mm: page_alloc: reduce cost of the fair zone allocation policy
[linux/fpc-iii.git] / mm / rmap.c
blobcab982084e2b9323d7928c3bc8e3cf0ea6af188b
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
27 * anon_vma->rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
61 #include <asm/tlbflush.h>
63 #include "internal.h"
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
68 static inline struct anon_vma *anon_vma_alloc(void)
70 struct anon_vma *anon_vma;
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
79 anon_vma->root = anon_vma;
82 return anon_vma;
85 static inline void anon_vma_free(struct anon_vma *anon_vma)
87 VM_BUG_ON(atomic_read(&anon_vma->refcount));
90 * Synchronize against page_lock_anon_vma_read() such that
91 * we can safely hold the lock without the anon_vma getting
92 * freed.
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
96 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
98 * page_lock_anon_vma_read() VS put_anon_vma()
99 * down_read_trylock() atomic_dec_and_test()
100 * LOCK MB
101 * atomic_read() rwsem_is_locked()
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
106 might_sleep();
107 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
108 anon_vma_lock_write(anon_vma);
109 anon_vma_unlock_write(anon_vma);
112 kmem_cache_free(anon_vma_cachep, anon_vma);
115 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
117 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
120 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
122 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
125 static void anon_vma_chain_link(struct vm_area_struct *vma,
126 struct anon_vma_chain *avc,
127 struct anon_vma *anon_vma)
129 avc->vma = vma;
130 avc->anon_vma = anon_vma;
131 list_add(&avc->same_vma, &vma->anon_vma_chain);
132 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
136 * anon_vma_prepare - attach an anon_vma to a memory region
137 * @vma: the memory region in question
139 * This makes sure the memory mapping described by 'vma' has
140 * an 'anon_vma' attached to it, so that we can associate the
141 * anonymous pages mapped into it with that anon_vma.
143 * The common case will be that we already have one, but if
144 * not we either need to find an adjacent mapping that we
145 * can re-use the anon_vma from (very common when the only
146 * reason for splitting a vma has been mprotect()), or we
147 * allocate a new one.
149 * Anon-vma allocations are very subtle, because we may have
150 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
151 * and that may actually touch the spinlock even in the newly
152 * allocated vma (it depends on RCU to make sure that the
153 * anon_vma isn't actually destroyed).
155 * As a result, we need to do proper anon_vma locking even
156 * for the new allocation. At the same time, we do not want
157 * to do any locking for the common case of already having
158 * an anon_vma.
160 * This must be called with the mmap_sem held for reading.
162 int anon_vma_prepare(struct vm_area_struct *vma)
164 struct anon_vma *anon_vma = vma->anon_vma;
165 struct anon_vma_chain *avc;
167 might_sleep();
168 if (unlikely(!anon_vma)) {
169 struct mm_struct *mm = vma->vm_mm;
170 struct anon_vma *allocated;
172 avc = anon_vma_chain_alloc(GFP_KERNEL);
173 if (!avc)
174 goto out_enomem;
176 anon_vma = find_mergeable_anon_vma(vma);
177 allocated = NULL;
178 if (!anon_vma) {
179 anon_vma = anon_vma_alloc();
180 if (unlikely(!anon_vma))
181 goto out_enomem_free_avc;
182 allocated = anon_vma;
185 anon_vma_lock_write(anon_vma);
186 /* page_table_lock to protect against threads */
187 spin_lock(&mm->page_table_lock);
188 if (likely(!vma->anon_vma)) {
189 vma->anon_vma = anon_vma;
190 anon_vma_chain_link(vma, avc, anon_vma);
191 allocated = NULL;
192 avc = NULL;
194 spin_unlock(&mm->page_table_lock);
195 anon_vma_unlock_write(anon_vma);
197 if (unlikely(allocated))
198 put_anon_vma(allocated);
199 if (unlikely(avc))
200 anon_vma_chain_free(avc);
202 return 0;
204 out_enomem_free_avc:
205 anon_vma_chain_free(avc);
206 out_enomem:
207 return -ENOMEM;
211 * This is a useful helper function for locking the anon_vma root as
212 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
213 * have the same vma.
215 * Such anon_vma's should have the same root, so you'd expect to see
216 * just a single mutex_lock for the whole traversal.
218 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
220 struct anon_vma *new_root = anon_vma->root;
221 if (new_root != root) {
222 if (WARN_ON_ONCE(root))
223 up_write(&root->rwsem);
224 root = new_root;
225 down_write(&root->rwsem);
227 return root;
230 static inline void unlock_anon_vma_root(struct anon_vma *root)
232 if (root)
233 up_write(&root->rwsem);
237 * Attach the anon_vmas from src to dst.
238 * Returns 0 on success, -ENOMEM on failure.
240 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
242 struct anon_vma_chain *avc, *pavc;
243 struct anon_vma *root = NULL;
245 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
246 struct anon_vma *anon_vma;
248 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
249 if (unlikely(!avc)) {
250 unlock_anon_vma_root(root);
251 root = NULL;
252 avc = anon_vma_chain_alloc(GFP_KERNEL);
253 if (!avc)
254 goto enomem_failure;
256 anon_vma = pavc->anon_vma;
257 root = lock_anon_vma_root(root, anon_vma);
258 anon_vma_chain_link(dst, avc, anon_vma);
260 unlock_anon_vma_root(root);
261 return 0;
263 enomem_failure:
264 unlink_anon_vmas(dst);
265 return -ENOMEM;
269 * Attach vma to its own anon_vma, as well as to the anon_vmas that
270 * the corresponding VMA in the parent process is attached to.
271 * Returns 0 on success, non-zero on failure.
273 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
275 struct anon_vma_chain *avc;
276 struct anon_vma *anon_vma;
277 int error;
279 /* Don't bother if the parent process has no anon_vma here. */
280 if (!pvma->anon_vma)
281 return 0;
284 * First, attach the new VMA to the parent VMA's anon_vmas,
285 * so rmap can find non-COWed pages in child processes.
287 error = anon_vma_clone(vma, pvma);
288 if (error)
289 return error;
291 /* Then add our own anon_vma. */
292 anon_vma = anon_vma_alloc();
293 if (!anon_vma)
294 goto out_error;
295 avc = anon_vma_chain_alloc(GFP_KERNEL);
296 if (!avc)
297 goto out_error_free_anon_vma;
300 * The root anon_vma's spinlock is the lock actually used when we
301 * lock any of the anon_vmas in this anon_vma tree.
303 anon_vma->root = pvma->anon_vma->root;
305 * With refcounts, an anon_vma can stay around longer than the
306 * process it belongs to. The root anon_vma needs to be pinned until
307 * this anon_vma is freed, because the lock lives in the root.
309 get_anon_vma(anon_vma->root);
310 /* Mark this anon_vma as the one where our new (COWed) pages go. */
311 vma->anon_vma = anon_vma;
312 anon_vma_lock_write(anon_vma);
313 anon_vma_chain_link(vma, avc, anon_vma);
314 anon_vma_unlock_write(anon_vma);
316 return 0;
318 out_error_free_anon_vma:
319 put_anon_vma(anon_vma);
320 out_error:
321 unlink_anon_vmas(vma);
322 return -ENOMEM;
325 void unlink_anon_vmas(struct vm_area_struct *vma)
327 struct anon_vma_chain *avc, *next;
328 struct anon_vma *root = NULL;
331 * Unlink each anon_vma chained to the VMA. This list is ordered
332 * from newest to oldest, ensuring the root anon_vma gets freed last.
334 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
335 struct anon_vma *anon_vma = avc->anon_vma;
337 root = lock_anon_vma_root(root, anon_vma);
338 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
341 * Leave empty anon_vmas on the list - we'll need
342 * to free them outside the lock.
344 if (RB_EMPTY_ROOT(&anon_vma->rb_root))
345 continue;
347 list_del(&avc->same_vma);
348 anon_vma_chain_free(avc);
350 unlock_anon_vma_root(root);
353 * Iterate the list once more, it now only contains empty and unlinked
354 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
355 * needing to write-acquire the anon_vma->root->rwsem.
357 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
358 struct anon_vma *anon_vma = avc->anon_vma;
360 put_anon_vma(anon_vma);
362 list_del(&avc->same_vma);
363 anon_vma_chain_free(avc);
367 static void anon_vma_ctor(void *data)
369 struct anon_vma *anon_vma = data;
371 init_rwsem(&anon_vma->rwsem);
372 atomic_set(&anon_vma->refcount, 0);
373 anon_vma->rb_root = RB_ROOT;
376 void __init anon_vma_init(void)
378 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
379 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
380 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
384 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
386 * Since there is no serialization what so ever against page_remove_rmap()
387 * the best this function can do is return a locked anon_vma that might
388 * have been relevant to this page.
390 * The page might have been remapped to a different anon_vma or the anon_vma
391 * returned may already be freed (and even reused).
393 * In case it was remapped to a different anon_vma, the new anon_vma will be a
394 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
395 * ensure that any anon_vma obtained from the page will still be valid for as
396 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
398 * All users of this function must be very careful when walking the anon_vma
399 * chain and verify that the page in question is indeed mapped in it
400 * [ something equivalent to page_mapped_in_vma() ].
402 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
403 * that the anon_vma pointer from page->mapping is valid if there is a
404 * mapcount, we can dereference the anon_vma after observing those.
406 struct anon_vma *page_get_anon_vma(struct page *page)
408 struct anon_vma *anon_vma = NULL;
409 unsigned long anon_mapping;
411 rcu_read_lock();
412 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
413 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
414 goto out;
415 if (!page_mapped(page))
416 goto out;
418 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
419 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
420 anon_vma = NULL;
421 goto out;
425 * If this page is still mapped, then its anon_vma cannot have been
426 * freed. But if it has been unmapped, we have no security against the
427 * anon_vma structure being freed and reused (for another anon_vma:
428 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
429 * above cannot corrupt).
431 if (!page_mapped(page)) {
432 rcu_read_unlock();
433 put_anon_vma(anon_vma);
434 return NULL;
436 out:
437 rcu_read_unlock();
439 return anon_vma;
443 * Similar to page_get_anon_vma() except it locks the anon_vma.
445 * Its a little more complex as it tries to keep the fast path to a single
446 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
447 * reference like with page_get_anon_vma() and then block on the mutex.
449 struct anon_vma *page_lock_anon_vma_read(struct page *page)
451 struct anon_vma *anon_vma = NULL;
452 struct anon_vma *root_anon_vma;
453 unsigned long anon_mapping;
455 rcu_read_lock();
456 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
457 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
458 goto out;
459 if (!page_mapped(page))
460 goto out;
462 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
463 root_anon_vma = ACCESS_ONCE(anon_vma->root);
464 if (down_read_trylock(&root_anon_vma->rwsem)) {
466 * If the page is still mapped, then this anon_vma is still
467 * its anon_vma, and holding the mutex ensures that it will
468 * not go away, see anon_vma_free().
470 if (!page_mapped(page)) {
471 up_read(&root_anon_vma->rwsem);
472 anon_vma = NULL;
474 goto out;
477 /* trylock failed, we got to sleep */
478 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
479 anon_vma = NULL;
480 goto out;
483 if (!page_mapped(page)) {
484 rcu_read_unlock();
485 put_anon_vma(anon_vma);
486 return NULL;
489 /* we pinned the anon_vma, its safe to sleep */
490 rcu_read_unlock();
491 anon_vma_lock_read(anon_vma);
493 if (atomic_dec_and_test(&anon_vma->refcount)) {
495 * Oops, we held the last refcount, release the lock
496 * and bail -- can't simply use put_anon_vma() because
497 * we'll deadlock on the anon_vma_lock_write() recursion.
499 anon_vma_unlock_read(anon_vma);
500 __put_anon_vma(anon_vma);
501 anon_vma = NULL;
504 return anon_vma;
506 out:
507 rcu_read_unlock();
508 return anon_vma;
511 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
513 anon_vma_unlock_read(anon_vma);
517 * At what user virtual address is page expected in @vma?
519 static inline unsigned long
520 __vma_address(struct page *page, struct vm_area_struct *vma)
522 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
524 if (unlikely(is_vm_hugetlb_page(vma)))
525 pgoff = page->index << huge_page_order(page_hstate(page));
527 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
530 inline unsigned long
531 vma_address(struct page *page, struct vm_area_struct *vma)
533 unsigned long address = __vma_address(page, vma);
535 /* page should be within @vma mapping range */
536 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
538 return address;
542 * At what user virtual address is page expected in vma?
543 * Caller should check the page is actually part of the vma.
545 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
547 unsigned long address;
548 if (PageAnon(page)) {
549 struct anon_vma *page__anon_vma = page_anon_vma(page);
551 * Note: swapoff's unuse_vma() is more efficient with this
552 * check, and needs it to match anon_vma when KSM is active.
554 if (!vma->anon_vma || !page__anon_vma ||
555 vma->anon_vma->root != page__anon_vma->root)
556 return -EFAULT;
557 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
558 if (!vma->vm_file ||
559 vma->vm_file->f_mapping != page->mapping)
560 return -EFAULT;
561 } else
562 return -EFAULT;
563 address = __vma_address(page, vma);
564 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
565 return -EFAULT;
566 return address;
569 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
571 pgd_t *pgd;
572 pud_t *pud;
573 pmd_t *pmd = NULL;
575 pgd = pgd_offset(mm, address);
576 if (!pgd_present(*pgd))
577 goto out;
579 pud = pud_offset(pgd, address);
580 if (!pud_present(*pud))
581 goto out;
583 pmd = pmd_offset(pud, address);
584 if (!pmd_present(*pmd))
585 pmd = NULL;
586 out:
587 return pmd;
591 * Check that @page is mapped at @address into @mm.
593 * If @sync is false, page_check_address may perform a racy check to avoid
594 * the page table lock when the pte is not present (helpful when reclaiming
595 * highly shared pages).
597 * On success returns with pte mapped and locked.
599 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
600 unsigned long address, spinlock_t **ptlp, int sync)
602 pmd_t *pmd;
603 pte_t *pte;
604 spinlock_t *ptl;
606 if (unlikely(PageHuge(page))) {
607 /* when pud is not present, pte will be NULL */
608 pte = huge_pte_offset(mm, address);
609 if (!pte)
610 return NULL;
612 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
613 goto check;
616 pmd = mm_find_pmd(mm, address);
617 if (!pmd)
618 return NULL;
620 if (pmd_trans_huge(*pmd))
621 return NULL;
623 pte = pte_offset_map(pmd, address);
624 /* Make a quick check before getting the lock */
625 if (!sync && !pte_present(*pte)) {
626 pte_unmap(pte);
627 return NULL;
630 ptl = pte_lockptr(mm, pmd);
631 check:
632 spin_lock(ptl);
633 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
634 *ptlp = ptl;
635 return pte;
637 pte_unmap_unlock(pte, ptl);
638 return NULL;
642 * page_mapped_in_vma - check whether a page is really mapped in a VMA
643 * @page: the page to test
644 * @vma: the VMA to test
646 * Returns 1 if the page is mapped into the page tables of the VMA, 0
647 * if the page is not mapped into the page tables of this VMA. Only
648 * valid for normal file or anonymous VMAs.
650 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
652 unsigned long address;
653 pte_t *pte;
654 spinlock_t *ptl;
656 address = __vma_address(page, vma);
657 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
658 return 0;
659 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
660 if (!pte) /* the page is not in this mm */
661 return 0;
662 pte_unmap_unlock(pte, ptl);
664 return 1;
667 struct page_referenced_arg {
668 int mapcount;
669 int referenced;
670 unsigned long vm_flags;
671 struct mem_cgroup *memcg;
674 * arg: page_referenced_arg will be passed
676 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
677 unsigned long address, void *arg)
679 struct mm_struct *mm = vma->vm_mm;
680 spinlock_t *ptl;
681 int referenced = 0;
682 struct page_referenced_arg *pra = arg;
684 if (unlikely(PageTransHuge(page))) {
685 pmd_t *pmd;
688 * rmap might return false positives; we must filter
689 * these out using page_check_address_pmd().
691 pmd = page_check_address_pmd(page, mm, address,
692 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
693 if (!pmd)
694 return SWAP_AGAIN;
696 if (vma->vm_flags & VM_LOCKED) {
697 spin_unlock(ptl);
698 pra->vm_flags |= VM_LOCKED;
699 return SWAP_FAIL; /* To break the loop */
702 /* go ahead even if the pmd is pmd_trans_splitting() */
703 if (pmdp_clear_flush_young_notify(vma, address, pmd))
704 referenced++;
705 spin_unlock(ptl);
706 } else {
707 pte_t *pte;
710 * rmap might return false positives; we must filter
711 * these out using page_check_address().
713 pte = page_check_address(page, mm, address, &ptl, 0);
714 if (!pte)
715 return SWAP_AGAIN;
717 if (vma->vm_flags & VM_LOCKED) {
718 pte_unmap_unlock(pte, ptl);
719 pra->vm_flags |= VM_LOCKED;
720 return SWAP_FAIL; /* To break the loop */
723 if (ptep_clear_flush_young_notify(vma, address, pte)) {
725 * Don't treat a reference through a sequentially read
726 * mapping as such. If the page has been used in
727 * another mapping, we will catch it; if this other
728 * mapping is already gone, the unmap path will have
729 * set PG_referenced or activated the page.
731 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
732 referenced++;
734 pte_unmap_unlock(pte, ptl);
737 if (referenced) {
738 pra->referenced++;
739 pra->vm_flags |= vma->vm_flags;
742 pra->mapcount--;
743 if (!pra->mapcount)
744 return SWAP_SUCCESS; /* To break the loop */
746 return SWAP_AGAIN;
749 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
751 struct page_referenced_arg *pra = arg;
752 struct mem_cgroup *memcg = pra->memcg;
754 if (!mm_match_cgroup(vma->vm_mm, memcg))
755 return true;
757 return false;
761 * page_referenced - test if the page was referenced
762 * @page: the page to test
763 * @is_locked: caller holds lock on the page
764 * @memcg: target memory cgroup
765 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
767 * Quick test_and_clear_referenced for all mappings to a page,
768 * returns the number of ptes which referenced the page.
770 int page_referenced(struct page *page,
771 int is_locked,
772 struct mem_cgroup *memcg,
773 unsigned long *vm_flags)
775 int ret;
776 int we_locked = 0;
777 struct page_referenced_arg pra = {
778 .mapcount = page_mapcount(page),
779 .memcg = memcg,
781 struct rmap_walk_control rwc = {
782 .rmap_one = page_referenced_one,
783 .arg = (void *)&pra,
784 .anon_lock = page_lock_anon_vma_read,
787 *vm_flags = 0;
788 if (!page_mapped(page))
789 return 0;
791 if (!page_rmapping(page))
792 return 0;
794 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
795 we_locked = trylock_page(page);
796 if (!we_locked)
797 return 1;
801 * If we are reclaiming on behalf of a cgroup, skip
802 * counting on behalf of references from different
803 * cgroups
805 if (memcg) {
806 rwc.invalid_vma = invalid_page_referenced_vma;
809 ret = rmap_walk(page, &rwc);
810 *vm_flags = pra.vm_flags;
812 if (we_locked)
813 unlock_page(page);
815 return pra.referenced;
818 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
819 unsigned long address, void *arg)
821 struct mm_struct *mm = vma->vm_mm;
822 pte_t *pte;
823 spinlock_t *ptl;
824 int ret = 0;
825 int *cleaned = arg;
827 pte = page_check_address(page, mm, address, &ptl, 1);
828 if (!pte)
829 goto out;
831 if (pte_dirty(*pte) || pte_write(*pte)) {
832 pte_t entry;
834 flush_cache_page(vma, address, pte_pfn(*pte));
835 entry = ptep_clear_flush(vma, address, pte);
836 entry = pte_wrprotect(entry);
837 entry = pte_mkclean(entry);
838 set_pte_at(mm, address, pte, entry);
839 ret = 1;
842 pte_unmap_unlock(pte, ptl);
844 if (ret) {
845 mmu_notifier_invalidate_page(mm, address);
846 (*cleaned)++;
848 out:
849 return SWAP_AGAIN;
852 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
854 if (vma->vm_flags & VM_SHARED)
855 return false;
857 return true;
860 int page_mkclean(struct page *page)
862 int cleaned = 0;
863 struct address_space *mapping;
864 struct rmap_walk_control rwc = {
865 .arg = (void *)&cleaned,
866 .rmap_one = page_mkclean_one,
867 .invalid_vma = invalid_mkclean_vma,
870 BUG_ON(!PageLocked(page));
872 if (!page_mapped(page))
873 return 0;
875 mapping = page_mapping(page);
876 if (!mapping)
877 return 0;
879 rmap_walk(page, &rwc);
881 return cleaned;
883 EXPORT_SYMBOL_GPL(page_mkclean);
886 * page_move_anon_rmap - move a page to our anon_vma
887 * @page: the page to move to our anon_vma
888 * @vma: the vma the page belongs to
889 * @address: the user virtual address mapped
891 * When a page belongs exclusively to one process after a COW event,
892 * that page can be moved into the anon_vma that belongs to just that
893 * process, so the rmap code will not search the parent or sibling
894 * processes.
896 void page_move_anon_rmap(struct page *page,
897 struct vm_area_struct *vma, unsigned long address)
899 struct anon_vma *anon_vma = vma->anon_vma;
901 VM_BUG_ON_PAGE(!PageLocked(page), page);
902 VM_BUG_ON(!anon_vma);
903 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
905 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
906 page->mapping = (struct address_space *) anon_vma;
910 * __page_set_anon_rmap - set up new anonymous rmap
911 * @page: Page to add to rmap
912 * @vma: VM area to add page to.
913 * @address: User virtual address of the mapping
914 * @exclusive: the page is exclusively owned by the current process
916 static void __page_set_anon_rmap(struct page *page,
917 struct vm_area_struct *vma, unsigned long address, int exclusive)
919 struct anon_vma *anon_vma = vma->anon_vma;
921 BUG_ON(!anon_vma);
923 if (PageAnon(page))
924 return;
927 * If the page isn't exclusively mapped into this vma,
928 * we must use the _oldest_ possible anon_vma for the
929 * page mapping!
931 if (!exclusive)
932 anon_vma = anon_vma->root;
934 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
935 page->mapping = (struct address_space *) anon_vma;
936 page->index = linear_page_index(vma, address);
940 * __page_check_anon_rmap - sanity check anonymous rmap addition
941 * @page: the page to add the mapping to
942 * @vma: the vm area in which the mapping is added
943 * @address: the user virtual address mapped
945 static void __page_check_anon_rmap(struct page *page,
946 struct vm_area_struct *vma, unsigned long address)
948 #ifdef CONFIG_DEBUG_VM
950 * The page's anon-rmap details (mapping and index) are guaranteed to
951 * be set up correctly at this point.
953 * We have exclusion against page_add_anon_rmap because the caller
954 * always holds the page locked, except if called from page_dup_rmap,
955 * in which case the page is already known to be setup.
957 * We have exclusion against page_add_new_anon_rmap because those pages
958 * are initially only visible via the pagetables, and the pte is locked
959 * over the call to page_add_new_anon_rmap.
961 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
962 BUG_ON(page->index != linear_page_index(vma, address));
963 #endif
967 * page_add_anon_rmap - add pte mapping to an anonymous page
968 * @page: the page to add the mapping to
969 * @vma: the vm area in which the mapping is added
970 * @address: the user virtual address mapped
972 * The caller needs to hold the pte lock, and the page must be locked in
973 * the anon_vma case: to serialize mapping,index checking after setting,
974 * and to ensure that PageAnon is not being upgraded racily to PageKsm
975 * (but PageKsm is never downgraded to PageAnon).
977 void page_add_anon_rmap(struct page *page,
978 struct vm_area_struct *vma, unsigned long address)
980 do_page_add_anon_rmap(page, vma, address, 0);
984 * Special version of the above for do_swap_page, which often runs
985 * into pages that are exclusively owned by the current process.
986 * Everybody else should continue to use page_add_anon_rmap above.
988 void do_page_add_anon_rmap(struct page *page,
989 struct vm_area_struct *vma, unsigned long address, int exclusive)
991 int first = atomic_inc_and_test(&page->_mapcount);
992 if (first) {
993 if (PageTransHuge(page))
994 __inc_zone_page_state(page,
995 NR_ANON_TRANSPARENT_HUGEPAGES);
996 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
997 hpage_nr_pages(page));
999 if (unlikely(PageKsm(page)))
1000 return;
1002 VM_BUG_ON_PAGE(!PageLocked(page), page);
1003 /* address might be in next vma when migration races vma_adjust */
1004 if (first)
1005 __page_set_anon_rmap(page, vma, address, exclusive);
1006 else
1007 __page_check_anon_rmap(page, vma, address);
1011 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1012 * @page: the page to add the mapping to
1013 * @vma: the vm area in which the mapping is added
1014 * @address: the user virtual address mapped
1016 * Same as page_add_anon_rmap but must only be called on *new* pages.
1017 * This means the inc-and-test can be bypassed.
1018 * Page does not have to be locked.
1020 void page_add_new_anon_rmap(struct page *page,
1021 struct vm_area_struct *vma, unsigned long address)
1023 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1024 SetPageSwapBacked(page);
1025 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1026 if (PageTransHuge(page))
1027 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1028 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1029 hpage_nr_pages(page));
1030 __page_set_anon_rmap(page, vma, address, 1);
1031 if (!mlocked_vma_newpage(vma, page)) {
1032 SetPageActive(page);
1033 lru_cache_add(page);
1034 } else
1035 add_page_to_unevictable_list(page);
1039 * page_add_file_rmap - add pte mapping to a file page
1040 * @page: the page to add the mapping to
1042 * The caller needs to hold the pte lock.
1044 void page_add_file_rmap(struct page *page)
1046 bool locked;
1047 unsigned long flags;
1049 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1050 if (atomic_inc_and_test(&page->_mapcount)) {
1051 __inc_zone_page_state(page, NR_FILE_MAPPED);
1052 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1054 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1058 * page_remove_rmap - take down pte mapping from a page
1059 * @page: page to remove mapping from
1061 * The caller needs to hold the pte lock.
1063 void page_remove_rmap(struct page *page)
1065 bool anon = PageAnon(page);
1066 bool locked;
1067 unsigned long flags;
1070 * The anon case has no mem_cgroup page_stat to update; but may
1071 * uncharge_page() below, where the lock ordering can deadlock if
1072 * we hold the lock against page_stat move: so avoid it on anon.
1074 if (!anon)
1075 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1077 /* page still mapped by someone else? */
1078 if (!atomic_add_negative(-1, &page->_mapcount))
1079 goto out;
1082 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1083 * and not charged by memcg for now.
1085 if (unlikely(PageHuge(page)))
1086 goto out;
1087 if (anon) {
1088 mem_cgroup_uncharge_page(page);
1089 if (PageTransHuge(page))
1090 __dec_zone_page_state(page,
1091 NR_ANON_TRANSPARENT_HUGEPAGES);
1092 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1093 -hpage_nr_pages(page));
1094 } else {
1095 __dec_zone_page_state(page, NR_FILE_MAPPED);
1096 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1097 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1099 if (unlikely(PageMlocked(page)))
1100 clear_page_mlock(page);
1102 * It would be tidy to reset the PageAnon mapping here,
1103 * but that might overwrite a racing page_add_anon_rmap
1104 * which increments mapcount after us but sets mapping
1105 * before us: so leave the reset to free_hot_cold_page,
1106 * and remember that it's only reliable while mapped.
1107 * Leaving it set also helps swapoff to reinstate ptes
1108 * faster for those pages still in swapcache.
1110 return;
1111 out:
1112 if (!anon)
1113 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1117 * @arg: enum ttu_flags will be passed to this argument
1119 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1120 unsigned long address, void *arg)
1122 struct mm_struct *mm = vma->vm_mm;
1123 pte_t *pte;
1124 pte_t pteval;
1125 spinlock_t *ptl;
1126 int ret = SWAP_AGAIN;
1127 enum ttu_flags flags = (enum ttu_flags)arg;
1129 pte = page_check_address(page, mm, address, &ptl, 0);
1130 if (!pte)
1131 goto out;
1134 * If the page is mlock()d, we cannot swap it out.
1135 * If it's recently referenced (perhaps page_referenced
1136 * skipped over this mm) then we should reactivate it.
1138 if (!(flags & TTU_IGNORE_MLOCK)) {
1139 if (vma->vm_flags & VM_LOCKED)
1140 goto out_mlock;
1142 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1143 goto out_unmap;
1145 if (!(flags & TTU_IGNORE_ACCESS)) {
1146 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1147 ret = SWAP_FAIL;
1148 goto out_unmap;
1152 /* Nuke the page table entry. */
1153 flush_cache_page(vma, address, page_to_pfn(page));
1154 pteval = ptep_clear_flush(vma, address, pte);
1156 /* Move the dirty bit to the physical page now the pte is gone. */
1157 if (pte_dirty(pteval))
1158 set_page_dirty(page);
1160 /* Update high watermark before we lower rss */
1161 update_hiwater_rss(mm);
1163 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1164 if (!PageHuge(page)) {
1165 if (PageAnon(page))
1166 dec_mm_counter(mm, MM_ANONPAGES);
1167 else
1168 dec_mm_counter(mm, MM_FILEPAGES);
1170 set_pte_at(mm, address, pte,
1171 swp_entry_to_pte(make_hwpoison_entry(page)));
1172 } else if (PageAnon(page)) {
1173 swp_entry_t entry = { .val = page_private(page) };
1174 pte_t swp_pte;
1176 if (PageSwapCache(page)) {
1178 * Store the swap location in the pte.
1179 * See handle_pte_fault() ...
1181 if (swap_duplicate(entry) < 0) {
1182 set_pte_at(mm, address, pte, pteval);
1183 ret = SWAP_FAIL;
1184 goto out_unmap;
1186 if (list_empty(&mm->mmlist)) {
1187 spin_lock(&mmlist_lock);
1188 if (list_empty(&mm->mmlist))
1189 list_add(&mm->mmlist, &init_mm.mmlist);
1190 spin_unlock(&mmlist_lock);
1192 dec_mm_counter(mm, MM_ANONPAGES);
1193 inc_mm_counter(mm, MM_SWAPENTS);
1194 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1196 * Store the pfn of the page in a special migration
1197 * pte. do_swap_page() will wait until the migration
1198 * pte is removed and then restart fault handling.
1200 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1201 entry = make_migration_entry(page, pte_write(pteval));
1203 swp_pte = swp_entry_to_pte(entry);
1204 if (pte_soft_dirty(pteval))
1205 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1206 set_pte_at(mm, address, pte, swp_pte);
1207 BUG_ON(pte_file(*pte));
1208 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1209 (TTU_ACTION(flags) == TTU_MIGRATION)) {
1210 /* Establish migration entry for a file page */
1211 swp_entry_t entry;
1212 entry = make_migration_entry(page, pte_write(pteval));
1213 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1214 } else
1215 dec_mm_counter(mm, MM_FILEPAGES);
1217 page_remove_rmap(page);
1218 page_cache_release(page);
1220 out_unmap:
1221 pte_unmap_unlock(pte, ptl);
1222 if (ret != SWAP_FAIL)
1223 mmu_notifier_invalidate_page(mm, address);
1224 out:
1225 return ret;
1227 out_mlock:
1228 pte_unmap_unlock(pte, ptl);
1232 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1233 * unstable result and race. Plus, We can't wait here because
1234 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1235 * if trylock failed, the page remain in evictable lru and later
1236 * vmscan could retry to move the page to unevictable lru if the
1237 * page is actually mlocked.
1239 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1240 if (vma->vm_flags & VM_LOCKED) {
1241 mlock_vma_page(page);
1242 ret = SWAP_MLOCK;
1244 up_read(&vma->vm_mm->mmap_sem);
1246 return ret;
1250 * objrmap doesn't work for nonlinear VMAs because the assumption that
1251 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1252 * Consequently, given a particular page and its ->index, we cannot locate the
1253 * ptes which are mapping that page without an exhaustive linear search.
1255 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1256 * maps the file to which the target page belongs. The ->vm_private_data field
1257 * holds the current cursor into that scan. Successive searches will circulate
1258 * around the vma's virtual address space.
1260 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1261 * more scanning pressure is placed against them as well. Eventually pages
1262 * will become fully unmapped and are eligible for eviction.
1264 * For very sparsely populated VMAs this is a little inefficient - chances are
1265 * there there won't be many ptes located within the scan cluster. In this case
1266 * maybe we could scan further - to the end of the pte page, perhaps.
1268 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1269 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1270 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1271 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1273 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1274 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1276 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1277 struct vm_area_struct *vma, struct page *check_page)
1279 struct mm_struct *mm = vma->vm_mm;
1280 pmd_t *pmd;
1281 pte_t *pte;
1282 pte_t pteval;
1283 spinlock_t *ptl;
1284 struct page *page;
1285 unsigned long address;
1286 unsigned long mmun_start; /* For mmu_notifiers */
1287 unsigned long mmun_end; /* For mmu_notifiers */
1288 unsigned long end;
1289 int ret = SWAP_AGAIN;
1290 int locked_vma = 0;
1292 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1293 end = address + CLUSTER_SIZE;
1294 if (address < vma->vm_start)
1295 address = vma->vm_start;
1296 if (end > vma->vm_end)
1297 end = vma->vm_end;
1299 pmd = mm_find_pmd(mm, address);
1300 if (!pmd)
1301 return ret;
1303 mmun_start = address;
1304 mmun_end = end;
1305 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1308 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1309 * keep the sem while scanning the cluster for mlocking pages.
1311 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1312 locked_vma = (vma->vm_flags & VM_LOCKED);
1313 if (!locked_vma)
1314 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1317 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1319 /* Update high watermark before we lower rss */
1320 update_hiwater_rss(mm);
1322 for (; address < end; pte++, address += PAGE_SIZE) {
1323 if (!pte_present(*pte))
1324 continue;
1325 page = vm_normal_page(vma, address, *pte);
1326 BUG_ON(!page || PageAnon(page));
1328 if (locked_vma) {
1329 if (page == check_page) {
1330 /* we know we have check_page locked */
1331 mlock_vma_page(page);
1332 ret = SWAP_MLOCK;
1333 } else if (trylock_page(page)) {
1335 * If we can lock the page, perform mlock.
1336 * Otherwise leave the page alone, it will be
1337 * eventually encountered again later.
1339 mlock_vma_page(page);
1340 unlock_page(page);
1342 continue; /* don't unmap */
1345 if (ptep_clear_flush_young_notify(vma, address, pte))
1346 continue;
1348 /* Nuke the page table entry. */
1349 flush_cache_page(vma, address, pte_pfn(*pte));
1350 pteval = ptep_clear_flush(vma, address, pte);
1352 /* If nonlinear, store the file page offset in the pte. */
1353 if (page->index != linear_page_index(vma, address)) {
1354 pte_t ptfile = pgoff_to_pte(page->index);
1355 if (pte_soft_dirty(pteval))
1356 pte_file_mksoft_dirty(ptfile);
1357 set_pte_at(mm, address, pte, ptfile);
1360 /* Move the dirty bit to the physical page now the pte is gone. */
1361 if (pte_dirty(pteval))
1362 set_page_dirty(page);
1364 page_remove_rmap(page);
1365 page_cache_release(page);
1366 dec_mm_counter(mm, MM_FILEPAGES);
1367 (*mapcount)--;
1369 pte_unmap_unlock(pte - 1, ptl);
1370 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1371 if (locked_vma)
1372 up_read(&vma->vm_mm->mmap_sem);
1373 return ret;
1376 static int try_to_unmap_nonlinear(struct page *page,
1377 struct address_space *mapping, void *arg)
1379 struct vm_area_struct *vma;
1380 int ret = SWAP_AGAIN;
1381 unsigned long cursor;
1382 unsigned long max_nl_cursor = 0;
1383 unsigned long max_nl_size = 0;
1384 unsigned int mapcount;
1386 list_for_each_entry(vma,
1387 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1389 cursor = (unsigned long) vma->vm_private_data;
1390 if (cursor > max_nl_cursor)
1391 max_nl_cursor = cursor;
1392 cursor = vma->vm_end - vma->vm_start;
1393 if (cursor > max_nl_size)
1394 max_nl_size = cursor;
1397 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1398 return SWAP_FAIL;
1402 * We don't try to search for this page in the nonlinear vmas,
1403 * and page_referenced wouldn't have found it anyway. Instead
1404 * just walk the nonlinear vmas trying to age and unmap some.
1405 * The mapcount of the page we came in with is irrelevant,
1406 * but even so use it as a guide to how hard we should try?
1408 mapcount = page_mapcount(page);
1409 if (!mapcount)
1410 return ret;
1412 cond_resched();
1414 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1415 if (max_nl_cursor == 0)
1416 max_nl_cursor = CLUSTER_SIZE;
1418 do {
1419 list_for_each_entry(vma,
1420 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1422 cursor = (unsigned long) vma->vm_private_data;
1423 while (cursor < max_nl_cursor &&
1424 cursor < vma->vm_end - vma->vm_start) {
1425 if (try_to_unmap_cluster(cursor, &mapcount,
1426 vma, page) == SWAP_MLOCK)
1427 ret = SWAP_MLOCK;
1428 cursor += CLUSTER_SIZE;
1429 vma->vm_private_data = (void *) cursor;
1430 if ((int)mapcount <= 0)
1431 return ret;
1433 vma->vm_private_data = (void *) max_nl_cursor;
1435 cond_resched();
1436 max_nl_cursor += CLUSTER_SIZE;
1437 } while (max_nl_cursor <= max_nl_size);
1440 * Don't loop forever (perhaps all the remaining pages are
1441 * in locked vmas). Reset cursor on all unreserved nonlinear
1442 * vmas, now forgetting on which ones it had fallen behind.
1444 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1445 vma->vm_private_data = NULL;
1447 return ret;
1450 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1452 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1454 if (!maybe_stack)
1455 return false;
1457 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1458 VM_STACK_INCOMPLETE_SETUP)
1459 return true;
1461 return false;
1464 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1466 return is_vma_temporary_stack(vma);
1469 static int page_not_mapped(struct page *page)
1471 return !page_mapped(page);
1475 * try_to_unmap - try to remove all page table mappings to a page
1476 * @page: the page to get unmapped
1477 * @flags: action and flags
1479 * Tries to remove all the page table entries which are mapping this
1480 * page, used in the pageout path. Caller must hold the page lock.
1481 * Return values are:
1483 * SWAP_SUCCESS - we succeeded in removing all mappings
1484 * SWAP_AGAIN - we missed a mapping, try again later
1485 * SWAP_FAIL - the page is unswappable
1486 * SWAP_MLOCK - page is mlocked.
1488 int try_to_unmap(struct page *page, enum ttu_flags flags)
1490 int ret;
1491 struct rmap_walk_control rwc = {
1492 .rmap_one = try_to_unmap_one,
1493 .arg = (void *)flags,
1494 .done = page_not_mapped,
1495 .file_nonlinear = try_to_unmap_nonlinear,
1496 .anon_lock = page_lock_anon_vma_read,
1499 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1502 * During exec, a temporary VMA is setup and later moved.
1503 * The VMA is moved under the anon_vma lock but not the
1504 * page tables leading to a race where migration cannot
1505 * find the migration ptes. Rather than increasing the
1506 * locking requirements of exec(), migration skips
1507 * temporary VMAs until after exec() completes.
1509 if (flags & TTU_MIGRATION && !PageKsm(page) && PageAnon(page))
1510 rwc.invalid_vma = invalid_migration_vma;
1512 ret = rmap_walk(page, &rwc);
1514 if (ret != SWAP_MLOCK && !page_mapped(page))
1515 ret = SWAP_SUCCESS;
1516 return ret;
1520 * try_to_munlock - try to munlock a page
1521 * @page: the page to be munlocked
1523 * Called from munlock code. Checks all of the VMAs mapping the page
1524 * to make sure nobody else has this page mlocked. The page will be
1525 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1527 * Return values are:
1529 * SWAP_AGAIN - no vma is holding page mlocked, or,
1530 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1531 * SWAP_FAIL - page cannot be located at present
1532 * SWAP_MLOCK - page is now mlocked.
1534 int try_to_munlock(struct page *page)
1536 int ret;
1537 struct rmap_walk_control rwc = {
1538 .rmap_one = try_to_unmap_one,
1539 .arg = (void *)TTU_MUNLOCK,
1540 .done = page_not_mapped,
1542 * We don't bother to try to find the munlocked page in
1543 * nonlinears. It's costly. Instead, later, page reclaim logic
1544 * may call try_to_unmap() and recover PG_mlocked lazily.
1546 .file_nonlinear = NULL,
1547 .anon_lock = page_lock_anon_vma_read,
1551 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1553 ret = rmap_walk(page, &rwc);
1554 return ret;
1557 void __put_anon_vma(struct anon_vma *anon_vma)
1559 struct anon_vma *root = anon_vma->root;
1561 anon_vma_free(anon_vma);
1562 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1563 anon_vma_free(root);
1566 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1567 struct rmap_walk_control *rwc)
1569 struct anon_vma *anon_vma;
1571 if (rwc->anon_lock)
1572 return rwc->anon_lock(page);
1575 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1576 * because that depends on page_mapped(); but not all its usages
1577 * are holding mmap_sem. Users without mmap_sem are required to
1578 * take a reference count to prevent the anon_vma disappearing
1580 anon_vma = page_anon_vma(page);
1581 if (!anon_vma)
1582 return NULL;
1584 anon_vma_lock_read(anon_vma);
1585 return anon_vma;
1589 * rmap_walk_anon - do something to anonymous page using the object-based
1590 * rmap method
1591 * @page: the page to be handled
1592 * @rwc: control variable according to each walk type
1594 * Find all the mappings of a page using the mapping pointer and the vma chains
1595 * contained in the anon_vma struct it points to.
1597 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1598 * where the page was found will be held for write. So, we won't recheck
1599 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1600 * LOCKED.
1602 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1604 struct anon_vma *anon_vma;
1605 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1606 struct anon_vma_chain *avc;
1607 int ret = SWAP_AGAIN;
1609 anon_vma = rmap_walk_anon_lock(page, rwc);
1610 if (!anon_vma)
1611 return ret;
1613 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1614 struct vm_area_struct *vma = avc->vma;
1615 unsigned long address = vma_address(page, vma);
1617 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1618 continue;
1620 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1621 if (ret != SWAP_AGAIN)
1622 break;
1623 if (rwc->done && rwc->done(page))
1624 break;
1626 anon_vma_unlock_read(anon_vma);
1627 return ret;
1631 * rmap_walk_file - do something to file page using the object-based rmap method
1632 * @page: the page to be handled
1633 * @rwc: control variable according to each walk type
1635 * Find all the mappings of a page using the mapping pointer and the vma chains
1636 * contained in the address_space struct it points to.
1638 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1639 * where the page was found will be held for write. So, we won't recheck
1640 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1641 * LOCKED.
1643 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1645 struct address_space *mapping = page->mapping;
1646 pgoff_t pgoff = page->index << compound_order(page);
1647 struct vm_area_struct *vma;
1648 int ret = SWAP_AGAIN;
1651 * The page lock not only makes sure that page->mapping cannot
1652 * suddenly be NULLified by truncation, it makes sure that the
1653 * structure at mapping cannot be freed and reused yet,
1654 * so we can safely take mapping->i_mmap_mutex.
1656 VM_BUG_ON(!PageLocked(page));
1658 if (!mapping)
1659 return ret;
1660 mutex_lock(&mapping->i_mmap_mutex);
1661 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1662 unsigned long address = vma_address(page, vma);
1664 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1665 continue;
1667 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1668 if (ret != SWAP_AGAIN)
1669 goto done;
1670 if (rwc->done && rwc->done(page))
1671 goto done;
1674 if (!rwc->file_nonlinear)
1675 goto done;
1677 if (list_empty(&mapping->i_mmap_nonlinear))
1678 goto done;
1680 ret = rwc->file_nonlinear(page, mapping, rwc->arg);
1682 done:
1683 mutex_unlock(&mapping->i_mmap_mutex);
1684 return ret;
1687 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1689 if (unlikely(PageKsm(page)))
1690 return rmap_walk_ksm(page, rwc);
1691 else if (PageAnon(page))
1692 return rmap_walk_anon(page, rwc);
1693 else
1694 return rmap_walk_file(page, rwc);
1697 #ifdef CONFIG_HUGETLB_PAGE
1699 * The following three functions are for anonymous (private mapped) hugepages.
1700 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1701 * and no lru code, because we handle hugepages differently from common pages.
1703 static void __hugepage_set_anon_rmap(struct page *page,
1704 struct vm_area_struct *vma, unsigned long address, int exclusive)
1706 struct anon_vma *anon_vma = vma->anon_vma;
1708 BUG_ON(!anon_vma);
1710 if (PageAnon(page))
1711 return;
1712 if (!exclusive)
1713 anon_vma = anon_vma->root;
1715 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1716 page->mapping = (struct address_space *) anon_vma;
1717 page->index = linear_page_index(vma, address);
1720 void hugepage_add_anon_rmap(struct page *page,
1721 struct vm_area_struct *vma, unsigned long address)
1723 struct anon_vma *anon_vma = vma->anon_vma;
1724 int first;
1726 BUG_ON(!PageLocked(page));
1727 BUG_ON(!anon_vma);
1728 /* address might be in next vma when migration races vma_adjust */
1729 first = atomic_inc_and_test(&page->_mapcount);
1730 if (first)
1731 __hugepage_set_anon_rmap(page, vma, address, 0);
1734 void hugepage_add_new_anon_rmap(struct page *page,
1735 struct vm_area_struct *vma, unsigned long address)
1737 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1738 atomic_set(&page->_mapcount, 0);
1739 __hugepage_set_anon_rmap(page, vma, address, 1);
1741 #endif /* CONFIG_HUGETLB_PAGE */