btrfs: fix get set label blocking against balance
[linux/fpc-iii.git] / arch / tile / include / gxio / mpipe.h
blobb74f470ed11e58c9f8515ee50347db59ff9027e5
1 /*
2 * Copyright 2012 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
15 #ifndef _GXIO_MPIPE_H_
16 #define _GXIO_MPIPE_H_
20 * An API for allocating, configuring, and manipulating mPIPE hardware
21 * resources.
24 #include <gxio/common.h>
25 #include <gxio/dma_queue.h>
27 #include <linux/time.h>
29 #include <arch/mpipe_def.h>
30 #include <arch/mpipe_shm.h>
32 #include <hv/drv_mpipe_intf.h>
33 #include <hv/iorpc.h>
37 * The TILE-Gx mPIPE&tm; shim provides Ethernet connectivity, packet
38 * classification, and packet load balancing services. The
39 * gxio_mpipe_ API, declared in <gxio/mpipe.h>, allows applications to
40 * allocate mPIPE IO channels, configure packet distribution
41 * parameters, and send and receive Ethernet packets. The API is
42 * designed to be a minimal wrapper around the mPIPE hardware, making
43 * system calls only where necessary to preserve inter-process
44 * protection guarantees.
46 * The APIs described below allow the programmer to allocate and
47 * configure mPIPE resources. As described below, the mPIPE is a
48 * single shared hardware device that provides partitionable resources
49 * that are shared between all applications in the system. The
50 * gxio_mpipe_ API allows userspace code to make resource request
51 * calls to the hypervisor, which in turns keeps track of the
52 * resources in use by all applications, maintains protection
53 * guarantees, and resets resources upon application shutdown.
55 * We strongly recommend reading the mPIPE section of the IO Device
56 * Guide (UG404) before working with this API. Most functions in the
57 * gxio_mpipe_ API are directly analogous to hardware interfaces and
58 * the documentation assumes that the reader understands those
59 * hardware interfaces.
61 * @section mpipe__ingress mPIPE Ingress Hardware Resources
63 * The mPIPE ingress hardware provides extensive hardware offload for
64 * tasks like packet header parsing, load balancing, and memory
65 * management. This section provides a brief introduction to the
66 * hardware components and the gxio_mpipe_ calls used to manage them;
67 * see the IO Device Guide for a much more detailed description of the
68 * mPIPE's capabilities.
70 * When a packet arrives at one of the mPIPE's Ethernet MACs, it is
71 * assigned a channel number indicating which MAC received it. It
72 * then proceeds through the following hardware pipeline:
74 * @subsection mpipe__classification Classification
76 * A set of classification processors run header parsing code on each
77 * incoming packet, extracting information including the destination
78 * MAC address, VLAN, Ethernet type, and five-tuple hash. Some of
79 * this information is then used to choose which buffer stack will be
80 * used to hold the packet, and which bucket will be used by the load
81 * balancer to determine which application will receive the packet.
83 * The rules by which the buffer stack and bucket are chosen can be
84 * configured via the @ref gxio_mpipe_classifier API. A given app can
85 * specify multiple rules, each one specifying a bucket range, and a
86 * set of buffer stacks, to be used for packets matching the rule.
87 * Each rule can optionally specify a restricted set of channels,
88 * VLANs, and/or dMACs, in which it is interested. By default, a
89 * given rule starts out matching all channels associated with the
90 * mPIPE context's set of open links; all VLANs; and all dMACs.
91 * Subsequent restrictions can then be added.
93 * @subsection mpipe__load_balancing Load Balancing
95 * The mPIPE load balancer is responsible for choosing the NotifRing
96 * to which the packet will be delivered. This decision is based on
97 * the bucket number indicated by the classification program. In
98 * general, the bucket number is based on some number of low bits of
99 * the packet's flow hash (applications that aren't interested in flow
100 * hashing use a single bucket). Each load balancer bucket keeps a
101 * record of the NotifRing to which packets directed to that bucket
102 * are currently being delivered. Based on the bucket's load
103 * balancing mode (@ref gxio_mpipe_bucket_mode_t), the load balancer
104 * either forwards the packet to the previously assigned NotifRing or
105 * decides to choose a new NotifRing. If a new NotifRing is required,
106 * the load balancer chooses the least loaded ring in the NotifGroup
107 * associated with the bucket.
109 * The load balancer is a shared resource. Each application needs to
110 * explicitly allocate NotifRings, NotifGroups, and buckets, using
111 * gxio_mpipe_alloc_notif_rings(), gxio_mpipe_alloc_notif_groups(),
112 * and gxio_mpipe_alloc_buckets(). Then the application needs to
113 * configure them using gxio_mpipe_init_notif_ring() and
114 * gxio_mpipe_init_notif_group_and_buckets().
116 * @subsection mpipe__buffers Buffer Selection and Packet Delivery
118 * Once the load balancer has chosen the destination NotifRing, the
119 * mPIPE DMA engine pops at least one buffer off of the 'buffer stack'
120 * chosen by the classification program and DMAs the packet data into
121 * that buffer. Each buffer stack provides a hardware-accelerated
122 * stack of data buffers with the same size. If the packet data is
123 * larger than the buffers provided by the chosen buffer stack, the
124 * mPIPE hardware pops off multiple buffers and chains the packet data
125 * through a multi-buffer linked list. Once the packet data is
126 * delivered to the buffer(s), the mPIPE hardware writes the
127 * ::gxio_mpipe_idesc_t metadata object (calculated by the classifier)
128 * into the NotifRing and increments the number of packets delivered
129 * to that ring.
131 * Applications can push buffers onto a buffer stack by calling
132 * gxio_mpipe_push_buffer() or by egressing a packet with the
133 * ::gxio_mpipe_edesc_t::hwb bit set, indicating that the egressed
134 * buffers should be returned to the stack.
136 * Applications can allocate and initialize buffer stacks with the
137 * gxio_mpipe_alloc_buffer_stacks() and gxio_mpipe_init_buffer_stack()
138 * APIs.
140 * The application must also register the memory pages that will hold
141 * packets. This requires calling gxio_mpipe_register_page() for each
142 * memory page that will hold packets allocated by the application for
143 * a given buffer stack. Since each buffer stack is limited to 16
144 * registered pages, it may be necessary to use huge pages, or even
145 * extremely huge pages, to hold all the buffers.
147 * @subsection mpipe__iqueue NotifRings
149 * Each NotifRing is a region of shared memory, allocated by the
150 * application, to which the mPIPE delivers packet descriptors
151 * (::gxio_mpipe_idesc_t). The application can allocate them via
152 * gxio_mpipe_alloc_notif_rings(). The application can then either
153 * explicitly initialize them with gxio_mpipe_init_notif_ring() and
154 * then read from them manually, or can make use of the convenience
155 * wrappers provided by @ref gxio_mpipe_wrappers.
157 * @section mpipe__egress mPIPE Egress Hardware
159 * Applications use eDMA rings to queue packets for egress. The
160 * application can allocate them via gxio_mpipe_alloc_edma_rings().
161 * The application can then either explicitly initialize them with
162 * gxio_mpipe_init_edma_ring() and then write to them manually, or
163 * can make use of the convenience wrappers provided by
164 * @ref gxio_mpipe_wrappers.
166 * @section gxio__shortcomings Plans for Future API Revisions
168 * The API defined here is only an initial version of the mPIPE API.
169 * Future plans include:
171 * - Higher level wrapper functions to provide common initialization
172 * patterns. This should help users start writing mPIPE programs
173 * without having to learn the details of the hardware.
175 * - Support for reset and deallocation of resources, including
176 * cleanup upon application shutdown.
178 * - Support for calling these APIs in the BME.
180 * - Support for IO interrupts.
182 * - Clearer definitions of thread safety guarantees.
184 * @section gxio__mpipe_examples Examples
186 * See the following mPIPE example programs for more information about
187 * allocating mPIPE resources and using them in real applications:
189 * - @ref mpipe/ingress/app.c : Receiving packets.
191 * - @ref mpipe/forward/app.c : Forwarding packets.
193 * Note that there are several more examples.
196 /* Flags that can be passed to resource allocation functions. */
197 enum gxio_mpipe_alloc_flags_e {
198 /* Require an allocation to start at a specified resource index. */
199 GXIO_MPIPE_ALLOC_FIXED = HV_MPIPE_ALLOC_FIXED,
202 /* Flags that can be passed to memory registration functions. */
203 enum gxio_mpipe_mem_flags_e {
204 /* Do not fill L3 when writing, and invalidate lines upon egress. */
205 GXIO_MPIPE_MEM_FLAG_NT_HINT = IORPC_MEM_BUFFER_FLAG_NT_HINT,
207 /* L3 cache fills should only populate IO cache ways. */
208 GXIO_MPIPE_MEM_FLAG_IO_PIN = IORPC_MEM_BUFFER_FLAG_IO_PIN,
211 /* An ingress packet descriptor. When a packet arrives, the mPIPE
212 * hardware generates this structure and writes it into a NotifRing.
214 typedef MPIPE_PDESC_t gxio_mpipe_idesc_t;
216 /* An egress command descriptor. Applications write this structure
217 * into eDMA rings and the hardware performs the indicated operation
218 * (normally involving egressing some bytes). Note that egressing a
219 * single packet may involve multiple egress command descriptors.
221 typedef MPIPE_EDMA_DESC_t gxio_mpipe_edesc_t;
223 /* Get the "va" field from an "idesc".
225 * This is the address at which the ingress hardware copied the first
226 * byte of the packet.
228 * If the classifier detected a custom header, then this will point to
229 * the custom header, and gxio_mpipe_idesc_get_l2_start() will point
230 * to the actual L2 header.
232 * Note that this value may be misleading if "idesc->be" is set.
234 * @param idesc An ingress packet descriptor.
236 static inline unsigned char *gxio_mpipe_idesc_get_va(gxio_mpipe_idesc_t *idesc)
238 return (unsigned char *)(long)idesc->va;
241 /* Get the "xfer_size" from an "idesc".
243 * This is the actual number of packet bytes transferred into memory
244 * by the hardware.
246 * Note that this value may be misleading if "idesc->be" is set.
248 * @param idesc An ingress packet descriptor.
250 * ISSUE: Is this the best name for this?
251 * FIXME: Add more docs about chaining, clipping, etc.
253 static inline unsigned int gxio_mpipe_idesc_get_xfer_size(gxio_mpipe_idesc_t
254 *idesc)
256 return idesc->l2_size;
259 /* Get the "l2_offset" from an "idesc".
261 * Extremely customized classifiers might not support this function.
263 * This is the number of bytes between the "va" and the L2 header.
265 * The L2 header consists of a destination mac address, a source mac
266 * address, and an initial ethertype. Various initial ethertypes
267 * allow encoding extra information in the L2 header, often including
268 * a vlan, and/or a new ethertype.
270 * Note that the "l2_offset" will be non-zero if (and only if) the
271 * classifier processed a custom header for the packet.
273 * @param idesc An ingress packet descriptor.
275 static inline uint8_t gxio_mpipe_idesc_get_l2_offset(gxio_mpipe_idesc_t *idesc)
277 return (idesc->custom1 >> 32) & 0xFF;
280 /* Get the "l2_start" from an "idesc".
282 * This is simply gxio_mpipe_idesc_get_va() plus
283 * gxio_mpipe_idesc_get_l2_offset().
285 * @param idesc An ingress packet descriptor.
287 static inline unsigned char *gxio_mpipe_idesc_get_l2_start(gxio_mpipe_idesc_t
288 *idesc)
290 unsigned char *va = gxio_mpipe_idesc_get_va(idesc);
291 return va + gxio_mpipe_idesc_get_l2_offset(idesc);
294 /* Get the "l2_length" from an "idesc".
296 * This is simply gxio_mpipe_idesc_get_xfer_size() minus
297 * gxio_mpipe_idesc_get_l2_offset().
299 * @param idesc An ingress packet descriptor.
301 static inline unsigned int gxio_mpipe_idesc_get_l2_length(gxio_mpipe_idesc_t
302 *idesc)
304 unsigned int xfer_size = idesc->l2_size;
305 return xfer_size - gxio_mpipe_idesc_get_l2_offset(idesc);
308 /* A context object used to manage mPIPE hardware resources. */
309 typedef struct {
311 /* File descriptor for calling up to Linux (and thus the HV). */
312 int fd;
314 /* The VA at which configuration registers are mapped. */
315 char *mmio_cfg_base;
317 /* The VA at which IDMA, EDMA, and buffer manager are mapped. */
318 char *mmio_fast_base;
320 /* The "initialized" buffer stacks. */
321 gxio_mpipe_rules_stacks_t __stacks;
323 } gxio_mpipe_context_t;
325 /* This is only used internally, but it's most easily made visible here. */
326 typedef gxio_mpipe_context_t gxio_mpipe_info_context_t;
328 /* Initialize an mPIPE context.
330 * This function allocates an mPIPE "service domain" and maps the MMIO
331 * registers into the caller's VA space.
333 * @param context Context object to be initialized.
334 * @param mpipe_instance Instance number of mPIPE shim to be controlled via
335 * context.
337 extern int gxio_mpipe_init(gxio_mpipe_context_t *context,
338 unsigned int mpipe_instance);
340 /* Destroy an mPIPE context.
342 * This function frees the mPIPE "service domain" and unmaps the MMIO
343 * registers from the caller's VA space.
345 * If a user process exits without calling this routine, the kernel
346 * will destroy the mPIPE context as part of process teardown.
348 * @param context Context object to be destroyed.
350 extern int gxio_mpipe_destroy(gxio_mpipe_context_t *context);
352 /*****************************************************************
353 * Buffer Stacks *
354 ******************************************************************/
356 /* Allocate a set of buffer stacks.
358 * The return value is NOT interesting if count is zero.
360 * @param context An initialized mPIPE context.
361 * @param count Number of stacks required.
362 * @param first Index of first stack if ::GXIO_MPIPE_ALLOC_FIXED flag is set,
363 * otherwise ignored.
364 * @param flags Flag bits from ::gxio_mpipe_alloc_flags_e.
365 * @return Index of first allocated buffer stack, or
366 * ::GXIO_MPIPE_ERR_NO_BUFFER_STACK if allocation failed.
368 extern int gxio_mpipe_alloc_buffer_stacks(gxio_mpipe_context_t *context,
369 unsigned int count,
370 unsigned int first,
371 unsigned int flags);
373 /* Enum codes for buffer sizes supported by mPIPE. */
374 typedef enum {
375 /* 128 byte packet data buffer. */
376 GXIO_MPIPE_BUFFER_SIZE_128 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_128,
377 /* 256 byte packet data buffer. */
378 GXIO_MPIPE_BUFFER_SIZE_256 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_256,
379 /* 512 byte packet data buffer. */
380 GXIO_MPIPE_BUFFER_SIZE_512 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_512,
381 /* 1024 byte packet data buffer. */
382 GXIO_MPIPE_BUFFER_SIZE_1024 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_1024,
383 /* 1664 byte packet data buffer. */
384 GXIO_MPIPE_BUFFER_SIZE_1664 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_1664,
385 /* 4096 byte packet data buffer. */
386 GXIO_MPIPE_BUFFER_SIZE_4096 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_4096,
387 /* 10368 byte packet data buffer. */
388 GXIO_MPIPE_BUFFER_SIZE_10368 =
389 MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_10368,
390 /* 16384 byte packet data buffer. */
391 GXIO_MPIPE_BUFFER_SIZE_16384 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_16384
392 } gxio_mpipe_buffer_size_enum_t;
394 /* Convert a buffer size in bytes into a buffer size enum. */
395 extern gxio_mpipe_buffer_size_enum_t
396 gxio_mpipe_buffer_size_to_buffer_size_enum(size_t size);
398 /* Convert a buffer size enum into a buffer size in bytes. */
399 extern size_t
400 gxio_mpipe_buffer_size_enum_to_buffer_size(gxio_mpipe_buffer_size_enum_t
401 buffer_size_enum);
403 /* Calculate the number of bytes required to store a given number of
404 * buffers in the memory registered with a buffer stack via
405 * gxio_mpipe_init_buffer_stack().
407 extern size_t gxio_mpipe_calc_buffer_stack_bytes(unsigned long buffers);
409 /* Initialize a buffer stack. This function binds a region of memory
410 * to be used by the hardware for storing buffer addresses pushed via
411 * gxio_mpipe_push_buffer() or as the result of sending a buffer out
412 * the egress with the 'push to stack when done' bit set. Once this
413 * function returns, the memory region's contents may be arbitrarily
414 * modified by the hardware at any time and software should not access
415 * the memory region again.
417 * @param context An initialized mPIPE context.
418 * @param stack The buffer stack index.
419 * @param buffer_size_enum The size of each buffer in the buffer stack,
420 * as an enum.
421 * @param mem The address of the buffer stack. This memory must be
422 * physically contiguous and aligned to a 64kB boundary.
423 * @param mem_size The size of the buffer stack, in bytes.
424 * @param mem_flags ::gxio_mpipe_mem_flags_e memory flags.
425 * @return Zero on success, ::GXIO_MPIPE_ERR_INVAL_BUFFER_SIZE if
426 * buffer_size_enum is invalid, ::GXIO_MPIPE_ERR_BAD_BUFFER_STACK if
427 * stack has not been allocated.
429 extern int gxio_mpipe_init_buffer_stack(gxio_mpipe_context_t *context,
430 unsigned int stack,
431 gxio_mpipe_buffer_size_enum_t
432 buffer_size_enum, void *mem,
433 size_t mem_size,
434 unsigned int mem_flags);
436 /* Push a buffer onto a previously initialized buffer stack.
438 * The size of the buffer being pushed must match the size that was
439 * registered with gxio_mpipe_init_buffer_stack(). All packet buffer
440 * addresses are 128-byte aligned; the low 7 bits of the specified
441 * buffer address will be ignored.
443 * @param context An initialized mPIPE context.
444 * @param stack The buffer stack index.
445 * @param buffer The buffer (the low seven bits are ignored).
447 static inline void gxio_mpipe_push_buffer(gxio_mpipe_context_t *context,
448 unsigned int stack, void *buffer)
450 MPIPE_BSM_REGION_ADDR_t offset = { {0} };
451 MPIPE_BSM_REGION_VAL_t val = { {0} };
454 * The mmio_fast_base region starts at the IDMA region, so subtract
455 * off that initial offset.
457 offset.region =
458 MPIPE_MMIO_ADDR__REGION_VAL_BSM -
459 MPIPE_MMIO_ADDR__REGION_VAL_IDMA;
460 offset.stack = stack;
462 #if __SIZEOF_POINTER__ == 4
463 val.va = ((ulong) buffer) >> MPIPE_BSM_REGION_VAL__VA_SHIFT;
464 #else
465 val.va = ((long)buffer) >> MPIPE_BSM_REGION_VAL__VA_SHIFT;
466 #endif
468 __gxio_mmio_write(context->mmio_fast_base + offset.word, val.word);
471 /* Pop a buffer off of a previously initialized buffer stack.
473 * @param context An initialized mPIPE context.
474 * @param stack The buffer stack index.
475 * @return The buffer, or NULL if the stack is empty.
477 static inline void *gxio_mpipe_pop_buffer(gxio_mpipe_context_t *context,
478 unsigned int stack)
480 MPIPE_BSM_REGION_ADDR_t offset = { {0} };
483 * The mmio_fast_base region starts at the IDMA region, so subtract
484 * off that initial offset.
486 offset.region =
487 MPIPE_MMIO_ADDR__REGION_VAL_BSM -
488 MPIPE_MMIO_ADDR__REGION_VAL_IDMA;
489 offset.stack = stack;
491 while (1) {
493 * Case 1: val.c == ..._UNCHAINED, va is non-zero.
494 * Case 2: val.c == ..._INVALID, va is zero.
495 * Case 3: val.c == ..._NOT_RDY, va is zero.
497 MPIPE_BSM_REGION_VAL_t val;
498 val.word =
499 __gxio_mmio_read(context->mmio_fast_base +
500 offset.word);
503 * Handle case 1 and 2 by returning the buffer (or NULL).
504 * Handle case 3 by waiting for the prefetch buffer to refill.
506 if (val.c != MPIPE_EDMA_DESC_WORD1__C_VAL_NOT_RDY)
507 return (void *)((unsigned long)val.
508 va << MPIPE_BSM_REGION_VAL__VA_SHIFT);
512 /*****************************************************************
513 * NotifRings *
514 ******************************************************************/
516 /* Allocate a set of NotifRings.
518 * The return value is NOT interesting if count is zero.
520 * Note that NotifRings are allocated in chunks, so allocating one at
521 * a time is much less efficient than allocating several at once.
523 * @param context An initialized mPIPE context.
524 * @param count Number of NotifRings required.
525 * @param first Index of first NotifRing if ::GXIO_MPIPE_ALLOC_FIXED flag
526 * is set, otherwise ignored.
527 * @param flags Flag bits from ::gxio_mpipe_alloc_flags_e.
528 * @return Index of first allocated buffer NotifRing, or
529 * ::GXIO_MPIPE_ERR_NO_NOTIF_RING if allocation failed.
531 extern int gxio_mpipe_alloc_notif_rings(gxio_mpipe_context_t *context,
532 unsigned int count, unsigned int first,
533 unsigned int flags);
535 /* Initialize a NotifRing, using the given memory and size.
537 * @param context An initialized mPIPE context.
538 * @param ring The NotifRing index.
539 * @param mem A physically contiguous region of memory to be filled
540 * with a ring of ::gxio_mpipe_idesc_t structures.
541 * @param mem_size Number of bytes in the ring. Must be 128, 512,
542 * 2048, or 65536 * sizeof(gxio_mpipe_idesc_t).
543 * @param mem_flags ::gxio_mpipe_mem_flags_e memory flags.
545 * @return 0 on success, ::GXIO_MPIPE_ERR_BAD_NOTIF_RING or
546 * ::GXIO_ERR_INVAL_MEMORY_SIZE on failure.
548 extern int gxio_mpipe_init_notif_ring(gxio_mpipe_context_t *context,
549 unsigned int ring,
550 void *mem, size_t mem_size,
551 unsigned int mem_flags);
553 /* Configure an interrupt to be sent to a tile on incoming NotifRing
554 * traffic. Once an interrupt is sent for a particular ring, no more
555 * will be sent until gxio_mica_enable_notif_ring_interrupt() is called.
557 * @param context An initialized mPIPE context.
558 * @param x X coordinate of interrupt target tile.
559 * @param y Y coordinate of interrupt target tile.
560 * @param i Index of the IPI register which will receive the interrupt.
561 * @param e Specific event which will be set in the target IPI register when
562 * the interrupt occurs.
563 * @param ring The NotifRing index.
564 * @return Zero on success, GXIO_ERR_INVAL if params are out of range.
566 extern int gxio_mpipe_request_notif_ring_interrupt(gxio_mpipe_context_t
567 *context, int x, int y,
568 int i, int e,
569 unsigned int ring);
571 /* Enable an interrupt on incoming NotifRing traffic.
573 * @param context An initialized mPIPE context.
574 * @param ring The NotifRing index.
575 * @return Zero on success, GXIO_ERR_INVAL if params are out of range.
577 extern int gxio_mpipe_enable_notif_ring_interrupt(gxio_mpipe_context_t
578 *context, unsigned int ring);
580 /* Map all of a client's memory via the given IOTLB.
581 * @param context An initialized mPIPE context.
582 * @param iotlb IOTLB index.
583 * @param pte Page table entry.
584 * @param flags Flags.
585 * @return Zero on success, or a negative error code.
587 extern int gxio_mpipe_register_client_memory(gxio_mpipe_context_t *context,
588 unsigned int iotlb, HV_PTE pte,
589 unsigned int flags);
591 /*****************************************************************
592 * Notif Groups *
593 ******************************************************************/
595 /* Allocate a set of NotifGroups.
597 * The return value is NOT interesting if count is zero.
599 * @param context An initialized mPIPE context.
600 * @param count Number of NotifGroups required.
601 * @param first Index of first NotifGroup if ::GXIO_MPIPE_ALLOC_FIXED flag
602 * is set, otherwise ignored.
603 * @param flags Flag bits from ::gxio_mpipe_alloc_flags_e.
604 * @return Index of first allocated buffer NotifGroup, or
605 * ::GXIO_MPIPE_ERR_NO_NOTIF_GROUP if allocation failed.
607 extern int gxio_mpipe_alloc_notif_groups(gxio_mpipe_context_t *context,
608 unsigned int count,
609 unsigned int first,
610 unsigned int flags);
612 /* Add a NotifRing to a NotifGroup. This only sets a bit in the
613 * application's 'group' object; the hardware NotifGroup can be
614 * initialized by passing 'group' to gxio_mpipe_init_notif_group() or
615 * gxio_mpipe_init_notif_group_and_buckets().
617 static inline void
618 gxio_mpipe_notif_group_add_ring(gxio_mpipe_notif_group_bits_t *bits, int ring)
620 bits->ring_mask[ring / 64] |= (1ull << (ring % 64));
623 /* Set a particular NotifGroup bitmask. Since the load balancer
624 * makes decisions based on both bucket and NotifGroup state, most
625 * applications should use gxio_mpipe_init_notif_group_and_buckets()
626 * rather than using this function to configure just a NotifGroup.
628 extern int gxio_mpipe_init_notif_group(gxio_mpipe_context_t *context,
629 unsigned int group,
630 gxio_mpipe_notif_group_bits_t bits);
632 /*****************************************************************
633 * Load Balancer *
634 ******************************************************************/
636 /* Allocate a set of load balancer buckets.
638 * The return value is NOT interesting if count is zero.
640 * Note that buckets are allocated in chunks, so allocating one at
641 * a time is much less efficient than allocating several at once.
643 * Note that the buckets are actually divided into two sub-ranges, of
644 * different sizes, and different chunk sizes, and the range you get
645 * by default is determined by the size of the request. Allocations
646 * cannot span the two sub-ranges.
648 * @param context An initialized mPIPE context.
649 * @param count Number of buckets required.
650 * @param first Index of first bucket if ::GXIO_MPIPE_ALLOC_FIXED flag is set,
651 * otherwise ignored.
652 * @param flags Flag bits from ::gxio_mpipe_alloc_flags_e.
653 * @return Index of first allocated buffer bucket, or
654 * ::GXIO_MPIPE_ERR_NO_BUCKET if allocation failed.
656 extern int gxio_mpipe_alloc_buckets(gxio_mpipe_context_t *context,
657 unsigned int count, unsigned int first,
658 unsigned int flags);
660 /* The legal modes for gxio_mpipe_bucket_info_t and
661 * gxio_mpipe_init_notif_group_and_buckets().
663 * All modes except ::GXIO_MPIPE_BUCKET_ROUND_ROBIN expect that the user
664 * will allocate a power-of-two number of buckets and initialize them
665 * to the same mode. The classifier program then uses the appropriate
666 * number of low bits from the incoming packet's flow hash to choose a
667 * load balancer bucket. Based on that bucket's load balancing mode,
668 * reference count, and currently active NotifRing, the load balancer
669 * chooses the NotifRing to which the packet will be delivered.
671 typedef enum {
672 /* All packets for a bucket go to the same NotifRing unless the
673 * NotifRing gets full, in which case packets will be dropped. If
674 * the bucket reference count ever reaches zero, a new NotifRing may
675 * be chosen.
677 GXIO_MPIPE_BUCKET_DYNAMIC_FLOW_AFFINITY =
678 MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_DFA,
680 /* All packets for a bucket always go to the same NotifRing.
682 GXIO_MPIPE_BUCKET_STATIC_FLOW_AFFINITY =
683 MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_FIXED,
685 /* All packets for a bucket go to the least full NotifRing in the
686 * group, providing load balancing round robin behavior.
688 GXIO_MPIPE_BUCKET_ROUND_ROBIN =
689 MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_ALWAYS_PICK,
691 /* All packets for a bucket go to the same NotifRing unless the
692 * NotifRing gets full, at which point the bucket starts using the
693 * least full NotifRing in the group. If all NotifRings in the
694 * group are full, packets will be dropped.
696 GXIO_MPIPE_BUCKET_STICKY_FLOW_LOCALITY =
697 MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_STICKY,
699 /* All packets for a bucket go to the same NotifRing unless the
700 * NotifRing gets full, or a random timer fires, at which point the
701 * bucket starts using the least full NotifRing in the group. If
702 * all NotifRings in the group are full, packets will be dropped.
703 * WARNING: This mode is BROKEN on chips with fewer than 64 tiles.
705 GXIO_MPIPE_BUCKET_PREFER_FLOW_LOCALITY =
706 MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_STICKY_RAND,
708 } gxio_mpipe_bucket_mode_t;
710 /* Copy a set of bucket initialization values into the mPIPE
711 * hardware. Since the load balancer makes decisions based on both
712 * bucket and NotifGroup state, most applications should use
713 * gxio_mpipe_init_notif_group_and_buckets() rather than using this
714 * function to configure a single bucket.
716 * @param context An initialized mPIPE context.
717 * @param bucket Bucket index to be initialized.
718 * @param bucket_info Initial reference count, NotifRing index, and mode.
719 * @return 0 on success, ::GXIO_MPIPE_ERR_BAD_BUCKET on failure.
721 extern int gxio_mpipe_init_bucket(gxio_mpipe_context_t *context,
722 unsigned int bucket,
723 gxio_mpipe_bucket_info_t bucket_info);
725 /* Initializes a group and range of buckets and range of rings such
726 * that the load balancer runs a particular load balancing function.
728 * First, the group is initialized with the given rings.
730 * Second, each bucket is initialized with the mode and group, and a
731 * ring chosen round-robin from the given rings.
733 * Normally, the classifier picks a bucket, and then the load balancer
734 * picks a ring, based on the bucket's mode, group, and current ring,
735 * possibly updating the bucket's ring.
737 * @param context An initialized mPIPE context.
738 * @param group The group.
739 * @param ring The first ring.
740 * @param num_rings The number of rings.
741 * @param bucket The first bucket.
742 * @param num_buckets The number of buckets.
743 * @param mode The load balancing mode.
745 * @return 0 on success, ::GXIO_MPIPE_ERR_BAD_BUCKET,
746 * ::GXIO_MPIPE_ERR_BAD_NOTIF_GROUP, or
747 * ::GXIO_MPIPE_ERR_BAD_NOTIF_RING on failure.
749 extern int gxio_mpipe_init_notif_group_and_buckets(gxio_mpipe_context_t
750 *context,
751 unsigned int group,
752 unsigned int ring,
753 unsigned int num_rings,
754 unsigned int bucket,
755 unsigned int num_buckets,
756 gxio_mpipe_bucket_mode_t
757 mode);
759 /* Return credits to a NotifRing and/or bucket.
761 * @param context An initialized mPIPE context.
762 * @param ring The NotifRing index, or -1.
763 * @param bucket The bucket, or -1.
764 * @param count The number of credits to return.
766 static inline void gxio_mpipe_credit(gxio_mpipe_context_t *context,
767 int ring, int bucket, unsigned int count)
769 /* NOTE: Fancy struct initialization would break "C89" header test. */
771 MPIPE_IDMA_RELEASE_REGION_ADDR_t offset = { {0} };
772 MPIPE_IDMA_RELEASE_REGION_VAL_t val = { {0} };
775 * The mmio_fast_base region starts at the IDMA region, so subtract
776 * off that initial offset.
778 offset.region =
779 MPIPE_MMIO_ADDR__REGION_VAL_IDMA -
780 MPIPE_MMIO_ADDR__REGION_VAL_IDMA;
781 offset.ring = ring;
782 offset.bucket = bucket;
783 offset.ring_enable = (ring >= 0);
784 offset.bucket_enable = (bucket >= 0);
785 val.count = count;
787 __gxio_mmio_write(context->mmio_fast_base + offset.word, val.word);
790 /*****************************************************************
791 * Egress Rings *
792 ******************************************************************/
794 /* Allocate a set of eDMA rings.
796 * The return value is NOT interesting if count is zero.
798 * @param context An initialized mPIPE context.
799 * @param count Number of eDMA rings required.
800 * @param first Index of first eDMA ring if ::GXIO_MPIPE_ALLOC_FIXED flag
801 * is set, otherwise ignored.
802 * @param flags Flag bits from ::gxio_mpipe_alloc_flags_e.
803 * @return Index of first allocated buffer eDMA ring, or
804 * ::GXIO_MPIPE_ERR_NO_EDMA_RING if allocation failed.
806 extern int gxio_mpipe_alloc_edma_rings(gxio_mpipe_context_t *context,
807 unsigned int count, unsigned int first,
808 unsigned int flags);
810 /* Initialize an eDMA ring, using the given memory and size.
812 * @param context An initialized mPIPE context.
813 * @param ring The eDMA ring index.
814 * @param channel The channel to use. This must be one of the channels
815 * associated with the context's set of open links.
816 * @param mem A physically contiguous region of memory to be filled
817 * with a ring of ::gxio_mpipe_edesc_t structures.
818 * @param mem_size Number of bytes in the ring. Must be 512, 2048,
819 * 8192 or 65536, times 16 (i.e. sizeof(gxio_mpipe_edesc_t)).
820 * @param mem_flags ::gxio_mpipe_mem_flags_e memory flags.
822 * @return 0 on success, ::GXIO_MPIPE_ERR_BAD_EDMA_RING or
823 * ::GXIO_ERR_INVAL_MEMORY_SIZE on failure.
825 extern int gxio_mpipe_init_edma_ring(gxio_mpipe_context_t *context,
826 unsigned int ring, unsigned int channel,
827 void *mem, size_t mem_size,
828 unsigned int mem_flags);
830 /*****************************************************************
831 * Classifier Program *
832 ******************************************************************/
836 * Functions for loading or configuring the mPIPE classifier program.
838 * The mPIPE classification processors all run a special "classifier"
839 * program which, for each incoming packet, parses the packet headers,
840 * encodes some packet metadata in the "idesc", and either drops the
841 * packet, or picks a notif ring to handle the packet, and a buffer
842 * stack to contain the packet, usually based on the channel, VLAN,
843 * dMAC, flow hash, and packet size, under the guidance of the "rules"
844 * API described below.
846 * @section gxio_mpipe_classifier_default Default Classifier
848 * The MDE provides a simple "default" classifier program. It is
849 * shipped as source in "$TILERA_ROOT/src/sys/mpipe/classifier.c",
850 * which serves as its official documentation. It is shipped as a
851 * binary program in "$TILERA_ROOT/tile/boot/classifier", which is
852 * automatically included in bootroms created by "tile-monitor", and
853 * is automatically loaded by the hypervisor at boot time.
855 * The L2 analysis handles LLC packets, SNAP packets, and "VLAN
856 * wrappers" (keeping the outer VLAN).
858 * The L3 analysis handles IPv4 and IPv6, dropping packets with bad
859 * IPv4 header checksums, requesting computation of a TCP/UDP checksum
860 * if appropriate, and hashing the dest and src IP addresses, plus the
861 * ports for TCP/UDP packets, into the flow hash. No special analysis
862 * is done for "fragmented" packets or "tunneling" protocols. Thus,
863 * the first fragment of a fragmented TCP/UDP packet is hashed using
864 * src/dest IP address and ports and all subsequent fragments are only
865 * hashed according to src/dest IP address.
867 * The L3 analysis handles other packets too, hashing the dMAC
868 * smac into a flow hash.
870 * The channel, VLAN, and dMAC used to pick a "rule" (see the
871 * "rules" APIs below), which in turn is used to pick a buffer stack
872 * (based on the packet size) and a bucket (based on the flow hash).
874 * To receive traffic matching a particular (channel/VLAN/dMAC
875 * pattern, an application should allocate its own buffer stacks and
876 * load balancer buckets, and map traffic to those stacks and buckets,
877 * as decribed by the "rules" API below.
879 * Various packet metadata is encoded in the idesc. The flow hash is
880 * four bytes at 0x0C. The VLAN is two bytes at 0x10. The ethtype is
881 * two bytes at 0x12. The l3 start is one byte at 0x14. The l4 start
882 * is one byte at 0x15 for IPv4 and IPv6 packets, and otherwise zero.
883 * The protocol is one byte at 0x16 for IPv4 and IPv6 packets, and
884 * otherwise zero.
886 * @section gxio_mpipe_classifier_custom Custom Classifiers.
888 * A custom classifier may be created using "tile-mpipe-cc" with a
889 * customized version of the default classifier sources.
891 * The custom classifier may be included in bootroms using the
892 * "--classifier" option to "tile-monitor", or loaded dynamically
893 * using gxio_mpipe_classifier_load_from_file().
895 * Be aware that "extreme" customizations may break the assumptions of
896 * the "rules" APIs described below, but simple customizations, such
897 * as adding new packet metadata, should be fine.
900 /* A set of classifier rules, plus a context. */
901 typedef struct {
903 /* The context. */
904 gxio_mpipe_context_t *context;
906 /* The actual rules. */
907 gxio_mpipe_rules_list_t list;
909 } gxio_mpipe_rules_t;
911 /* Initialize a classifier program rules list.
913 * This function can be called on a previously initialized rules list
914 * to discard any previously added rules.
916 * @param rules Rules list to initialize.
917 * @param context An initialized mPIPE context.
919 extern void gxio_mpipe_rules_init(gxio_mpipe_rules_t *rules,
920 gxio_mpipe_context_t *context);
922 /* Begin a new rule on the indicated rules list.
924 * Note that an empty rule matches all packets, but an empty rule list
925 * matches no packets.
927 * @param rules Rules list to which new rule is appended.
928 * @param bucket First load balancer bucket to which packets will be
929 * delivered.
930 * @param num_buckets Number of buckets (must be a power of two) across
931 * which packets will be distributed based on the "flow hash".
932 * @param stacks Either NULL, to assign each packet to the smallest
933 * initialized buffer stack which does not induce chaining (and to
934 * drop packets which exceed the largest initialized buffer stack
935 * buffer size), or an array, with each entry indicating which buffer
936 * stack should be used for packets up to that size (with 255
937 * indicating that those packets should be dropped).
938 * @return 0 on success, or a negative error code on failure.
940 extern int gxio_mpipe_rules_begin(gxio_mpipe_rules_t *rules,
941 unsigned int bucket,
942 unsigned int num_buckets,
943 gxio_mpipe_rules_stacks_t *stacks);
945 /* Set the headroom of the current rule.
947 * @param rules Rules list whose current rule will be modified.
948 * @param headroom The headroom.
949 * @return 0 on success, or a negative error code on failure.
951 extern int gxio_mpipe_rules_set_headroom(gxio_mpipe_rules_t *rules,
952 uint8_t headroom);
954 /* Indicate that packets from a particular channel can be delivered
955 * to the buckets and buffer stacks associated with the current rule.
957 * Channels added must be associated with links opened by the mPIPE context
958 * used in gxio_mpipe_rules_init(). A rule with no channels is equivalent
959 * to a rule naming all such associated channels.
961 * @param rules Rules list whose current rule will be modified.
962 * @param channel The channel to add.
963 * @return 0 on success, or a negative error code on failure.
965 extern int gxio_mpipe_rules_add_channel(gxio_mpipe_rules_t *rules,
966 unsigned int channel);
968 /* Commit rules.
970 * The rules are sent to the hypervisor, where they are combined with
971 * the rules from other apps, and used to program the hardware classifier.
973 * Note that if this function returns an error, then the rules will NOT
974 * have been committed, even if the error is due to interactions with
975 * rules from another app.
977 * @param rules Rules list to commit.
978 * @return 0 on success, or a negative error code on failure.
980 extern int gxio_mpipe_rules_commit(gxio_mpipe_rules_t *rules);
982 /*****************************************************************
983 * Ingress Queue Wrapper *
984 ******************************************************************/
988 * Convenience functions for receiving packets from a NotifRing and
989 * sending packets via an eDMA ring.
991 * The mpipe ingress and egress hardware uses shared memory packet
992 * descriptors to describe packets that have arrived on ingress or
993 * are destined for egress. These descriptors are stored in shared
994 * memory ring buffers and written or read by hardware as necessary.
995 * The gxio library provides wrapper functions that manage the head and
996 * tail pointers for these rings, allowing the user to easily read or
997 * write packet descriptors.
999 * The initialization interface for ingress and egress rings is quite
1000 * similar. For example, to create an ingress queue, the user passes
1001 * a ::gxio_mpipe_iqueue_t state object, a ring number from
1002 * gxio_mpipe_alloc_notif_rings(), and the address of memory to hold a
1003 * ring buffer to the gxio_mpipe_iqueue_init() function. The function
1004 * returns success when the state object has been initialized and the
1005 * hardware configured to deliver packets to the specified ring
1006 * buffer. Similarly, gxio_mpipe_equeue_init() takes a
1007 * ::gxio_mpipe_equeue_t state object, a ring number from
1008 * gxio_mpipe_alloc_edma_rings(), and a shared memory buffer.
1010 * @section gxio_mpipe_iqueue Working with Ingress Queues
1012 * Once initialized, the gxio_mpipe_iqueue_t API provides two flows
1013 * for getting the ::gxio_mpipe_idesc_t packet descriptor associated
1014 * with incoming packets. The simplest is to call
1015 * gxio_mpipe_iqueue_get() or gxio_mpipe_iqueue_try_get(). These
1016 * functions copy the oldest packet descriptor out of the NotifRing and
1017 * into a descriptor provided by the caller. They also immediately
1018 * inform the hardware that a descriptor has been processed.
1020 * For applications with stringent performance requirements, higher
1021 * efficiency can be achieved by avoiding the packet descriptor copy
1022 * and processing multiple descriptors at once. The
1023 * gxio_mpipe_iqueue_peek() and gxio_mpipe_iqueue_try_peek() functions
1024 * allow such optimizations. These functions provide a pointer to the
1025 * next valid ingress descriptor in the NotifRing's shared memory ring
1026 * buffer, and a count of how many contiguous descriptors are ready to
1027 * be processed. The application can then process any number of those
1028 * descriptors in place, calling gxio_mpipe_iqueue_consume() to inform
1029 * the hardware after each one has been processed.
1031 * @section gxio_mpipe_equeue Working with Egress Queues
1033 * Similarly, the egress queue API provides a high-performance
1034 * interface plus a simple wrapper for use in posting
1035 * ::gxio_mpipe_edesc_t egress packet descriptors. The simple
1036 * version, gxio_mpipe_equeue_put(), allows the programmer to wait for
1037 * an eDMA ring slot to become available and write a single descriptor
1038 * into the ring.
1040 * Alternatively, you can reserve slots in the eDMA ring using
1041 * gxio_mpipe_equeue_reserve() or gxio_mpipe_equeue_try_reserve(), and
1042 * then fill in each slot using gxio_mpipe_equeue_put_at(). This
1043 * capability can be used to amortize the cost of reserving slots
1044 * across several packets. It also allows gather operations to be
1045 * performed on a shared equeue, by ensuring that the edescs for all
1046 * the fragments are all contiguous in the eDMA ring.
1048 * The gxio_mpipe_equeue_reserve() and gxio_mpipe_equeue_try_reserve()
1049 * functions return a 63-bit "completion slot", which is actually a
1050 * sequence number, the low bits of which indicate the ring buffer
1051 * index and the high bits the number of times the application has
1052 * gone around the egress ring buffer. The extra bits allow an
1053 * application to check for egress completion by calling
1054 * gxio_mpipe_equeue_is_complete() to see whether a particular 'slot'
1055 * number has finished. Given the maximum packet rates of the Gx
1056 * processor, the 63-bit slot number will never wrap.
1058 * In practice, most applications use the ::gxio_mpipe_edesc_t::hwb
1059 * bit to indicate that the buffers containing egress packet data
1060 * should be pushed onto a buffer stack when egress is complete. Such
1061 * applications generally do not need to know when an egress operation
1062 * completes (since there is no need to free a buffer post-egress),
1063 * and thus can use the optimized gxio_mpipe_equeue_reserve_fast() or
1064 * gxio_mpipe_equeue_try_reserve_fast() functions, which return a 24
1065 * bit "slot", instead of a 63-bit "completion slot".
1067 * Once a slot has been "reserved", it MUST be filled. If the
1068 * application reserves a slot and then decides that it does not
1069 * actually need it, it can set the ::gxio_mpipe_edesc_t::ns (no send)
1070 * bit on the descriptor passed to gxio_mpipe_equeue_put_at() to
1071 * indicate that no data should be sent. This technique can also be
1072 * used to drop an incoming packet, instead of forwarding it, since
1073 * any buffer will still be pushed onto the buffer stack when the
1074 * egress descriptor is processed.
1077 /* A convenient interface to a NotifRing, for use by a single thread.
1079 typedef struct {
1081 /* The context. */
1082 gxio_mpipe_context_t *context;
1084 /* The actual NotifRing. */
1085 gxio_mpipe_idesc_t *idescs;
1087 /* The number of entries. */
1088 unsigned long num_entries;
1090 /* The number of entries minus one. */
1091 unsigned long mask_num_entries;
1093 /* The log2() of the number of entries. */
1094 unsigned long log2_num_entries;
1096 /* The next entry. */
1097 unsigned int head;
1099 /* The NotifRing id. */
1100 unsigned int ring;
1102 #ifdef __BIG_ENDIAN__
1103 /* The number of byteswapped entries. */
1104 unsigned int swapped;
1105 #endif
1107 } gxio_mpipe_iqueue_t;
1109 /* Initialize an "iqueue".
1111 * Takes the iqueue plus the same args as gxio_mpipe_init_notif_ring().
1113 extern int gxio_mpipe_iqueue_init(gxio_mpipe_iqueue_t *iqueue,
1114 gxio_mpipe_context_t *context,
1115 unsigned int ring,
1116 void *mem, size_t mem_size,
1117 unsigned int mem_flags);
1119 /* Advance over some old entries in an iqueue.
1121 * Please see the documentation for gxio_mpipe_iqueue_consume().
1123 * @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init().
1124 * @param count The number of entries to advance over.
1126 static inline void gxio_mpipe_iqueue_advance(gxio_mpipe_iqueue_t *iqueue,
1127 int count)
1129 /* Advance with proper wrap. */
1130 int head = iqueue->head + count;
1131 iqueue->head =
1132 (head & iqueue->mask_num_entries) +
1133 (head >> iqueue->log2_num_entries);
1135 #ifdef __BIG_ENDIAN__
1136 /* HACK: Track swapped entries. */
1137 iqueue->swapped -= count;
1138 #endif
1141 /* Release the ring and bucket for an old entry in an iqueue.
1143 * Releasing the ring allows more packets to be delivered to the ring.
1145 * Releasing the bucket allows flows using the bucket to be moved to a
1146 * new ring when using GXIO_MPIPE_BUCKET_DYNAMIC_FLOW_AFFINITY.
1148 * This function is shorthand for "gxio_mpipe_credit(iqueue->context,
1149 * iqueue->ring, idesc->bucket_id, 1)", and it may be more convenient
1150 * to make that underlying call, using those values, instead of
1151 * tracking the entire "idesc".
1153 * If packet processing is deferred, optimal performance requires that
1154 * the releasing be deferred as well.
1156 * Please see the documentation for gxio_mpipe_iqueue_consume().
1158 * @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init().
1159 * @param idesc The descriptor which was processed.
1161 static inline void gxio_mpipe_iqueue_release(gxio_mpipe_iqueue_t *iqueue,
1162 gxio_mpipe_idesc_t *idesc)
1164 gxio_mpipe_credit(iqueue->context, iqueue->ring, idesc->bucket_id, 1);
1167 /* Consume a packet from an "iqueue".
1169 * After processing packets peeked at via gxio_mpipe_iqueue_peek()
1170 * or gxio_mpipe_iqueue_try_peek(), you must call this function, or
1171 * gxio_mpipe_iqueue_advance() plus gxio_mpipe_iqueue_release(), to
1172 * advance over those entries, and release their rings and buckets.
1174 * You may call this function as each packet is processed, or you can
1175 * wait until several packets have been processed.
1177 * Note that if you are using a single bucket, and you are handling
1178 * batches of N packets, then you can replace several calls to this
1179 * function with calls to "gxio_mpipe_iqueue_advance(iqueue, N)" and
1180 * "gxio_mpipe_credit(iqueue->context, iqueue->ring, bucket, N)".
1182 * Note that if your classifier sets "idesc->nr", then you should
1183 * explicitly call "gxio_mpipe_iqueue_advance(iqueue, idesc)" plus
1184 * "gxio_mpipe_credit(iqueue->context, iqueue->ring, -1, 1)", to
1185 * avoid incorrectly crediting the (unused) bucket.
1187 * @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init().
1188 * @param idesc The descriptor which was processed.
1190 static inline void gxio_mpipe_iqueue_consume(gxio_mpipe_iqueue_t *iqueue,
1191 gxio_mpipe_idesc_t *idesc)
1193 gxio_mpipe_iqueue_advance(iqueue, 1);
1194 gxio_mpipe_iqueue_release(iqueue, idesc);
1197 /* Peek at the next packet(s) in an "iqueue", without waiting.
1199 * If no packets are available, fills idesc_ref with NULL, and then
1200 * returns ::GXIO_MPIPE_ERR_IQUEUE_EMPTY. Otherwise, fills idesc_ref
1201 * with the address of the next valid packet descriptor, and returns
1202 * the maximum number of valid descriptors which can be processed.
1203 * You may process fewer descriptors if desired.
1205 * Call gxio_mpipe_iqueue_consume() on each packet once it has been
1206 * processed (or dropped), to allow more packets to be delivered.
1208 * @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init().
1209 * @param idesc_ref A pointer to a packet descriptor pointer.
1210 * @return The (positive) number of packets which can be processed,
1211 * or ::GXIO_MPIPE_ERR_IQUEUE_EMPTY if no packets are available.
1213 static inline int gxio_mpipe_iqueue_try_peek(gxio_mpipe_iqueue_t *iqueue,
1214 gxio_mpipe_idesc_t **idesc_ref)
1216 gxio_mpipe_idesc_t *next;
1218 uint64_t head = iqueue->head;
1219 uint64_t tail = __gxio_mmio_read(iqueue->idescs);
1221 /* Available entries. */
1222 uint64_t avail =
1223 (tail >= head) ? (tail - head) : (iqueue->num_entries - head);
1225 if (avail == 0) {
1226 *idesc_ref = NULL;
1227 return GXIO_MPIPE_ERR_IQUEUE_EMPTY;
1230 next = &iqueue->idescs[head];
1232 /* ISSUE: Is this helpful? */
1233 __insn_prefetch(next);
1235 #ifdef __BIG_ENDIAN__
1236 /* HACK: Swap new entries directly in memory. */
1238 int i, j;
1239 for (i = iqueue->swapped; i < avail; i++) {
1240 for (j = 0; j < 8; j++)
1241 next[i].words[j] =
1242 __builtin_bswap64(next[i].words[j]);
1244 iqueue->swapped = avail;
1246 #endif
1248 *idesc_ref = next;
1250 return avail;
1253 /* Drop a packet by pushing its buffer (if appropriate).
1255 * NOTE: The caller must still call gxio_mpipe_iqueue_consume() if idesc
1256 * came from gxio_mpipe_iqueue_try_peek() or gxio_mpipe_iqueue_peek().
1258 * @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init().
1259 * @param idesc A packet descriptor.
1261 static inline void gxio_mpipe_iqueue_drop(gxio_mpipe_iqueue_t *iqueue,
1262 gxio_mpipe_idesc_t *idesc)
1264 /* FIXME: Handle "chaining" properly. */
1266 if (!idesc->be) {
1267 unsigned char *va = gxio_mpipe_idesc_get_va(idesc);
1268 gxio_mpipe_push_buffer(iqueue->context, idesc->stack_idx, va);
1272 /*****************************************************************
1273 * Egress Queue Wrapper *
1274 ******************************************************************/
1276 /* A convenient, thread-safe interface to an eDMA ring. */
1277 typedef struct {
1279 /* State object for tracking head and tail pointers. */
1280 __gxio_dma_queue_t dma_queue;
1282 /* The ring entries. */
1283 gxio_mpipe_edesc_t *edescs;
1285 /* The number of entries minus one. */
1286 unsigned long mask_num_entries;
1288 /* The log2() of the number of entries. */
1289 unsigned long log2_num_entries;
1291 } gxio_mpipe_equeue_t;
1293 /* Initialize an "equeue".
1295 * Takes the equeue plus the same args as gxio_mpipe_init_edma_ring().
1297 extern int gxio_mpipe_equeue_init(gxio_mpipe_equeue_t *equeue,
1298 gxio_mpipe_context_t *context,
1299 unsigned int edma_ring_id,
1300 unsigned int channel,
1301 void *mem, unsigned int mem_size,
1302 unsigned int mem_flags);
1304 /* Reserve completion slots for edescs.
1306 * Use gxio_mpipe_equeue_put_at() to actually populate the slots.
1308 * This function is slower than gxio_mpipe_equeue_reserve_fast(), but
1309 * returns a full 64 bit completion slot, which can be used with
1310 * gxio_mpipe_equeue_is_complete().
1312 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1313 * @param num Number of slots to reserve (must be non-zero).
1314 * @return The first reserved completion slot, or a negative error code.
1316 static inline int64_t gxio_mpipe_equeue_reserve(gxio_mpipe_equeue_t *equeue,
1317 unsigned int num)
1319 return __gxio_dma_queue_reserve_aux(&equeue->dma_queue, num, true);
1322 /* Reserve completion slots for edescs, if possible.
1324 * Use gxio_mpipe_equeue_put_at() to actually populate the slots.
1326 * This function is slower than gxio_mpipe_equeue_try_reserve_fast(),
1327 * but returns a full 64 bit completion slot, which can be used with
1328 * gxio_mpipe_equeue_is_complete().
1330 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1331 * @param num Number of slots to reserve (must be non-zero).
1332 * @return The first reserved completion slot, or a negative error code.
1334 static inline int64_t gxio_mpipe_equeue_try_reserve(gxio_mpipe_equeue_t
1335 *equeue, unsigned int num)
1337 return __gxio_dma_queue_reserve_aux(&equeue->dma_queue, num, false);
1340 /* Reserve slots for edescs.
1342 * Use gxio_mpipe_equeue_put_at() to actually populate the slots.
1344 * This function is faster than gxio_mpipe_equeue_reserve(), but
1345 * returns a 24 bit slot (instead of a 64 bit completion slot), which
1346 * thus cannot be used with gxio_mpipe_equeue_is_complete().
1348 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1349 * @param num Number of slots to reserve (should be non-zero).
1350 * @return The first reserved slot, or a negative error code.
1352 static inline int64_t gxio_mpipe_equeue_reserve_fast(gxio_mpipe_equeue_t
1353 *equeue, unsigned int num)
1355 return __gxio_dma_queue_reserve(&equeue->dma_queue, num, true, false);
1358 /* Reserve slots for edescs, if possible.
1360 * Use gxio_mpipe_equeue_put_at() to actually populate the slots.
1362 * This function is faster than gxio_mpipe_equeue_try_reserve(), but
1363 * returns a 24 bit slot (instead of a 64 bit completion slot), which
1364 * thus cannot be used with gxio_mpipe_equeue_is_complete().
1366 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1367 * @param num Number of slots to reserve (should be non-zero).
1368 * @return The first reserved slot, or a negative error code.
1370 static inline int64_t gxio_mpipe_equeue_try_reserve_fast(gxio_mpipe_equeue_t
1371 *equeue,
1372 unsigned int num)
1374 return __gxio_dma_queue_reserve(&equeue->dma_queue, num, false, false);
1378 * HACK: This helper function tricks gcc 4.6 into avoiding saving
1379 * a copy of "edesc->words[0]" on the stack for no obvious reason.
1382 static inline void gxio_mpipe_equeue_put_at_aux(gxio_mpipe_equeue_t *equeue,
1383 uint_reg_t ew[2],
1384 unsigned long slot)
1386 unsigned long edma_slot = slot & equeue->mask_num_entries;
1387 gxio_mpipe_edesc_t *edesc_p = &equeue->edescs[edma_slot];
1390 * ISSUE: Could set eDMA ring to be on generation 1 at start, which
1391 * would avoid the negation here, perhaps allowing "__insn_bfins()".
1393 ew[0] |= !((slot >> equeue->log2_num_entries) & 1);
1396 * NOTE: We use "__gxio_mpipe_write()", plus the fact that the eDMA
1397 * queue alignment restrictions ensure that these two words are on
1398 * the same cacheline, to force proper ordering between the stores.
1400 __gxio_mmio_write64(&edesc_p->words[1], ew[1]);
1401 __gxio_mmio_write64(&edesc_p->words[0], ew[0]);
1404 /* Post an edesc to a given slot in an equeue.
1406 * This function copies the supplied edesc into entry "slot mod N" in
1407 * the underlying ring, setting the "gen" bit to the appropriate value
1408 * based on "(slot mod N*2)", where "N" is the size of the ring. Note
1409 * that the higher bits of slot are unused, and thus, this function
1410 * can handle "slots" as well as "completion slots".
1412 * Normally this function is used to fill in slots reserved by
1413 * gxio_mpipe_equeue_try_reserve(), gxio_mpipe_equeue_reserve(),
1414 * gxio_mpipe_equeue_try_reserve_fast(), or
1415 * gxio_mpipe_equeue_reserve_fast(),
1417 * This function can also be used without "reserving" slots, if the
1418 * application KNOWS that the ring can never overflow, for example, by
1419 * pushing fewer buffers into the buffer stacks than there are total
1420 * slots in the equeue, but this is NOT recommended.
1422 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1423 * @param edesc The egress descriptor to be posted.
1424 * @param slot An egress slot (only the low bits are actually used).
1426 static inline void gxio_mpipe_equeue_put_at(gxio_mpipe_equeue_t *equeue,
1427 gxio_mpipe_edesc_t edesc,
1428 unsigned long slot)
1430 gxio_mpipe_equeue_put_at_aux(equeue, edesc.words, slot);
1433 /* Post an edesc to the next slot in an equeue.
1435 * This is a convenience wrapper around
1436 * gxio_mpipe_equeue_reserve_fast() and gxio_mpipe_equeue_put_at().
1438 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1439 * @param edesc The egress descriptor to be posted.
1440 * @return 0 on success.
1442 static inline int gxio_mpipe_equeue_put(gxio_mpipe_equeue_t *equeue,
1443 gxio_mpipe_edesc_t edesc)
1445 int64_t slot = gxio_mpipe_equeue_reserve_fast(equeue, 1);
1446 if (slot < 0)
1447 return (int)slot;
1449 gxio_mpipe_equeue_put_at(equeue, edesc, slot);
1451 return 0;
1454 /* Ask the mPIPE hardware to egress outstanding packets immediately.
1456 * This call is not necessary, but may slightly reduce overall latency.
1458 * Technically, you should flush all gxio_mpipe_equeue_put_at() writes
1459 * to memory before calling this function, to ensure the descriptors
1460 * are visible in memory before the mPIPE hardware actually looks for
1461 * them. But this should be very rare, and the only side effect would
1462 * be increased latency, so it is up to the caller to decide whether
1463 * or not to flush memory.
1465 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1467 static inline void gxio_mpipe_equeue_flush(gxio_mpipe_equeue_t *equeue)
1469 /* Use "ring_idx = 0" and "count = 0" to "wake up" the eDMA ring. */
1470 MPIPE_EDMA_POST_REGION_VAL_t val = { {0} };
1471 /* Flush the write buffers. */
1472 __insn_flushwb();
1473 __gxio_mmio_write(equeue->dma_queue.post_region_addr, val.word);
1476 /* Determine if a given edesc has been completed.
1478 * Note that this function requires a "completion slot", and thus may
1479 * NOT be used with a "slot" from gxio_mpipe_equeue_reserve_fast() or
1480 * gxio_mpipe_equeue_try_reserve_fast().
1482 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1483 * @param completion_slot The completion slot used by the edesc.
1484 * @param update If true, and the desc does not appear to have completed
1485 * yet, then update any software cache of the hardware completion counter,
1486 * and check again. This should normally be true.
1487 * @return True iff the given edesc has been completed.
1489 static inline int gxio_mpipe_equeue_is_complete(gxio_mpipe_equeue_t *equeue,
1490 int64_t completion_slot,
1491 int update)
1493 return __gxio_dma_queue_is_complete(&equeue->dma_queue,
1494 completion_slot, update);
1497 /*****************************************************************
1498 * Link Management *
1499 ******************************************************************/
1503 * Functions for manipulating and sensing the state and configuration
1504 * of physical network links.
1506 * @section gxio_mpipe_link_perm Link Permissions
1508 * Opening a link (with gxio_mpipe_link_open()) requests a set of link
1509 * permissions, which control what may be done with the link, and potentially
1510 * what permissions may be granted to other processes.
1512 * Data permission allows the process to receive packets from the link by
1513 * specifying the link's channel number in mPIPE packet distribution rules,
1514 * and to send packets to the link by using the link's channel number as
1515 * the target for an eDMA ring.
1517 * Stats permission allows the process to retrieve link attributes (such as
1518 * the speeds it is capable of running at, or whether it is currently up), and
1519 * to read and write certain statistics-related registers in the link's MAC.
1521 * Control permission allows the process to retrieve and modify link attributes
1522 * (so that it may, for example, bring the link up and take it down), and
1523 * read and write many registers in the link's MAC and PHY.
1525 * Any permission may be requested as shared, which allows other processes
1526 * to also request shared permission, or exclusive, which prevents other
1527 * processes from requesting it. In keeping with GXIO's typical usage in
1528 * an embedded environment, the defaults for all permissions are shared.
1530 * Permissions are granted on a first-come, first-served basis, so if two
1531 * applications request an exclusive permission on the same link, the one
1532 * to run first will win. Note, however, that some system components, like
1533 * the kernel Ethernet driver, may get an opportunity to open links before
1534 * any applications run.
1536 * @section gxio_mpipe_link_names Link Names
1538 * Link names are of the form gbe<em>number</em> (for Gigabit Ethernet),
1539 * xgbe<em>number</em> (for 10 Gigabit Ethernet), loop<em>number</em> (for
1540 * internal mPIPE loopback), or ilk<em>number</em>/<em>channel</em>
1541 * (for Interlaken links); for instance, gbe0, xgbe1, loop3, and
1542 * ilk0/12 are all possible link names. The correspondence between
1543 * the link name and an mPIPE instance number or mPIPE channel number is
1544 * system-dependent; all links will not exist on all systems, and the set
1545 * of numbers used for a particular link type may not start at zero and may
1546 * not be contiguous. Use gxio_mpipe_link_enumerate() to retrieve the set of
1547 * links which exist on a system, and always use gxio_mpipe_link_instance()
1548 * to determine which mPIPE controls a particular link.
1550 * Note that in some cases, links may share hardware, such as PHYs, or
1551 * internal mPIPE buffers; in these cases, only one of the links may be
1552 * opened at a time. This is especially common with xgbe and gbe ports,
1553 * since each xgbe port uses 4 SERDES lanes, each of which may also be
1554 * configured as one gbe port.
1556 * @section gxio_mpipe_link_states Link States
1558 * The mPIPE link management model revolves around three different states,
1559 * which are maintained for each link:
1561 * 1. The <em>current</em> link state: is the link up now, and if so, at
1562 * what speed?
1564 * 2. The <em>desired</em> link state: what do we want the link state to be?
1565 * The system is always working to make this state the current state;
1566 * thus, if the desired state is up, and the link is down, we'll be
1567 * constantly trying to bring it up, automatically.
1569 * 3. The <em>possible</em> link state: what speeds are valid for this
1570 * particular link? Or, in other words, what are the capabilities of
1571 * the link hardware?
1573 * These link states are not, strictly speaking, related to application
1574 * state; they may be manipulated at any time, whether or not the link
1575 * is currently being used for data transfer. However, for convenience,
1576 * gxio_mpipe_link_open() and gxio_mpipe_link_close() (or application exit)
1577 * can affect the link state. These implicit link management operations
1578 * may be modified or disabled by the use of link open flags.
1580 * From an application, you can use gxio_mpipe_link_get_attr()
1581 * and gxio_mpipe_link_set_attr() to manipulate the link states.
1582 * gxio_mpipe_link_get_attr() with ::GXIO_MPIPE_LINK_POSSIBLE_STATE
1583 * gets you the possible link state. gxio_mpipe_link_get_attr() with
1584 * ::GXIO_MPIPE_LINK_CURRENT_STATE gets you the current link state.
1585 * Finally, gxio_mpipe_link_set_attr() and gxio_mpipe_link_get_attr()
1586 * with ::GXIO_MPIPE_LINK_DESIRED_STATE allow you to modify or retrieve
1587 * the desired link state.
1589 * If you want to manage a link from a part of your application which isn't
1590 * involved in packet processing, you can use the ::GXIO_MPIPE_LINK_NO_DATA
1591 * flags on a gxio_mpipe_link_open() call. This opens the link, but does
1592 * not request data permission, so it does not conflict with any exclusive
1593 * permissions which may be held by other processes. You can then can use
1594 * gxio_mpipe_link_get_attr() and gxio_mpipe_link_set_attr() on this link
1595 * object to bring up or take down the link.
1597 * Some links support link state bits which support various loopback
1598 * modes. ::GXIO_MPIPE_LINK_LOOP_MAC tests datapaths within the Tile
1599 * Processor itself; ::GXIO_MPIPE_LINK_LOOP_PHY tests the datapath between
1600 * the Tile Processor and the external physical layer interface chip; and
1601 * ::GXIO_MPIPE_LINK_LOOP_EXT tests the entire network datapath with the
1602 * aid of an external loopback connector. In addition to enabling hardware
1603 * testing, such configuration can be useful for software testing, as well.
1605 * When LOOP_MAC or LOOP_PHY is enabled, packets transmitted on a channel
1606 * will be received by that channel, instead of being emitted on the
1607 * physical link, and packets received on the physical link will be ignored.
1608 * Other than that, all standard GXIO operations work as you might expect.
1609 * Note that loopback operation requires that the link be brought up using
1610 * one or more of the GXIO_MPIPE_LINK_SPEED_xxx link state bits.
1612 * Those familiar with previous versions of the MDE on TILEPro hardware
1613 * will notice significant similarities between the NetIO link management
1614 * model and the mPIPE link management model. However, the NetIO model
1615 * was developed in stages, and some of its features -- for instance,
1616 * the default setting of certain flags -- were shaped by the need to be
1617 * compatible with previous versions of NetIO. Since the features provided
1618 * by the mPIPE hardware and the mPIPE GXIO library are significantly
1619 * different than those provided by NetIO, in some cases, we have made
1620 * different choices in the mPIPE link management API. Thus, please read
1621 * this documentation carefully before assuming that mPIPE link management
1622 * operations are exactly equivalent to their NetIO counterparts.
1625 /* An object used to manage mPIPE link state and resources. */
1626 typedef struct {
1627 /* The overall mPIPE context. */
1628 gxio_mpipe_context_t *context;
1630 /* The channel number used by this link. */
1631 uint8_t channel;
1633 /* The MAC index used by this link. */
1634 uint8_t mac;
1635 } gxio_mpipe_link_t;
1637 /* Retrieve one of this system's legal link names, and its MAC address.
1639 * @param index Link name index. If a system supports N legal link names,
1640 * then indices between 0 and N - 1, inclusive, each correspond to one of
1641 * those names. Thus, to retrieve all of a system's legal link names,
1642 * call this function in a loop, starting with an index of zero, and
1643 * incrementing it once per iteration until -1 is returned.
1644 * @param link_name Pointer to the buffer which will receive the retrieved
1645 * link name. The buffer should contain space for at least
1646 * ::GXIO_MPIPE_LINK_NAME_LEN bytes; the returned name, including the
1647 * terminating null byte, will be no longer than that.
1648 * @param link_name Pointer to the buffer which will receive the retrieved
1649 * MAC address. The buffer should contain space for at least 6 bytes.
1650 * @return Zero if a link name was successfully retrieved; -1 if one was
1651 * not.
1653 extern int gxio_mpipe_link_enumerate_mac(int index, char *link_name,
1654 uint8_t *mac_addr);
1656 /* Open an mPIPE link.
1658 * A link must be opened before it may be used to send or receive packets,
1659 * and before its state may be examined or changed. Depending up on the
1660 * link's intended use, one or more link permissions may be requested via
1661 * the flags parameter; see @ref gxio_mpipe_link_perm. In addition, flags
1662 * may request that the link's state be modified at open time. See @ref
1663 * gxio_mpipe_link_states and @ref gxio_mpipe_link_open_flags for more detail.
1665 * @param link A link state object, which will be initialized if this
1666 * function completes successfully.
1667 * @param context An initialized mPIPE context.
1668 * @param link_name Name of the link.
1669 * @param flags Zero or more @ref gxio_mpipe_link_open_flags, ORed together.
1670 * @return 0 if the link was successfully opened, or a negative error code.
1673 extern int gxio_mpipe_link_open(gxio_mpipe_link_t *link,
1674 gxio_mpipe_context_t *context,
1675 const char *link_name, unsigned int flags);
1677 /* Close an mPIPE link.
1679 * Closing a link makes it available for use by other processes. Once
1680 * a link has been closed, packets may no longer be sent on or received
1681 * from the link, and its state may not be examined or changed.
1683 * @param link A link state object, which will no longer be initialized
1684 * if this function completes successfully.
1685 * @return 0 if the link was successfully closed, or a negative error code.
1688 extern int gxio_mpipe_link_close(gxio_mpipe_link_t *link);
1690 /* Return a link's channel number.
1692 * @param link A properly initialized link state object.
1693 * @return The channel number for the link.
1695 static inline int gxio_mpipe_link_channel(gxio_mpipe_link_t *link)
1697 return link->channel;
1700 ///////////////////////////////////////////////////////////////////
1701 // Timestamp //
1702 ///////////////////////////////////////////////////////////////////
1704 /* Get the timestamp of mPIPE when this routine is called.
1706 * @param context An initialized mPIPE context.
1707 * @param ts A timespec structure to store the current clock.
1708 * @return If the call was successful, zero; otherwise, a negative error
1709 * code.
1711 extern int gxio_mpipe_get_timestamp(gxio_mpipe_context_t *context,
1712 struct timespec *ts);
1714 /* Set the timestamp of mPIPE.
1716 * @param context An initialized mPIPE context.
1717 * @param ts A timespec structure to store the requested clock.
1718 * @return If the call was successful, zero; otherwise, a negative error
1719 * code.
1721 extern int gxio_mpipe_set_timestamp(gxio_mpipe_context_t *context,
1722 const struct timespec *ts);
1724 /* Adjust the timestamp of mPIPE.
1726 * @param context An initialized mPIPE context.
1727 * @param delta A signed time offset to adjust, in nanoseconds.
1728 * The absolute value of this parameter must be less than or
1729 * equal to 1000000000.
1730 * @return If the call was successful, zero; otherwise, a negative error
1731 * code.
1733 extern int gxio_mpipe_adjust_timestamp(gxio_mpipe_context_t *context,
1734 int64_t delta);
1736 #endif /* !_GXIO_MPIPE_H_ */