iommu/arm-smmu: Use incoming shareability attributes in bypass mode
[linux/fpc-iii.git] / arch / tile / kernel / kprobes.c
blobf8a45c51e9e48c057897d1c28de11ad3e7b0a3c7
1 /*
2 * arch/tile/kernel/kprobes.c
3 * Kprobes on TILE-Gx
5 * Some portions copied from the MIPS version.
7 * Copyright (C) IBM Corporation, 2002, 2004
8 * Copyright 2006 Sony Corp.
9 * Copyright 2010 Cavium Networks
11 * Copyright 2012 Tilera Corporation. All Rights Reserved.
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation, version 2.
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
20 * NON INFRINGEMENT. See the GNU General Public License for
21 * more details.
24 #include <linux/kprobes.h>
25 #include <linux/kdebug.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/uaccess.h>
29 #include <asm/cacheflush.h>
31 #include <arch/opcode.h>
33 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
34 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
36 tile_bundle_bits breakpoint_insn = TILEGX_BPT_BUNDLE;
37 tile_bundle_bits breakpoint2_insn = TILEGX_BPT_BUNDLE | DIE_SSTEPBP;
40 * Check whether instruction is branch or jump, or if executing it
41 * has different results depending on where it is executed (e.g. lnk).
43 static int __kprobes insn_has_control(kprobe_opcode_t insn)
45 if (get_Mode(insn) != 0) { /* Y-format bundle */
46 if (get_Opcode_Y1(insn) != RRR_1_OPCODE_Y1 ||
47 get_RRROpcodeExtension_Y1(insn) != UNARY_RRR_1_OPCODE_Y1)
48 return 0;
50 switch (get_UnaryOpcodeExtension_Y1(insn)) {
51 case JALRP_UNARY_OPCODE_Y1:
52 case JALR_UNARY_OPCODE_Y1:
53 case JRP_UNARY_OPCODE_Y1:
54 case JR_UNARY_OPCODE_Y1:
55 case LNK_UNARY_OPCODE_Y1:
56 return 1;
57 default:
58 return 0;
62 switch (get_Opcode_X1(insn)) {
63 case BRANCH_OPCODE_X1: /* branch instructions */
64 case JUMP_OPCODE_X1: /* jump instructions: j and jal */
65 return 1;
67 case RRR_0_OPCODE_X1: /* other jump instructions */
68 if (get_RRROpcodeExtension_X1(insn) != UNARY_RRR_0_OPCODE_X1)
69 return 0;
70 switch (get_UnaryOpcodeExtension_X1(insn)) {
71 case JALRP_UNARY_OPCODE_X1:
72 case JALR_UNARY_OPCODE_X1:
73 case JRP_UNARY_OPCODE_X1:
74 case JR_UNARY_OPCODE_X1:
75 case LNK_UNARY_OPCODE_X1:
76 return 1;
77 default:
78 return 0;
80 default:
81 return 0;
85 int __kprobes arch_prepare_kprobe(struct kprobe *p)
87 unsigned long addr = (unsigned long)p->addr;
89 if (addr & (sizeof(kprobe_opcode_t) - 1))
90 return -EINVAL;
92 if (insn_has_control(*p->addr)) {
93 pr_notice("Kprobes for control instructions are not supported\n");
94 return -EINVAL;
97 /* insn: must be on special executable page on tile. */
98 p->ainsn.insn = get_insn_slot();
99 if (!p->ainsn.insn)
100 return -ENOMEM;
103 * In the kprobe->ainsn.insn[] array we store the original
104 * instruction at index zero and a break trap instruction at
105 * index one.
107 memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
108 p->ainsn.insn[1] = breakpoint2_insn;
109 p->opcode = *p->addr;
111 return 0;
114 void __kprobes arch_arm_kprobe(struct kprobe *p)
116 unsigned long addr_wr;
118 /* Operate on writable kernel text mapping. */
119 addr_wr = (unsigned long)p->addr - MEM_SV_START + PAGE_OFFSET;
121 if (probe_kernel_write((void *)addr_wr, &breakpoint_insn,
122 sizeof(breakpoint_insn)))
123 pr_err("%s: failed to enable kprobe\n", __func__);
125 smp_wmb();
126 flush_insn_slot(p);
129 void __kprobes arch_disarm_kprobe(struct kprobe *kp)
131 unsigned long addr_wr;
133 /* Operate on writable kernel text mapping. */
134 addr_wr = (unsigned long)kp->addr - MEM_SV_START + PAGE_OFFSET;
136 if (probe_kernel_write((void *)addr_wr, &kp->opcode,
137 sizeof(kp->opcode)))
138 pr_err("%s: failed to enable kprobe\n", __func__);
140 smp_wmb();
141 flush_insn_slot(kp);
144 void __kprobes arch_remove_kprobe(struct kprobe *p)
146 if (p->ainsn.insn) {
147 free_insn_slot(p->ainsn.insn, 0);
148 p->ainsn.insn = NULL;
152 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
154 kcb->prev_kprobe.kp = kprobe_running();
155 kcb->prev_kprobe.status = kcb->kprobe_status;
156 kcb->prev_kprobe.saved_pc = kcb->kprobe_saved_pc;
159 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
161 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
162 kcb->kprobe_status = kcb->prev_kprobe.status;
163 kcb->kprobe_saved_pc = kcb->prev_kprobe.saved_pc;
166 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
167 struct kprobe_ctlblk *kcb)
169 __this_cpu_write(current_kprobe, p);
170 kcb->kprobe_saved_pc = regs->pc;
173 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
175 /* Single step inline if the instruction is a break. */
176 if (p->opcode == breakpoint_insn ||
177 p->opcode == breakpoint2_insn)
178 regs->pc = (unsigned long)p->addr;
179 else
180 regs->pc = (unsigned long)&p->ainsn.insn[0];
183 static int __kprobes kprobe_handler(struct pt_regs *regs)
185 struct kprobe *p;
186 int ret = 0;
187 kprobe_opcode_t *addr;
188 struct kprobe_ctlblk *kcb;
190 addr = (kprobe_opcode_t *)regs->pc;
193 * We don't want to be preempted for the entire
194 * duration of kprobe processing.
196 preempt_disable();
197 kcb = get_kprobe_ctlblk();
199 /* Check we're not actually recursing. */
200 if (kprobe_running()) {
201 p = get_kprobe(addr);
202 if (p) {
203 if (kcb->kprobe_status == KPROBE_HIT_SS &&
204 p->ainsn.insn[0] == breakpoint_insn) {
205 goto no_kprobe;
208 * We have reentered the kprobe_handler(), since
209 * another probe was hit while within the handler.
210 * We here save the original kprobes variables and
211 * just single step on the instruction of the new probe
212 * without calling any user handlers.
214 save_previous_kprobe(kcb);
215 set_current_kprobe(p, regs, kcb);
216 kprobes_inc_nmissed_count(p);
217 prepare_singlestep(p, regs);
218 kcb->kprobe_status = KPROBE_REENTER;
219 return 1;
220 } else {
221 if (*addr != breakpoint_insn) {
223 * The breakpoint instruction was removed by
224 * another cpu right after we hit, no further
225 * handling of this interrupt is appropriate.
227 ret = 1;
228 goto no_kprobe;
230 p = __this_cpu_read(current_kprobe);
231 if (p->break_handler && p->break_handler(p, regs))
232 goto ss_probe;
234 goto no_kprobe;
237 p = get_kprobe(addr);
238 if (!p) {
239 if (*addr != breakpoint_insn) {
241 * The breakpoint instruction was removed right
242 * after we hit it. Another cpu has removed
243 * either a probepoint or a debugger breakpoint
244 * at this address. In either case, no further
245 * handling of this interrupt is appropriate.
247 ret = 1;
249 /* Not one of ours: let kernel handle it. */
250 goto no_kprobe;
253 set_current_kprobe(p, regs, kcb);
254 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
256 if (p->pre_handler && p->pre_handler(p, regs)) {
257 /* Handler has already set things up, so skip ss setup. */
258 return 1;
261 ss_probe:
262 prepare_singlestep(p, regs);
263 kcb->kprobe_status = KPROBE_HIT_SS;
264 return 1;
266 no_kprobe:
267 preempt_enable_no_resched();
268 return ret;
272 * Called after single-stepping. p->addr is the address of the
273 * instruction that has been replaced by the breakpoint. To avoid the
274 * SMP problems that can occur when we temporarily put back the
275 * original opcode to single-step, we single-stepped a copy of the
276 * instruction. The address of this copy is p->ainsn.insn.
278 * This function prepares to return from the post-single-step
279 * breakpoint trap.
281 static void __kprobes resume_execution(struct kprobe *p,
282 struct pt_regs *regs,
283 struct kprobe_ctlblk *kcb)
285 unsigned long orig_pc = kcb->kprobe_saved_pc;
286 regs->pc = orig_pc + 8;
289 static inline int post_kprobe_handler(struct pt_regs *regs)
291 struct kprobe *cur = kprobe_running();
292 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
294 if (!cur)
295 return 0;
297 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
298 kcb->kprobe_status = KPROBE_HIT_SSDONE;
299 cur->post_handler(cur, regs, 0);
302 resume_execution(cur, regs, kcb);
304 /* Restore back the original saved kprobes variables and continue. */
305 if (kcb->kprobe_status == KPROBE_REENTER) {
306 restore_previous_kprobe(kcb);
307 goto out;
309 reset_current_kprobe();
310 out:
311 preempt_enable_no_resched();
313 return 1;
316 static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
318 struct kprobe *cur = kprobe_running();
319 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
321 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
322 return 1;
324 if (kcb->kprobe_status & KPROBE_HIT_SS) {
326 * We are here because the instruction being single
327 * stepped caused a page fault. We reset the current
328 * kprobe and the ip points back to the probe address
329 * and allow the page fault handler to continue as a
330 * normal page fault.
332 resume_execution(cur, regs, kcb);
333 reset_current_kprobe();
334 preempt_enable_no_resched();
336 return 0;
340 * Wrapper routine for handling exceptions.
342 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
343 unsigned long val, void *data)
345 struct die_args *args = (struct die_args *)data;
346 int ret = NOTIFY_DONE;
348 switch (val) {
349 case DIE_BREAK:
350 if (kprobe_handler(args->regs))
351 ret = NOTIFY_STOP;
352 break;
353 case DIE_SSTEPBP:
354 if (post_kprobe_handler(args->regs))
355 ret = NOTIFY_STOP;
356 break;
357 case DIE_PAGE_FAULT:
358 /* kprobe_running() needs smp_processor_id(). */
359 preempt_disable();
361 if (kprobe_running()
362 && kprobe_fault_handler(args->regs, args->trapnr))
363 ret = NOTIFY_STOP;
364 preempt_enable();
365 break;
366 default:
367 break;
369 return ret;
372 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
374 struct jprobe *jp = container_of(p, struct jprobe, kp);
375 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
377 kcb->jprobe_saved_regs = *regs;
378 kcb->jprobe_saved_sp = regs->sp;
380 memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
381 MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
383 regs->pc = (unsigned long)(jp->entry);
385 return 1;
388 /* Defined in the inline asm below. */
389 void jprobe_return_end(void);
391 void __kprobes jprobe_return(void)
393 asm volatile(
394 "bpt\n\t"
395 ".globl jprobe_return_end\n"
396 "jprobe_return_end:\n");
399 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
401 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
403 if (regs->pc >= (unsigned long)jprobe_return &&
404 regs->pc <= (unsigned long)jprobe_return_end) {
405 *regs = kcb->jprobe_saved_regs;
406 memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
407 MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
408 preempt_enable_no_resched();
410 return 1;
412 return 0;
416 * Function return probe trampoline:
417 * - init_kprobes() establishes a probepoint here
418 * - When the probed function returns, this probe causes the
419 * handlers to fire
421 static void __used kretprobe_trampoline_holder(void)
423 asm volatile(
424 "nop\n\t"
425 ".global kretprobe_trampoline\n"
426 "kretprobe_trampoline:\n\t"
427 "nop\n\t"
428 : : : "memory");
431 void kretprobe_trampoline(void);
433 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
434 struct pt_regs *regs)
436 ri->ret_addr = (kprobe_opcode_t *) regs->lr;
438 /* Replace the return addr with trampoline addr */
439 regs->lr = (unsigned long)kretprobe_trampoline;
443 * Called when the probe at kretprobe trampoline is hit.
445 static int __kprobes trampoline_probe_handler(struct kprobe *p,
446 struct pt_regs *regs)
448 struct kretprobe_instance *ri = NULL;
449 struct hlist_head *head, empty_rp;
450 struct hlist_node *tmp;
451 unsigned long flags, orig_ret_address = 0;
452 unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
454 INIT_HLIST_HEAD(&empty_rp);
455 kretprobe_hash_lock(current, &head, &flags);
458 * It is possible to have multiple instances associated with a given
459 * task either because multiple functions in the call path have
460 * a return probe installed on them, and/or more than one return
461 * return probe was registered for a target function.
463 * We can handle this because:
464 * - instances are always inserted at the head of the list
465 * - when multiple return probes are registered for the same
466 * function, the first instance's ret_addr will point to the
467 * real return address, and all the rest will point to
468 * kretprobe_trampoline
470 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
471 if (ri->task != current)
472 /* another task is sharing our hash bucket */
473 continue;
475 if (ri->rp && ri->rp->handler)
476 ri->rp->handler(ri, regs);
478 orig_ret_address = (unsigned long)ri->ret_addr;
479 recycle_rp_inst(ri, &empty_rp);
481 if (orig_ret_address != trampoline_address) {
483 * This is the real return address. Any other
484 * instances associated with this task are for
485 * other calls deeper on the call stack
487 break;
491 kretprobe_assert(ri, orig_ret_address, trampoline_address);
492 instruction_pointer(regs) = orig_ret_address;
494 reset_current_kprobe();
495 kretprobe_hash_unlock(current, &flags);
496 preempt_enable_no_resched();
498 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
499 hlist_del(&ri->hlist);
500 kfree(ri);
503 * By returning a non-zero value, we are telling
504 * kprobe_handler() that we don't want the post_handler
505 * to run (and have re-enabled preemption)
507 return 1;
510 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
512 if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
513 return 1;
515 return 0;
518 static struct kprobe trampoline_p = {
519 .addr = (kprobe_opcode_t *)kretprobe_trampoline,
520 .pre_handler = trampoline_probe_handler
523 int __init arch_init_kprobes(void)
525 register_kprobe(&trampoline_p);
526 return 0;