1 // SPDX-License-Identifier: GPL-2.0
3 * blk-mq scheduling framework
5 * Copyright (C) 2016 Jens Axboe
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
11 #include <trace/events/block.h>
15 #include "blk-mq-debugfs.h"
16 #include "blk-mq-sched.h"
17 #include "blk-mq-tag.h"
20 void blk_mq_sched_free_hctx_data(struct request_queue
*q
,
21 void (*exit
)(struct blk_mq_hw_ctx
*))
23 struct blk_mq_hw_ctx
*hctx
;
26 queue_for_each_hw_ctx(q
, hctx
, i
) {
27 if (exit
&& hctx
->sched_data
)
29 kfree(hctx
->sched_data
);
30 hctx
->sched_data
= NULL
;
33 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data
);
35 void blk_mq_sched_assign_ioc(struct request
*rq
)
37 struct request_queue
*q
= rq
->q
;
38 struct io_context
*ioc
;
42 * May not have an IO context if it's a passthrough request
44 ioc
= current
->io_context
;
48 spin_lock_irq(&q
->queue_lock
);
49 icq
= ioc_lookup_icq(ioc
, q
);
50 spin_unlock_irq(&q
->queue_lock
);
53 icq
= ioc_create_icq(ioc
, q
, GFP_ATOMIC
);
57 get_io_context(icq
->ioc
);
62 * Mark a hardware queue as needing a restart. For shared queues, maintain
63 * a count of how many hardware queues are marked for restart.
65 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx
*hctx
)
67 if (test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
70 set_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
);
72 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx
);
74 void blk_mq_sched_restart(struct blk_mq_hw_ctx
*hctx
)
76 if (!test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
78 clear_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
);
80 blk_mq_run_hw_queue(hctx
, true);
83 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */
86 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
87 * its queue by itself in its completion handler, so we don't need to
88 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
90 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
91 * be run again. This is necessary to avoid starving flushes.
93 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx
*hctx
)
95 struct request_queue
*q
= hctx
->queue
;
96 struct elevator_queue
*e
= q
->elevator
;
103 if (e
->type
->ops
.has_work
&& !e
->type
->ops
.has_work(hctx
))
106 if (!list_empty_careful(&hctx
->dispatch
)) {
111 if (!blk_mq_get_dispatch_budget(hctx
))
114 rq
= e
->type
->ops
.dispatch_request(hctx
);
116 blk_mq_put_dispatch_budget(hctx
);
118 * We're releasing without dispatching. Holding the
119 * budget could have blocked any "hctx"s with the
120 * same queue and if we didn't dispatch then there's
121 * no guarantee anyone will kick the queue. Kick it
124 blk_mq_delay_run_hw_queues(q
, BLK_MQ_BUDGET_DELAY
);
129 * Now this rq owns the budget which has to be released
130 * if this rq won't be queued to driver via .queue_rq()
131 * in blk_mq_dispatch_rq_list().
133 list_add(&rq
->queuelist
, &rq_list
);
134 } while (blk_mq_dispatch_rq_list(q
, &rq_list
, true));
139 static struct blk_mq_ctx
*blk_mq_next_ctx(struct blk_mq_hw_ctx
*hctx
,
140 struct blk_mq_ctx
*ctx
)
142 unsigned short idx
= ctx
->index_hw
[hctx
->type
];
144 if (++idx
== hctx
->nr_ctx
)
147 return hctx
->ctxs
[idx
];
151 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
152 * its queue by itself in its completion handler, so we don't need to
153 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
155 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
156 * to be run again. This is necessary to avoid starving flushes.
158 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx
*hctx
)
160 struct request_queue
*q
= hctx
->queue
;
162 struct blk_mq_ctx
*ctx
= READ_ONCE(hctx
->dispatch_from
);
168 if (!list_empty_careful(&hctx
->dispatch
)) {
173 if (!sbitmap_any_bit_set(&hctx
->ctx_map
))
176 if (!blk_mq_get_dispatch_budget(hctx
))
179 rq
= blk_mq_dequeue_from_ctx(hctx
, ctx
);
181 blk_mq_put_dispatch_budget(hctx
);
183 * We're releasing without dispatching. Holding the
184 * budget could have blocked any "hctx"s with the
185 * same queue and if we didn't dispatch then there's
186 * no guarantee anyone will kick the queue. Kick it
189 blk_mq_delay_run_hw_queues(q
, BLK_MQ_BUDGET_DELAY
);
194 * Now this rq owns the budget which has to be released
195 * if this rq won't be queued to driver via .queue_rq()
196 * in blk_mq_dispatch_rq_list().
198 list_add(&rq
->queuelist
, &rq_list
);
200 /* round robin for fair dispatch */
201 ctx
= blk_mq_next_ctx(hctx
, rq
->mq_ctx
);
203 } while (blk_mq_dispatch_rq_list(q
, &rq_list
, true));
205 WRITE_ONCE(hctx
->dispatch_from
, ctx
);
209 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx
*hctx
)
211 struct request_queue
*q
= hctx
->queue
;
212 struct elevator_queue
*e
= q
->elevator
;
213 const bool has_sched_dispatch
= e
&& e
->type
->ops
.dispatch_request
;
218 * If we have previous entries on our dispatch list, grab them first for
219 * more fair dispatch.
221 if (!list_empty_careful(&hctx
->dispatch
)) {
222 spin_lock(&hctx
->lock
);
223 if (!list_empty(&hctx
->dispatch
))
224 list_splice_init(&hctx
->dispatch
, &rq_list
);
225 spin_unlock(&hctx
->lock
);
229 * Only ask the scheduler for requests, if we didn't have residual
230 * requests from the dispatch list. This is to avoid the case where
231 * we only ever dispatch a fraction of the requests available because
232 * of low device queue depth. Once we pull requests out of the IO
233 * scheduler, we can no longer merge or sort them. So it's best to
234 * leave them there for as long as we can. Mark the hw queue as
235 * needing a restart in that case.
237 * We want to dispatch from the scheduler if there was nothing
238 * on the dispatch list or we were able to dispatch from the
241 if (!list_empty(&rq_list
)) {
242 blk_mq_sched_mark_restart_hctx(hctx
);
243 if (blk_mq_dispatch_rq_list(q
, &rq_list
, false)) {
244 if (has_sched_dispatch
)
245 ret
= blk_mq_do_dispatch_sched(hctx
);
247 ret
= blk_mq_do_dispatch_ctx(hctx
);
249 } else if (has_sched_dispatch
) {
250 ret
= blk_mq_do_dispatch_sched(hctx
);
251 } else if (hctx
->dispatch_busy
) {
252 /* dequeue request one by one from sw queue if queue is busy */
253 ret
= blk_mq_do_dispatch_ctx(hctx
);
255 blk_mq_flush_busy_ctxs(hctx
, &rq_list
);
256 blk_mq_dispatch_rq_list(q
, &rq_list
, false);
262 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx
*hctx
)
264 struct request_queue
*q
= hctx
->queue
;
266 /* RCU or SRCU read lock is needed before checking quiesced flag */
267 if (unlikely(blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(q
)))
273 * A return of -EAGAIN is an indication that hctx->dispatch is not
274 * empty and we must run again in order to avoid starving flushes.
276 if (__blk_mq_sched_dispatch_requests(hctx
) == -EAGAIN
) {
277 if (__blk_mq_sched_dispatch_requests(hctx
) == -EAGAIN
)
278 blk_mq_run_hw_queue(hctx
, true);
282 bool blk_mq_sched_try_merge(struct request_queue
*q
, struct bio
*bio
,
283 unsigned int nr_segs
, struct request
**merged_request
)
287 switch (elv_merge(q
, &rq
, bio
)) {
288 case ELEVATOR_BACK_MERGE
:
289 if (!blk_mq_sched_allow_merge(q
, rq
, bio
))
291 if (!bio_attempt_back_merge(rq
, bio
, nr_segs
))
293 *merged_request
= attempt_back_merge(q
, rq
);
294 if (!*merged_request
)
295 elv_merged_request(q
, rq
, ELEVATOR_BACK_MERGE
);
297 case ELEVATOR_FRONT_MERGE
:
298 if (!blk_mq_sched_allow_merge(q
, rq
, bio
))
300 if (!bio_attempt_front_merge(rq
, bio
, nr_segs
))
302 *merged_request
= attempt_front_merge(q
, rq
);
303 if (!*merged_request
)
304 elv_merged_request(q
, rq
, ELEVATOR_FRONT_MERGE
);
306 case ELEVATOR_DISCARD_MERGE
:
307 return bio_attempt_discard_merge(q
, rq
, bio
);
312 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge
);
315 * Iterate list of requests and see if we can merge this bio with any
318 bool blk_mq_bio_list_merge(struct request_queue
*q
, struct list_head
*list
,
319 struct bio
*bio
, unsigned int nr_segs
)
324 list_for_each_entry_reverse(rq
, list
, queuelist
) {
330 if (!blk_rq_merge_ok(rq
, bio
))
333 switch (blk_try_merge(rq
, bio
)) {
334 case ELEVATOR_BACK_MERGE
:
335 if (blk_mq_sched_allow_merge(q
, rq
, bio
))
336 merged
= bio_attempt_back_merge(rq
, bio
,
339 case ELEVATOR_FRONT_MERGE
:
340 if (blk_mq_sched_allow_merge(q
, rq
, bio
))
341 merged
= bio_attempt_front_merge(rq
, bio
,
344 case ELEVATOR_DISCARD_MERGE
:
345 merged
= bio_attempt_discard_merge(q
, rq
, bio
);
356 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge
);
359 * Reverse check our software queue for entries that we could potentially
360 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
361 * too much time checking for merges.
363 static bool blk_mq_attempt_merge(struct request_queue
*q
,
364 struct blk_mq_hw_ctx
*hctx
,
365 struct blk_mq_ctx
*ctx
, struct bio
*bio
,
366 unsigned int nr_segs
)
368 enum hctx_type type
= hctx
->type
;
370 lockdep_assert_held(&ctx
->lock
);
372 if (blk_mq_bio_list_merge(q
, &ctx
->rq_lists
[type
], bio
, nr_segs
)) {
380 bool __blk_mq_sched_bio_merge(struct request_queue
*q
, struct bio
*bio
,
381 unsigned int nr_segs
)
383 struct elevator_queue
*e
= q
->elevator
;
384 struct blk_mq_ctx
*ctx
= blk_mq_get_ctx(q
);
385 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, bio
->bi_opf
, ctx
);
389 if (e
&& e
->type
->ops
.bio_merge
)
390 return e
->type
->ops
.bio_merge(hctx
, bio
, nr_segs
);
393 if ((hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) &&
394 !list_empty_careful(&ctx
->rq_lists
[type
])) {
395 /* default per sw-queue merge */
396 spin_lock(&ctx
->lock
);
397 ret
= blk_mq_attempt_merge(q
, hctx
, ctx
, bio
, nr_segs
);
398 spin_unlock(&ctx
->lock
);
404 bool blk_mq_sched_try_insert_merge(struct request_queue
*q
, struct request
*rq
)
406 return rq_mergeable(rq
) && elv_attempt_insert_merge(q
, rq
);
408 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge
);
410 void blk_mq_sched_request_inserted(struct request
*rq
)
412 trace_block_rq_insert(rq
->q
, rq
);
414 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted
);
416 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx
*hctx
,
421 * dispatch flush and passthrough rq directly
423 * passthrough request has to be added to hctx->dispatch directly.
424 * For some reason, device may be in one situation which can't
425 * handle FS request, so STS_RESOURCE is always returned and the
426 * FS request will be added to hctx->dispatch. However passthrough
427 * request may be required at that time for fixing the problem. If
428 * passthrough request is added to scheduler queue, there isn't any
429 * chance to dispatch it given we prioritize requests in hctx->dispatch.
431 if ((rq
->rq_flags
& RQF_FLUSH_SEQ
) || blk_rq_is_passthrough(rq
))
435 rq
->rq_flags
|= RQF_SORTED
;
440 void blk_mq_sched_insert_request(struct request
*rq
, bool at_head
,
441 bool run_queue
, bool async
)
443 struct request_queue
*q
= rq
->q
;
444 struct elevator_queue
*e
= q
->elevator
;
445 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
446 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
448 /* flush rq in flush machinery need to be dispatched directly */
449 if (!(rq
->rq_flags
& RQF_FLUSH_SEQ
) && op_is_flush(rq
->cmd_flags
)) {
450 blk_insert_flush(rq
);
454 WARN_ON(e
&& (rq
->tag
!= -1));
456 if (blk_mq_sched_bypass_insert(hctx
, !!e
, rq
)) {
458 * Firstly normal IO request is inserted to scheduler queue or
459 * sw queue, meantime we add flush request to dispatch queue(
460 * hctx->dispatch) directly and there is at most one in-flight
461 * flush request for each hw queue, so it doesn't matter to add
462 * flush request to tail or front of the dispatch queue.
464 * Secondly in case of NCQ, flush request belongs to non-NCQ
465 * command, and queueing it will fail when there is any
466 * in-flight normal IO request(NCQ command). When adding flush
467 * rq to the front of hctx->dispatch, it is easier to introduce
468 * extra time to flush rq's latency because of S_SCHED_RESTART
469 * compared with adding to the tail of dispatch queue, then
470 * chance of flush merge is increased, and less flush requests
471 * will be issued to controller. It is observed that ~10% time
472 * is saved in blktests block/004 on disk attached to AHCI/NCQ
473 * drive when adding flush rq to the front of hctx->dispatch.
475 * Simply queue flush rq to the front of hctx->dispatch so that
476 * intensive flush workloads can benefit in case of NCQ HW.
478 at_head
= (rq
->rq_flags
& RQF_FLUSH_SEQ
) ? true : at_head
;
479 blk_mq_request_bypass_insert(rq
, at_head
, false);
483 if (e
&& e
->type
->ops
.insert_requests
) {
486 list_add(&rq
->queuelist
, &list
);
487 e
->type
->ops
.insert_requests(hctx
, &list
, at_head
);
489 spin_lock(&ctx
->lock
);
490 __blk_mq_insert_request(hctx
, rq
, at_head
);
491 spin_unlock(&ctx
->lock
);
496 blk_mq_run_hw_queue(hctx
, async
);
499 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx
*hctx
,
500 struct blk_mq_ctx
*ctx
,
501 struct list_head
*list
, bool run_queue_async
)
503 struct elevator_queue
*e
;
504 struct request_queue
*q
= hctx
->queue
;
507 * blk_mq_sched_insert_requests() is called from flush plug
508 * context only, and hold one usage counter to prevent queue
509 * from being released.
511 percpu_ref_get(&q
->q_usage_counter
);
513 e
= hctx
->queue
->elevator
;
514 if (e
&& e
->type
->ops
.insert_requests
)
515 e
->type
->ops
.insert_requests(hctx
, list
, false);
518 * try to issue requests directly if the hw queue isn't
519 * busy in case of 'none' scheduler, and this way may save
520 * us one extra enqueue & dequeue to sw queue.
522 if (!hctx
->dispatch_busy
&& !e
&& !run_queue_async
) {
523 blk_mq_try_issue_list_directly(hctx
, list
);
524 if (list_empty(list
))
527 blk_mq_insert_requests(hctx
, ctx
, list
);
530 blk_mq_run_hw_queue(hctx
, run_queue_async
);
532 percpu_ref_put(&q
->q_usage_counter
);
535 static void blk_mq_sched_free_tags(struct blk_mq_tag_set
*set
,
536 struct blk_mq_hw_ctx
*hctx
,
537 unsigned int hctx_idx
)
539 if (hctx
->sched_tags
) {
540 blk_mq_free_rqs(set
, hctx
->sched_tags
, hctx_idx
);
541 blk_mq_free_rq_map(hctx
->sched_tags
);
542 hctx
->sched_tags
= NULL
;
546 static int blk_mq_sched_alloc_tags(struct request_queue
*q
,
547 struct blk_mq_hw_ctx
*hctx
,
548 unsigned int hctx_idx
)
550 struct blk_mq_tag_set
*set
= q
->tag_set
;
553 hctx
->sched_tags
= blk_mq_alloc_rq_map(set
, hctx_idx
, q
->nr_requests
,
555 if (!hctx
->sched_tags
)
558 ret
= blk_mq_alloc_rqs(set
, hctx
->sched_tags
, hctx_idx
, q
->nr_requests
);
560 blk_mq_sched_free_tags(set
, hctx
, hctx_idx
);
565 /* called in queue's release handler, tagset has gone away */
566 static void blk_mq_sched_tags_teardown(struct request_queue
*q
)
568 struct blk_mq_hw_ctx
*hctx
;
571 queue_for_each_hw_ctx(q
, hctx
, i
) {
572 if (hctx
->sched_tags
) {
573 blk_mq_free_rq_map(hctx
->sched_tags
);
574 hctx
->sched_tags
= NULL
;
579 int blk_mq_init_sched(struct request_queue
*q
, struct elevator_type
*e
)
581 struct blk_mq_hw_ctx
*hctx
;
582 struct elevator_queue
*eq
;
588 q
->nr_requests
= q
->tag_set
->queue_depth
;
593 * Default to double of smaller one between hw queue_depth and 128,
594 * since we don't split into sync/async like the old code did.
595 * Additionally, this is a per-hw queue depth.
597 q
->nr_requests
= 2 * min_t(unsigned int, q
->tag_set
->queue_depth
,
600 queue_for_each_hw_ctx(q
, hctx
, i
) {
601 ret
= blk_mq_sched_alloc_tags(q
, hctx
, i
);
606 ret
= e
->ops
.init_sched(q
, e
);
610 blk_mq_debugfs_register_sched(q
);
612 queue_for_each_hw_ctx(q
, hctx
, i
) {
613 if (e
->ops
.init_hctx
) {
614 ret
= e
->ops
.init_hctx(hctx
, i
);
617 blk_mq_sched_free_requests(q
);
618 blk_mq_exit_sched(q
, eq
);
619 kobject_put(&eq
->kobj
);
623 blk_mq_debugfs_register_sched_hctx(q
, hctx
);
629 blk_mq_sched_free_requests(q
);
630 blk_mq_sched_tags_teardown(q
);
636 * called in either blk_queue_cleanup or elevator_switch, tagset
637 * is required for freeing requests
639 void blk_mq_sched_free_requests(struct request_queue
*q
)
641 struct blk_mq_hw_ctx
*hctx
;
644 queue_for_each_hw_ctx(q
, hctx
, i
) {
645 if (hctx
->sched_tags
)
646 blk_mq_free_rqs(q
->tag_set
, hctx
->sched_tags
, i
);
650 void blk_mq_exit_sched(struct request_queue
*q
, struct elevator_queue
*e
)
652 struct blk_mq_hw_ctx
*hctx
;
655 queue_for_each_hw_ctx(q
, hctx
, i
) {
656 blk_mq_debugfs_unregister_sched_hctx(hctx
);
657 if (e
->type
->ops
.exit_hctx
&& hctx
->sched_data
) {
658 e
->type
->ops
.exit_hctx(hctx
, i
);
659 hctx
->sched_data
= NULL
;
662 blk_mq_debugfs_unregister_sched(q
);
663 if (e
->type
->ops
.exit_sched
)
664 e
->type
->ops
.exit_sched(e
);
665 blk_mq_sched_tags_teardown(q
);