSXGR_SPDIFLOOPVOL,
2249 YDSXGR_SPDIFOUTVOL,
2250 YDSXGR_ZVOUTVOL,
2251 YDSXGR_LEGACYOUTVOL,
2252 /* address bases */
2253 YDSXGR_PLAYCTRLBASE,
2254 YDSXGR_RECCTRLBASE,
2255 YDSXGR_EFFCTRLBASE,
2256 YDSXGR_WORKBASE,
2257 /* capture set up */
2258 YDSXGR_MAPOFREC,
2259 YDSXGR_RECFORMAT,
2260 YDSXGR_RECSLOTSR,
2261 YDSXGR_ADCFORMAT,
2262 YDSXGR_ADCSLOTSR,
2264 #define YDSXGR_NUM_SAVED_REGS ARRAY_SIZE(saved_regs_index)
2266 static int snd_ymfpci_suspend(struct device *dev)
2268 struct snd_card *card = dev_get_drvdata(dev);
2269 struct snd_ymfpci *chip = card->private_data;
2270 unsigned int i;
2272 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
2273 snd_ac97_suspend(chip->ac97);
2274 for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2275 chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
2276 chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
2277 pci_read_config_word(chip->pci, PCIR_DSXG_LEGACY,
2278 &chip->saved_dsxg_legacy);
2279 pci_read_config_word(chip->pci, PCIR_DSXG_ELEGACY,
2280 &chip->saved_dsxg_elegacy);
2281 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2282 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2283 snd_ymfpci_disable_dsp(chip);
2284 return 0;
2287 static int snd_ymfpci_resume(struct device *dev)
2289 struct pci_dev *pci = to_pci_dev(dev);
2290 struct snd_card *card = dev_get_drvdata(dev);
2291 struct snd_ymfpci *chip = card->private_data;
2292 unsigned int i;
2294 snd_ymfpci_aclink_reset(pci);
2295 snd_ymfpci_codec_ready(chip, 0);
2296 snd_ymfpci_download_image(chip);
2297 udelay(100);
2299 for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2300 snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
2302 snd_ac97_resume(chip->ac97);
2304 pci_write_config_word(chip->pci, PCIR_DSXG_LEGACY,
2305 chip->saved_dsxg_legacy);
2306 pci_write_config_word(chip->pci, PCIR_DSXG_ELEGACY,
2307 chip->saved_dsxg_elegacy);
2309 /* start hw again */
2310 if (chip->start_count > 0) {
2311 spin_lock_irq(&chip->reg_lock);
2312 snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
2313 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
2314 spin_unlock_irq(&chip->reg_lock);
2316 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
2317 return 0;
2320 SIMPLE_DEV_PM_OPS(snd_ymfpci_pm, snd_ymfpci_suspend, snd_ymfpci_resume);
2321 #endif /* CONFIG_PM_SLEEP */
2323 int snd_ymfpci_create(struct snd_card *card,
2324 struct pci_dev *pci,
2325 unsigned short old_legacy_ctrl,
2326 struct snd_ymfpci **rchip)
2328 struct snd_ymfpci *chip;
2329 int err;
2330 static const struct snd_device_ops ops = {
2331 .dev_free = snd_ymfpci_dev_free,
2334 *rchip = NULL;
2336 /* enable PCI device */
2337 if ((err = pci_enable_device(pci)) < 0)
2338 return err;
2340 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
2341 if (chip == NULL) {
2342 pci_disable_device(pci);
2343 return -ENOMEM;
2345 chip->old_legacy_ctrl = old_legacy_ctrl;
2346 spin_lock_init(&chip->reg_lock);
2347 spin_lock_init(&chip->voice_lock);
2348 init_waitqueue_head(&chip->interrupt_sleep);
2349 atomic_set(&chip->interrupt_sleep_count, 0);
2350 chip->card = card;
2351 chip->pci = pci;
2352 chip->irq = -1;
2353 chip->device_id = pci->device;
2354 chip->rev = pci->revision;
2355 chip->reg_area_phys = pci_resource_start(pci, 0);
2356 chip->reg_area_virt = ioremap(chip->reg_area_phys, 0x8000);
2357 pci_set_master(pci);
2358 chip->src441_used = -1;
2360 if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) {
2361 dev_err(chip->card->dev,
2362 "unable to grab memory region 0x%lx-0x%lx\n",
2363 chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
2364 err = -EBUSY;
2365 goto free_chip;
2367 if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
2368 KBUILD_MODNAME, chip)) {
2369 dev_err(chip->card->dev, "unable to grab IRQ %d\n", pci->irq);
2370 err = -EBUSY;
2371 goto free_chip;
2373 chip->irq = pci->irq;
2374 card->sync_irq = chip->irq;
2376 snd_ymfpci_aclink_reset(pci);
2377 if (snd_ymfpci_codec_ready(chip, 0) < 0) {
2378 err = -EIO;
2379 goto free_chip;
2382 err = snd_ymfpci_request_firmware(chip);
2383 if (err < 0) {
2384 dev_err(chip->card->dev, "firmware request failed: %d\n", err);
2385 goto free_chip;
2387 snd_ymfpci_download_image(chip);
2389 udelay(100); /* seems we need a delay after downloading image.. */
2391 if (snd_ymfpci_memalloc(chip) < 0) {
2392 err = -EIO;
2393 goto free_chip;
2396 err = snd_ymfpci_ac3_init(chip);
2397 if (err < 0)
2398 goto free_chip;
2400 #ifdef CONFIG_PM_SLEEP
2401 chip->saved_regs = kmalloc_array(YDSXGR_NUM_SAVED_REGS, sizeof(u32),
2402 GFP_KERNEL);
2403 if (chip->saved_regs == NULL) {
2404 err = -ENOMEM;
2405 goto free_chip;
2407 #endif
2409 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
2410 if (err < 0)
2411 goto free_chip;
2413 snd_ymfpci_proc_init(card, chip);
2415 *rchip = chip;
2416 return 0;
2418 free_chip:
2419 snd_ymfpci_free(chip);
2420 return err;