2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
54 #include "core_priv.h"
56 static const char * const ib_events
[] = {
57 [IB_EVENT_CQ_ERR
] = "CQ error",
58 [IB_EVENT_QP_FATAL
] = "QP fatal error",
59 [IB_EVENT_QP_REQ_ERR
] = "QP request error",
60 [IB_EVENT_QP_ACCESS_ERR
] = "QP access error",
61 [IB_EVENT_COMM_EST
] = "communication established",
62 [IB_EVENT_SQ_DRAINED
] = "send queue drained",
63 [IB_EVENT_PATH_MIG
] = "path migration successful",
64 [IB_EVENT_PATH_MIG_ERR
] = "path migration error",
65 [IB_EVENT_DEVICE_FATAL
] = "device fatal error",
66 [IB_EVENT_PORT_ACTIVE
] = "port active",
67 [IB_EVENT_PORT_ERR
] = "port error",
68 [IB_EVENT_LID_CHANGE
] = "LID change",
69 [IB_EVENT_PKEY_CHANGE
] = "P_key change",
70 [IB_EVENT_SM_CHANGE
] = "SM change",
71 [IB_EVENT_SRQ_ERR
] = "SRQ error",
72 [IB_EVENT_SRQ_LIMIT_REACHED
] = "SRQ limit reached",
73 [IB_EVENT_QP_LAST_WQE_REACHED
] = "last WQE reached",
74 [IB_EVENT_CLIENT_REREGISTER
] = "client reregister",
75 [IB_EVENT_GID_CHANGE
] = "GID changed",
78 const char *__attribute_const__
ib_event_msg(enum ib_event_type event
)
82 return (index
< ARRAY_SIZE(ib_events
) && ib_events
[index
]) ?
83 ib_events
[index
] : "unrecognized event";
85 EXPORT_SYMBOL(ib_event_msg
);
87 static const char * const wc_statuses
[] = {
88 [IB_WC_SUCCESS
] = "success",
89 [IB_WC_LOC_LEN_ERR
] = "local length error",
90 [IB_WC_LOC_QP_OP_ERR
] = "local QP operation error",
91 [IB_WC_LOC_EEC_OP_ERR
] = "local EE context operation error",
92 [IB_WC_LOC_PROT_ERR
] = "local protection error",
93 [IB_WC_WR_FLUSH_ERR
] = "WR flushed",
94 [IB_WC_MW_BIND_ERR
] = "memory management operation error",
95 [IB_WC_BAD_RESP_ERR
] = "bad response error",
96 [IB_WC_LOC_ACCESS_ERR
] = "local access error",
97 [IB_WC_REM_INV_REQ_ERR
] = "invalid request error",
98 [IB_WC_REM_ACCESS_ERR
] = "remote access error",
99 [IB_WC_REM_OP_ERR
] = "remote operation error",
100 [IB_WC_RETRY_EXC_ERR
] = "transport retry counter exceeded",
101 [IB_WC_RNR_RETRY_EXC_ERR
] = "RNR retry counter exceeded",
102 [IB_WC_LOC_RDD_VIOL_ERR
] = "local RDD violation error",
103 [IB_WC_REM_INV_RD_REQ_ERR
] = "remote invalid RD request",
104 [IB_WC_REM_ABORT_ERR
] = "operation aborted",
105 [IB_WC_INV_EECN_ERR
] = "invalid EE context number",
106 [IB_WC_INV_EEC_STATE_ERR
] = "invalid EE context state",
107 [IB_WC_FATAL_ERR
] = "fatal error",
108 [IB_WC_RESP_TIMEOUT_ERR
] = "response timeout error",
109 [IB_WC_GENERAL_ERR
] = "general error",
112 const char *__attribute_const__
ib_wc_status_msg(enum ib_wc_status status
)
114 size_t index
= status
;
116 return (index
< ARRAY_SIZE(wc_statuses
) && wc_statuses
[index
]) ?
117 wc_statuses
[index
] : "unrecognized status";
119 EXPORT_SYMBOL(ib_wc_status_msg
);
121 __attribute_const__
int ib_rate_to_mult(enum ib_rate rate
)
124 case IB_RATE_2_5_GBPS
: return 1;
125 case IB_RATE_5_GBPS
: return 2;
126 case IB_RATE_10_GBPS
: return 4;
127 case IB_RATE_20_GBPS
: return 8;
128 case IB_RATE_30_GBPS
: return 12;
129 case IB_RATE_40_GBPS
: return 16;
130 case IB_RATE_60_GBPS
: return 24;
131 case IB_RATE_80_GBPS
: return 32;
132 case IB_RATE_120_GBPS
: return 48;
136 EXPORT_SYMBOL(ib_rate_to_mult
);
138 __attribute_const__
enum ib_rate
mult_to_ib_rate(int mult
)
141 case 1: return IB_RATE_2_5_GBPS
;
142 case 2: return IB_RATE_5_GBPS
;
143 case 4: return IB_RATE_10_GBPS
;
144 case 8: return IB_RATE_20_GBPS
;
145 case 12: return IB_RATE_30_GBPS
;
146 case 16: return IB_RATE_40_GBPS
;
147 case 24: return IB_RATE_60_GBPS
;
148 case 32: return IB_RATE_80_GBPS
;
149 case 48: return IB_RATE_120_GBPS
;
150 default: return IB_RATE_PORT_CURRENT
;
153 EXPORT_SYMBOL(mult_to_ib_rate
);
155 __attribute_const__
int ib_rate_to_mbps(enum ib_rate rate
)
158 case IB_RATE_2_5_GBPS
: return 2500;
159 case IB_RATE_5_GBPS
: return 5000;
160 case IB_RATE_10_GBPS
: return 10000;
161 case IB_RATE_20_GBPS
: return 20000;
162 case IB_RATE_30_GBPS
: return 30000;
163 case IB_RATE_40_GBPS
: return 40000;
164 case IB_RATE_60_GBPS
: return 60000;
165 case IB_RATE_80_GBPS
: return 80000;
166 case IB_RATE_120_GBPS
: return 120000;
167 case IB_RATE_14_GBPS
: return 14062;
168 case IB_RATE_56_GBPS
: return 56250;
169 case IB_RATE_112_GBPS
: return 112500;
170 case IB_RATE_168_GBPS
: return 168750;
171 case IB_RATE_25_GBPS
: return 25781;
172 case IB_RATE_100_GBPS
: return 103125;
173 case IB_RATE_200_GBPS
: return 206250;
174 case IB_RATE_300_GBPS
: return 309375;
178 EXPORT_SYMBOL(ib_rate_to_mbps
);
180 __attribute_const__
enum rdma_transport_type
181 rdma_node_get_transport(enum rdma_node_type node_type
)
184 case RDMA_NODE_IB_CA
:
185 case RDMA_NODE_IB_SWITCH
:
186 case RDMA_NODE_IB_ROUTER
:
187 return RDMA_TRANSPORT_IB
;
189 return RDMA_TRANSPORT_IWARP
;
190 case RDMA_NODE_USNIC
:
191 return RDMA_TRANSPORT_USNIC
;
192 case RDMA_NODE_USNIC_UDP
:
193 return RDMA_TRANSPORT_USNIC_UDP
;
199 EXPORT_SYMBOL(rdma_node_get_transport
);
201 enum rdma_link_layer
rdma_port_get_link_layer(struct ib_device
*device
, u8 port_num
)
203 if (device
->get_link_layer
)
204 return device
->get_link_layer(device
, port_num
);
206 switch (rdma_node_get_transport(device
->node_type
)) {
207 case RDMA_TRANSPORT_IB
:
208 return IB_LINK_LAYER_INFINIBAND
;
209 case RDMA_TRANSPORT_IWARP
:
210 case RDMA_TRANSPORT_USNIC
:
211 case RDMA_TRANSPORT_USNIC_UDP
:
212 return IB_LINK_LAYER_ETHERNET
;
214 return IB_LINK_LAYER_UNSPECIFIED
;
217 EXPORT_SYMBOL(rdma_port_get_link_layer
);
219 /* Protection domains */
222 * ib_alloc_pd - Allocates an unused protection domain.
223 * @device: The device on which to allocate the protection domain.
225 * A protection domain object provides an association between QPs, shared
226 * receive queues, address handles, memory regions, and memory windows.
228 * Every PD has a local_dma_lkey which can be used as the lkey value for local
231 struct ib_pd
*__ib_alloc_pd(struct ib_device
*device
, unsigned int flags
,
235 int mr_access_flags
= 0;
237 pd
= device
->alloc_pd(device
, NULL
, NULL
);
243 pd
->__internal_mr
= NULL
;
244 atomic_set(&pd
->usecnt
, 0);
247 if (device
->attrs
.device_cap_flags
& IB_DEVICE_LOCAL_DMA_LKEY
)
248 pd
->local_dma_lkey
= device
->local_dma_lkey
;
250 mr_access_flags
|= IB_ACCESS_LOCAL_WRITE
;
252 if (flags
& IB_PD_UNSAFE_GLOBAL_RKEY
) {
253 pr_warn("%s: enabling unsafe global rkey\n", caller
);
254 mr_access_flags
|= IB_ACCESS_REMOTE_READ
| IB_ACCESS_REMOTE_WRITE
;
257 if (mr_access_flags
) {
260 mr
= pd
->device
->get_dma_mr(pd
, mr_access_flags
);
266 mr
->device
= pd
->device
;
269 mr
->need_inval
= false;
271 pd
->__internal_mr
= mr
;
273 if (!(device
->attrs
.device_cap_flags
& IB_DEVICE_LOCAL_DMA_LKEY
))
274 pd
->local_dma_lkey
= pd
->__internal_mr
->lkey
;
276 if (flags
& IB_PD_UNSAFE_GLOBAL_RKEY
)
277 pd
->unsafe_global_rkey
= pd
->__internal_mr
->rkey
;
282 EXPORT_SYMBOL(__ib_alloc_pd
);
285 * ib_dealloc_pd - Deallocates a protection domain.
286 * @pd: The protection domain to deallocate.
288 * It is an error to call this function while any resources in the pd still
289 * exist. The caller is responsible to synchronously destroy them and
290 * guarantee no new allocations will happen.
292 void ib_dealloc_pd(struct ib_pd
*pd
)
296 if (pd
->__internal_mr
) {
297 ret
= pd
->device
->dereg_mr(pd
->__internal_mr
);
299 pd
->__internal_mr
= NULL
;
302 /* uverbs manipulates usecnt with proper locking, while the kabi
303 requires the caller to guarantee we can't race here. */
304 WARN_ON(atomic_read(&pd
->usecnt
));
306 /* Making delalloc_pd a void return is a WIP, no driver should return
308 ret
= pd
->device
->dealloc_pd(pd
);
309 WARN_ONCE(ret
, "Infiniband HW driver failed dealloc_pd");
311 EXPORT_SYMBOL(ib_dealloc_pd
);
313 /* Address handles */
315 struct ib_ah
*rdma_create_ah(struct ib_pd
*pd
, struct rdma_ah_attr
*ah_attr
)
319 ah
= pd
->device
->create_ah(pd
, ah_attr
, NULL
);
322 ah
->device
= pd
->device
;
325 ah
->type
= ah_attr
->type
;
326 atomic_inc(&pd
->usecnt
);
331 EXPORT_SYMBOL(rdma_create_ah
);
333 int ib_get_rdma_header_version(const union rdma_network_hdr
*hdr
)
335 const struct iphdr
*ip4h
= (struct iphdr
*)&hdr
->roce4grh
;
336 struct iphdr ip4h_checked
;
337 const struct ipv6hdr
*ip6h
= (struct ipv6hdr
*)&hdr
->ibgrh
;
339 /* If it's IPv6, the version must be 6, otherwise, the first
340 * 20 bytes (before the IPv4 header) are garbled.
342 if (ip6h
->version
!= 6)
343 return (ip4h
->version
== 4) ? 4 : 0;
344 /* version may be 6 or 4 because the first 20 bytes could be garbled */
346 /* RoCE v2 requires no options, thus header length
353 * We can't write on scattered buffers so we need to copy to
356 memcpy(&ip4h_checked
, ip4h
, sizeof(ip4h_checked
));
357 ip4h_checked
.check
= 0;
358 ip4h_checked
.check
= ip_fast_csum((u8
*)&ip4h_checked
, 5);
359 /* if IPv4 header checksum is OK, believe it */
360 if (ip4h
->check
== ip4h_checked
.check
)
364 EXPORT_SYMBOL(ib_get_rdma_header_version
);
366 static enum rdma_network_type
ib_get_net_type_by_grh(struct ib_device
*device
,
368 const struct ib_grh
*grh
)
372 if (rdma_protocol_ib(device
, port_num
))
373 return RDMA_NETWORK_IB
;
375 grh_version
= ib_get_rdma_header_version((union rdma_network_hdr
*)grh
);
377 if (grh_version
== 4)
378 return RDMA_NETWORK_IPV4
;
380 if (grh
->next_hdr
== IPPROTO_UDP
)
381 return RDMA_NETWORK_IPV6
;
383 return RDMA_NETWORK_ROCE_V1
;
386 struct find_gid_index_context
{
388 enum ib_gid_type gid_type
;
391 static bool find_gid_index(const union ib_gid
*gid
,
392 const struct ib_gid_attr
*gid_attr
,
395 struct find_gid_index_context
*ctx
=
396 (struct find_gid_index_context
*)context
;
398 if (ctx
->gid_type
!= gid_attr
->gid_type
)
401 if ((!!(ctx
->vlan_id
!= 0xffff) == !is_vlan_dev(gid_attr
->ndev
)) ||
402 (is_vlan_dev(gid_attr
->ndev
) &&
403 vlan_dev_vlan_id(gid_attr
->ndev
) != ctx
->vlan_id
))
409 static int get_sgid_index_from_eth(struct ib_device
*device
, u8 port_num
,
410 u16 vlan_id
, const union ib_gid
*sgid
,
411 enum ib_gid_type gid_type
,
414 struct find_gid_index_context context
= {.vlan_id
= vlan_id
,
415 .gid_type
= gid_type
};
417 return ib_find_gid_by_filter(device
, sgid
, port_num
, find_gid_index
,
418 &context
, gid_index
);
421 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr
*hdr
,
422 enum rdma_network_type net_type
,
423 union ib_gid
*sgid
, union ib_gid
*dgid
)
425 struct sockaddr_in src_in
;
426 struct sockaddr_in dst_in
;
427 __be32 src_saddr
, dst_saddr
;
432 if (net_type
== RDMA_NETWORK_IPV4
) {
433 memcpy(&src_in
.sin_addr
.s_addr
,
434 &hdr
->roce4grh
.saddr
, 4);
435 memcpy(&dst_in
.sin_addr
.s_addr
,
436 &hdr
->roce4grh
.daddr
, 4);
437 src_saddr
= src_in
.sin_addr
.s_addr
;
438 dst_saddr
= dst_in
.sin_addr
.s_addr
;
439 ipv6_addr_set_v4mapped(src_saddr
,
440 (struct in6_addr
*)sgid
);
441 ipv6_addr_set_v4mapped(dst_saddr
,
442 (struct in6_addr
*)dgid
);
444 } else if (net_type
== RDMA_NETWORK_IPV6
||
445 net_type
== RDMA_NETWORK_IB
) {
446 *dgid
= hdr
->ibgrh
.dgid
;
447 *sgid
= hdr
->ibgrh
.sgid
;
453 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr
);
455 int ib_init_ah_from_wc(struct ib_device
*device
, u8 port_num
,
456 const struct ib_wc
*wc
, const struct ib_grh
*grh
,
457 struct rdma_ah_attr
*ah_attr
)
462 enum rdma_network_type net_type
= RDMA_NETWORK_IB
;
463 enum ib_gid_type gid_type
= IB_GID_TYPE_IB
;
468 memset(ah_attr
, 0, sizeof *ah_attr
);
469 ah_attr
->type
= rdma_ah_find_type(device
, port_num
);
470 if (rdma_cap_eth_ah(device
, port_num
)) {
471 if (wc
->wc_flags
& IB_WC_WITH_NETWORK_HDR_TYPE
)
472 net_type
= wc
->network_hdr_type
;
474 net_type
= ib_get_net_type_by_grh(device
, port_num
, grh
);
475 gid_type
= ib_network_to_gid_type(net_type
);
477 ret
= ib_get_gids_from_rdma_hdr((union rdma_network_hdr
*)grh
, net_type
,
482 if (rdma_protocol_roce(device
, port_num
)) {
484 u16 vlan_id
= wc
->wc_flags
& IB_WC_WITH_VLAN
?
485 wc
->vlan_id
: 0xffff;
486 struct net_device
*idev
;
487 struct net_device
*resolved_dev
;
489 if (!(wc
->wc_flags
& IB_WC_GRH
))
492 if (!device
->get_netdev
)
495 idev
= device
->get_netdev(device
, port_num
);
499 ret
= rdma_addr_find_l2_eth_by_grh(&dgid
, &sgid
,
501 wc
->wc_flags
& IB_WC_WITH_VLAN
?
503 &if_index
, &hoplimit
);
509 resolved_dev
= dev_get_by_index(&init_net
, if_index
);
510 if (resolved_dev
->flags
& IFF_LOOPBACK
) {
511 dev_put(resolved_dev
);
513 dev_hold(resolved_dev
);
516 if (resolved_dev
!= idev
&& !rdma_is_upper_dev_rcu(idev
,
521 dev_put(resolved_dev
);
525 ret
= get_sgid_index_from_eth(device
, port_num
, vlan_id
,
526 &dgid
, gid_type
, &gid_index
);
531 rdma_ah_set_dlid(ah_attr
, wc
->slid
);
532 rdma_ah_set_sl(ah_attr
, wc
->sl
);
533 rdma_ah_set_path_bits(ah_attr
, wc
->dlid_path_bits
);
534 rdma_ah_set_port_num(ah_attr
, port_num
);
536 if (wc
->wc_flags
& IB_WC_GRH
) {
537 if (!rdma_cap_eth_ah(device
, port_num
)) {
538 if (dgid
.global
.interface_id
!= cpu_to_be64(IB_SA_WELL_KNOWN_GUID
)) {
539 ret
= ib_find_cached_gid_by_port(device
, &dgid
,
550 flow_class
= be32_to_cpu(grh
->version_tclass_flow
);
551 rdma_ah_set_grh(ah_attr
, &sgid
,
552 flow_class
& 0xFFFFF,
553 (u8
)gid_index
, hoplimit
,
554 (flow_class
>> 20) & 0xFF);
559 EXPORT_SYMBOL(ib_init_ah_from_wc
);
561 struct ib_ah
*ib_create_ah_from_wc(struct ib_pd
*pd
, const struct ib_wc
*wc
,
562 const struct ib_grh
*grh
, u8 port_num
)
564 struct rdma_ah_attr ah_attr
;
567 ret
= ib_init_ah_from_wc(pd
->device
, port_num
, wc
, grh
, &ah_attr
);
571 return rdma_create_ah(pd
, &ah_attr
);
573 EXPORT_SYMBOL(ib_create_ah_from_wc
);
575 int rdma_modify_ah(struct ib_ah
*ah
, struct rdma_ah_attr
*ah_attr
)
577 if (ah
->type
!= ah_attr
->type
)
580 return ah
->device
->modify_ah
?
581 ah
->device
->modify_ah(ah
, ah_attr
) :
584 EXPORT_SYMBOL(rdma_modify_ah
);
586 int rdma_query_ah(struct ib_ah
*ah
, struct rdma_ah_attr
*ah_attr
)
588 return ah
->device
->query_ah
?
589 ah
->device
->query_ah(ah
, ah_attr
) :
592 EXPORT_SYMBOL(rdma_query_ah
);
594 int rdma_destroy_ah(struct ib_ah
*ah
)
600 ret
= ah
->device
->destroy_ah(ah
);
602 atomic_dec(&pd
->usecnt
);
606 EXPORT_SYMBOL(rdma_destroy_ah
);
608 /* Shared receive queues */
610 struct ib_srq
*ib_create_srq(struct ib_pd
*pd
,
611 struct ib_srq_init_attr
*srq_init_attr
)
615 if (!pd
->device
->create_srq
)
616 return ERR_PTR(-ENOSYS
);
618 srq
= pd
->device
->create_srq(pd
, srq_init_attr
, NULL
);
621 srq
->device
= pd
->device
;
624 srq
->event_handler
= srq_init_attr
->event_handler
;
625 srq
->srq_context
= srq_init_attr
->srq_context
;
626 srq
->srq_type
= srq_init_attr
->srq_type
;
627 if (srq
->srq_type
== IB_SRQT_XRC
) {
628 srq
->ext
.xrc
.xrcd
= srq_init_attr
->ext
.xrc
.xrcd
;
629 srq
->ext
.xrc
.cq
= srq_init_attr
->ext
.xrc
.cq
;
630 atomic_inc(&srq
->ext
.xrc
.xrcd
->usecnt
);
631 atomic_inc(&srq
->ext
.xrc
.cq
->usecnt
);
633 atomic_inc(&pd
->usecnt
);
634 atomic_set(&srq
->usecnt
, 0);
639 EXPORT_SYMBOL(ib_create_srq
);
641 int ib_modify_srq(struct ib_srq
*srq
,
642 struct ib_srq_attr
*srq_attr
,
643 enum ib_srq_attr_mask srq_attr_mask
)
645 return srq
->device
->modify_srq
?
646 srq
->device
->modify_srq(srq
, srq_attr
, srq_attr_mask
, NULL
) :
649 EXPORT_SYMBOL(ib_modify_srq
);
651 int ib_query_srq(struct ib_srq
*srq
,
652 struct ib_srq_attr
*srq_attr
)
654 return srq
->device
->query_srq
?
655 srq
->device
->query_srq(srq
, srq_attr
) : -ENOSYS
;
657 EXPORT_SYMBOL(ib_query_srq
);
659 int ib_destroy_srq(struct ib_srq
*srq
)
662 enum ib_srq_type srq_type
;
663 struct ib_xrcd
*uninitialized_var(xrcd
);
664 struct ib_cq
*uninitialized_var(cq
);
667 if (atomic_read(&srq
->usecnt
))
671 srq_type
= srq
->srq_type
;
672 if (srq_type
== IB_SRQT_XRC
) {
673 xrcd
= srq
->ext
.xrc
.xrcd
;
674 cq
= srq
->ext
.xrc
.cq
;
677 ret
= srq
->device
->destroy_srq(srq
);
679 atomic_dec(&pd
->usecnt
);
680 if (srq_type
== IB_SRQT_XRC
) {
681 atomic_dec(&xrcd
->usecnt
);
682 atomic_dec(&cq
->usecnt
);
688 EXPORT_SYMBOL(ib_destroy_srq
);
692 static void __ib_shared_qp_event_handler(struct ib_event
*event
, void *context
)
694 struct ib_qp
*qp
= context
;
697 spin_lock_irqsave(&qp
->device
->event_handler_lock
, flags
);
698 list_for_each_entry(event
->element
.qp
, &qp
->open_list
, open_list
)
699 if (event
->element
.qp
->event_handler
)
700 event
->element
.qp
->event_handler(event
, event
->element
.qp
->qp_context
);
701 spin_unlock_irqrestore(&qp
->device
->event_handler_lock
, flags
);
704 static void __ib_insert_xrcd_qp(struct ib_xrcd
*xrcd
, struct ib_qp
*qp
)
706 mutex_lock(&xrcd
->tgt_qp_mutex
);
707 list_add(&qp
->xrcd_list
, &xrcd
->tgt_qp_list
);
708 mutex_unlock(&xrcd
->tgt_qp_mutex
);
711 static struct ib_qp
*__ib_open_qp(struct ib_qp
*real_qp
,
712 void (*event_handler
)(struct ib_event
*, void *),
719 qp
= kzalloc(sizeof *qp
, GFP_KERNEL
);
721 return ERR_PTR(-ENOMEM
);
723 qp
->real_qp
= real_qp
;
724 err
= ib_open_shared_qp_security(qp
, real_qp
->device
);
730 qp
->real_qp
= real_qp
;
731 atomic_inc(&real_qp
->usecnt
);
732 qp
->device
= real_qp
->device
;
733 qp
->event_handler
= event_handler
;
734 qp
->qp_context
= qp_context
;
735 qp
->qp_num
= real_qp
->qp_num
;
736 qp
->qp_type
= real_qp
->qp_type
;
738 spin_lock_irqsave(&real_qp
->device
->event_handler_lock
, flags
);
739 list_add(&qp
->open_list
, &real_qp
->open_list
);
740 spin_unlock_irqrestore(&real_qp
->device
->event_handler_lock
, flags
);
745 struct ib_qp
*ib_open_qp(struct ib_xrcd
*xrcd
,
746 struct ib_qp_open_attr
*qp_open_attr
)
748 struct ib_qp
*qp
, *real_qp
;
750 if (qp_open_attr
->qp_type
!= IB_QPT_XRC_TGT
)
751 return ERR_PTR(-EINVAL
);
753 qp
= ERR_PTR(-EINVAL
);
754 mutex_lock(&xrcd
->tgt_qp_mutex
);
755 list_for_each_entry(real_qp
, &xrcd
->tgt_qp_list
, xrcd_list
) {
756 if (real_qp
->qp_num
== qp_open_attr
->qp_num
) {
757 qp
= __ib_open_qp(real_qp
, qp_open_attr
->event_handler
,
758 qp_open_attr
->qp_context
);
762 mutex_unlock(&xrcd
->tgt_qp_mutex
);
765 EXPORT_SYMBOL(ib_open_qp
);
767 static struct ib_qp
*ib_create_xrc_qp(struct ib_qp
*qp
,
768 struct ib_qp_init_attr
*qp_init_attr
)
770 struct ib_qp
*real_qp
= qp
;
772 qp
->event_handler
= __ib_shared_qp_event_handler
;
775 qp
->send_cq
= qp
->recv_cq
= NULL
;
777 qp
->xrcd
= qp_init_attr
->xrcd
;
778 atomic_inc(&qp_init_attr
->xrcd
->usecnt
);
779 INIT_LIST_HEAD(&qp
->open_list
);
781 qp
= __ib_open_qp(real_qp
, qp_init_attr
->event_handler
,
782 qp_init_attr
->qp_context
);
784 __ib_insert_xrcd_qp(qp_init_attr
->xrcd
, real_qp
);
786 real_qp
->device
->destroy_qp(real_qp
);
790 struct ib_qp
*ib_create_qp(struct ib_pd
*pd
,
791 struct ib_qp_init_attr
*qp_init_attr
)
793 struct ib_device
*device
= pd
? pd
->device
: qp_init_attr
->xrcd
->device
;
797 if (qp_init_attr
->rwq_ind_tbl
&&
798 (qp_init_attr
->recv_cq
||
799 qp_init_attr
->srq
|| qp_init_attr
->cap
.max_recv_wr
||
800 qp_init_attr
->cap
.max_recv_sge
))
801 return ERR_PTR(-EINVAL
);
804 * If the callers is using the RDMA API calculate the resources
805 * needed for the RDMA READ/WRITE operations.
807 * Note that these callers need to pass in a port number.
809 if (qp_init_attr
->cap
.max_rdma_ctxs
)
810 rdma_rw_init_qp(device
, qp_init_attr
);
812 qp
= device
->create_qp(pd
, qp_init_attr
, NULL
);
816 ret
= ib_create_qp_security(qp
, device
);
825 qp
->qp_type
= qp_init_attr
->qp_type
;
826 qp
->rwq_ind_tbl
= qp_init_attr
->rwq_ind_tbl
;
828 atomic_set(&qp
->usecnt
, 0);
830 spin_lock_init(&qp
->mr_lock
);
831 INIT_LIST_HEAD(&qp
->rdma_mrs
);
832 INIT_LIST_HEAD(&qp
->sig_mrs
);
834 if (qp_init_attr
->qp_type
== IB_QPT_XRC_TGT
)
835 return ib_create_xrc_qp(qp
, qp_init_attr
);
837 qp
->event_handler
= qp_init_attr
->event_handler
;
838 qp
->qp_context
= qp_init_attr
->qp_context
;
839 if (qp_init_attr
->qp_type
== IB_QPT_XRC_INI
) {
843 qp
->recv_cq
= qp_init_attr
->recv_cq
;
844 if (qp_init_attr
->recv_cq
)
845 atomic_inc(&qp_init_attr
->recv_cq
->usecnt
);
846 qp
->srq
= qp_init_attr
->srq
;
848 atomic_inc(&qp_init_attr
->srq
->usecnt
);
852 qp
->send_cq
= qp_init_attr
->send_cq
;
855 atomic_inc(&pd
->usecnt
);
856 if (qp_init_attr
->send_cq
)
857 atomic_inc(&qp_init_attr
->send_cq
->usecnt
);
858 if (qp_init_attr
->rwq_ind_tbl
)
859 atomic_inc(&qp
->rwq_ind_tbl
->usecnt
);
861 if (qp_init_attr
->cap
.max_rdma_ctxs
) {
862 ret
= rdma_rw_init_mrs(qp
, qp_init_attr
);
864 pr_err("failed to init MR pool ret= %d\n", ret
);
871 * Note: all hw drivers guarantee that max_send_sge is lower than
872 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
873 * max_send_sge <= max_sge_rd.
875 qp
->max_write_sge
= qp_init_attr
->cap
.max_send_sge
;
876 qp
->max_read_sge
= min_t(u32
, qp_init_attr
->cap
.max_send_sge
,
877 device
->attrs
.max_sge_rd
);
881 EXPORT_SYMBOL(ib_create_qp
);
883 static const struct {
885 enum ib_qp_attr_mask req_param
[IB_QPT_MAX
];
886 enum ib_qp_attr_mask opt_param
[IB_QPT_MAX
];
887 } qp_state_table
[IB_QPS_ERR
+ 1][IB_QPS_ERR
+ 1] = {
889 [IB_QPS_RESET
] = { .valid
= 1 },
893 [IB_QPT_UD
] = (IB_QP_PKEY_INDEX
|
896 [IB_QPT_RAW_PACKET
] = IB_QP_PORT
,
897 [IB_QPT_UC
] = (IB_QP_PKEY_INDEX
|
900 [IB_QPT_RC
] = (IB_QP_PKEY_INDEX
|
903 [IB_QPT_XRC_INI
] = (IB_QP_PKEY_INDEX
|
906 [IB_QPT_XRC_TGT
] = (IB_QP_PKEY_INDEX
|
909 [IB_QPT_SMI
] = (IB_QP_PKEY_INDEX
|
911 [IB_QPT_GSI
] = (IB_QP_PKEY_INDEX
|
917 [IB_QPS_RESET
] = { .valid
= 1 },
918 [IB_QPS_ERR
] = { .valid
= 1 },
922 [IB_QPT_UD
] = (IB_QP_PKEY_INDEX
|
925 [IB_QPT_UC
] = (IB_QP_PKEY_INDEX
|
928 [IB_QPT_RC
] = (IB_QP_PKEY_INDEX
|
931 [IB_QPT_XRC_INI
] = (IB_QP_PKEY_INDEX
|
934 [IB_QPT_XRC_TGT
] = (IB_QP_PKEY_INDEX
|
937 [IB_QPT_SMI
] = (IB_QP_PKEY_INDEX
|
939 [IB_QPT_GSI
] = (IB_QP_PKEY_INDEX
|
946 [IB_QPT_UC
] = (IB_QP_AV
|
950 [IB_QPT_RC
] = (IB_QP_AV
|
954 IB_QP_MAX_DEST_RD_ATOMIC
|
955 IB_QP_MIN_RNR_TIMER
),
956 [IB_QPT_XRC_INI
] = (IB_QP_AV
|
960 [IB_QPT_XRC_TGT
] = (IB_QP_AV
|
964 IB_QP_MAX_DEST_RD_ATOMIC
|
965 IB_QP_MIN_RNR_TIMER
),
968 [IB_QPT_UD
] = (IB_QP_PKEY_INDEX
|
970 [IB_QPT_UC
] = (IB_QP_ALT_PATH
|
973 [IB_QPT_RC
] = (IB_QP_ALT_PATH
|
976 [IB_QPT_XRC_INI
] = (IB_QP_ALT_PATH
|
979 [IB_QPT_XRC_TGT
] = (IB_QP_ALT_PATH
|
982 [IB_QPT_SMI
] = (IB_QP_PKEY_INDEX
|
984 [IB_QPT_GSI
] = (IB_QP_PKEY_INDEX
|
990 [IB_QPS_RESET
] = { .valid
= 1 },
991 [IB_QPS_ERR
] = { .valid
= 1 },
995 [IB_QPT_UD
] = IB_QP_SQ_PSN
,
996 [IB_QPT_UC
] = IB_QP_SQ_PSN
,
997 [IB_QPT_RC
] = (IB_QP_TIMEOUT
|
1001 IB_QP_MAX_QP_RD_ATOMIC
),
1002 [IB_QPT_XRC_INI
] = (IB_QP_TIMEOUT
|
1006 IB_QP_MAX_QP_RD_ATOMIC
),
1007 [IB_QPT_XRC_TGT
] = (IB_QP_TIMEOUT
|
1009 [IB_QPT_SMI
] = IB_QP_SQ_PSN
,
1010 [IB_QPT_GSI
] = IB_QP_SQ_PSN
,
1013 [IB_QPT_UD
] = (IB_QP_CUR_STATE
|
1015 [IB_QPT_UC
] = (IB_QP_CUR_STATE
|
1017 IB_QP_ACCESS_FLAGS
|
1018 IB_QP_PATH_MIG_STATE
),
1019 [IB_QPT_RC
] = (IB_QP_CUR_STATE
|
1021 IB_QP_ACCESS_FLAGS
|
1022 IB_QP_MIN_RNR_TIMER
|
1023 IB_QP_PATH_MIG_STATE
),
1024 [IB_QPT_XRC_INI
] = (IB_QP_CUR_STATE
|
1026 IB_QP_ACCESS_FLAGS
|
1027 IB_QP_PATH_MIG_STATE
),
1028 [IB_QPT_XRC_TGT
] = (IB_QP_CUR_STATE
|
1030 IB_QP_ACCESS_FLAGS
|
1031 IB_QP_MIN_RNR_TIMER
|
1032 IB_QP_PATH_MIG_STATE
),
1033 [IB_QPT_SMI
] = (IB_QP_CUR_STATE
|
1035 [IB_QPT_GSI
] = (IB_QP_CUR_STATE
|
1037 [IB_QPT_RAW_PACKET
] = IB_QP_RATE_LIMIT
,
1042 [IB_QPS_RESET
] = { .valid
= 1 },
1043 [IB_QPS_ERR
] = { .valid
= 1 },
1047 [IB_QPT_UD
] = (IB_QP_CUR_STATE
|
1049 [IB_QPT_UC
] = (IB_QP_CUR_STATE
|
1050 IB_QP_ACCESS_FLAGS
|
1052 IB_QP_PATH_MIG_STATE
),
1053 [IB_QPT_RC
] = (IB_QP_CUR_STATE
|
1054 IB_QP_ACCESS_FLAGS
|
1056 IB_QP_PATH_MIG_STATE
|
1057 IB_QP_MIN_RNR_TIMER
),
1058 [IB_QPT_XRC_INI
] = (IB_QP_CUR_STATE
|
1059 IB_QP_ACCESS_FLAGS
|
1061 IB_QP_PATH_MIG_STATE
),
1062 [IB_QPT_XRC_TGT
] = (IB_QP_CUR_STATE
|
1063 IB_QP_ACCESS_FLAGS
|
1065 IB_QP_PATH_MIG_STATE
|
1066 IB_QP_MIN_RNR_TIMER
),
1067 [IB_QPT_SMI
] = (IB_QP_CUR_STATE
|
1069 [IB_QPT_GSI
] = (IB_QP_CUR_STATE
|
1071 [IB_QPT_RAW_PACKET
] = IB_QP_RATE_LIMIT
,
1077 [IB_QPT_UD
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1078 [IB_QPT_UC
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1079 [IB_QPT_RC
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1080 [IB_QPT_XRC_INI
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1081 [IB_QPT_XRC_TGT
] = IB_QP_EN_SQD_ASYNC_NOTIFY
, /* ??? */
1082 [IB_QPT_SMI
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1083 [IB_QPT_GSI
] = IB_QP_EN_SQD_ASYNC_NOTIFY
1088 [IB_QPS_RESET
] = { .valid
= 1 },
1089 [IB_QPS_ERR
] = { .valid
= 1 },
1093 [IB_QPT_UD
] = (IB_QP_CUR_STATE
|
1095 [IB_QPT_UC
] = (IB_QP_CUR_STATE
|
1097 IB_QP_ACCESS_FLAGS
|
1098 IB_QP_PATH_MIG_STATE
),
1099 [IB_QPT_RC
] = (IB_QP_CUR_STATE
|
1101 IB_QP_ACCESS_FLAGS
|
1102 IB_QP_MIN_RNR_TIMER
|
1103 IB_QP_PATH_MIG_STATE
),
1104 [IB_QPT_XRC_INI
] = (IB_QP_CUR_STATE
|
1106 IB_QP_ACCESS_FLAGS
|
1107 IB_QP_PATH_MIG_STATE
),
1108 [IB_QPT_XRC_TGT
] = (IB_QP_CUR_STATE
|
1110 IB_QP_ACCESS_FLAGS
|
1111 IB_QP_MIN_RNR_TIMER
|
1112 IB_QP_PATH_MIG_STATE
),
1113 [IB_QPT_SMI
] = (IB_QP_CUR_STATE
|
1115 [IB_QPT_GSI
] = (IB_QP_CUR_STATE
|
1122 [IB_QPT_UD
] = (IB_QP_PKEY_INDEX
|
1124 [IB_QPT_UC
] = (IB_QP_AV
|
1126 IB_QP_ACCESS_FLAGS
|
1128 IB_QP_PATH_MIG_STATE
),
1129 [IB_QPT_RC
] = (IB_QP_PORT
|
1134 IB_QP_MAX_QP_RD_ATOMIC
|
1135 IB_QP_MAX_DEST_RD_ATOMIC
|
1137 IB_QP_ACCESS_FLAGS
|
1139 IB_QP_MIN_RNR_TIMER
|
1140 IB_QP_PATH_MIG_STATE
),
1141 [IB_QPT_XRC_INI
] = (IB_QP_PORT
|
1146 IB_QP_MAX_QP_RD_ATOMIC
|
1148 IB_QP_ACCESS_FLAGS
|
1150 IB_QP_PATH_MIG_STATE
),
1151 [IB_QPT_XRC_TGT
] = (IB_QP_PORT
|
1154 IB_QP_MAX_DEST_RD_ATOMIC
|
1156 IB_QP_ACCESS_FLAGS
|
1158 IB_QP_MIN_RNR_TIMER
|
1159 IB_QP_PATH_MIG_STATE
),
1160 [IB_QPT_SMI
] = (IB_QP_PKEY_INDEX
|
1162 [IB_QPT_GSI
] = (IB_QP_PKEY_INDEX
|
1168 [IB_QPS_RESET
] = { .valid
= 1 },
1169 [IB_QPS_ERR
] = { .valid
= 1 },
1173 [IB_QPT_UD
] = (IB_QP_CUR_STATE
|
1175 [IB_QPT_UC
] = (IB_QP_CUR_STATE
|
1176 IB_QP_ACCESS_FLAGS
),
1177 [IB_QPT_SMI
] = (IB_QP_CUR_STATE
|
1179 [IB_QPT_GSI
] = (IB_QP_CUR_STATE
|
1185 [IB_QPS_RESET
] = { .valid
= 1 },
1186 [IB_QPS_ERR
] = { .valid
= 1 }
1190 int ib_modify_qp_is_ok(enum ib_qp_state cur_state
, enum ib_qp_state next_state
,
1191 enum ib_qp_type type
, enum ib_qp_attr_mask mask
,
1192 enum rdma_link_layer ll
)
1194 enum ib_qp_attr_mask req_param
, opt_param
;
1196 if (cur_state
< 0 || cur_state
> IB_QPS_ERR
||
1197 next_state
< 0 || next_state
> IB_QPS_ERR
)
1200 if (mask
& IB_QP_CUR_STATE
&&
1201 cur_state
!= IB_QPS_RTR
&& cur_state
!= IB_QPS_RTS
&&
1202 cur_state
!= IB_QPS_SQD
&& cur_state
!= IB_QPS_SQE
)
1205 if (!qp_state_table
[cur_state
][next_state
].valid
)
1208 req_param
= qp_state_table
[cur_state
][next_state
].req_param
[type
];
1209 opt_param
= qp_state_table
[cur_state
][next_state
].opt_param
[type
];
1211 if ((mask
& req_param
) != req_param
)
1214 if (mask
& ~(req_param
| opt_param
| IB_QP_STATE
))
1219 EXPORT_SYMBOL(ib_modify_qp_is_ok
);
1221 int ib_resolve_eth_dmac(struct ib_device
*device
,
1222 struct rdma_ah_attr
*ah_attr
)
1225 struct ib_global_route
*grh
;
1227 if (!rdma_is_port_valid(device
, rdma_ah_get_port_num(ah_attr
)))
1230 if (ah_attr
->type
!= RDMA_AH_ATTR_TYPE_ROCE
)
1233 grh
= rdma_ah_retrieve_grh(ah_attr
);
1235 if (rdma_link_local_addr((struct in6_addr
*)grh
->dgid
.raw
)) {
1236 rdma_get_ll_mac((struct in6_addr
*)grh
->dgid
.raw
,
1237 ah_attr
->roce
.dmac
);
1240 struct ib_gid_attr sgid_attr
;
1244 ret
= ib_query_gid(device
,
1245 rdma_ah_get_port_num(ah_attr
),
1249 if (ret
|| !sgid_attr
.ndev
) {
1255 ifindex
= sgid_attr
.ndev
->ifindex
;
1258 rdma_addr_find_l2_eth_by_grh(&sgid
, &grh
->dgid
,
1260 NULL
, &ifindex
, &hop_limit
);
1262 dev_put(sgid_attr
.ndev
);
1264 grh
->hop_limit
= hop_limit
;
1269 EXPORT_SYMBOL(ib_resolve_eth_dmac
);
1271 int ib_modify_qp(struct ib_qp
*qp
,
1272 struct ib_qp_attr
*qp_attr
,
1276 if (qp_attr_mask
& IB_QP_AV
) {
1279 ret
= ib_resolve_eth_dmac(qp
->device
, &qp_attr
->ah_attr
);
1284 return ib_security_modify_qp(qp
->real_qp
, qp_attr
, qp_attr_mask
, NULL
);
1286 EXPORT_SYMBOL(ib_modify_qp
);
1288 int ib_query_qp(struct ib_qp
*qp
,
1289 struct ib_qp_attr
*qp_attr
,
1291 struct ib_qp_init_attr
*qp_init_attr
)
1293 return qp
->device
->query_qp
?
1294 qp
->device
->query_qp(qp
->real_qp
, qp_attr
, qp_attr_mask
, qp_init_attr
) :
1297 EXPORT_SYMBOL(ib_query_qp
);
1299 int ib_close_qp(struct ib_qp
*qp
)
1301 struct ib_qp
*real_qp
;
1302 unsigned long flags
;
1304 real_qp
= qp
->real_qp
;
1308 spin_lock_irqsave(&real_qp
->device
->event_handler_lock
, flags
);
1309 list_del(&qp
->open_list
);
1310 spin_unlock_irqrestore(&real_qp
->device
->event_handler_lock
, flags
);
1312 atomic_dec(&real_qp
->usecnt
);
1313 ib_close_shared_qp_security(qp
->qp_sec
);
1318 EXPORT_SYMBOL(ib_close_qp
);
1320 static int __ib_destroy_shared_qp(struct ib_qp
*qp
)
1322 struct ib_xrcd
*xrcd
;
1323 struct ib_qp
*real_qp
;
1326 real_qp
= qp
->real_qp
;
1327 xrcd
= real_qp
->xrcd
;
1329 mutex_lock(&xrcd
->tgt_qp_mutex
);
1331 if (atomic_read(&real_qp
->usecnt
) == 0)
1332 list_del(&real_qp
->xrcd_list
);
1335 mutex_unlock(&xrcd
->tgt_qp_mutex
);
1338 ret
= ib_destroy_qp(real_qp
);
1340 atomic_dec(&xrcd
->usecnt
);
1342 __ib_insert_xrcd_qp(xrcd
, real_qp
);
1348 int ib_destroy_qp(struct ib_qp
*qp
)
1351 struct ib_cq
*scq
, *rcq
;
1353 struct ib_rwq_ind_table
*ind_tbl
;
1354 struct ib_qp_security
*sec
;
1357 WARN_ON_ONCE(qp
->mrs_used
> 0);
1359 if (atomic_read(&qp
->usecnt
))
1362 if (qp
->real_qp
!= qp
)
1363 return __ib_destroy_shared_qp(qp
);
1369 ind_tbl
= qp
->rwq_ind_tbl
;
1372 ib_destroy_qp_security_begin(sec
);
1375 rdma_rw_cleanup_mrs(qp
);
1377 ret
= qp
->device
->destroy_qp(qp
);
1380 atomic_dec(&pd
->usecnt
);
1382 atomic_dec(&scq
->usecnt
);
1384 atomic_dec(&rcq
->usecnt
);
1386 atomic_dec(&srq
->usecnt
);
1388 atomic_dec(&ind_tbl
->usecnt
);
1390 ib_destroy_qp_security_end(sec
);
1393 ib_destroy_qp_security_abort(sec
);
1398 EXPORT_SYMBOL(ib_destroy_qp
);
1400 /* Completion queues */
1402 struct ib_cq
*ib_create_cq(struct ib_device
*device
,
1403 ib_comp_handler comp_handler
,
1404 void (*event_handler
)(struct ib_event
*, void *),
1406 const struct ib_cq_init_attr
*cq_attr
)
1410 cq
= device
->create_cq(device
, cq_attr
, NULL
, NULL
);
1413 cq
->device
= device
;
1415 cq
->comp_handler
= comp_handler
;
1416 cq
->event_handler
= event_handler
;
1417 cq
->cq_context
= cq_context
;
1418 atomic_set(&cq
->usecnt
, 0);
1423 EXPORT_SYMBOL(ib_create_cq
);
1425 int ib_modify_cq(struct ib_cq
*cq
, u16 cq_count
, u16 cq_period
)
1427 return cq
->device
->modify_cq
?
1428 cq
->device
->modify_cq(cq
, cq_count
, cq_period
) : -ENOSYS
;
1430 EXPORT_SYMBOL(ib_modify_cq
);
1432 int ib_destroy_cq(struct ib_cq
*cq
)
1434 if (atomic_read(&cq
->usecnt
))
1437 return cq
->device
->destroy_cq(cq
);
1439 EXPORT_SYMBOL(ib_destroy_cq
);
1441 int ib_resize_cq(struct ib_cq
*cq
, int cqe
)
1443 return cq
->device
->resize_cq
?
1444 cq
->device
->resize_cq(cq
, cqe
, NULL
) : -ENOSYS
;
1446 EXPORT_SYMBOL(ib_resize_cq
);
1448 /* Memory regions */
1450 int ib_dereg_mr(struct ib_mr
*mr
)
1452 struct ib_pd
*pd
= mr
->pd
;
1455 ret
= mr
->device
->dereg_mr(mr
);
1457 atomic_dec(&pd
->usecnt
);
1461 EXPORT_SYMBOL(ib_dereg_mr
);
1464 * ib_alloc_mr() - Allocates a memory region
1465 * @pd: protection domain associated with the region
1466 * @mr_type: memory region type
1467 * @max_num_sg: maximum sg entries available for registration.
1470 * Memory registeration page/sg lists must not exceed max_num_sg.
1471 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1472 * max_num_sg * used_page_size.
1475 struct ib_mr
*ib_alloc_mr(struct ib_pd
*pd
,
1476 enum ib_mr_type mr_type
,
1481 if (!pd
->device
->alloc_mr
)
1482 return ERR_PTR(-ENOSYS
);
1484 mr
= pd
->device
->alloc_mr(pd
, mr_type
, max_num_sg
);
1486 mr
->device
= pd
->device
;
1489 atomic_inc(&pd
->usecnt
);
1490 mr
->need_inval
= false;
1495 EXPORT_SYMBOL(ib_alloc_mr
);
1497 /* "Fast" memory regions */
1499 struct ib_fmr
*ib_alloc_fmr(struct ib_pd
*pd
,
1500 int mr_access_flags
,
1501 struct ib_fmr_attr
*fmr_attr
)
1505 if (!pd
->device
->alloc_fmr
)
1506 return ERR_PTR(-ENOSYS
);
1508 fmr
= pd
->device
->alloc_fmr(pd
, mr_access_flags
, fmr_attr
);
1510 fmr
->device
= pd
->device
;
1512 atomic_inc(&pd
->usecnt
);
1517 EXPORT_SYMBOL(ib_alloc_fmr
);
1519 int ib_unmap_fmr(struct list_head
*fmr_list
)
1523 if (list_empty(fmr_list
))
1526 fmr
= list_entry(fmr_list
->next
, struct ib_fmr
, list
);
1527 return fmr
->device
->unmap_fmr(fmr_list
);
1529 EXPORT_SYMBOL(ib_unmap_fmr
);
1531 int ib_dealloc_fmr(struct ib_fmr
*fmr
)
1537 ret
= fmr
->device
->dealloc_fmr(fmr
);
1539 atomic_dec(&pd
->usecnt
);
1543 EXPORT_SYMBOL(ib_dealloc_fmr
);
1545 /* Multicast groups */
1547 int ib_attach_mcast(struct ib_qp
*qp
, union ib_gid
*gid
, u16 lid
)
1551 if (!qp
->device
->attach_mcast
)
1553 if (gid
->raw
[0] != 0xff || qp
->qp_type
!= IB_QPT_UD
||
1554 lid
< be16_to_cpu(IB_MULTICAST_LID_BASE
) ||
1555 lid
== be16_to_cpu(IB_LID_PERMISSIVE
))
1558 ret
= qp
->device
->attach_mcast(qp
, gid
, lid
);
1560 atomic_inc(&qp
->usecnt
);
1563 EXPORT_SYMBOL(ib_attach_mcast
);
1565 int ib_detach_mcast(struct ib_qp
*qp
, union ib_gid
*gid
, u16 lid
)
1569 if (!qp
->device
->detach_mcast
)
1571 if (gid
->raw
[0] != 0xff || qp
->qp_type
!= IB_QPT_UD
||
1572 lid
< be16_to_cpu(IB_MULTICAST_LID_BASE
) ||
1573 lid
== be16_to_cpu(IB_LID_PERMISSIVE
))
1576 ret
= qp
->device
->detach_mcast(qp
, gid
, lid
);
1578 atomic_dec(&qp
->usecnt
);
1581 EXPORT_SYMBOL(ib_detach_mcast
);
1583 struct ib_xrcd
*ib_alloc_xrcd(struct ib_device
*device
)
1585 struct ib_xrcd
*xrcd
;
1587 if (!device
->alloc_xrcd
)
1588 return ERR_PTR(-ENOSYS
);
1590 xrcd
= device
->alloc_xrcd(device
, NULL
, NULL
);
1591 if (!IS_ERR(xrcd
)) {
1592 xrcd
->device
= device
;
1594 atomic_set(&xrcd
->usecnt
, 0);
1595 mutex_init(&xrcd
->tgt_qp_mutex
);
1596 INIT_LIST_HEAD(&xrcd
->tgt_qp_list
);
1601 EXPORT_SYMBOL(ib_alloc_xrcd
);
1603 int ib_dealloc_xrcd(struct ib_xrcd
*xrcd
)
1608 if (atomic_read(&xrcd
->usecnt
))
1611 while (!list_empty(&xrcd
->tgt_qp_list
)) {
1612 qp
= list_entry(xrcd
->tgt_qp_list
.next
, struct ib_qp
, xrcd_list
);
1613 ret
= ib_destroy_qp(qp
);
1618 return xrcd
->device
->dealloc_xrcd(xrcd
);
1620 EXPORT_SYMBOL(ib_dealloc_xrcd
);
1623 * ib_create_wq - Creates a WQ associated with the specified protection
1625 * @pd: The protection domain associated with the WQ.
1626 * @wq_init_attr: A list of initial attributes required to create the
1627 * WQ. If WQ creation succeeds, then the attributes are updated to
1628 * the actual capabilities of the created WQ.
1630 * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1631 * the requested size of the WQ, and set to the actual values allocated
1633 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1634 * at least as large as the requested values.
1636 struct ib_wq
*ib_create_wq(struct ib_pd
*pd
,
1637 struct ib_wq_init_attr
*wq_attr
)
1641 if (!pd
->device
->create_wq
)
1642 return ERR_PTR(-ENOSYS
);
1644 wq
= pd
->device
->create_wq(pd
, wq_attr
, NULL
);
1646 wq
->event_handler
= wq_attr
->event_handler
;
1647 wq
->wq_context
= wq_attr
->wq_context
;
1648 wq
->wq_type
= wq_attr
->wq_type
;
1649 wq
->cq
= wq_attr
->cq
;
1650 wq
->device
= pd
->device
;
1653 atomic_inc(&pd
->usecnt
);
1654 atomic_inc(&wq_attr
->cq
->usecnt
);
1655 atomic_set(&wq
->usecnt
, 0);
1659 EXPORT_SYMBOL(ib_create_wq
);
1662 * ib_destroy_wq - Destroys the specified WQ.
1663 * @wq: The WQ to destroy.
1665 int ib_destroy_wq(struct ib_wq
*wq
)
1668 struct ib_cq
*cq
= wq
->cq
;
1669 struct ib_pd
*pd
= wq
->pd
;
1671 if (atomic_read(&wq
->usecnt
))
1674 err
= wq
->device
->destroy_wq(wq
);
1676 atomic_dec(&pd
->usecnt
);
1677 atomic_dec(&cq
->usecnt
);
1681 EXPORT_SYMBOL(ib_destroy_wq
);
1684 * ib_modify_wq - Modifies the specified WQ.
1685 * @wq: The WQ to modify.
1686 * @wq_attr: On input, specifies the WQ attributes to modify.
1687 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1688 * are being modified.
1689 * On output, the current values of selected WQ attributes are returned.
1691 int ib_modify_wq(struct ib_wq
*wq
, struct ib_wq_attr
*wq_attr
,
1696 if (!wq
->device
->modify_wq
)
1699 err
= wq
->device
->modify_wq(wq
, wq_attr
, wq_attr_mask
, NULL
);
1702 EXPORT_SYMBOL(ib_modify_wq
);
1705 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1706 * @device: The device on which to create the rwq indirection table.
1707 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1708 * create the Indirection Table.
1710 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1711 * than the created ib_rwq_ind_table object and the caller is responsible
1712 * for its memory allocation/free.
1714 struct ib_rwq_ind_table
*ib_create_rwq_ind_table(struct ib_device
*device
,
1715 struct ib_rwq_ind_table_init_attr
*init_attr
)
1717 struct ib_rwq_ind_table
*rwq_ind_table
;
1721 if (!device
->create_rwq_ind_table
)
1722 return ERR_PTR(-ENOSYS
);
1724 table_size
= (1 << init_attr
->log_ind_tbl_size
);
1725 rwq_ind_table
= device
->create_rwq_ind_table(device
,
1727 if (IS_ERR(rwq_ind_table
))
1728 return rwq_ind_table
;
1730 rwq_ind_table
->ind_tbl
= init_attr
->ind_tbl
;
1731 rwq_ind_table
->log_ind_tbl_size
= init_attr
->log_ind_tbl_size
;
1732 rwq_ind_table
->device
= device
;
1733 rwq_ind_table
->uobject
= NULL
;
1734 atomic_set(&rwq_ind_table
->usecnt
, 0);
1736 for (i
= 0; i
< table_size
; i
++)
1737 atomic_inc(&rwq_ind_table
->ind_tbl
[i
]->usecnt
);
1739 return rwq_ind_table
;
1741 EXPORT_SYMBOL(ib_create_rwq_ind_table
);
1744 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1745 * @wq_ind_table: The Indirection Table to destroy.
1747 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table
*rwq_ind_table
)
1750 u32 table_size
= (1 << rwq_ind_table
->log_ind_tbl_size
);
1751 struct ib_wq
**ind_tbl
= rwq_ind_table
->ind_tbl
;
1753 if (atomic_read(&rwq_ind_table
->usecnt
))
1756 err
= rwq_ind_table
->device
->destroy_rwq_ind_table(rwq_ind_table
);
1758 for (i
= 0; i
< table_size
; i
++)
1759 atomic_dec(&ind_tbl
[i
]->usecnt
);
1764 EXPORT_SYMBOL(ib_destroy_rwq_ind_table
);
1766 struct ib_flow
*ib_create_flow(struct ib_qp
*qp
,
1767 struct ib_flow_attr
*flow_attr
,
1770 struct ib_flow
*flow_id
;
1771 if (!qp
->device
->create_flow
)
1772 return ERR_PTR(-ENOSYS
);
1774 flow_id
= qp
->device
->create_flow(qp
, flow_attr
, domain
);
1775 if (!IS_ERR(flow_id
)) {
1776 atomic_inc(&qp
->usecnt
);
1781 EXPORT_SYMBOL(ib_create_flow
);
1783 int ib_destroy_flow(struct ib_flow
*flow_id
)
1786 struct ib_qp
*qp
= flow_id
->qp
;
1788 err
= qp
->device
->destroy_flow(flow_id
);
1790 atomic_dec(&qp
->usecnt
);
1793 EXPORT_SYMBOL(ib_destroy_flow
);
1795 int ib_check_mr_status(struct ib_mr
*mr
, u32 check_mask
,
1796 struct ib_mr_status
*mr_status
)
1798 return mr
->device
->check_mr_status
?
1799 mr
->device
->check_mr_status(mr
, check_mask
, mr_status
) : -ENOSYS
;
1801 EXPORT_SYMBOL(ib_check_mr_status
);
1803 int ib_set_vf_link_state(struct ib_device
*device
, int vf
, u8 port
,
1806 if (!device
->set_vf_link_state
)
1809 return device
->set_vf_link_state(device
, vf
, port
, state
);
1811 EXPORT_SYMBOL(ib_set_vf_link_state
);
1813 int ib_get_vf_config(struct ib_device
*device
, int vf
, u8 port
,
1814 struct ifla_vf_info
*info
)
1816 if (!device
->get_vf_config
)
1819 return device
->get_vf_config(device
, vf
, port
, info
);
1821 EXPORT_SYMBOL(ib_get_vf_config
);
1823 int ib_get_vf_stats(struct ib_device
*device
, int vf
, u8 port
,
1824 struct ifla_vf_stats
*stats
)
1826 if (!device
->get_vf_stats
)
1829 return device
->get_vf_stats(device
, vf
, port
, stats
);
1831 EXPORT_SYMBOL(ib_get_vf_stats
);
1833 int ib_set_vf_guid(struct ib_device
*device
, int vf
, u8 port
, u64 guid
,
1836 if (!device
->set_vf_guid
)
1839 return device
->set_vf_guid(device
, vf
, port
, guid
, type
);
1841 EXPORT_SYMBOL(ib_set_vf_guid
);
1844 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1845 * and set it the memory region.
1846 * @mr: memory region
1847 * @sg: dma mapped scatterlist
1848 * @sg_nents: number of entries in sg
1849 * @sg_offset: offset in bytes into sg
1850 * @page_size: page vector desired page size
1853 * - The first sg element is allowed to have an offset.
1854 * - Each sg element must either be aligned to page_size or virtually
1855 * contiguous to the previous element. In case an sg element has a
1856 * non-contiguous offset, the mapping prefix will not include it.
1857 * - The last sg element is allowed to have length less than page_size.
1858 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1859 * then only max_num_sg entries will be mapped.
1860 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1861 * constraints holds and the page_size argument is ignored.
1863 * Returns the number of sg elements that were mapped to the memory region.
1865 * After this completes successfully, the memory region
1866 * is ready for registration.
1868 int ib_map_mr_sg(struct ib_mr
*mr
, struct scatterlist
*sg
, int sg_nents
,
1869 unsigned int *sg_offset
, unsigned int page_size
)
1871 if (unlikely(!mr
->device
->map_mr_sg
))
1874 mr
->page_size
= page_size
;
1876 return mr
->device
->map_mr_sg(mr
, sg
, sg_nents
, sg_offset
);
1878 EXPORT_SYMBOL(ib_map_mr_sg
);
1881 * ib_sg_to_pages() - Convert the largest prefix of a sg list
1883 * @mr: memory region
1884 * @sgl: dma mapped scatterlist
1885 * @sg_nents: number of entries in sg
1886 * @sg_offset_p: IN: start offset in bytes into sg
1887 * OUT: offset in bytes for element n of the sg of the first
1888 * byte that has not been processed where n is the return
1889 * value of this function.
1890 * @set_page: driver page assignment function pointer
1892 * Core service helper for drivers to convert the largest
1893 * prefix of given sg list to a page vector. The sg list
1894 * prefix converted is the prefix that meet the requirements
1897 * Returns the number of sg elements that were assigned to
1900 int ib_sg_to_pages(struct ib_mr
*mr
, struct scatterlist
*sgl
, int sg_nents
,
1901 unsigned int *sg_offset_p
, int (*set_page
)(struct ib_mr
*, u64
))
1903 struct scatterlist
*sg
;
1904 u64 last_end_dma_addr
= 0;
1905 unsigned int sg_offset
= sg_offset_p
? *sg_offset_p
: 0;
1906 unsigned int last_page_off
= 0;
1907 u64 page_mask
= ~((u64
)mr
->page_size
- 1);
1910 if (unlikely(sg_nents
<= 0 || sg_offset
> sg_dma_len(&sgl
[0])))
1913 mr
->iova
= sg_dma_address(&sgl
[0]) + sg_offset
;
1916 for_each_sg(sgl
, sg
, sg_nents
, i
) {
1917 u64 dma_addr
= sg_dma_address(sg
) + sg_offset
;
1918 u64 prev_addr
= dma_addr
;
1919 unsigned int dma_len
= sg_dma_len(sg
) - sg_offset
;
1920 u64 end_dma_addr
= dma_addr
+ dma_len
;
1921 u64 page_addr
= dma_addr
& page_mask
;
1924 * For the second and later elements, check whether either the
1925 * end of element i-1 or the start of element i is not aligned
1926 * on a page boundary.
1928 if (i
&& (last_page_off
!= 0 || page_addr
!= dma_addr
)) {
1929 /* Stop mapping if there is a gap. */
1930 if (last_end_dma_addr
!= dma_addr
)
1934 * Coalesce this element with the last. If it is small
1935 * enough just update mr->length. Otherwise start
1936 * mapping from the next page.
1942 ret
= set_page(mr
, page_addr
);
1943 if (unlikely(ret
< 0)) {
1944 sg_offset
= prev_addr
- sg_dma_address(sg
);
1945 mr
->length
+= prev_addr
- dma_addr
;
1947 *sg_offset_p
= sg_offset
;
1948 return i
|| sg_offset
? i
: ret
;
1950 prev_addr
= page_addr
;
1952 page_addr
+= mr
->page_size
;
1953 } while (page_addr
< end_dma_addr
);
1955 mr
->length
+= dma_len
;
1956 last_end_dma_addr
= end_dma_addr
;
1957 last_page_off
= end_dma_addr
& ~page_mask
;
1966 EXPORT_SYMBOL(ib_sg_to_pages
);
1968 struct ib_drain_cqe
{
1970 struct completion done
;
1973 static void ib_drain_qp_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
1975 struct ib_drain_cqe
*cqe
= container_of(wc
->wr_cqe
, struct ib_drain_cqe
,
1978 complete(&cqe
->done
);
1982 * Post a WR and block until its completion is reaped for the SQ.
1984 static void __ib_drain_sq(struct ib_qp
*qp
)
1986 struct ib_cq
*cq
= qp
->send_cq
;
1987 struct ib_qp_attr attr
= { .qp_state
= IB_QPS_ERR
};
1988 struct ib_drain_cqe sdrain
;
1989 struct ib_send_wr swr
= {}, *bad_swr
;
1992 swr
.wr_cqe
= &sdrain
.cqe
;
1993 sdrain
.cqe
.done
= ib_drain_qp_done
;
1994 init_completion(&sdrain
.done
);
1996 ret
= ib_modify_qp(qp
, &attr
, IB_QP_STATE
);
1998 WARN_ONCE(ret
, "failed to drain send queue: %d\n", ret
);
2002 ret
= ib_post_send(qp
, &swr
, &bad_swr
);
2004 WARN_ONCE(ret
, "failed to drain send queue: %d\n", ret
);
2008 if (cq
->poll_ctx
== IB_POLL_DIRECT
)
2009 while (wait_for_completion_timeout(&sdrain
.done
, HZ
/ 10) <= 0)
2010 ib_process_cq_direct(cq
, -1);
2012 wait_for_completion(&sdrain
.done
);
2016 * Post a WR and block until its completion is reaped for the RQ.
2018 static void __ib_drain_rq(struct ib_qp
*qp
)
2020 struct ib_cq
*cq
= qp
->recv_cq
;
2021 struct ib_qp_attr attr
= { .qp_state
= IB_QPS_ERR
};
2022 struct ib_drain_cqe rdrain
;
2023 struct ib_recv_wr rwr
= {}, *bad_rwr
;
2026 rwr
.wr_cqe
= &rdrain
.cqe
;
2027 rdrain
.cqe
.done
= ib_drain_qp_done
;
2028 init_completion(&rdrain
.done
);
2030 ret
= ib_modify_qp(qp
, &attr
, IB_QP_STATE
);
2032 WARN_ONCE(ret
, "failed to drain recv queue: %d\n", ret
);
2036 ret
= ib_post_recv(qp
, &rwr
, &bad_rwr
);
2038 WARN_ONCE(ret
, "failed to drain recv queue: %d\n", ret
);
2042 if (cq
->poll_ctx
== IB_POLL_DIRECT
)
2043 while (wait_for_completion_timeout(&rdrain
.done
, HZ
/ 10) <= 0)
2044 ib_process_cq_direct(cq
, -1);
2046 wait_for_completion(&rdrain
.done
);
2050 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2052 * @qp: queue pair to drain
2054 * If the device has a provider-specific drain function, then
2055 * call that. Otherwise call the generic drain function
2060 * ensure there is room in the CQ and SQ for the drain work request and
2063 * allocate the CQ using ib_alloc_cq().
2065 * ensure that there are no other contexts that are posting WRs concurrently.
2066 * Otherwise the drain is not guaranteed.
2068 void ib_drain_sq(struct ib_qp
*qp
)
2070 if (qp
->device
->drain_sq
)
2071 qp
->device
->drain_sq(qp
);
2075 EXPORT_SYMBOL(ib_drain_sq
);
2078 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2080 * @qp: queue pair to drain
2082 * If the device has a provider-specific drain function, then
2083 * call that. Otherwise call the generic drain function
2088 * ensure there is room in the CQ and RQ for the drain work request and
2091 * allocate the CQ using ib_alloc_cq().
2093 * ensure that there are no other contexts that are posting WRs concurrently.
2094 * Otherwise the drain is not guaranteed.
2096 void ib_drain_rq(struct ib_qp
*qp
)
2098 if (qp
->device
->drain_rq
)
2099 qp
->device
->drain_rq(qp
);
2103 EXPORT_SYMBOL(ib_drain_rq
);
2106 * ib_drain_qp() - Block until all CQEs have been consumed by the
2107 * application on both the RQ and SQ.
2108 * @qp: queue pair to drain
2112 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2115 * allocate the CQs using ib_alloc_cq().
2117 * ensure that there are no other contexts that are posting WRs concurrently.
2118 * Otherwise the drain is not guaranteed.
2120 void ib_drain_qp(struct ib_qp
*qp
)
2126 EXPORT_SYMBOL(ib_drain_qp
);