of: add vendor prefix for I2SE GmbH
[linux/fpc-iii.git] / fs / ext4 / extents.c
blob82df3ce9874ab7f3a65abc10e2bd2238b1ae2af3
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <asm/uaccess.h>
41 #include <linux/fiemap.h>
42 #include "ext4_jbd2.h"
43 #include "ext4_extents.h"
44 #include "xattr.h"
46 #include <trace/events/ext4.h>
49 * used by extent splitting.
51 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
52 due to ENOSPC */
53 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
54 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
56 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
57 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
59 static __le32 ext4_extent_block_csum(struct inode *inode,
60 struct ext4_extent_header *eh)
62 struct ext4_inode_info *ei = EXT4_I(inode);
63 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
64 __u32 csum;
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
67 EXT4_EXTENT_TAIL_OFFSET(eh));
68 return cpu_to_le32(csum);
71 static int ext4_extent_block_csum_verify(struct inode *inode,
72 struct ext4_extent_header *eh)
74 struct ext4_extent_tail *et;
76 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
77 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
78 return 1;
80 et = find_ext4_extent_tail(eh);
81 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
82 return 0;
83 return 1;
86 static void ext4_extent_block_csum_set(struct inode *inode,
87 struct ext4_extent_header *eh)
89 struct ext4_extent_tail *et;
91 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
92 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
93 return;
95 et = find_ext4_extent_tail(eh);
96 et->et_checksum = ext4_extent_block_csum(inode, eh);
99 static int ext4_split_extent(handle_t *handle,
100 struct inode *inode,
101 struct ext4_ext_path *path,
102 struct ext4_map_blocks *map,
103 int split_flag,
104 int flags);
106 static int ext4_split_extent_at(handle_t *handle,
107 struct inode *inode,
108 struct ext4_ext_path *path,
109 ext4_lblk_t split,
110 int split_flag,
111 int flags);
113 static int ext4_find_delayed_extent(struct inode *inode,
114 struct extent_status *newes);
116 static int ext4_ext_truncate_extend_restart(handle_t *handle,
117 struct inode *inode,
118 int needed)
120 int err;
122 if (!ext4_handle_valid(handle))
123 return 0;
124 if (handle->h_buffer_credits > needed)
125 return 0;
126 err = ext4_journal_extend(handle, needed);
127 if (err <= 0)
128 return err;
129 err = ext4_truncate_restart_trans(handle, inode, needed);
130 if (err == 0)
131 err = -EAGAIN;
133 return err;
137 * could return:
138 * - EROFS
139 * - ENOMEM
141 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
142 struct ext4_ext_path *path)
144 if (path->p_bh) {
145 /* path points to block */
146 return ext4_journal_get_write_access(handle, path->p_bh);
148 /* path points to leaf/index in inode body */
149 /* we use in-core data, no need to protect them */
150 return 0;
154 * could return:
155 * - EROFS
156 * - ENOMEM
157 * - EIO
159 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
160 struct inode *inode, struct ext4_ext_path *path)
162 int err;
163 if (path->p_bh) {
164 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
165 /* path points to block */
166 err = __ext4_handle_dirty_metadata(where, line, handle,
167 inode, path->p_bh);
168 } else {
169 /* path points to leaf/index in inode body */
170 err = ext4_mark_inode_dirty(handle, inode);
172 return err;
175 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
176 struct ext4_ext_path *path,
177 ext4_lblk_t block)
179 if (path) {
180 int depth = path->p_depth;
181 struct ext4_extent *ex;
184 * Try to predict block placement assuming that we are
185 * filling in a file which will eventually be
186 * non-sparse --- i.e., in the case of libbfd writing
187 * an ELF object sections out-of-order but in a way
188 * the eventually results in a contiguous object or
189 * executable file, or some database extending a table
190 * space file. However, this is actually somewhat
191 * non-ideal if we are writing a sparse file such as
192 * qemu or KVM writing a raw image file that is going
193 * to stay fairly sparse, since it will end up
194 * fragmenting the file system's free space. Maybe we
195 * should have some hueristics or some way to allow
196 * userspace to pass a hint to file system,
197 * especially if the latter case turns out to be
198 * common.
200 ex = path[depth].p_ext;
201 if (ex) {
202 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
203 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
205 if (block > ext_block)
206 return ext_pblk + (block - ext_block);
207 else
208 return ext_pblk - (ext_block - block);
211 /* it looks like index is empty;
212 * try to find starting block from index itself */
213 if (path[depth].p_bh)
214 return path[depth].p_bh->b_blocknr;
217 /* OK. use inode's group */
218 return ext4_inode_to_goal_block(inode);
222 * Allocation for a meta data block
224 static ext4_fsblk_t
225 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
226 struct ext4_ext_path *path,
227 struct ext4_extent *ex, int *err, unsigned int flags)
229 ext4_fsblk_t goal, newblock;
231 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
232 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
233 NULL, err);
234 return newblock;
237 static inline int ext4_ext_space_block(struct inode *inode, int check)
239 int size;
241 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
242 / sizeof(struct ext4_extent);
243 #ifdef AGGRESSIVE_TEST
244 if (!check && size > 6)
245 size = 6;
246 #endif
247 return size;
250 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
252 int size;
254 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
255 / sizeof(struct ext4_extent_idx);
256 #ifdef AGGRESSIVE_TEST
257 if (!check && size > 5)
258 size = 5;
259 #endif
260 return size;
263 static inline int ext4_ext_space_root(struct inode *inode, int check)
265 int size;
267 size = sizeof(EXT4_I(inode)->i_data);
268 size -= sizeof(struct ext4_extent_header);
269 size /= sizeof(struct ext4_extent);
270 #ifdef AGGRESSIVE_TEST
271 if (!check && size > 3)
272 size = 3;
273 #endif
274 return size;
277 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
279 int size;
281 size = sizeof(EXT4_I(inode)->i_data);
282 size -= sizeof(struct ext4_extent_header);
283 size /= sizeof(struct ext4_extent_idx);
284 #ifdef AGGRESSIVE_TEST
285 if (!check && size > 4)
286 size = 4;
287 #endif
288 return size;
292 * Calculate the number of metadata blocks needed
293 * to allocate @blocks
294 * Worse case is one block per extent
296 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
298 struct ext4_inode_info *ei = EXT4_I(inode);
299 int idxs;
301 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
302 / sizeof(struct ext4_extent_idx));
305 * If the new delayed allocation block is contiguous with the
306 * previous da block, it can share index blocks with the
307 * previous block, so we only need to allocate a new index
308 * block every idxs leaf blocks. At ldxs**2 blocks, we need
309 * an additional index block, and at ldxs**3 blocks, yet
310 * another index blocks.
312 if (ei->i_da_metadata_calc_len &&
313 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
314 int num = 0;
316 if ((ei->i_da_metadata_calc_len % idxs) == 0)
317 num++;
318 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
319 num++;
320 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
321 num++;
322 ei->i_da_metadata_calc_len = 0;
323 } else
324 ei->i_da_metadata_calc_len++;
325 ei->i_da_metadata_calc_last_lblock++;
326 return num;
330 * In the worst case we need a new set of index blocks at
331 * every level of the inode's extent tree.
333 ei->i_da_metadata_calc_len = 1;
334 ei->i_da_metadata_calc_last_lblock = lblock;
335 return ext_depth(inode) + 1;
338 static int
339 ext4_ext_max_entries(struct inode *inode, int depth)
341 int max;
343 if (depth == ext_depth(inode)) {
344 if (depth == 0)
345 max = ext4_ext_space_root(inode, 1);
346 else
347 max = ext4_ext_space_root_idx(inode, 1);
348 } else {
349 if (depth == 0)
350 max = ext4_ext_space_block(inode, 1);
351 else
352 max = ext4_ext_space_block_idx(inode, 1);
355 return max;
358 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
360 ext4_fsblk_t block = ext4_ext_pblock(ext);
361 int len = ext4_ext_get_actual_len(ext);
362 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
363 ext4_lblk_t last = lblock + len - 1;
365 if (lblock > last)
366 return 0;
367 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
370 static int ext4_valid_extent_idx(struct inode *inode,
371 struct ext4_extent_idx *ext_idx)
373 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
375 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
378 static int ext4_valid_extent_entries(struct inode *inode,
379 struct ext4_extent_header *eh,
380 int depth)
382 unsigned short entries;
383 if (eh->eh_entries == 0)
384 return 1;
386 entries = le16_to_cpu(eh->eh_entries);
388 if (depth == 0) {
389 /* leaf entries */
390 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
391 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
392 ext4_fsblk_t pblock = 0;
393 ext4_lblk_t lblock = 0;
394 ext4_lblk_t prev = 0;
395 int len = 0;
396 while (entries) {
397 if (!ext4_valid_extent(inode, ext))
398 return 0;
400 /* Check for overlapping extents */
401 lblock = le32_to_cpu(ext->ee_block);
402 len = ext4_ext_get_actual_len(ext);
403 if ((lblock <= prev) && prev) {
404 pblock = ext4_ext_pblock(ext);
405 es->s_last_error_block = cpu_to_le64(pblock);
406 return 0;
408 ext++;
409 entries--;
410 prev = lblock + len - 1;
412 } else {
413 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
414 while (entries) {
415 if (!ext4_valid_extent_idx(inode, ext_idx))
416 return 0;
417 ext_idx++;
418 entries--;
421 return 1;
424 static int __ext4_ext_check(const char *function, unsigned int line,
425 struct inode *inode, struct ext4_extent_header *eh,
426 int depth, ext4_fsblk_t pblk)
428 const char *error_msg;
429 int max = 0;
431 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
432 error_msg = "invalid magic";
433 goto corrupted;
435 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
436 error_msg = "unexpected eh_depth";
437 goto corrupted;
439 if (unlikely(eh->eh_max == 0)) {
440 error_msg = "invalid eh_max";
441 goto corrupted;
443 max = ext4_ext_max_entries(inode, depth);
444 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
445 error_msg = "too large eh_max";
446 goto corrupted;
448 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
449 error_msg = "invalid eh_entries";
450 goto corrupted;
452 if (!ext4_valid_extent_entries(inode, eh, depth)) {
453 error_msg = "invalid extent entries";
454 goto corrupted;
456 /* Verify checksum on non-root extent tree nodes */
457 if (ext_depth(inode) != depth &&
458 !ext4_extent_block_csum_verify(inode, eh)) {
459 error_msg = "extent tree corrupted";
460 goto corrupted;
462 return 0;
464 corrupted:
465 ext4_error_inode(inode, function, line, 0,
466 "pblk %llu bad header/extent: %s - magic %x, "
467 "entries %u, max %u(%u), depth %u(%u)",
468 (unsigned long long) pblk, error_msg,
469 le16_to_cpu(eh->eh_magic),
470 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
471 max, le16_to_cpu(eh->eh_depth), depth);
472 return -EIO;
475 #define ext4_ext_check(inode, eh, depth, pblk) \
476 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
478 int ext4_ext_check_inode(struct inode *inode)
480 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
483 static struct buffer_head *
484 __read_extent_tree_block(const char *function, unsigned int line,
485 struct inode *inode, ext4_fsblk_t pblk, int depth,
486 int flags)
488 struct buffer_head *bh;
489 int err;
491 bh = sb_getblk(inode->i_sb, pblk);
492 if (unlikely(!bh))
493 return ERR_PTR(-ENOMEM);
495 if (!bh_uptodate_or_lock(bh)) {
496 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
497 err = bh_submit_read(bh);
498 if (err < 0)
499 goto errout;
501 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
502 return bh;
503 err = __ext4_ext_check(function, line, inode,
504 ext_block_hdr(bh), depth, pblk);
505 if (err)
506 goto errout;
507 set_buffer_verified(bh);
509 * If this is a leaf block, cache all of its entries
511 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
512 struct ext4_extent_header *eh = ext_block_hdr(bh);
513 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
514 ext4_lblk_t prev = 0;
515 int i;
517 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
518 unsigned int status = EXTENT_STATUS_WRITTEN;
519 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
520 int len = ext4_ext_get_actual_len(ex);
522 if (prev && (prev != lblk))
523 ext4_es_cache_extent(inode, prev,
524 lblk - prev, ~0,
525 EXTENT_STATUS_HOLE);
527 if (ext4_ext_is_uninitialized(ex))
528 status = EXTENT_STATUS_UNWRITTEN;
529 ext4_es_cache_extent(inode, lblk, len,
530 ext4_ext_pblock(ex), status);
531 prev = lblk + len;
534 return bh;
535 errout:
536 put_bh(bh);
537 return ERR_PTR(err);
541 #define read_extent_tree_block(inode, pblk, depth, flags) \
542 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \
543 (depth), (flags))
546 * This function is called to cache a file's extent information in the
547 * extent status tree
549 int ext4_ext_precache(struct inode *inode)
551 struct ext4_inode_info *ei = EXT4_I(inode);
552 struct ext4_ext_path *path = NULL;
553 struct buffer_head *bh;
554 int i = 0, depth, ret = 0;
556 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
557 return 0; /* not an extent-mapped inode */
559 down_read(&ei->i_data_sem);
560 depth = ext_depth(inode);
562 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
563 GFP_NOFS);
564 if (path == NULL) {
565 up_read(&ei->i_data_sem);
566 return -ENOMEM;
569 /* Don't cache anything if there are no external extent blocks */
570 if (depth == 0)
571 goto out;
572 path[0].p_hdr = ext_inode_hdr(inode);
573 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
574 if (ret)
575 goto out;
576 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
577 while (i >= 0) {
579 * If this is a leaf block or we've reached the end of
580 * the index block, go up
582 if ((i == depth) ||
583 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
584 brelse(path[i].p_bh);
585 path[i].p_bh = NULL;
586 i--;
587 continue;
589 bh = read_extent_tree_block(inode,
590 ext4_idx_pblock(path[i].p_idx++),
591 depth - i - 1,
592 EXT4_EX_FORCE_CACHE);
593 if (IS_ERR(bh)) {
594 ret = PTR_ERR(bh);
595 break;
597 i++;
598 path[i].p_bh = bh;
599 path[i].p_hdr = ext_block_hdr(bh);
600 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
602 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
603 out:
604 up_read(&ei->i_data_sem);
605 ext4_ext_drop_refs(path);
606 kfree(path);
607 return ret;
610 #ifdef EXT_DEBUG
611 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
613 int k, l = path->p_depth;
615 ext_debug("path:");
616 for (k = 0; k <= l; k++, path++) {
617 if (path->p_idx) {
618 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
619 ext4_idx_pblock(path->p_idx));
620 } else if (path->p_ext) {
621 ext_debug(" %d:[%d]%d:%llu ",
622 le32_to_cpu(path->p_ext->ee_block),
623 ext4_ext_is_uninitialized(path->p_ext),
624 ext4_ext_get_actual_len(path->p_ext),
625 ext4_ext_pblock(path->p_ext));
626 } else
627 ext_debug(" []");
629 ext_debug("\n");
632 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
634 int depth = ext_depth(inode);
635 struct ext4_extent_header *eh;
636 struct ext4_extent *ex;
637 int i;
639 if (!path)
640 return;
642 eh = path[depth].p_hdr;
643 ex = EXT_FIRST_EXTENT(eh);
645 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
647 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
648 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
649 ext4_ext_is_uninitialized(ex),
650 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
652 ext_debug("\n");
655 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
656 ext4_fsblk_t newblock, int level)
658 int depth = ext_depth(inode);
659 struct ext4_extent *ex;
661 if (depth != level) {
662 struct ext4_extent_idx *idx;
663 idx = path[level].p_idx;
664 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
665 ext_debug("%d: move %d:%llu in new index %llu\n", level,
666 le32_to_cpu(idx->ei_block),
667 ext4_idx_pblock(idx),
668 newblock);
669 idx++;
672 return;
675 ex = path[depth].p_ext;
676 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
677 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
678 le32_to_cpu(ex->ee_block),
679 ext4_ext_pblock(ex),
680 ext4_ext_is_uninitialized(ex),
681 ext4_ext_get_actual_len(ex),
682 newblock);
683 ex++;
687 #else
688 #define ext4_ext_show_path(inode, path)
689 #define ext4_ext_show_leaf(inode, path)
690 #define ext4_ext_show_move(inode, path, newblock, level)
691 #endif
693 void ext4_ext_drop_refs(struct ext4_ext_path *path)
695 int depth = path->p_depth;
696 int i;
698 for (i = 0; i <= depth; i++, path++)
699 if (path->p_bh) {
700 brelse(path->p_bh);
701 path->p_bh = NULL;
706 * ext4_ext_binsearch_idx:
707 * binary search for the closest index of the given block
708 * the header must be checked before calling this
710 static void
711 ext4_ext_binsearch_idx(struct inode *inode,
712 struct ext4_ext_path *path, ext4_lblk_t block)
714 struct ext4_extent_header *eh = path->p_hdr;
715 struct ext4_extent_idx *r, *l, *m;
718 ext_debug("binsearch for %u(idx): ", block);
720 l = EXT_FIRST_INDEX(eh) + 1;
721 r = EXT_LAST_INDEX(eh);
722 while (l <= r) {
723 m = l + (r - l) / 2;
724 if (block < le32_to_cpu(m->ei_block))
725 r = m - 1;
726 else
727 l = m + 1;
728 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
729 m, le32_to_cpu(m->ei_block),
730 r, le32_to_cpu(r->ei_block));
733 path->p_idx = l - 1;
734 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
735 ext4_idx_pblock(path->p_idx));
737 #ifdef CHECK_BINSEARCH
739 struct ext4_extent_idx *chix, *ix;
740 int k;
742 chix = ix = EXT_FIRST_INDEX(eh);
743 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
744 if (k != 0 &&
745 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
746 printk(KERN_DEBUG "k=%d, ix=0x%p, "
747 "first=0x%p\n", k,
748 ix, EXT_FIRST_INDEX(eh));
749 printk(KERN_DEBUG "%u <= %u\n",
750 le32_to_cpu(ix->ei_block),
751 le32_to_cpu(ix[-1].ei_block));
753 BUG_ON(k && le32_to_cpu(ix->ei_block)
754 <= le32_to_cpu(ix[-1].ei_block));
755 if (block < le32_to_cpu(ix->ei_block))
756 break;
757 chix = ix;
759 BUG_ON(chix != path->p_idx);
761 #endif
766 * ext4_ext_binsearch:
767 * binary search for closest extent of the given block
768 * the header must be checked before calling this
770 static void
771 ext4_ext_binsearch(struct inode *inode,
772 struct ext4_ext_path *path, ext4_lblk_t block)
774 struct ext4_extent_header *eh = path->p_hdr;
775 struct ext4_extent *r, *l, *m;
777 if (eh->eh_entries == 0) {
779 * this leaf is empty:
780 * we get such a leaf in split/add case
782 return;
785 ext_debug("binsearch for %u: ", block);
787 l = EXT_FIRST_EXTENT(eh) + 1;
788 r = EXT_LAST_EXTENT(eh);
790 while (l <= r) {
791 m = l + (r - l) / 2;
792 if (block < le32_to_cpu(m->ee_block))
793 r = m - 1;
794 else
795 l = m + 1;
796 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
797 m, le32_to_cpu(m->ee_block),
798 r, le32_to_cpu(r->ee_block));
801 path->p_ext = l - 1;
802 ext_debug(" -> %d:%llu:[%d]%d ",
803 le32_to_cpu(path->p_ext->ee_block),
804 ext4_ext_pblock(path->p_ext),
805 ext4_ext_is_uninitialized(path->p_ext),
806 ext4_ext_get_actual_len(path->p_ext));
808 #ifdef CHECK_BINSEARCH
810 struct ext4_extent *chex, *ex;
811 int k;
813 chex = ex = EXT_FIRST_EXTENT(eh);
814 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
815 BUG_ON(k && le32_to_cpu(ex->ee_block)
816 <= le32_to_cpu(ex[-1].ee_block));
817 if (block < le32_to_cpu(ex->ee_block))
818 break;
819 chex = ex;
821 BUG_ON(chex != path->p_ext);
823 #endif
827 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
829 struct ext4_extent_header *eh;
831 eh = ext_inode_hdr(inode);
832 eh->eh_depth = 0;
833 eh->eh_entries = 0;
834 eh->eh_magic = EXT4_EXT_MAGIC;
835 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
836 ext4_mark_inode_dirty(handle, inode);
837 return 0;
840 struct ext4_ext_path *
841 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
842 struct ext4_ext_path *path, int flags)
844 struct ext4_extent_header *eh;
845 struct buffer_head *bh;
846 short int depth, i, ppos = 0, alloc = 0;
847 int ret;
849 eh = ext_inode_hdr(inode);
850 depth = ext_depth(inode);
852 /* account possible depth increase */
853 if (!path) {
854 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
855 GFP_NOFS);
856 if (!path)
857 return ERR_PTR(-ENOMEM);
858 alloc = 1;
860 path[0].p_hdr = eh;
861 path[0].p_bh = NULL;
863 i = depth;
864 /* walk through the tree */
865 while (i) {
866 ext_debug("depth %d: num %d, max %d\n",
867 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
869 ext4_ext_binsearch_idx(inode, path + ppos, block);
870 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
871 path[ppos].p_depth = i;
872 path[ppos].p_ext = NULL;
874 bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
875 flags);
876 if (IS_ERR(bh)) {
877 ret = PTR_ERR(bh);
878 goto err;
881 eh = ext_block_hdr(bh);
882 ppos++;
883 if (unlikely(ppos > depth)) {
884 put_bh(bh);
885 EXT4_ERROR_INODE(inode,
886 "ppos %d > depth %d", ppos, depth);
887 ret = -EIO;
888 goto err;
890 path[ppos].p_bh = bh;
891 path[ppos].p_hdr = eh;
894 path[ppos].p_depth = i;
895 path[ppos].p_ext = NULL;
896 path[ppos].p_idx = NULL;
898 /* find extent */
899 ext4_ext_binsearch(inode, path + ppos, block);
900 /* if not an empty leaf */
901 if (path[ppos].p_ext)
902 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
904 ext4_ext_show_path(inode, path);
906 return path;
908 err:
909 ext4_ext_drop_refs(path);
910 if (alloc)
911 kfree(path);
912 return ERR_PTR(ret);
916 * ext4_ext_insert_index:
917 * insert new index [@logical;@ptr] into the block at @curp;
918 * check where to insert: before @curp or after @curp
920 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
921 struct ext4_ext_path *curp,
922 int logical, ext4_fsblk_t ptr)
924 struct ext4_extent_idx *ix;
925 int len, err;
927 err = ext4_ext_get_access(handle, inode, curp);
928 if (err)
929 return err;
931 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
932 EXT4_ERROR_INODE(inode,
933 "logical %d == ei_block %d!",
934 logical, le32_to_cpu(curp->p_idx->ei_block));
935 return -EIO;
938 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
939 >= le16_to_cpu(curp->p_hdr->eh_max))) {
940 EXT4_ERROR_INODE(inode,
941 "eh_entries %d >= eh_max %d!",
942 le16_to_cpu(curp->p_hdr->eh_entries),
943 le16_to_cpu(curp->p_hdr->eh_max));
944 return -EIO;
947 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
948 /* insert after */
949 ext_debug("insert new index %d after: %llu\n", logical, ptr);
950 ix = curp->p_idx + 1;
951 } else {
952 /* insert before */
953 ext_debug("insert new index %d before: %llu\n", logical, ptr);
954 ix = curp->p_idx;
957 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
958 BUG_ON(len < 0);
959 if (len > 0) {
960 ext_debug("insert new index %d: "
961 "move %d indices from 0x%p to 0x%p\n",
962 logical, len, ix, ix + 1);
963 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
966 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
967 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
968 return -EIO;
971 ix->ei_block = cpu_to_le32(logical);
972 ext4_idx_store_pblock(ix, ptr);
973 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
975 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
976 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
977 return -EIO;
980 err = ext4_ext_dirty(handle, inode, curp);
981 ext4_std_error(inode->i_sb, err);
983 return err;
987 * ext4_ext_split:
988 * inserts new subtree into the path, using free index entry
989 * at depth @at:
990 * - allocates all needed blocks (new leaf and all intermediate index blocks)
991 * - makes decision where to split
992 * - moves remaining extents and index entries (right to the split point)
993 * into the newly allocated blocks
994 * - initializes subtree
996 static int ext4_ext_split(handle_t *handle, struct inode *inode,
997 unsigned int flags,
998 struct ext4_ext_path *path,
999 struct ext4_extent *newext, int at)
1001 struct buffer_head *bh = NULL;
1002 int depth = ext_depth(inode);
1003 struct ext4_extent_header *neh;
1004 struct ext4_extent_idx *fidx;
1005 int i = at, k, m, a;
1006 ext4_fsblk_t newblock, oldblock;
1007 __le32 border;
1008 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1009 int err = 0;
1011 /* make decision: where to split? */
1012 /* FIXME: now decision is simplest: at current extent */
1014 /* if current leaf will be split, then we should use
1015 * border from split point */
1016 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1017 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1018 return -EIO;
1020 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1021 border = path[depth].p_ext[1].ee_block;
1022 ext_debug("leaf will be split."
1023 " next leaf starts at %d\n",
1024 le32_to_cpu(border));
1025 } else {
1026 border = newext->ee_block;
1027 ext_debug("leaf will be added."
1028 " next leaf starts at %d\n",
1029 le32_to_cpu(border));
1033 * If error occurs, then we break processing
1034 * and mark filesystem read-only. index won't
1035 * be inserted and tree will be in consistent
1036 * state. Next mount will repair buffers too.
1040 * Get array to track all allocated blocks.
1041 * We need this to handle errors and free blocks
1042 * upon them.
1044 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1045 if (!ablocks)
1046 return -ENOMEM;
1048 /* allocate all needed blocks */
1049 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1050 for (a = 0; a < depth - at; a++) {
1051 newblock = ext4_ext_new_meta_block(handle, inode, path,
1052 newext, &err, flags);
1053 if (newblock == 0)
1054 goto cleanup;
1055 ablocks[a] = newblock;
1058 /* initialize new leaf */
1059 newblock = ablocks[--a];
1060 if (unlikely(newblock == 0)) {
1061 EXT4_ERROR_INODE(inode, "newblock == 0!");
1062 err = -EIO;
1063 goto cleanup;
1065 bh = sb_getblk(inode->i_sb, newblock);
1066 if (unlikely(!bh)) {
1067 err = -ENOMEM;
1068 goto cleanup;
1070 lock_buffer(bh);
1072 err = ext4_journal_get_create_access(handle, bh);
1073 if (err)
1074 goto cleanup;
1076 neh = ext_block_hdr(bh);
1077 neh->eh_entries = 0;
1078 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1079 neh->eh_magic = EXT4_EXT_MAGIC;
1080 neh->eh_depth = 0;
1082 /* move remainder of path[depth] to the new leaf */
1083 if (unlikely(path[depth].p_hdr->eh_entries !=
1084 path[depth].p_hdr->eh_max)) {
1085 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1086 path[depth].p_hdr->eh_entries,
1087 path[depth].p_hdr->eh_max);
1088 err = -EIO;
1089 goto cleanup;
1091 /* start copy from next extent */
1092 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1093 ext4_ext_show_move(inode, path, newblock, depth);
1094 if (m) {
1095 struct ext4_extent *ex;
1096 ex = EXT_FIRST_EXTENT(neh);
1097 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1098 le16_add_cpu(&neh->eh_entries, m);
1101 ext4_extent_block_csum_set(inode, neh);
1102 set_buffer_uptodate(bh);
1103 unlock_buffer(bh);
1105 err = ext4_handle_dirty_metadata(handle, inode, bh);
1106 if (err)
1107 goto cleanup;
1108 brelse(bh);
1109 bh = NULL;
1111 /* correct old leaf */
1112 if (m) {
1113 err = ext4_ext_get_access(handle, inode, path + depth);
1114 if (err)
1115 goto cleanup;
1116 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1117 err = ext4_ext_dirty(handle, inode, path + depth);
1118 if (err)
1119 goto cleanup;
1123 /* create intermediate indexes */
1124 k = depth - at - 1;
1125 if (unlikely(k < 0)) {
1126 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1127 err = -EIO;
1128 goto cleanup;
1130 if (k)
1131 ext_debug("create %d intermediate indices\n", k);
1132 /* insert new index into current index block */
1133 /* current depth stored in i var */
1134 i = depth - 1;
1135 while (k--) {
1136 oldblock = newblock;
1137 newblock = ablocks[--a];
1138 bh = sb_getblk(inode->i_sb, newblock);
1139 if (unlikely(!bh)) {
1140 err = -ENOMEM;
1141 goto cleanup;
1143 lock_buffer(bh);
1145 err = ext4_journal_get_create_access(handle, bh);
1146 if (err)
1147 goto cleanup;
1149 neh = ext_block_hdr(bh);
1150 neh->eh_entries = cpu_to_le16(1);
1151 neh->eh_magic = EXT4_EXT_MAGIC;
1152 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1153 neh->eh_depth = cpu_to_le16(depth - i);
1154 fidx = EXT_FIRST_INDEX(neh);
1155 fidx->ei_block = border;
1156 ext4_idx_store_pblock(fidx, oldblock);
1158 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1159 i, newblock, le32_to_cpu(border), oldblock);
1161 /* move remainder of path[i] to the new index block */
1162 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1163 EXT_LAST_INDEX(path[i].p_hdr))) {
1164 EXT4_ERROR_INODE(inode,
1165 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1166 le32_to_cpu(path[i].p_ext->ee_block));
1167 err = -EIO;
1168 goto cleanup;
1170 /* start copy indexes */
1171 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1172 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1173 EXT_MAX_INDEX(path[i].p_hdr));
1174 ext4_ext_show_move(inode, path, newblock, i);
1175 if (m) {
1176 memmove(++fidx, path[i].p_idx,
1177 sizeof(struct ext4_extent_idx) * m);
1178 le16_add_cpu(&neh->eh_entries, m);
1180 ext4_extent_block_csum_set(inode, neh);
1181 set_buffer_uptodate(bh);
1182 unlock_buffer(bh);
1184 err = ext4_handle_dirty_metadata(handle, inode, bh);
1185 if (err)
1186 goto cleanup;
1187 brelse(bh);
1188 bh = NULL;
1190 /* correct old index */
1191 if (m) {
1192 err = ext4_ext_get_access(handle, inode, path + i);
1193 if (err)
1194 goto cleanup;
1195 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1196 err = ext4_ext_dirty(handle, inode, path + i);
1197 if (err)
1198 goto cleanup;
1201 i--;
1204 /* insert new index */
1205 err = ext4_ext_insert_index(handle, inode, path + at,
1206 le32_to_cpu(border), newblock);
1208 cleanup:
1209 if (bh) {
1210 if (buffer_locked(bh))
1211 unlock_buffer(bh);
1212 brelse(bh);
1215 if (err) {
1216 /* free all allocated blocks in error case */
1217 for (i = 0; i < depth; i++) {
1218 if (!ablocks[i])
1219 continue;
1220 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1221 EXT4_FREE_BLOCKS_METADATA);
1224 kfree(ablocks);
1226 return err;
1230 * ext4_ext_grow_indepth:
1231 * implements tree growing procedure:
1232 * - allocates new block
1233 * - moves top-level data (index block or leaf) into the new block
1234 * - initializes new top-level, creating index that points to the
1235 * just created block
1237 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1238 unsigned int flags,
1239 struct ext4_extent *newext)
1241 struct ext4_extent_header *neh;
1242 struct buffer_head *bh;
1243 ext4_fsblk_t newblock;
1244 int err = 0;
1246 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1247 newext, &err, flags);
1248 if (newblock == 0)
1249 return err;
1251 bh = sb_getblk(inode->i_sb, newblock);
1252 if (unlikely(!bh))
1253 return -ENOMEM;
1254 lock_buffer(bh);
1256 err = ext4_journal_get_create_access(handle, bh);
1257 if (err) {
1258 unlock_buffer(bh);
1259 goto out;
1262 /* move top-level index/leaf into new block */
1263 memmove(bh->b_data, EXT4_I(inode)->i_data,
1264 sizeof(EXT4_I(inode)->i_data));
1266 /* set size of new block */
1267 neh = ext_block_hdr(bh);
1268 /* old root could have indexes or leaves
1269 * so calculate e_max right way */
1270 if (ext_depth(inode))
1271 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1272 else
1273 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1274 neh->eh_magic = EXT4_EXT_MAGIC;
1275 ext4_extent_block_csum_set(inode, neh);
1276 set_buffer_uptodate(bh);
1277 unlock_buffer(bh);
1279 err = ext4_handle_dirty_metadata(handle, inode, bh);
1280 if (err)
1281 goto out;
1283 /* Update top-level index: num,max,pointer */
1284 neh = ext_inode_hdr(inode);
1285 neh->eh_entries = cpu_to_le16(1);
1286 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1287 if (neh->eh_depth == 0) {
1288 /* Root extent block becomes index block */
1289 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1290 EXT_FIRST_INDEX(neh)->ei_block =
1291 EXT_FIRST_EXTENT(neh)->ee_block;
1293 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1294 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1295 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1296 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1298 le16_add_cpu(&neh->eh_depth, 1);
1299 ext4_mark_inode_dirty(handle, inode);
1300 out:
1301 brelse(bh);
1303 return err;
1307 * ext4_ext_create_new_leaf:
1308 * finds empty index and adds new leaf.
1309 * if no free index is found, then it requests in-depth growing.
1311 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1312 unsigned int mb_flags,
1313 unsigned int gb_flags,
1314 struct ext4_ext_path *path,
1315 struct ext4_extent *newext)
1317 struct ext4_ext_path *curp;
1318 int depth, i, err = 0;
1320 repeat:
1321 i = depth = ext_depth(inode);
1323 /* walk up to the tree and look for free index entry */
1324 curp = path + depth;
1325 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1326 i--;
1327 curp--;
1330 /* we use already allocated block for index block,
1331 * so subsequent data blocks should be contiguous */
1332 if (EXT_HAS_FREE_INDEX(curp)) {
1333 /* if we found index with free entry, then use that
1334 * entry: create all needed subtree and add new leaf */
1335 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1336 if (err)
1337 goto out;
1339 /* refill path */
1340 ext4_ext_drop_refs(path);
1341 path = ext4_ext_find_extent(inode,
1342 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1343 path, gb_flags);
1344 if (IS_ERR(path))
1345 err = PTR_ERR(path);
1346 } else {
1347 /* tree is full, time to grow in depth */
1348 err = ext4_ext_grow_indepth(handle, inode, mb_flags, newext);
1349 if (err)
1350 goto out;
1352 /* refill path */
1353 ext4_ext_drop_refs(path);
1354 path = ext4_ext_find_extent(inode,
1355 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1356 path, gb_flags);
1357 if (IS_ERR(path)) {
1358 err = PTR_ERR(path);
1359 goto out;
1363 * only first (depth 0 -> 1) produces free space;
1364 * in all other cases we have to split the grown tree
1366 depth = ext_depth(inode);
1367 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1368 /* now we need to split */
1369 goto repeat;
1373 out:
1374 return err;
1378 * search the closest allocated block to the left for *logical
1379 * and returns it at @logical + it's physical address at @phys
1380 * if *logical is the smallest allocated block, the function
1381 * returns 0 at @phys
1382 * return value contains 0 (success) or error code
1384 static int ext4_ext_search_left(struct inode *inode,
1385 struct ext4_ext_path *path,
1386 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1388 struct ext4_extent_idx *ix;
1389 struct ext4_extent *ex;
1390 int depth, ee_len;
1392 if (unlikely(path == NULL)) {
1393 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1394 return -EIO;
1396 depth = path->p_depth;
1397 *phys = 0;
1399 if (depth == 0 && path->p_ext == NULL)
1400 return 0;
1402 /* usually extent in the path covers blocks smaller
1403 * then *logical, but it can be that extent is the
1404 * first one in the file */
1406 ex = path[depth].p_ext;
1407 ee_len = ext4_ext_get_actual_len(ex);
1408 if (*logical < le32_to_cpu(ex->ee_block)) {
1409 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1410 EXT4_ERROR_INODE(inode,
1411 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1412 *logical, le32_to_cpu(ex->ee_block));
1413 return -EIO;
1415 while (--depth >= 0) {
1416 ix = path[depth].p_idx;
1417 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1418 EXT4_ERROR_INODE(inode,
1419 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1420 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1421 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1422 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1423 depth);
1424 return -EIO;
1427 return 0;
1430 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1431 EXT4_ERROR_INODE(inode,
1432 "logical %d < ee_block %d + ee_len %d!",
1433 *logical, le32_to_cpu(ex->ee_block), ee_len);
1434 return -EIO;
1437 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1438 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1439 return 0;
1443 * search the closest allocated block to the right for *logical
1444 * and returns it at @logical + it's physical address at @phys
1445 * if *logical is the largest allocated block, the function
1446 * returns 0 at @phys
1447 * return value contains 0 (success) or error code
1449 static int ext4_ext_search_right(struct inode *inode,
1450 struct ext4_ext_path *path,
1451 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1452 struct ext4_extent **ret_ex)
1454 struct buffer_head *bh = NULL;
1455 struct ext4_extent_header *eh;
1456 struct ext4_extent_idx *ix;
1457 struct ext4_extent *ex;
1458 ext4_fsblk_t block;
1459 int depth; /* Note, NOT eh_depth; depth from top of tree */
1460 int ee_len;
1462 if (unlikely(path == NULL)) {
1463 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1464 return -EIO;
1466 depth = path->p_depth;
1467 *phys = 0;
1469 if (depth == 0 && path->p_ext == NULL)
1470 return 0;
1472 /* usually extent in the path covers blocks smaller
1473 * then *logical, but it can be that extent is the
1474 * first one in the file */
1476 ex = path[depth].p_ext;
1477 ee_len = ext4_ext_get_actual_len(ex);
1478 if (*logical < le32_to_cpu(ex->ee_block)) {
1479 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1480 EXT4_ERROR_INODE(inode,
1481 "first_extent(path[%d].p_hdr) != ex",
1482 depth);
1483 return -EIO;
1485 while (--depth >= 0) {
1486 ix = path[depth].p_idx;
1487 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1488 EXT4_ERROR_INODE(inode,
1489 "ix != EXT_FIRST_INDEX *logical %d!",
1490 *logical);
1491 return -EIO;
1494 goto found_extent;
1497 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1498 EXT4_ERROR_INODE(inode,
1499 "logical %d < ee_block %d + ee_len %d!",
1500 *logical, le32_to_cpu(ex->ee_block), ee_len);
1501 return -EIO;
1504 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1505 /* next allocated block in this leaf */
1506 ex++;
1507 goto found_extent;
1510 /* go up and search for index to the right */
1511 while (--depth >= 0) {
1512 ix = path[depth].p_idx;
1513 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1514 goto got_index;
1517 /* we've gone up to the root and found no index to the right */
1518 return 0;
1520 got_index:
1521 /* we've found index to the right, let's
1522 * follow it and find the closest allocated
1523 * block to the right */
1524 ix++;
1525 block = ext4_idx_pblock(ix);
1526 while (++depth < path->p_depth) {
1527 /* subtract from p_depth to get proper eh_depth */
1528 bh = read_extent_tree_block(inode, block,
1529 path->p_depth - depth, 0);
1530 if (IS_ERR(bh))
1531 return PTR_ERR(bh);
1532 eh = ext_block_hdr(bh);
1533 ix = EXT_FIRST_INDEX(eh);
1534 block = ext4_idx_pblock(ix);
1535 put_bh(bh);
1538 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1539 if (IS_ERR(bh))
1540 return PTR_ERR(bh);
1541 eh = ext_block_hdr(bh);
1542 ex = EXT_FIRST_EXTENT(eh);
1543 found_extent:
1544 *logical = le32_to_cpu(ex->ee_block);
1545 *phys = ext4_ext_pblock(ex);
1546 *ret_ex = ex;
1547 if (bh)
1548 put_bh(bh);
1549 return 0;
1553 * ext4_ext_next_allocated_block:
1554 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1555 * NOTE: it considers block number from index entry as
1556 * allocated block. Thus, index entries have to be consistent
1557 * with leaves.
1559 static ext4_lblk_t
1560 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1562 int depth;
1564 BUG_ON(path == NULL);
1565 depth = path->p_depth;
1567 if (depth == 0 && path->p_ext == NULL)
1568 return EXT_MAX_BLOCKS;
1570 while (depth >= 0) {
1571 if (depth == path->p_depth) {
1572 /* leaf */
1573 if (path[depth].p_ext &&
1574 path[depth].p_ext !=
1575 EXT_LAST_EXTENT(path[depth].p_hdr))
1576 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1577 } else {
1578 /* index */
1579 if (path[depth].p_idx !=
1580 EXT_LAST_INDEX(path[depth].p_hdr))
1581 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1583 depth--;
1586 return EXT_MAX_BLOCKS;
1590 * ext4_ext_next_leaf_block:
1591 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1593 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1595 int depth;
1597 BUG_ON(path == NULL);
1598 depth = path->p_depth;
1600 /* zero-tree has no leaf blocks at all */
1601 if (depth == 0)
1602 return EXT_MAX_BLOCKS;
1604 /* go to index block */
1605 depth--;
1607 while (depth >= 0) {
1608 if (path[depth].p_idx !=
1609 EXT_LAST_INDEX(path[depth].p_hdr))
1610 return (ext4_lblk_t)
1611 le32_to_cpu(path[depth].p_idx[1].ei_block);
1612 depth--;
1615 return EXT_MAX_BLOCKS;
1619 * ext4_ext_correct_indexes:
1620 * if leaf gets modified and modified extent is first in the leaf,
1621 * then we have to correct all indexes above.
1622 * TODO: do we need to correct tree in all cases?
1624 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1625 struct ext4_ext_path *path)
1627 struct ext4_extent_header *eh;
1628 int depth = ext_depth(inode);
1629 struct ext4_extent *ex;
1630 __le32 border;
1631 int k, err = 0;
1633 eh = path[depth].p_hdr;
1634 ex = path[depth].p_ext;
1636 if (unlikely(ex == NULL || eh == NULL)) {
1637 EXT4_ERROR_INODE(inode,
1638 "ex %p == NULL or eh %p == NULL", ex, eh);
1639 return -EIO;
1642 if (depth == 0) {
1643 /* there is no tree at all */
1644 return 0;
1647 if (ex != EXT_FIRST_EXTENT(eh)) {
1648 /* we correct tree if first leaf got modified only */
1649 return 0;
1653 * TODO: we need correction if border is smaller than current one
1655 k = depth - 1;
1656 border = path[depth].p_ext->ee_block;
1657 err = ext4_ext_get_access(handle, inode, path + k);
1658 if (err)
1659 return err;
1660 path[k].p_idx->ei_block = border;
1661 err = ext4_ext_dirty(handle, inode, path + k);
1662 if (err)
1663 return err;
1665 while (k--) {
1666 /* change all left-side indexes */
1667 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1668 break;
1669 err = ext4_ext_get_access(handle, inode, path + k);
1670 if (err)
1671 break;
1672 path[k].p_idx->ei_block = border;
1673 err = ext4_ext_dirty(handle, inode, path + k);
1674 if (err)
1675 break;
1678 return err;
1682 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1683 struct ext4_extent *ex2)
1685 unsigned short ext1_ee_len, ext2_ee_len;
1688 * Make sure that both extents are initialized. We don't merge
1689 * uninitialized extents so that we can be sure that end_io code has
1690 * the extent that was written properly split out and conversion to
1691 * initialized is trivial.
1693 if (ext4_ext_is_uninitialized(ex1) != ext4_ext_is_uninitialized(ex2))
1694 return 0;
1696 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1697 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1699 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1700 le32_to_cpu(ex2->ee_block))
1701 return 0;
1704 * To allow future support for preallocated extents to be added
1705 * as an RO_COMPAT feature, refuse to merge to extents if
1706 * this can result in the top bit of ee_len being set.
1708 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1709 return 0;
1710 if (ext4_ext_is_uninitialized(ex1) &&
1711 (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
1712 atomic_read(&EXT4_I(inode)->i_unwritten) ||
1713 (ext1_ee_len + ext2_ee_len > EXT_UNINIT_MAX_LEN)))
1714 return 0;
1715 #ifdef AGGRESSIVE_TEST
1716 if (ext1_ee_len >= 4)
1717 return 0;
1718 #endif
1720 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1721 return 1;
1722 return 0;
1726 * This function tries to merge the "ex" extent to the next extent in the tree.
1727 * It always tries to merge towards right. If you want to merge towards
1728 * left, pass "ex - 1" as argument instead of "ex".
1729 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1730 * 1 if they got merged.
1732 static int ext4_ext_try_to_merge_right(struct inode *inode,
1733 struct ext4_ext_path *path,
1734 struct ext4_extent *ex)
1736 struct ext4_extent_header *eh;
1737 unsigned int depth, len;
1738 int merge_done = 0, uninit;
1740 depth = ext_depth(inode);
1741 BUG_ON(path[depth].p_hdr == NULL);
1742 eh = path[depth].p_hdr;
1744 while (ex < EXT_LAST_EXTENT(eh)) {
1745 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1746 break;
1747 /* merge with next extent! */
1748 uninit = ext4_ext_is_uninitialized(ex);
1749 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1750 + ext4_ext_get_actual_len(ex + 1));
1751 if (uninit)
1752 ext4_ext_mark_uninitialized(ex);
1754 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1755 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1756 * sizeof(struct ext4_extent);
1757 memmove(ex + 1, ex + 2, len);
1759 le16_add_cpu(&eh->eh_entries, -1);
1760 merge_done = 1;
1761 WARN_ON(eh->eh_entries == 0);
1762 if (!eh->eh_entries)
1763 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1766 return merge_done;
1770 * This function does a very simple check to see if we can collapse
1771 * an extent tree with a single extent tree leaf block into the inode.
1773 static void ext4_ext_try_to_merge_up(handle_t *handle,
1774 struct inode *inode,
1775 struct ext4_ext_path *path)
1777 size_t s;
1778 unsigned max_root = ext4_ext_space_root(inode, 0);
1779 ext4_fsblk_t blk;
1781 if ((path[0].p_depth != 1) ||
1782 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1783 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1784 return;
1787 * We need to modify the block allocation bitmap and the block
1788 * group descriptor to release the extent tree block. If we
1789 * can't get the journal credits, give up.
1791 if (ext4_journal_extend(handle, 2))
1792 return;
1795 * Copy the extent data up to the inode
1797 blk = ext4_idx_pblock(path[0].p_idx);
1798 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1799 sizeof(struct ext4_extent_idx);
1800 s += sizeof(struct ext4_extent_header);
1802 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1803 path[0].p_depth = 0;
1804 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1805 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1806 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1808 brelse(path[1].p_bh);
1809 ext4_free_blocks(handle, inode, NULL, blk, 1,
1810 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET |
1811 EXT4_FREE_BLOCKS_RESERVE);
1815 * This function tries to merge the @ex extent to neighbours in the tree.
1816 * return 1 if merge left else 0.
1818 static void ext4_ext_try_to_merge(handle_t *handle,
1819 struct inode *inode,
1820 struct ext4_ext_path *path,
1821 struct ext4_extent *ex) {
1822 struct ext4_extent_header *eh;
1823 unsigned int depth;
1824 int merge_done = 0;
1826 depth = ext_depth(inode);
1827 BUG_ON(path[depth].p_hdr == NULL);
1828 eh = path[depth].p_hdr;
1830 if (ex > EXT_FIRST_EXTENT(eh))
1831 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1833 if (!merge_done)
1834 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1836 ext4_ext_try_to_merge_up(handle, inode, path);
1840 * check if a portion of the "newext" extent overlaps with an
1841 * existing extent.
1843 * If there is an overlap discovered, it updates the length of the newext
1844 * such that there will be no overlap, and then returns 1.
1845 * If there is no overlap found, it returns 0.
1847 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1848 struct inode *inode,
1849 struct ext4_extent *newext,
1850 struct ext4_ext_path *path)
1852 ext4_lblk_t b1, b2;
1853 unsigned int depth, len1;
1854 unsigned int ret = 0;
1856 b1 = le32_to_cpu(newext->ee_block);
1857 len1 = ext4_ext_get_actual_len(newext);
1858 depth = ext_depth(inode);
1859 if (!path[depth].p_ext)
1860 goto out;
1861 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1864 * get the next allocated block if the extent in the path
1865 * is before the requested block(s)
1867 if (b2 < b1) {
1868 b2 = ext4_ext_next_allocated_block(path);
1869 if (b2 == EXT_MAX_BLOCKS)
1870 goto out;
1871 b2 = EXT4_LBLK_CMASK(sbi, b2);
1874 /* check for wrap through zero on extent logical start block*/
1875 if (b1 + len1 < b1) {
1876 len1 = EXT_MAX_BLOCKS - b1;
1877 newext->ee_len = cpu_to_le16(len1);
1878 ret = 1;
1881 /* check for overlap */
1882 if (b1 + len1 > b2) {
1883 newext->ee_len = cpu_to_le16(b2 - b1);
1884 ret = 1;
1886 out:
1887 return ret;
1891 * ext4_ext_insert_extent:
1892 * tries to merge requsted extent into the existing extent or
1893 * inserts requested extent as new one into the tree,
1894 * creating new leaf in the no-space case.
1896 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1897 struct ext4_ext_path *path,
1898 struct ext4_extent *newext, int gb_flags)
1900 struct ext4_extent_header *eh;
1901 struct ext4_extent *ex, *fex;
1902 struct ext4_extent *nearex; /* nearest extent */
1903 struct ext4_ext_path *npath = NULL;
1904 int depth, len, err;
1905 ext4_lblk_t next;
1906 int mb_flags = 0, uninit;
1908 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1909 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1910 return -EIO;
1912 depth = ext_depth(inode);
1913 ex = path[depth].p_ext;
1914 eh = path[depth].p_hdr;
1915 if (unlikely(path[depth].p_hdr == NULL)) {
1916 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1917 return -EIO;
1920 /* try to insert block into found extent and return */
1921 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1924 * Try to see whether we should rather test the extent on
1925 * right from ex, or from the left of ex. This is because
1926 * ext4_ext_find_extent() can return either extent on the
1927 * left, or on the right from the searched position. This
1928 * will make merging more effective.
1930 if (ex < EXT_LAST_EXTENT(eh) &&
1931 (le32_to_cpu(ex->ee_block) +
1932 ext4_ext_get_actual_len(ex) <
1933 le32_to_cpu(newext->ee_block))) {
1934 ex += 1;
1935 goto prepend;
1936 } else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1937 (le32_to_cpu(newext->ee_block) +
1938 ext4_ext_get_actual_len(newext) <
1939 le32_to_cpu(ex->ee_block)))
1940 ex -= 1;
1942 /* Try to append newex to the ex */
1943 if (ext4_can_extents_be_merged(inode, ex, newext)) {
1944 ext_debug("append [%d]%d block to %u:[%d]%d"
1945 "(from %llu)\n",
1946 ext4_ext_is_uninitialized(newext),
1947 ext4_ext_get_actual_len(newext),
1948 le32_to_cpu(ex->ee_block),
1949 ext4_ext_is_uninitialized(ex),
1950 ext4_ext_get_actual_len(ex),
1951 ext4_ext_pblock(ex));
1952 err = ext4_ext_get_access(handle, inode,
1953 path + depth);
1954 if (err)
1955 return err;
1956 uninit = ext4_ext_is_uninitialized(ex);
1957 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1958 + ext4_ext_get_actual_len(newext));
1959 if (uninit)
1960 ext4_ext_mark_uninitialized(ex);
1961 eh = path[depth].p_hdr;
1962 nearex = ex;
1963 goto merge;
1966 prepend:
1967 /* Try to prepend newex to the ex */
1968 if (ext4_can_extents_be_merged(inode, newext, ex)) {
1969 ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
1970 "(from %llu)\n",
1971 le32_to_cpu(newext->ee_block),
1972 ext4_ext_is_uninitialized(newext),
1973 ext4_ext_get_actual_len(newext),
1974 le32_to_cpu(ex->ee_block),
1975 ext4_ext_is_uninitialized(ex),
1976 ext4_ext_get_actual_len(ex),
1977 ext4_ext_pblock(ex));
1978 err = ext4_ext_get_access(handle, inode,
1979 path + depth);
1980 if (err)
1981 return err;
1983 uninit = ext4_ext_is_uninitialized(ex);
1984 ex->ee_block = newext->ee_block;
1985 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
1986 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1987 + ext4_ext_get_actual_len(newext));
1988 if (uninit)
1989 ext4_ext_mark_uninitialized(ex);
1990 eh = path[depth].p_hdr;
1991 nearex = ex;
1992 goto merge;
1996 depth = ext_depth(inode);
1997 eh = path[depth].p_hdr;
1998 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1999 goto has_space;
2001 /* probably next leaf has space for us? */
2002 fex = EXT_LAST_EXTENT(eh);
2003 next = EXT_MAX_BLOCKS;
2004 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2005 next = ext4_ext_next_leaf_block(path);
2006 if (next != EXT_MAX_BLOCKS) {
2007 ext_debug("next leaf block - %u\n", next);
2008 BUG_ON(npath != NULL);
2009 npath = ext4_ext_find_extent(inode, next, NULL, 0);
2010 if (IS_ERR(npath))
2011 return PTR_ERR(npath);
2012 BUG_ON(npath->p_depth != path->p_depth);
2013 eh = npath[depth].p_hdr;
2014 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2015 ext_debug("next leaf isn't full(%d)\n",
2016 le16_to_cpu(eh->eh_entries));
2017 path = npath;
2018 goto has_space;
2020 ext_debug("next leaf has no free space(%d,%d)\n",
2021 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2025 * There is no free space in the found leaf.
2026 * We're gonna add a new leaf in the tree.
2028 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2029 mb_flags = EXT4_MB_USE_RESERVED;
2030 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2031 path, newext);
2032 if (err)
2033 goto cleanup;
2034 depth = ext_depth(inode);
2035 eh = path[depth].p_hdr;
2037 has_space:
2038 nearex = path[depth].p_ext;
2040 err = ext4_ext_get_access(handle, inode, path + depth);
2041 if (err)
2042 goto cleanup;
2044 if (!nearex) {
2045 /* there is no extent in this leaf, create first one */
2046 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2047 le32_to_cpu(newext->ee_block),
2048 ext4_ext_pblock(newext),
2049 ext4_ext_is_uninitialized(newext),
2050 ext4_ext_get_actual_len(newext));
2051 nearex = EXT_FIRST_EXTENT(eh);
2052 } else {
2053 if (le32_to_cpu(newext->ee_block)
2054 > le32_to_cpu(nearex->ee_block)) {
2055 /* Insert after */
2056 ext_debug("insert %u:%llu:[%d]%d before: "
2057 "nearest %p\n",
2058 le32_to_cpu(newext->ee_block),
2059 ext4_ext_pblock(newext),
2060 ext4_ext_is_uninitialized(newext),
2061 ext4_ext_get_actual_len(newext),
2062 nearex);
2063 nearex++;
2064 } else {
2065 /* Insert before */
2066 BUG_ON(newext->ee_block == nearex->ee_block);
2067 ext_debug("insert %u:%llu:[%d]%d after: "
2068 "nearest %p\n",
2069 le32_to_cpu(newext->ee_block),
2070 ext4_ext_pblock(newext),
2071 ext4_ext_is_uninitialized(newext),
2072 ext4_ext_get_actual_len(newext),
2073 nearex);
2075 len = EXT_LAST_EXTENT(eh) - nearex + 1;
2076 if (len > 0) {
2077 ext_debug("insert %u:%llu:[%d]%d: "
2078 "move %d extents from 0x%p to 0x%p\n",
2079 le32_to_cpu(newext->ee_block),
2080 ext4_ext_pblock(newext),
2081 ext4_ext_is_uninitialized(newext),
2082 ext4_ext_get_actual_len(newext),
2083 len, nearex, nearex + 1);
2084 memmove(nearex + 1, nearex,
2085 len * sizeof(struct ext4_extent));
2089 le16_add_cpu(&eh->eh_entries, 1);
2090 path[depth].p_ext = nearex;
2091 nearex->ee_block = newext->ee_block;
2092 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2093 nearex->ee_len = newext->ee_len;
2095 merge:
2096 /* try to merge extents */
2097 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2098 ext4_ext_try_to_merge(handle, inode, path, nearex);
2101 /* time to correct all indexes above */
2102 err = ext4_ext_correct_indexes(handle, inode, path);
2103 if (err)
2104 goto cleanup;
2106 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2108 cleanup:
2109 if (npath) {
2110 ext4_ext_drop_refs(npath);
2111 kfree(npath);
2113 return err;
2116 static int ext4_fill_fiemap_extents(struct inode *inode,
2117 ext4_lblk_t block, ext4_lblk_t num,
2118 struct fiemap_extent_info *fieinfo)
2120 struct ext4_ext_path *path = NULL;
2121 struct ext4_extent *ex;
2122 struct extent_status es;
2123 ext4_lblk_t next, next_del, start = 0, end = 0;
2124 ext4_lblk_t last = block + num;
2125 int exists, depth = 0, err = 0;
2126 unsigned int flags = 0;
2127 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2129 while (block < last && block != EXT_MAX_BLOCKS) {
2130 num = last - block;
2131 /* find extent for this block */
2132 down_read(&EXT4_I(inode)->i_data_sem);
2134 if (path && ext_depth(inode) != depth) {
2135 /* depth was changed. we have to realloc path */
2136 kfree(path);
2137 path = NULL;
2140 path = ext4_ext_find_extent(inode, block, path, 0);
2141 if (IS_ERR(path)) {
2142 up_read(&EXT4_I(inode)->i_data_sem);
2143 err = PTR_ERR(path);
2144 path = NULL;
2145 break;
2148 depth = ext_depth(inode);
2149 if (unlikely(path[depth].p_hdr == NULL)) {
2150 up_read(&EXT4_I(inode)->i_data_sem);
2151 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2152 err = -EIO;
2153 break;
2155 ex = path[depth].p_ext;
2156 next = ext4_ext_next_allocated_block(path);
2157 ext4_ext_drop_refs(path);
2159 flags = 0;
2160 exists = 0;
2161 if (!ex) {
2162 /* there is no extent yet, so try to allocate
2163 * all requested space */
2164 start = block;
2165 end = block + num;
2166 } else if (le32_to_cpu(ex->ee_block) > block) {
2167 /* need to allocate space before found extent */
2168 start = block;
2169 end = le32_to_cpu(ex->ee_block);
2170 if (block + num < end)
2171 end = block + num;
2172 } else if (block >= le32_to_cpu(ex->ee_block)
2173 + ext4_ext_get_actual_len(ex)) {
2174 /* need to allocate space after found extent */
2175 start = block;
2176 end = block + num;
2177 if (end >= next)
2178 end = next;
2179 } else if (block >= le32_to_cpu(ex->ee_block)) {
2181 * some part of requested space is covered
2182 * by found extent
2184 start = block;
2185 end = le32_to_cpu(ex->ee_block)
2186 + ext4_ext_get_actual_len(ex);
2187 if (block + num < end)
2188 end = block + num;
2189 exists = 1;
2190 } else {
2191 BUG();
2193 BUG_ON(end <= start);
2195 if (!exists) {
2196 es.es_lblk = start;
2197 es.es_len = end - start;
2198 es.es_pblk = 0;
2199 } else {
2200 es.es_lblk = le32_to_cpu(ex->ee_block);
2201 es.es_len = ext4_ext_get_actual_len(ex);
2202 es.es_pblk = ext4_ext_pblock(ex);
2203 if (ext4_ext_is_uninitialized(ex))
2204 flags |= FIEMAP_EXTENT_UNWRITTEN;
2208 * Find delayed extent and update es accordingly. We call
2209 * it even in !exists case to find out whether es is the
2210 * last existing extent or not.
2212 next_del = ext4_find_delayed_extent(inode, &es);
2213 if (!exists && next_del) {
2214 exists = 1;
2215 flags |= (FIEMAP_EXTENT_DELALLOC |
2216 FIEMAP_EXTENT_UNKNOWN);
2218 up_read(&EXT4_I(inode)->i_data_sem);
2220 if (unlikely(es.es_len == 0)) {
2221 EXT4_ERROR_INODE(inode, "es.es_len == 0");
2222 err = -EIO;
2223 break;
2227 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2228 * we need to check next == EXT_MAX_BLOCKS because it is
2229 * possible that an extent is with unwritten and delayed
2230 * status due to when an extent is delayed allocated and
2231 * is allocated by fallocate status tree will track both of
2232 * them in a extent.
2234 * So we could return a unwritten and delayed extent, and
2235 * its block is equal to 'next'.
2237 if (next == next_del && next == EXT_MAX_BLOCKS) {
2238 flags |= FIEMAP_EXTENT_LAST;
2239 if (unlikely(next_del != EXT_MAX_BLOCKS ||
2240 next != EXT_MAX_BLOCKS)) {
2241 EXT4_ERROR_INODE(inode,
2242 "next extent == %u, next "
2243 "delalloc extent = %u",
2244 next, next_del);
2245 err = -EIO;
2246 break;
2250 if (exists) {
2251 err = fiemap_fill_next_extent(fieinfo,
2252 (__u64)es.es_lblk << blksize_bits,
2253 (__u64)es.es_pblk << blksize_bits,
2254 (__u64)es.es_len << blksize_bits,
2255 flags);
2256 if (err < 0)
2257 break;
2258 if (err == 1) {
2259 err = 0;
2260 break;
2264 block = es.es_lblk + es.es_len;
2267 if (path) {
2268 ext4_ext_drop_refs(path);
2269 kfree(path);
2272 return err;
2276 * ext4_ext_put_gap_in_cache:
2277 * calculate boundaries of the gap that the requested block fits into
2278 * and cache this gap
2280 static void
2281 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2282 ext4_lblk_t block)
2284 int depth = ext_depth(inode);
2285 unsigned long len = 0;
2286 ext4_lblk_t lblock = 0;
2287 struct ext4_extent *ex;
2289 ex = path[depth].p_ext;
2290 if (ex == NULL) {
2292 * there is no extent yet, so gap is [0;-] and we
2293 * don't cache it
2295 ext_debug("cache gap(whole file):");
2296 } else if (block < le32_to_cpu(ex->ee_block)) {
2297 lblock = block;
2298 len = le32_to_cpu(ex->ee_block) - block;
2299 ext_debug("cache gap(before): %u [%u:%u]",
2300 block,
2301 le32_to_cpu(ex->ee_block),
2302 ext4_ext_get_actual_len(ex));
2303 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2304 ext4_es_insert_extent(inode, lblock, len, ~0,
2305 EXTENT_STATUS_HOLE);
2306 } else if (block >= le32_to_cpu(ex->ee_block)
2307 + ext4_ext_get_actual_len(ex)) {
2308 ext4_lblk_t next;
2309 lblock = le32_to_cpu(ex->ee_block)
2310 + ext4_ext_get_actual_len(ex);
2312 next = ext4_ext_next_allocated_block(path);
2313 ext_debug("cache gap(after): [%u:%u] %u",
2314 le32_to_cpu(ex->ee_block),
2315 ext4_ext_get_actual_len(ex),
2316 block);
2317 BUG_ON(next == lblock);
2318 len = next - lblock;
2319 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2320 ext4_es_insert_extent(inode, lblock, len, ~0,
2321 EXTENT_STATUS_HOLE);
2322 } else {
2323 BUG();
2326 ext_debug(" -> %u:%lu\n", lblock, len);
2330 * ext4_ext_rm_idx:
2331 * removes index from the index block.
2333 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2334 struct ext4_ext_path *path, int depth)
2336 int err;
2337 ext4_fsblk_t leaf;
2339 /* free index block */
2340 depth--;
2341 path = path + depth;
2342 leaf = ext4_idx_pblock(path->p_idx);
2343 if (unlikely(path->p_hdr->eh_entries == 0)) {
2344 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2345 return -EIO;
2347 err = ext4_ext_get_access(handle, inode, path);
2348 if (err)
2349 return err;
2351 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2352 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2353 len *= sizeof(struct ext4_extent_idx);
2354 memmove(path->p_idx, path->p_idx + 1, len);
2357 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2358 err = ext4_ext_dirty(handle, inode, path);
2359 if (err)
2360 return err;
2361 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2362 trace_ext4_ext_rm_idx(inode, leaf);
2364 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2365 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2367 while (--depth >= 0) {
2368 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2369 break;
2370 path--;
2371 err = ext4_ext_get_access(handle, inode, path);
2372 if (err)
2373 break;
2374 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2375 err = ext4_ext_dirty(handle, inode, path);
2376 if (err)
2377 break;
2379 return err;
2383 * ext4_ext_calc_credits_for_single_extent:
2384 * This routine returns max. credits that needed to insert an extent
2385 * to the extent tree.
2386 * When pass the actual path, the caller should calculate credits
2387 * under i_data_sem.
2389 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2390 struct ext4_ext_path *path)
2392 if (path) {
2393 int depth = ext_depth(inode);
2394 int ret = 0;
2396 /* probably there is space in leaf? */
2397 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2398 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2401 * There are some space in the leaf tree, no
2402 * need to account for leaf block credit
2404 * bitmaps and block group descriptor blocks
2405 * and other metadata blocks still need to be
2406 * accounted.
2408 /* 1 bitmap, 1 block group descriptor */
2409 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2410 return ret;
2414 return ext4_chunk_trans_blocks(inode, nrblocks);
2418 * How many index/leaf blocks need to change/allocate to add @extents extents?
2420 * If we add a single extent, then in the worse case, each tree level
2421 * index/leaf need to be changed in case of the tree split.
2423 * If more extents are inserted, they could cause the whole tree split more
2424 * than once, but this is really rare.
2426 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2428 int index;
2429 int depth;
2431 /* If we are converting the inline data, only one is needed here. */
2432 if (ext4_has_inline_data(inode))
2433 return 1;
2435 depth = ext_depth(inode);
2437 if (extents <= 1)
2438 index = depth * 2;
2439 else
2440 index = depth * 3;
2442 return index;
2445 static inline int get_default_free_blocks_flags(struct inode *inode)
2447 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2448 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2449 else if (ext4_should_journal_data(inode))
2450 return EXT4_FREE_BLOCKS_FORGET;
2451 return 0;
2454 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2455 struct ext4_extent *ex,
2456 long long *partial_cluster,
2457 ext4_lblk_t from, ext4_lblk_t to)
2459 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2460 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2461 ext4_fsblk_t pblk;
2462 int flags = get_default_free_blocks_flags(inode);
2465 * For bigalloc file systems, we never free a partial cluster
2466 * at the beginning of the extent. Instead, we make a note
2467 * that we tried freeing the cluster, and check to see if we
2468 * need to free it on a subsequent call to ext4_remove_blocks,
2469 * or at the end of the ext4_truncate() operation.
2471 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2473 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2475 * If we have a partial cluster, and it's different from the
2476 * cluster of the last block, we need to explicitly free the
2477 * partial cluster here.
2479 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2480 if ((*partial_cluster > 0) &&
2481 (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2482 ext4_free_blocks(handle, inode, NULL,
2483 EXT4_C2B(sbi, *partial_cluster),
2484 sbi->s_cluster_ratio, flags);
2485 *partial_cluster = 0;
2488 #ifdef EXTENTS_STATS
2490 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2491 spin_lock(&sbi->s_ext_stats_lock);
2492 sbi->s_ext_blocks += ee_len;
2493 sbi->s_ext_extents++;
2494 if (ee_len < sbi->s_ext_min)
2495 sbi->s_ext_min = ee_len;
2496 if (ee_len > sbi->s_ext_max)
2497 sbi->s_ext_max = ee_len;
2498 if (ext_depth(inode) > sbi->s_depth_max)
2499 sbi->s_depth_max = ext_depth(inode);
2500 spin_unlock(&sbi->s_ext_stats_lock);
2502 #endif
2503 if (from >= le32_to_cpu(ex->ee_block)
2504 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2505 /* tail removal */
2506 ext4_lblk_t num;
2507 unsigned int unaligned;
2509 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2510 pblk = ext4_ext_pblock(ex) + ee_len - num;
2512 * Usually we want to free partial cluster at the end of the
2513 * extent, except for the situation when the cluster is still
2514 * used by any other extent (partial_cluster is negative).
2516 if (*partial_cluster < 0 &&
2517 -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1))
2518 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2520 ext_debug("free last %u blocks starting %llu partial %lld\n",
2521 num, pblk, *partial_cluster);
2522 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2524 * If the block range to be freed didn't start at the
2525 * beginning of a cluster, and we removed the entire
2526 * extent and the cluster is not used by any other extent,
2527 * save the partial cluster here, since we might need to
2528 * delete if we determine that the truncate operation has
2529 * removed all of the blocks in the cluster.
2531 * On the other hand, if we did not manage to free the whole
2532 * extent, we have to mark the cluster as used (store negative
2533 * cluster number in partial_cluster).
2535 unaligned = EXT4_PBLK_COFF(sbi, pblk);
2536 if (unaligned && (ee_len == num) &&
2537 (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk))))
2538 *partial_cluster = EXT4_B2C(sbi, pblk);
2539 else if (unaligned)
2540 *partial_cluster = -((long long)EXT4_B2C(sbi, pblk));
2541 else if (*partial_cluster > 0)
2542 *partial_cluster = 0;
2543 } else
2544 ext4_error(sbi->s_sb, "strange request: removal(2) "
2545 "%u-%u from %u:%u\n",
2546 from, to, le32_to_cpu(ex->ee_block), ee_len);
2547 return 0;
2552 * ext4_ext_rm_leaf() Removes the extents associated with the
2553 * blocks appearing between "start" and "end", and splits the extents
2554 * if "start" and "end" appear in the same extent
2556 * @handle: The journal handle
2557 * @inode: The files inode
2558 * @path: The path to the leaf
2559 * @partial_cluster: The cluster which we'll have to free if all extents
2560 * has been released from it. It gets negative in case
2561 * that the cluster is still used.
2562 * @start: The first block to remove
2563 * @end: The last block to remove
2565 static int
2566 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2567 struct ext4_ext_path *path,
2568 long long *partial_cluster,
2569 ext4_lblk_t start, ext4_lblk_t end)
2571 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2572 int err = 0, correct_index = 0;
2573 int depth = ext_depth(inode), credits;
2574 struct ext4_extent_header *eh;
2575 ext4_lblk_t a, b;
2576 unsigned num;
2577 ext4_lblk_t ex_ee_block;
2578 unsigned short ex_ee_len;
2579 unsigned uninitialized = 0;
2580 struct ext4_extent *ex;
2581 ext4_fsblk_t pblk;
2583 /* the header must be checked already in ext4_ext_remove_space() */
2584 ext_debug("truncate since %u in leaf to %u\n", start, end);
2585 if (!path[depth].p_hdr)
2586 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2587 eh = path[depth].p_hdr;
2588 if (unlikely(path[depth].p_hdr == NULL)) {
2589 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2590 return -EIO;
2592 /* find where to start removing */
2593 ex = path[depth].p_ext;
2594 if (!ex)
2595 ex = EXT_LAST_EXTENT(eh);
2597 ex_ee_block = le32_to_cpu(ex->ee_block);
2598 ex_ee_len = ext4_ext_get_actual_len(ex);
2601 * If we're starting with an extent other than the last one in the
2602 * node, we need to see if it shares a cluster with the extent to
2603 * the right (towards the end of the file). If its leftmost cluster
2604 * is this extent's rightmost cluster and it is not cluster aligned,
2605 * we'll mark it as a partial that is not to be deallocated.
2608 if (ex != EXT_LAST_EXTENT(eh)) {
2609 ext4_fsblk_t current_pblk, right_pblk;
2610 long long current_cluster, right_cluster;
2612 current_pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2613 current_cluster = (long long)EXT4_B2C(sbi, current_pblk);
2614 right_pblk = ext4_ext_pblock(ex + 1);
2615 right_cluster = (long long)EXT4_B2C(sbi, right_pblk);
2616 if (current_cluster == right_cluster &&
2617 EXT4_PBLK_COFF(sbi, right_pblk))
2618 *partial_cluster = -right_cluster;
2621 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2623 while (ex >= EXT_FIRST_EXTENT(eh) &&
2624 ex_ee_block + ex_ee_len > start) {
2626 if (ext4_ext_is_uninitialized(ex))
2627 uninitialized = 1;
2628 else
2629 uninitialized = 0;
2631 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2632 uninitialized, ex_ee_len);
2633 path[depth].p_ext = ex;
2635 a = ex_ee_block > start ? ex_ee_block : start;
2636 b = ex_ee_block+ex_ee_len - 1 < end ?
2637 ex_ee_block+ex_ee_len - 1 : end;
2639 ext_debug(" border %u:%u\n", a, b);
2641 /* If this extent is beyond the end of the hole, skip it */
2642 if (end < ex_ee_block) {
2644 * We're going to skip this extent and move to another,
2645 * so if this extent is not cluster aligned we have
2646 * to mark the current cluster as used to avoid
2647 * accidentally freeing it later on
2649 pblk = ext4_ext_pblock(ex);
2650 if (EXT4_PBLK_COFF(sbi, pblk))
2651 *partial_cluster =
2652 -((long long)EXT4_B2C(sbi, pblk));
2653 ex--;
2654 ex_ee_block = le32_to_cpu(ex->ee_block);
2655 ex_ee_len = ext4_ext_get_actual_len(ex);
2656 continue;
2657 } else if (b != ex_ee_block + ex_ee_len - 1) {
2658 EXT4_ERROR_INODE(inode,
2659 "can not handle truncate %u:%u "
2660 "on extent %u:%u",
2661 start, end, ex_ee_block,
2662 ex_ee_block + ex_ee_len - 1);
2663 err = -EIO;
2664 goto out;
2665 } else if (a != ex_ee_block) {
2666 /* remove tail of the extent */
2667 num = a - ex_ee_block;
2668 } else {
2669 /* remove whole extent: excellent! */
2670 num = 0;
2673 * 3 for leaf, sb, and inode plus 2 (bmap and group
2674 * descriptor) for each block group; assume two block
2675 * groups plus ex_ee_len/blocks_per_block_group for
2676 * the worst case
2678 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2679 if (ex == EXT_FIRST_EXTENT(eh)) {
2680 correct_index = 1;
2681 credits += (ext_depth(inode)) + 1;
2683 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2685 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2686 if (err)
2687 goto out;
2689 err = ext4_ext_get_access(handle, inode, path + depth);
2690 if (err)
2691 goto out;
2693 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2694 a, b);
2695 if (err)
2696 goto out;
2698 if (num == 0)
2699 /* this extent is removed; mark slot entirely unused */
2700 ext4_ext_store_pblock(ex, 0);
2702 ex->ee_len = cpu_to_le16(num);
2704 * Do not mark uninitialized if all the blocks in the
2705 * extent have been removed.
2707 if (uninitialized && num)
2708 ext4_ext_mark_uninitialized(ex);
2710 * If the extent was completely released,
2711 * we need to remove it from the leaf
2713 if (num == 0) {
2714 if (end != EXT_MAX_BLOCKS - 1) {
2716 * For hole punching, we need to scoot all the
2717 * extents up when an extent is removed so that
2718 * we dont have blank extents in the middle
2720 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2721 sizeof(struct ext4_extent));
2723 /* Now get rid of the one at the end */
2724 memset(EXT_LAST_EXTENT(eh), 0,
2725 sizeof(struct ext4_extent));
2727 le16_add_cpu(&eh->eh_entries, -1);
2728 } else if (*partial_cluster > 0)
2729 *partial_cluster = 0;
2731 err = ext4_ext_dirty(handle, inode, path + depth);
2732 if (err)
2733 goto out;
2735 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2736 ext4_ext_pblock(ex));
2737 ex--;
2738 ex_ee_block = le32_to_cpu(ex->ee_block);
2739 ex_ee_len = ext4_ext_get_actual_len(ex);
2742 if (correct_index && eh->eh_entries)
2743 err = ext4_ext_correct_indexes(handle, inode, path);
2746 * If there's a partial cluster and at least one extent remains in
2747 * the leaf, free the partial cluster if it isn't shared with the
2748 * current extent. If there's a partial cluster and no extents
2749 * remain in the leaf, it can't be freed here. It can only be
2750 * freed when it's possible to determine if it's not shared with
2751 * any other extent - when the next leaf is processed or when space
2752 * removal is complete.
2754 if (*partial_cluster > 0 && eh->eh_entries &&
2755 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2756 *partial_cluster)) {
2757 int flags = get_default_free_blocks_flags(inode);
2759 ext4_free_blocks(handle, inode, NULL,
2760 EXT4_C2B(sbi, *partial_cluster),
2761 sbi->s_cluster_ratio, flags);
2762 *partial_cluster = 0;
2765 /* if this leaf is free, then we should
2766 * remove it from index block above */
2767 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2768 err = ext4_ext_rm_idx(handle, inode, path, depth);
2770 out:
2771 return err;
2775 * ext4_ext_more_to_rm:
2776 * returns 1 if current index has to be freed (even partial)
2778 static int
2779 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2781 BUG_ON(path->p_idx == NULL);
2783 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2784 return 0;
2787 * if truncate on deeper level happened, it wasn't partial,
2788 * so we have to consider current index for truncation
2790 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2791 return 0;
2792 return 1;
2795 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2796 ext4_lblk_t end)
2798 struct super_block *sb = inode->i_sb;
2799 int depth = ext_depth(inode);
2800 struct ext4_ext_path *path = NULL;
2801 long long partial_cluster = 0;
2802 handle_t *handle;
2803 int i = 0, err = 0;
2805 ext_debug("truncate since %u to %u\n", start, end);
2807 /* probably first extent we're gonna free will be last in block */
2808 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2809 if (IS_ERR(handle))
2810 return PTR_ERR(handle);
2812 again:
2813 trace_ext4_ext_remove_space(inode, start, end, depth);
2816 * Check if we are removing extents inside the extent tree. If that
2817 * is the case, we are going to punch a hole inside the extent tree
2818 * so we have to check whether we need to split the extent covering
2819 * the last block to remove so we can easily remove the part of it
2820 * in ext4_ext_rm_leaf().
2822 if (end < EXT_MAX_BLOCKS - 1) {
2823 struct ext4_extent *ex;
2824 ext4_lblk_t ee_block;
2826 /* find extent for this block */
2827 path = ext4_ext_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2828 if (IS_ERR(path)) {
2829 ext4_journal_stop(handle);
2830 return PTR_ERR(path);
2832 depth = ext_depth(inode);
2833 /* Leaf not may not exist only if inode has no blocks at all */
2834 ex = path[depth].p_ext;
2835 if (!ex) {
2836 if (depth) {
2837 EXT4_ERROR_INODE(inode,
2838 "path[%d].p_hdr == NULL",
2839 depth);
2840 err = -EIO;
2842 goto out;
2845 ee_block = le32_to_cpu(ex->ee_block);
2848 * See if the last block is inside the extent, if so split
2849 * the extent at 'end' block so we can easily remove the
2850 * tail of the first part of the split extent in
2851 * ext4_ext_rm_leaf().
2853 if (end >= ee_block &&
2854 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2855 int split_flag = 0;
2857 if (ext4_ext_is_uninitialized(ex))
2858 split_flag = EXT4_EXT_MARK_UNINIT1 |
2859 EXT4_EXT_MARK_UNINIT2;
2862 * Split the extent in two so that 'end' is the last
2863 * block in the first new extent. Also we should not
2864 * fail removing space due to ENOSPC so try to use
2865 * reserved block if that happens.
2867 err = ext4_split_extent_at(handle, inode, path,
2868 end + 1, split_flag,
2869 EXT4_EX_NOCACHE |
2870 EXT4_GET_BLOCKS_PRE_IO |
2871 EXT4_GET_BLOCKS_METADATA_NOFAIL);
2873 if (err < 0)
2874 goto out;
2878 * We start scanning from right side, freeing all the blocks
2879 * after i_size and walking into the tree depth-wise.
2881 depth = ext_depth(inode);
2882 if (path) {
2883 int k = i = depth;
2884 while (--k > 0)
2885 path[k].p_block =
2886 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2887 } else {
2888 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2889 GFP_NOFS);
2890 if (path == NULL) {
2891 ext4_journal_stop(handle);
2892 return -ENOMEM;
2894 path[0].p_depth = depth;
2895 path[0].p_hdr = ext_inode_hdr(inode);
2896 i = 0;
2898 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2899 err = -EIO;
2900 goto out;
2903 err = 0;
2905 while (i >= 0 && err == 0) {
2906 if (i == depth) {
2907 /* this is leaf block */
2908 err = ext4_ext_rm_leaf(handle, inode, path,
2909 &partial_cluster, start,
2910 end);
2911 /* root level has p_bh == NULL, brelse() eats this */
2912 brelse(path[i].p_bh);
2913 path[i].p_bh = NULL;
2914 i--;
2915 continue;
2918 /* this is index block */
2919 if (!path[i].p_hdr) {
2920 ext_debug("initialize header\n");
2921 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2924 if (!path[i].p_idx) {
2925 /* this level hasn't been touched yet */
2926 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2927 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2928 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2929 path[i].p_hdr,
2930 le16_to_cpu(path[i].p_hdr->eh_entries));
2931 } else {
2932 /* we were already here, see at next index */
2933 path[i].p_idx--;
2936 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2937 i, EXT_FIRST_INDEX(path[i].p_hdr),
2938 path[i].p_idx);
2939 if (ext4_ext_more_to_rm(path + i)) {
2940 struct buffer_head *bh;
2941 /* go to the next level */
2942 ext_debug("move to level %d (block %llu)\n",
2943 i + 1, ext4_idx_pblock(path[i].p_idx));
2944 memset(path + i + 1, 0, sizeof(*path));
2945 bh = read_extent_tree_block(inode,
2946 ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2947 EXT4_EX_NOCACHE);
2948 if (IS_ERR(bh)) {
2949 /* should we reset i_size? */
2950 err = PTR_ERR(bh);
2951 break;
2953 /* Yield here to deal with large extent trees.
2954 * Should be a no-op if we did IO above. */
2955 cond_resched();
2956 if (WARN_ON(i + 1 > depth)) {
2957 err = -EIO;
2958 break;
2960 path[i + 1].p_bh = bh;
2962 /* save actual number of indexes since this
2963 * number is changed at the next iteration */
2964 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2965 i++;
2966 } else {
2967 /* we finished processing this index, go up */
2968 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2969 /* index is empty, remove it;
2970 * handle must be already prepared by the
2971 * truncatei_leaf() */
2972 err = ext4_ext_rm_idx(handle, inode, path, i);
2974 /* root level has p_bh == NULL, brelse() eats this */
2975 brelse(path[i].p_bh);
2976 path[i].p_bh = NULL;
2977 i--;
2978 ext_debug("return to level %d\n", i);
2982 trace_ext4_ext_remove_space_done(inode, start, end, depth,
2983 partial_cluster, path->p_hdr->eh_entries);
2985 /* If we still have something in the partial cluster and we have removed
2986 * even the first extent, then we should free the blocks in the partial
2987 * cluster as well. */
2988 if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) {
2989 int flags = get_default_free_blocks_flags(inode);
2991 ext4_free_blocks(handle, inode, NULL,
2992 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2993 EXT4_SB(sb)->s_cluster_ratio, flags);
2994 partial_cluster = 0;
2997 /* TODO: flexible tree reduction should be here */
2998 if (path->p_hdr->eh_entries == 0) {
3000 * truncate to zero freed all the tree,
3001 * so we need to correct eh_depth
3003 err = ext4_ext_get_access(handle, inode, path);
3004 if (err == 0) {
3005 ext_inode_hdr(inode)->eh_depth = 0;
3006 ext_inode_hdr(inode)->eh_max =
3007 cpu_to_le16(ext4_ext_space_root(inode, 0));
3008 err = ext4_ext_dirty(handle, inode, path);
3011 out:
3012 ext4_ext_drop_refs(path);
3013 kfree(path);
3014 if (err == -EAGAIN) {
3015 path = NULL;
3016 goto again;
3018 ext4_journal_stop(handle);
3020 return err;
3024 * called at mount time
3026 void ext4_ext_init(struct super_block *sb)
3029 * possible initialization would be here
3032 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
3033 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3034 printk(KERN_INFO "EXT4-fs: file extents enabled"
3035 #ifdef AGGRESSIVE_TEST
3036 ", aggressive tests"
3037 #endif
3038 #ifdef CHECK_BINSEARCH
3039 ", check binsearch"
3040 #endif
3041 #ifdef EXTENTS_STATS
3042 ", stats"
3043 #endif
3044 "\n");
3045 #endif
3046 #ifdef EXTENTS_STATS
3047 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3048 EXT4_SB(sb)->s_ext_min = 1 << 30;
3049 EXT4_SB(sb)->s_ext_max = 0;
3050 #endif
3055 * called at umount time
3057 void ext4_ext_release(struct super_block *sb)
3059 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3060 return;
3062 #ifdef EXTENTS_STATS
3063 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3064 struct ext4_sb_info *sbi = EXT4_SB(sb);
3065 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3066 sbi->s_ext_blocks, sbi->s_ext_extents,
3067 sbi->s_ext_blocks / sbi->s_ext_extents);
3068 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3069 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3071 #endif
3074 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3076 ext4_lblk_t ee_block;
3077 ext4_fsblk_t ee_pblock;
3078 unsigned int ee_len;
3080 ee_block = le32_to_cpu(ex->ee_block);
3081 ee_len = ext4_ext_get_actual_len(ex);
3082 ee_pblock = ext4_ext_pblock(ex);
3084 if (ee_len == 0)
3085 return 0;
3087 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3088 EXTENT_STATUS_WRITTEN);
3091 /* FIXME!! we need to try to merge to left or right after zero-out */
3092 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3094 ext4_fsblk_t ee_pblock;
3095 unsigned int ee_len;
3096 int ret;
3098 ee_len = ext4_ext_get_actual_len(ex);
3099 ee_pblock = ext4_ext_pblock(ex);
3101 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
3102 if (ret > 0)
3103 ret = 0;
3105 return ret;
3109 * ext4_split_extent_at() splits an extent at given block.
3111 * @handle: the journal handle
3112 * @inode: the file inode
3113 * @path: the path to the extent
3114 * @split: the logical block where the extent is splitted.
3115 * @split_flags: indicates if the extent could be zeroout if split fails, and
3116 * the states(init or uninit) of new extents.
3117 * @flags: flags used to insert new extent to extent tree.
3120 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3121 * of which are deterimined by split_flag.
3123 * There are two cases:
3124 * a> the extent are splitted into two extent.
3125 * b> split is not needed, and just mark the extent.
3127 * return 0 on success.
3129 static int ext4_split_extent_at(handle_t *handle,
3130 struct inode *inode,
3131 struct ext4_ext_path *path,
3132 ext4_lblk_t split,
3133 int split_flag,
3134 int flags)
3136 ext4_fsblk_t newblock;
3137 ext4_lblk_t ee_block;
3138 struct ext4_extent *ex, newex, orig_ex, zero_ex;
3139 struct ext4_extent *ex2 = NULL;
3140 unsigned int ee_len, depth;
3141 int err = 0;
3143 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3144 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3146 ext_debug("ext4_split_extents_at: inode %lu, logical"
3147 "block %llu\n", inode->i_ino, (unsigned long long)split);
3149 ext4_ext_show_leaf(inode, path);
3151 depth = ext_depth(inode);
3152 ex = path[depth].p_ext;
3153 ee_block = le32_to_cpu(ex->ee_block);
3154 ee_len = ext4_ext_get_actual_len(ex);
3155 newblock = split - ee_block + ext4_ext_pblock(ex);
3157 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3158 BUG_ON(!ext4_ext_is_uninitialized(ex) &&
3159 split_flag & (EXT4_EXT_MAY_ZEROOUT |
3160 EXT4_EXT_MARK_UNINIT1 |
3161 EXT4_EXT_MARK_UNINIT2));
3163 err = ext4_ext_get_access(handle, inode, path + depth);
3164 if (err)
3165 goto out;
3167 if (split == ee_block) {
3169 * case b: block @split is the block that the extent begins with
3170 * then we just change the state of the extent, and splitting
3171 * is not needed.
3173 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3174 ext4_ext_mark_uninitialized(ex);
3175 else
3176 ext4_ext_mark_initialized(ex);
3178 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3179 ext4_ext_try_to_merge(handle, inode, path, ex);
3181 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3182 goto out;
3185 /* case a */
3186 memcpy(&orig_ex, ex, sizeof(orig_ex));
3187 ex->ee_len = cpu_to_le16(split - ee_block);
3188 if (split_flag & EXT4_EXT_MARK_UNINIT1)
3189 ext4_ext_mark_uninitialized(ex);
3192 * path may lead to new leaf, not to original leaf any more
3193 * after ext4_ext_insert_extent() returns,
3195 err = ext4_ext_dirty(handle, inode, path + depth);
3196 if (err)
3197 goto fix_extent_len;
3199 ex2 = &newex;
3200 ex2->ee_block = cpu_to_le32(split);
3201 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
3202 ext4_ext_store_pblock(ex2, newblock);
3203 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3204 ext4_ext_mark_uninitialized(ex2);
3206 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3207 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3208 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3209 if (split_flag & EXT4_EXT_DATA_VALID1) {
3210 err = ext4_ext_zeroout(inode, ex2);
3211 zero_ex.ee_block = ex2->ee_block;
3212 zero_ex.ee_len = cpu_to_le16(
3213 ext4_ext_get_actual_len(ex2));
3214 ext4_ext_store_pblock(&zero_ex,
3215 ext4_ext_pblock(ex2));
3216 } else {
3217 err = ext4_ext_zeroout(inode, ex);
3218 zero_ex.ee_block = ex->ee_block;
3219 zero_ex.ee_len = cpu_to_le16(
3220 ext4_ext_get_actual_len(ex));
3221 ext4_ext_store_pblock(&zero_ex,
3222 ext4_ext_pblock(ex));
3224 } else {
3225 err = ext4_ext_zeroout(inode, &orig_ex);
3226 zero_ex.ee_block = orig_ex.ee_block;
3227 zero_ex.ee_len = cpu_to_le16(
3228 ext4_ext_get_actual_len(&orig_ex));
3229 ext4_ext_store_pblock(&zero_ex,
3230 ext4_ext_pblock(&orig_ex));
3233 if (err)
3234 goto fix_extent_len;
3235 /* update the extent length and mark as initialized */
3236 ex->ee_len = cpu_to_le16(ee_len);
3237 ext4_ext_try_to_merge(handle, inode, path, ex);
3238 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3239 if (err)
3240 goto fix_extent_len;
3242 /* update extent status tree */
3243 err = ext4_zeroout_es(inode, &zero_ex);
3245 goto out;
3246 } else if (err)
3247 goto fix_extent_len;
3249 out:
3250 ext4_ext_show_leaf(inode, path);
3251 return err;
3253 fix_extent_len:
3254 ex->ee_len = orig_ex.ee_len;
3255 ext4_ext_dirty(handle, inode, path + depth);
3256 return err;
3260 * ext4_split_extents() splits an extent and mark extent which is covered
3261 * by @map as split_flags indicates
3263 * It may result in splitting the extent into multiple extents (up to three)
3264 * There are three possibilities:
3265 * a> There is no split required
3266 * b> Splits in two extents: Split is happening at either end of the extent
3267 * c> Splits in three extents: Somone is splitting in middle of the extent
3270 static int ext4_split_extent(handle_t *handle,
3271 struct inode *inode,
3272 struct ext4_ext_path *path,
3273 struct ext4_map_blocks *map,
3274 int split_flag,
3275 int flags)
3277 ext4_lblk_t ee_block;
3278 struct ext4_extent *ex;
3279 unsigned int ee_len, depth;
3280 int err = 0;
3281 int uninitialized;
3282 int split_flag1, flags1;
3283 int allocated = map->m_len;
3285 depth = ext_depth(inode);
3286 ex = path[depth].p_ext;
3287 ee_block = le32_to_cpu(ex->ee_block);
3288 ee_len = ext4_ext_get_actual_len(ex);
3289 uninitialized = ext4_ext_is_uninitialized(ex);
3291 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3292 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3293 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3294 if (uninitialized)
3295 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3296 EXT4_EXT_MARK_UNINIT2;
3297 if (split_flag & EXT4_EXT_DATA_VALID2)
3298 split_flag1 |= EXT4_EXT_DATA_VALID1;
3299 err = ext4_split_extent_at(handle, inode, path,
3300 map->m_lblk + map->m_len, split_flag1, flags1);
3301 if (err)
3302 goto out;
3303 } else {
3304 allocated = ee_len - (map->m_lblk - ee_block);
3307 * Update path is required because previous ext4_split_extent_at() may
3308 * result in split of original leaf or extent zeroout.
3310 ext4_ext_drop_refs(path);
3311 path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3312 if (IS_ERR(path))
3313 return PTR_ERR(path);
3314 depth = ext_depth(inode);
3315 ex = path[depth].p_ext;
3316 uninitialized = ext4_ext_is_uninitialized(ex);
3317 split_flag1 = 0;
3319 if (map->m_lblk >= ee_block) {
3320 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3321 if (uninitialized) {
3322 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3323 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3324 EXT4_EXT_MARK_UNINIT2);
3326 err = ext4_split_extent_at(handle, inode, path,
3327 map->m_lblk, split_flag1, flags);
3328 if (err)
3329 goto out;
3332 ext4_ext_show_leaf(inode, path);
3333 out:
3334 return err ? err : allocated;
3338 * This function is called by ext4_ext_map_blocks() if someone tries to write
3339 * to an uninitialized extent. It may result in splitting the uninitialized
3340 * extent into multiple extents (up to three - one initialized and two
3341 * uninitialized).
3342 * There are three possibilities:
3343 * a> There is no split required: Entire extent should be initialized
3344 * b> Splits in two extents: Write is happening at either end of the extent
3345 * c> Splits in three extents: Somone is writing in middle of the extent
3347 * Pre-conditions:
3348 * - The extent pointed to by 'path' is uninitialized.
3349 * - The extent pointed to by 'path' contains a superset
3350 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3352 * Post-conditions on success:
3353 * - the returned value is the number of blocks beyond map->l_lblk
3354 * that are allocated and initialized.
3355 * It is guaranteed to be >= map->m_len.
3357 static int ext4_ext_convert_to_initialized(handle_t *handle,
3358 struct inode *inode,
3359 struct ext4_map_blocks *map,
3360 struct ext4_ext_path *path,
3361 int flags)
3363 struct ext4_sb_info *sbi;
3364 struct ext4_extent_header *eh;
3365 struct ext4_map_blocks split_map;
3366 struct ext4_extent zero_ex;
3367 struct ext4_extent *ex, *abut_ex;
3368 ext4_lblk_t ee_block, eof_block;
3369 unsigned int ee_len, depth, map_len = map->m_len;
3370 int allocated = 0, max_zeroout = 0;
3371 int err = 0;
3372 int split_flag = 0;
3374 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3375 "block %llu, max_blocks %u\n", inode->i_ino,
3376 (unsigned long long)map->m_lblk, map_len);
3378 sbi = EXT4_SB(inode->i_sb);
3379 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3380 inode->i_sb->s_blocksize_bits;
3381 if (eof_block < map->m_lblk + map_len)
3382 eof_block = map->m_lblk + map_len;
3384 depth = ext_depth(inode);
3385 eh = path[depth].p_hdr;
3386 ex = path[depth].p_ext;
3387 ee_block = le32_to_cpu(ex->ee_block);
3388 ee_len = ext4_ext_get_actual_len(ex);
3389 zero_ex.ee_len = 0;
3391 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3393 /* Pre-conditions */
3394 BUG_ON(!ext4_ext_is_uninitialized(ex));
3395 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3398 * Attempt to transfer newly initialized blocks from the currently
3399 * uninitialized extent to its neighbor. This is much cheaper
3400 * than an insertion followed by a merge as those involve costly
3401 * memmove() calls. Transferring to the left is the common case in
3402 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3403 * followed by append writes.
3405 * Limitations of the current logic:
3406 * - L1: we do not deal with writes covering the whole extent.
3407 * This would require removing the extent if the transfer
3408 * is possible.
3409 * - L2: we only attempt to merge with an extent stored in the
3410 * same extent tree node.
3412 if ((map->m_lblk == ee_block) &&
3413 /* See if we can merge left */
3414 (map_len < ee_len) && /*L1*/
3415 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/
3416 ext4_lblk_t prev_lblk;
3417 ext4_fsblk_t prev_pblk, ee_pblk;
3418 unsigned int prev_len;
3420 abut_ex = ex - 1;
3421 prev_lblk = le32_to_cpu(abut_ex->ee_block);
3422 prev_len = ext4_ext_get_actual_len(abut_ex);
3423 prev_pblk = ext4_ext_pblock(abut_ex);
3424 ee_pblk = ext4_ext_pblock(ex);
3427 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3428 * upon those conditions:
3429 * - C1: abut_ex is initialized,
3430 * - C2: abut_ex is logically abutting ex,
3431 * - C3: abut_ex is physically abutting ex,
3432 * - C4: abut_ex can receive the additional blocks without
3433 * overflowing the (initialized) length limit.
3435 if ((!ext4_ext_is_uninitialized(abut_ex)) && /*C1*/
3436 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3437 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3438 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3439 err = ext4_ext_get_access(handle, inode, path + depth);
3440 if (err)
3441 goto out;
3443 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3444 map, ex, abut_ex);
3446 /* Shift the start of ex by 'map_len' blocks */
3447 ex->ee_block = cpu_to_le32(ee_block + map_len);
3448 ext4_ext_store_pblock(ex, ee_pblk + map_len);
3449 ex->ee_len = cpu_to_le16(ee_len - map_len);
3450 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3452 /* Extend abut_ex by 'map_len' blocks */
3453 abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3455 /* Result: number of initialized blocks past m_lblk */
3456 allocated = map_len;
3458 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3459 (map_len < ee_len) && /*L1*/
3460 ex < EXT_LAST_EXTENT(eh)) { /*L2*/
3461 /* See if we can merge right */
3462 ext4_lblk_t next_lblk;
3463 ext4_fsblk_t next_pblk, ee_pblk;
3464 unsigned int next_len;
3466 abut_ex = ex + 1;
3467 next_lblk = le32_to_cpu(abut_ex->ee_block);
3468 next_len = ext4_ext_get_actual_len(abut_ex);
3469 next_pblk = ext4_ext_pblock(abut_ex);
3470 ee_pblk = ext4_ext_pblock(ex);
3473 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3474 * upon those conditions:
3475 * - C1: abut_ex is initialized,
3476 * - C2: abut_ex is logically abutting ex,
3477 * - C3: abut_ex is physically abutting ex,
3478 * - C4: abut_ex can receive the additional blocks without
3479 * overflowing the (initialized) length limit.
3481 if ((!ext4_ext_is_uninitialized(abut_ex)) && /*C1*/
3482 ((map->m_lblk + map_len) == next_lblk) && /*C2*/
3483 ((ee_pblk + ee_len) == next_pblk) && /*C3*/
3484 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3485 err = ext4_ext_get_access(handle, inode, path + depth);
3486 if (err)
3487 goto out;
3489 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3490 map, ex, abut_ex);
3492 /* Shift the start of abut_ex by 'map_len' blocks */
3493 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3494 ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3495 ex->ee_len = cpu_to_le16(ee_len - map_len);
3496 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3498 /* Extend abut_ex by 'map_len' blocks */
3499 abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3501 /* Result: number of initialized blocks past m_lblk */
3502 allocated = map_len;
3505 if (allocated) {
3506 /* Mark the block containing both extents as dirty */
3507 ext4_ext_dirty(handle, inode, path + depth);
3509 /* Update path to point to the right extent */
3510 path[depth].p_ext = abut_ex;
3511 goto out;
3512 } else
3513 allocated = ee_len - (map->m_lblk - ee_block);
3515 WARN_ON(map->m_lblk < ee_block);
3517 * It is safe to convert extent to initialized via explicit
3518 * zeroout only if extent is fully inside i_size or new_size.
3520 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3522 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3523 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3524 (inode->i_sb->s_blocksize_bits - 10);
3526 /* If extent is less than s_max_zeroout_kb, zeroout directly */
3527 if (max_zeroout && (ee_len <= max_zeroout)) {
3528 err = ext4_ext_zeroout(inode, ex);
3529 if (err)
3530 goto out;
3531 zero_ex.ee_block = ex->ee_block;
3532 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3533 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3535 err = ext4_ext_get_access(handle, inode, path + depth);
3536 if (err)
3537 goto out;
3538 ext4_ext_mark_initialized(ex);
3539 ext4_ext_try_to_merge(handle, inode, path, ex);
3540 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3541 goto out;
3545 * four cases:
3546 * 1. split the extent into three extents.
3547 * 2. split the extent into two extents, zeroout the first half.
3548 * 3. split the extent into two extents, zeroout the second half.
3549 * 4. split the extent into two extents with out zeroout.
3551 split_map.m_lblk = map->m_lblk;
3552 split_map.m_len = map->m_len;
3554 if (max_zeroout && (allocated > map->m_len)) {
3555 if (allocated <= max_zeroout) {
3556 /* case 3 */
3557 zero_ex.ee_block =
3558 cpu_to_le32(map->m_lblk);
3559 zero_ex.ee_len = cpu_to_le16(allocated);
3560 ext4_ext_store_pblock(&zero_ex,
3561 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3562 err = ext4_ext_zeroout(inode, &zero_ex);
3563 if (err)
3564 goto out;
3565 split_map.m_lblk = map->m_lblk;
3566 split_map.m_len = allocated;
3567 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3568 /* case 2 */
3569 if (map->m_lblk != ee_block) {
3570 zero_ex.ee_block = ex->ee_block;
3571 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3572 ee_block);
3573 ext4_ext_store_pblock(&zero_ex,
3574 ext4_ext_pblock(ex));
3575 err = ext4_ext_zeroout(inode, &zero_ex);
3576 if (err)
3577 goto out;
3580 split_map.m_lblk = ee_block;
3581 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3582 allocated = map->m_len;
3586 allocated = ext4_split_extent(handle, inode, path,
3587 &split_map, split_flag, flags);
3588 if (allocated < 0)
3589 err = allocated;
3591 out:
3592 /* If we have gotten a failure, don't zero out status tree */
3593 if (!err)
3594 err = ext4_zeroout_es(inode, &zero_ex);
3595 return err ? err : allocated;
3599 * This function is called by ext4_ext_map_blocks() from
3600 * ext4_get_blocks_dio_write() when DIO to write
3601 * to an uninitialized extent.
3603 * Writing to an uninitialized extent may result in splitting the uninitialized
3604 * extent into multiple initialized/uninitialized extents (up to three)
3605 * There are three possibilities:
3606 * a> There is no split required: Entire extent should be uninitialized
3607 * b> Splits in two extents: Write is happening at either end of the extent
3608 * c> Splits in three extents: Somone is writing in middle of the extent
3610 * This works the same way in the case of initialized -> unwritten conversion.
3612 * One of more index blocks maybe needed if the extent tree grow after
3613 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3614 * complete, we need to split the uninitialized extent before DIO submit
3615 * the IO. The uninitialized extent called at this time will be split
3616 * into three uninitialized extent(at most). After IO complete, the part
3617 * being filled will be convert to initialized by the end_io callback function
3618 * via ext4_convert_unwritten_extents().
3620 * Returns the size of uninitialized extent to be written on success.
3622 static int ext4_split_convert_extents(handle_t *handle,
3623 struct inode *inode,
3624 struct ext4_map_blocks *map,
3625 struct ext4_ext_path *path,
3626 int flags)
3628 ext4_lblk_t eof_block;
3629 ext4_lblk_t ee_block;
3630 struct ext4_extent *ex;
3631 unsigned int ee_len;
3632 int split_flag = 0, depth;
3634 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
3635 __func__, inode->i_ino,
3636 (unsigned long long)map->m_lblk, map->m_len);
3638 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3639 inode->i_sb->s_blocksize_bits;
3640 if (eof_block < map->m_lblk + map->m_len)
3641 eof_block = map->m_lblk + map->m_len;
3643 * It is safe to convert extent to initialized via explicit
3644 * zeroout only if extent is fully insde i_size or new_size.
3646 depth = ext_depth(inode);
3647 ex = path[depth].p_ext;
3648 ee_block = le32_to_cpu(ex->ee_block);
3649 ee_len = ext4_ext_get_actual_len(ex);
3651 /* Convert to unwritten */
3652 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
3653 split_flag |= EXT4_EXT_DATA_VALID1;
3654 /* Convert to initialized */
3655 } else if (flags & EXT4_GET_BLOCKS_CONVERT) {
3656 split_flag |= ee_block + ee_len <= eof_block ?
3657 EXT4_EXT_MAY_ZEROOUT : 0;
3658 split_flag |= (EXT4_EXT_MARK_UNINIT2 | EXT4_EXT_DATA_VALID2);
3660 flags |= EXT4_GET_BLOCKS_PRE_IO;
3661 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3664 static int ext4_convert_initialized_extents(handle_t *handle,
3665 struct inode *inode,
3666 struct ext4_map_blocks *map,
3667 struct ext4_ext_path *path)
3669 struct ext4_extent *ex;
3670 ext4_lblk_t ee_block;
3671 unsigned int ee_len;
3672 int depth;
3673 int err = 0;
3675 depth = ext_depth(inode);
3676 ex = path[depth].p_ext;
3677 ee_block = le32_to_cpu(ex->ee_block);
3678 ee_len = ext4_ext_get_actual_len(ex);
3680 ext_debug("%s: inode %lu, logical"
3681 "block %llu, max_blocks %u\n", __func__, inode->i_ino,
3682 (unsigned long long)ee_block, ee_len);
3684 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3685 err = ext4_split_convert_extents(handle, inode, map, path,
3686 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
3687 if (err < 0)
3688 goto out;
3689 ext4_ext_drop_refs(path);
3690 path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3691 if (IS_ERR(path)) {
3692 err = PTR_ERR(path);
3693 goto out;
3695 depth = ext_depth(inode);
3696 ex = path[depth].p_ext;
3699 err = ext4_ext_get_access(handle, inode, path + depth);
3700 if (err)
3701 goto out;
3702 /* first mark the extent as uninitialized */
3703 ext4_ext_mark_uninitialized(ex);
3705 /* note: ext4_ext_correct_indexes() isn't needed here because
3706 * borders are not changed
3708 ext4_ext_try_to_merge(handle, inode, path, ex);
3710 /* Mark modified extent as dirty */
3711 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3712 out:
3713 ext4_ext_show_leaf(inode, path);
3714 return err;
3718 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3719 struct inode *inode,
3720 struct ext4_map_blocks *map,
3721 struct ext4_ext_path *path)
3723 struct ext4_extent *ex;
3724 ext4_lblk_t ee_block;
3725 unsigned int ee_len;
3726 int depth;
3727 int err = 0;
3729 depth = ext_depth(inode);
3730 ex = path[depth].p_ext;
3731 ee_block = le32_to_cpu(ex->ee_block);
3732 ee_len = ext4_ext_get_actual_len(ex);
3734 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3735 "block %llu, max_blocks %u\n", inode->i_ino,
3736 (unsigned long long)ee_block, ee_len);
3738 /* If extent is larger than requested it is a clear sign that we still
3739 * have some extent state machine issues left. So extent_split is still
3740 * required.
3741 * TODO: Once all related issues will be fixed this situation should be
3742 * illegal.
3744 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3745 #ifdef EXT4_DEBUG
3746 ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3747 " len %u; IO logical block %llu, len %u\n",
3748 inode->i_ino, (unsigned long long)ee_block, ee_len,
3749 (unsigned long long)map->m_lblk, map->m_len);
3750 #endif
3751 err = ext4_split_convert_extents(handle, inode, map, path,
3752 EXT4_GET_BLOCKS_CONVERT);
3753 if (err < 0)
3754 goto out;
3755 ext4_ext_drop_refs(path);
3756 path = ext4_ext_find_extent(inode, map->m_lblk, path, 0);
3757 if (IS_ERR(path)) {
3758 err = PTR_ERR(path);
3759 goto out;
3761 depth = ext_depth(inode);
3762 ex = path[depth].p_ext;
3765 err = ext4_ext_get_access(handle, inode, path + depth);
3766 if (err)
3767 goto out;
3768 /* first mark the extent as initialized */
3769 ext4_ext_mark_initialized(ex);
3771 /* note: ext4_ext_correct_indexes() isn't needed here because
3772 * borders are not changed
3774 ext4_ext_try_to_merge(handle, inode, path, ex);
3776 /* Mark modified extent as dirty */
3777 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3778 out:
3779 ext4_ext_show_leaf(inode, path);
3780 return err;
3783 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3784 sector_t block, int count)
3786 int i;
3787 for (i = 0; i < count; i++)
3788 unmap_underlying_metadata(bdev, block + i);
3792 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3794 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3795 ext4_lblk_t lblk,
3796 struct ext4_ext_path *path,
3797 unsigned int len)
3799 int i, depth;
3800 struct ext4_extent_header *eh;
3801 struct ext4_extent *last_ex;
3803 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3804 return 0;
3806 depth = ext_depth(inode);
3807 eh = path[depth].p_hdr;
3810 * We're going to remove EOFBLOCKS_FL entirely in future so we
3811 * do not care for this case anymore. Simply remove the flag
3812 * if there are no extents.
3814 if (unlikely(!eh->eh_entries))
3815 goto out;
3816 last_ex = EXT_LAST_EXTENT(eh);
3818 * We should clear the EOFBLOCKS_FL flag if we are writing the
3819 * last block in the last extent in the file. We test this by
3820 * first checking to see if the caller to
3821 * ext4_ext_get_blocks() was interested in the last block (or
3822 * a block beyond the last block) in the current extent. If
3823 * this turns out to be false, we can bail out from this
3824 * function immediately.
3826 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3827 ext4_ext_get_actual_len(last_ex))
3828 return 0;
3830 * If the caller does appear to be planning to write at or
3831 * beyond the end of the current extent, we then test to see
3832 * if the current extent is the last extent in the file, by
3833 * checking to make sure it was reached via the rightmost node
3834 * at each level of the tree.
3836 for (i = depth-1; i >= 0; i--)
3837 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3838 return 0;
3839 out:
3840 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3841 return ext4_mark_inode_dirty(handle, inode);
3845 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3847 * Return 1 if there is a delalloc block in the range, otherwise 0.
3849 int ext4_find_delalloc_range(struct inode *inode,
3850 ext4_lblk_t lblk_start,
3851 ext4_lblk_t lblk_end)
3853 struct extent_status es;
3855 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3856 if (es.es_len == 0)
3857 return 0; /* there is no delay extent in this tree */
3858 else if (es.es_lblk <= lblk_start &&
3859 lblk_start < es.es_lblk + es.es_len)
3860 return 1;
3861 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3862 return 1;
3863 else
3864 return 0;
3867 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3869 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3870 ext4_lblk_t lblk_start, lblk_end;
3871 lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3872 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3874 return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3878 * Determines how many complete clusters (out of those specified by the 'map')
3879 * are under delalloc and were reserved quota for.
3880 * This function is called when we are writing out the blocks that were
3881 * originally written with their allocation delayed, but then the space was
3882 * allocated using fallocate() before the delayed allocation could be resolved.
3883 * The cases to look for are:
3884 * ('=' indicated delayed allocated blocks
3885 * '-' indicates non-delayed allocated blocks)
3886 * (a) partial clusters towards beginning and/or end outside of allocated range
3887 * are not delalloc'ed.
3888 * Ex:
3889 * |----c---=|====c====|====c====|===-c----|
3890 * |++++++ allocated ++++++|
3891 * ==> 4 complete clusters in above example
3893 * (b) partial cluster (outside of allocated range) towards either end is
3894 * marked for delayed allocation. In this case, we will exclude that
3895 * cluster.
3896 * Ex:
3897 * |----====c========|========c========|
3898 * |++++++ allocated ++++++|
3899 * ==> 1 complete clusters in above example
3901 * Ex:
3902 * |================c================|
3903 * |++++++ allocated ++++++|
3904 * ==> 0 complete clusters in above example
3906 * The ext4_da_update_reserve_space will be called only if we
3907 * determine here that there were some "entire" clusters that span
3908 * this 'allocated' range.
3909 * In the non-bigalloc case, this function will just end up returning num_blks
3910 * without ever calling ext4_find_delalloc_range.
3912 static unsigned int
3913 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3914 unsigned int num_blks)
3916 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3917 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3918 ext4_lblk_t lblk_from, lblk_to, c_offset;
3919 unsigned int allocated_clusters = 0;
3921 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3922 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3924 /* max possible clusters for this allocation */
3925 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3927 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3929 /* Check towards left side */
3930 c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3931 if (c_offset) {
3932 lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3933 lblk_to = lblk_from + c_offset - 1;
3935 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3936 allocated_clusters--;
3939 /* Now check towards right. */
3940 c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3941 if (allocated_clusters && c_offset) {
3942 lblk_from = lblk_start + num_blks;
3943 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3945 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3946 allocated_clusters--;
3949 return allocated_clusters;
3952 static int
3953 ext4_ext_convert_initialized_extent(handle_t *handle, struct inode *inode,
3954 struct ext4_map_blocks *map,
3955 struct ext4_ext_path *path, int flags,
3956 unsigned int allocated, ext4_fsblk_t newblock)
3958 int ret = 0;
3959 int err = 0;
3962 * Make sure that the extent is no bigger than we support with
3963 * uninitialized extent
3965 if (map->m_len > EXT_UNINIT_MAX_LEN)
3966 map->m_len = EXT_UNINIT_MAX_LEN / 2;
3968 ret = ext4_convert_initialized_extents(handle, inode, map,
3969 path);
3970 if (ret >= 0) {
3971 ext4_update_inode_fsync_trans(handle, inode, 1);
3972 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3973 path, map->m_len);
3974 } else
3975 err = ret;
3976 map->m_flags |= EXT4_MAP_UNWRITTEN;
3977 if (allocated > map->m_len)
3978 allocated = map->m_len;
3979 map->m_len = allocated;
3981 return err ? err : allocated;
3984 static int
3985 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3986 struct ext4_map_blocks *map,
3987 struct ext4_ext_path *path, int flags,
3988 unsigned int allocated, ext4_fsblk_t newblock)
3990 int ret = 0;
3991 int err = 0;
3992 ext4_io_end_t *io = ext4_inode_aio(inode);
3994 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3995 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3996 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3997 flags, allocated);
3998 ext4_ext_show_leaf(inode, path);
4001 * When writing into uninitialized space, we should not fail to
4002 * allocate metadata blocks for the new extent block if needed.
4004 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
4006 trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
4007 allocated, newblock);
4009 /* get_block() before submit the IO, split the extent */
4010 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4011 ret = ext4_split_convert_extents(handle, inode, map,
4012 path, flags | EXT4_GET_BLOCKS_CONVERT);
4013 if (ret <= 0)
4014 goto out;
4016 * Flag the inode(non aio case) or end_io struct (aio case)
4017 * that this IO needs to conversion to written when IO is
4018 * completed
4020 if (io)
4021 ext4_set_io_unwritten_flag(inode, io);
4022 else
4023 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
4024 map->m_flags |= EXT4_MAP_UNWRITTEN;
4025 if (ext4_should_dioread_nolock(inode))
4026 map->m_flags |= EXT4_MAP_UNINIT;
4027 goto out;
4029 /* IO end_io complete, convert the filled extent to written */
4030 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
4031 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
4032 path);
4033 if (ret >= 0) {
4034 ext4_update_inode_fsync_trans(handle, inode, 1);
4035 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4036 path, map->m_len);
4037 } else
4038 err = ret;
4039 map->m_flags |= EXT4_MAP_MAPPED;
4040 map->m_pblk = newblock;
4041 if (allocated > map->m_len)
4042 allocated = map->m_len;
4043 map->m_len = allocated;
4044 goto out2;
4046 /* buffered IO case */
4048 * repeat fallocate creation request
4049 * we already have an unwritten extent
4051 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
4052 map->m_flags |= EXT4_MAP_UNWRITTEN;
4053 goto map_out;
4056 /* buffered READ or buffered write_begin() lookup */
4057 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4059 * We have blocks reserved already. We
4060 * return allocated blocks so that delalloc
4061 * won't do block reservation for us. But
4062 * the buffer head will be unmapped so that
4063 * a read from the block returns 0s.
4065 map->m_flags |= EXT4_MAP_UNWRITTEN;
4066 goto out1;
4069 /* buffered write, writepage time, convert*/
4070 ret = ext4_ext_convert_to_initialized(handle, inode, map, path, flags);
4071 if (ret >= 0)
4072 ext4_update_inode_fsync_trans(handle, inode, 1);
4073 out:
4074 if (ret <= 0) {
4075 err = ret;
4076 goto out2;
4077 } else
4078 allocated = ret;
4079 map->m_flags |= EXT4_MAP_NEW;
4081 * if we allocated more blocks than requested
4082 * we need to make sure we unmap the extra block
4083 * allocated. The actual needed block will get
4084 * unmapped later when we find the buffer_head marked
4085 * new.
4087 if (allocated > map->m_len) {
4088 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
4089 newblock + map->m_len,
4090 allocated - map->m_len);
4091 allocated = map->m_len;
4093 map->m_len = allocated;
4096 * If we have done fallocate with the offset that is already
4097 * delayed allocated, we would have block reservation
4098 * and quota reservation done in the delayed write path.
4099 * But fallocate would have already updated quota and block
4100 * count for this offset. So cancel these reservation
4102 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4103 unsigned int reserved_clusters;
4104 reserved_clusters = get_reserved_cluster_alloc(inode,
4105 map->m_lblk, map->m_len);
4106 if (reserved_clusters)
4107 ext4_da_update_reserve_space(inode,
4108 reserved_clusters,
4112 map_out:
4113 map->m_flags |= EXT4_MAP_MAPPED;
4114 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
4115 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
4116 map->m_len);
4117 if (err < 0)
4118 goto out2;
4120 out1:
4121 if (allocated > map->m_len)
4122 allocated = map->m_len;
4123 ext4_ext_show_leaf(inode, path);
4124 map->m_pblk = newblock;
4125 map->m_len = allocated;
4126 out2:
4127 return err ? err : allocated;
4131 * get_implied_cluster_alloc - check to see if the requested
4132 * allocation (in the map structure) overlaps with a cluster already
4133 * allocated in an extent.
4134 * @sb The filesystem superblock structure
4135 * @map The requested lblk->pblk mapping
4136 * @ex The extent structure which might contain an implied
4137 * cluster allocation
4139 * This function is called by ext4_ext_map_blocks() after we failed to
4140 * find blocks that were already in the inode's extent tree. Hence,
4141 * we know that the beginning of the requested region cannot overlap
4142 * the extent from the inode's extent tree. There are three cases we
4143 * want to catch. The first is this case:
4145 * |--- cluster # N--|
4146 * |--- extent ---| |---- requested region ---|
4147 * |==========|
4149 * The second case that we need to test for is this one:
4151 * |--------- cluster # N ----------------|
4152 * |--- requested region --| |------- extent ----|
4153 * |=======================|
4155 * The third case is when the requested region lies between two extents
4156 * within the same cluster:
4157 * |------------- cluster # N-------------|
4158 * |----- ex -----| |---- ex_right ----|
4159 * |------ requested region ------|
4160 * |================|
4162 * In each of the above cases, we need to set the map->m_pblk and
4163 * map->m_len so it corresponds to the return the extent labelled as
4164 * "|====|" from cluster #N, since it is already in use for data in
4165 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
4166 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4167 * as a new "allocated" block region. Otherwise, we will return 0 and
4168 * ext4_ext_map_blocks() will then allocate one or more new clusters
4169 * by calling ext4_mb_new_blocks().
4171 static int get_implied_cluster_alloc(struct super_block *sb,
4172 struct ext4_map_blocks *map,
4173 struct ext4_extent *ex,
4174 struct ext4_ext_path *path)
4176 struct ext4_sb_info *sbi = EXT4_SB(sb);
4177 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4178 ext4_lblk_t ex_cluster_start, ex_cluster_end;
4179 ext4_lblk_t rr_cluster_start;
4180 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4181 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4182 unsigned short ee_len = ext4_ext_get_actual_len(ex);
4184 /* The extent passed in that we are trying to match */
4185 ex_cluster_start = EXT4_B2C(sbi, ee_block);
4186 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4188 /* The requested region passed into ext4_map_blocks() */
4189 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4191 if ((rr_cluster_start == ex_cluster_end) ||
4192 (rr_cluster_start == ex_cluster_start)) {
4193 if (rr_cluster_start == ex_cluster_end)
4194 ee_start += ee_len - 1;
4195 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
4196 map->m_len = min(map->m_len,
4197 (unsigned) sbi->s_cluster_ratio - c_offset);
4199 * Check for and handle this case:
4201 * |--------- cluster # N-------------|
4202 * |------- extent ----|
4203 * |--- requested region ---|
4204 * |===========|
4207 if (map->m_lblk < ee_block)
4208 map->m_len = min(map->m_len, ee_block - map->m_lblk);
4211 * Check for the case where there is already another allocated
4212 * block to the right of 'ex' but before the end of the cluster.
4214 * |------------- cluster # N-------------|
4215 * |----- ex -----| |---- ex_right ----|
4216 * |------ requested region ------|
4217 * |================|
4219 if (map->m_lblk > ee_block) {
4220 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4221 map->m_len = min(map->m_len, next - map->m_lblk);
4224 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4225 return 1;
4228 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4229 return 0;
4234 * Block allocation/map/preallocation routine for extents based files
4237 * Need to be called with
4238 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4239 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4241 * return > 0, number of of blocks already mapped/allocated
4242 * if create == 0 and these are pre-allocated blocks
4243 * buffer head is unmapped
4244 * otherwise blocks are mapped
4246 * return = 0, if plain look up failed (blocks have not been allocated)
4247 * buffer head is unmapped
4249 * return < 0, error case.
4251 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4252 struct ext4_map_blocks *map, int flags)
4254 struct ext4_ext_path *path = NULL;
4255 struct ext4_extent newex, *ex, *ex2;
4256 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4257 ext4_fsblk_t newblock = 0;
4258 int free_on_err = 0, err = 0, depth, ret;
4259 unsigned int allocated = 0, offset = 0;
4260 unsigned int allocated_clusters = 0;
4261 struct ext4_allocation_request ar;
4262 ext4_io_end_t *io = ext4_inode_aio(inode);
4263 ext4_lblk_t cluster_offset;
4264 int set_unwritten = 0;
4266 ext_debug("blocks %u/%u requested for inode %lu\n",
4267 map->m_lblk, map->m_len, inode->i_ino);
4268 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4270 /* find extent for this block */
4271 path = ext4_ext_find_extent(inode, map->m_lblk, NULL, 0);
4272 if (IS_ERR(path)) {
4273 err = PTR_ERR(path);
4274 path = NULL;
4275 goto out2;
4278 depth = ext_depth(inode);
4281 * consistent leaf must not be empty;
4282 * this situation is possible, though, _during_ tree modification;
4283 * this is why assert can't be put in ext4_ext_find_extent()
4285 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4286 EXT4_ERROR_INODE(inode, "bad extent address "
4287 "lblock: %lu, depth: %d pblock %lld",
4288 (unsigned long) map->m_lblk, depth,
4289 path[depth].p_block);
4290 err = -EIO;
4291 goto out2;
4294 ex = path[depth].p_ext;
4295 if (ex) {
4296 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4297 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4298 unsigned short ee_len;
4302 * Uninitialized extents are treated as holes, except that
4303 * we split out initialized portions during a write.
4305 ee_len = ext4_ext_get_actual_len(ex);
4307 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4309 /* if found extent covers block, simply return it */
4310 if (in_range(map->m_lblk, ee_block, ee_len)) {
4311 newblock = map->m_lblk - ee_block + ee_start;
4312 /* number of remaining blocks in the extent */
4313 allocated = ee_len - (map->m_lblk - ee_block);
4314 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4315 ee_block, ee_len, newblock);
4318 * If the extent is initialized check whether the
4319 * caller wants to convert it to unwritten.
4321 if ((!ext4_ext_is_uninitialized(ex)) &&
4322 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
4323 allocated = ext4_ext_convert_initialized_extent(
4324 handle, inode, map, path, flags,
4325 allocated, newblock);
4326 goto out2;
4327 } else if (!ext4_ext_is_uninitialized(ex))
4328 goto out;
4330 ret = ext4_ext_handle_uninitialized_extents(
4331 handle, inode, map, path, flags,
4332 allocated, newblock);
4333 if (ret < 0)
4334 err = ret;
4335 else
4336 allocated = ret;
4337 goto out2;
4341 if ((sbi->s_cluster_ratio > 1) &&
4342 ext4_find_delalloc_cluster(inode, map->m_lblk))
4343 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4346 * requested block isn't allocated yet;
4347 * we couldn't try to create block if create flag is zero
4349 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4351 * put just found gap into cache to speed up
4352 * subsequent requests
4354 if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
4355 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4356 goto out2;
4360 * Okay, we need to do block allocation.
4362 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4363 newex.ee_block = cpu_to_le32(map->m_lblk);
4364 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4367 * If we are doing bigalloc, check to see if the extent returned
4368 * by ext4_ext_find_extent() implies a cluster we can use.
4370 if (cluster_offset && ex &&
4371 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4372 ar.len = allocated = map->m_len;
4373 newblock = map->m_pblk;
4374 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4375 goto got_allocated_blocks;
4378 /* find neighbour allocated blocks */
4379 ar.lleft = map->m_lblk;
4380 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4381 if (err)
4382 goto out2;
4383 ar.lright = map->m_lblk;
4384 ex2 = NULL;
4385 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4386 if (err)
4387 goto out2;
4389 /* Check if the extent after searching to the right implies a
4390 * cluster we can use. */
4391 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4392 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4393 ar.len = allocated = map->m_len;
4394 newblock = map->m_pblk;
4395 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4396 goto got_allocated_blocks;
4400 * See if request is beyond maximum number of blocks we can have in
4401 * a single extent. For an initialized extent this limit is
4402 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4403 * EXT_UNINIT_MAX_LEN.
4405 if (map->m_len > EXT_INIT_MAX_LEN &&
4406 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4407 map->m_len = EXT_INIT_MAX_LEN;
4408 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4409 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4410 map->m_len = EXT_UNINIT_MAX_LEN;
4412 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4413 newex.ee_len = cpu_to_le16(map->m_len);
4414 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4415 if (err)
4416 allocated = ext4_ext_get_actual_len(&newex);
4417 else
4418 allocated = map->m_len;
4420 /* allocate new block */
4421 ar.inode = inode;
4422 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4423 ar.logical = map->m_lblk;
4425 * We calculate the offset from the beginning of the cluster
4426 * for the logical block number, since when we allocate a
4427 * physical cluster, the physical block should start at the
4428 * same offset from the beginning of the cluster. This is
4429 * needed so that future calls to get_implied_cluster_alloc()
4430 * work correctly.
4432 offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4433 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4434 ar.goal -= offset;
4435 ar.logical -= offset;
4436 if (S_ISREG(inode->i_mode))
4437 ar.flags = EXT4_MB_HINT_DATA;
4438 else
4439 /* disable in-core preallocation for non-regular files */
4440 ar.flags = 0;
4441 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4442 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4443 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4444 if (!newblock)
4445 goto out2;
4446 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4447 ar.goal, newblock, allocated);
4448 free_on_err = 1;
4449 allocated_clusters = ar.len;
4450 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4451 if (ar.len > allocated)
4452 ar.len = allocated;
4454 got_allocated_blocks:
4455 /* try to insert new extent into found leaf and return */
4456 ext4_ext_store_pblock(&newex, newblock + offset);
4457 newex.ee_len = cpu_to_le16(ar.len);
4458 /* Mark uninitialized */
4459 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4460 ext4_ext_mark_uninitialized(&newex);
4461 map->m_flags |= EXT4_MAP_UNWRITTEN;
4463 * io_end structure was created for every IO write to an
4464 * uninitialized extent. To avoid unnecessary conversion,
4465 * here we flag the IO that really needs the conversion.
4466 * For non asycn direct IO case, flag the inode state
4467 * that we need to perform conversion when IO is done.
4469 if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4470 set_unwritten = 1;
4471 if (ext4_should_dioread_nolock(inode))
4472 map->m_flags |= EXT4_MAP_UNINIT;
4475 err = 0;
4476 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4477 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4478 path, ar.len);
4479 if (!err)
4480 err = ext4_ext_insert_extent(handle, inode, path,
4481 &newex, flags);
4483 if (!err && set_unwritten) {
4484 if (io)
4485 ext4_set_io_unwritten_flag(inode, io);
4486 else
4487 ext4_set_inode_state(inode,
4488 EXT4_STATE_DIO_UNWRITTEN);
4491 if (err && free_on_err) {
4492 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4493 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4494 /* free data blocks we just allocated */
4495 /* not a good idea to call discard here directly,
4496 * but otherwise we'd need to call it every free() */
4497 ext4_discard_preallocations(inode);
4498 ext4_free_blocks(handle, inode, NULL, newblock,
4499 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4500 goto out2;
4503 /* previous routine could use block we allocated */
4504 newblock = ext4_ext_pblock(&newex);
4505 allocated = ext4_ext_get_actual_len(&newex);
4506 if (allocated > map->m_len)
4507 allocated = map->m_len;
4508 map->m_flags |= EXT4_MAP_NEW;
4511 * Update reserved blocks/metadata blocks after successful
4512 * block allocation which had been deferred till now.
4514 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4515 unsigned int reserved_clusters;
4517 * Check how many clusters we had reserved this allocated range
4519 reserved_clusters = get_reserved_cluster_alloc(inode,
4520 map->m_lblk, allocated);
4521 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4522 if (reserved_clusters) {
4524 * We have clusters reserved for this range.
4525 * But since we are not doing actual allocation
4526 * and are simply using blocks from previously
4527 * allocated cluster, we should release the
4528 * reservation and not claim quota.
4530 ext4_da_update_reserve_space(inode,
4531 reserved_clusters, 0);
4533 } else {
4534 BUG_ON(allocated_clusters < reserved_clusters);
4535 if (reserved_clusters < allocated_clusters) {
4536 struct ext4_inode_info *ei = EXT4_I(inode);
4537 int reservation = allocated_clusters -
4538 reserved_clusters;
4540 * It seems we claimed few clusters outside of
4541 * the range of this allocation. We should give
4542 * it back to the reservation pool. This can
4543 * happen in the following case:
4545 * * Suppose s_cluster_ratio is 4 (i.e., each
4546 * cluster has 4 blocks. Thus, the clusters
4547 * are [0-3],[4-7],[8-11]...
4548 * * First comes delayed allocation write for
4549 * logical blocks 10 & 11. Since there were no
4550 * previous delayed allocated blocks in the
4551 * range [8-11], we would reserve 1 cluster
4552 * for this write.
4553 * * Next comes write for logical blocks 3 to 8.
4554 * In this case, we will reserve 2 clusters
4555 * (for [0-3] and [4-7]; and not for [8-11] as
4556 * that range has a delayed allocated blocks.
4557 * Thus total reserved clusters now becomes 3.
4558 * * Now, during the delayed allocation writeout
4559 * time, we will first write blocks [3-8] and
4560 * allocate 3 clusters for writing these
4561 * blocks. Also, we would claim all these
4562 * three clusters above.
4563 * * Now when we come here to writeout the
4564 * blocks [10-11], we would expect to claim
4565 * the reservation of 1 cluster we had made
4566 * (and we would claim it since there are no
4567 * more delayed allocated blocks in the range
4568 * [8-11]. But our reserved cluster count had
4569 * already gone to 0.
4571 * Thus, at the step 4 above when we determine
4572 * that there are still some unwritten delayed
4573 * allocated blocks outside of our current
4574 * block range, we should increment the
4575 * reserved clusters count so that when the
4576 * remaining blocks finally gets written, we
4577 * could claim them.
4579 dquot_reserve_block(inode,
4580 EXT4_C2B(sbi, reservation));
4581 spin_lock(&ei->i_block_reservation_lock);
4582 ei->i_reserved_data_blocks += reservation;
4583 spin_unlock(&ei->i_block_reservation_lock);
4586 * We will claim quota for all newly allocated blocks.
4587 * We're updating the reserved space *after* the
4588 * correction above so we do not accidentally free
4589 * all the metadata reservation because we might
4590 * actually need it later on.
4592 ext4_da_update_reserve_space(inode, allocated_clusters,
4598 * Cache the extent and update transaction to commit on fdatasync only
4599 * when it is _not_ an uninitialized extent.
4601 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
4602 ext4_update_inode_fsync_trans(handle, inode, 1);
4603 else
4604 ext4_update_inode_fsync_trans(handle, inode, 0);
4605 out:
4606 if (allocated > map->m_len)
4607 allocated = map->m_len;
4608 ext4_ext_show_leaf(inode, path);
4609 map->m_flags |= EXT4_MAP_MAPPED;
4610 map->m_pblk = newblock;
4611 map->m_len = allocated;
4612 out2:
4613 if (path) {
4614 ext4_ext_drop_refs(path);
4615 kfree(path);
4618 trace_ext4_ext_map_blocks_exit(inode, flags, map,
4619 err ? err : allocated);
4620 ext4_es_lru_add(inode);
4621 return err ? err : allocated;
4624 void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4626 struct super_block *sb = inode->i_sb;
4627 ext4_lblk_t last_block;
4628 int err = 0;
4631 * TODO: optimization is possible here.
4632 * Probably we need not scan at all,
4633 * because page truncation is enough.
4636 /* we have to know where to truncate from in crash case */
4637 EXT4_I(inode)->i_disksize = inode->i_size;
4638 ext4_mark_inode_dirty(handle, inode);
4640 last_block = (inode->i_size + sb->s_blocksize - 1)
4641 >> EXT4_BLOCK_SIZE_BITS(sb);
4642 retry:
4643 err = ext4_es_remove_extent(inode, last_block,
4644 EXT_MAX_BLOCKS - last_block);
4645 if (err == -ENOMEM) {
4646 cond_resched();
4647 congestion_wait(BLK_RW_ASYNC, HZ/50);
4648 goto retry;
4650 if (err) {
4651 ext4_std_error(inode->i_sb, err);
4652 return;
4654 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4655 ext4_std_error(inode->i_sb, err);
4658 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
4659 ext4_lblk_t len, int flags, int mode)
4661 struct inode *inode = file_inode(file);
4662 handle_t *handle;
4663 int ret = 0;
4664 int ret2 = 0;
4665 int retries = 0;
4666 struct ext4_map_blocks map;
4667 unsigned int credits;
4669 map.m_lblk = offset;
4671 * Don't normalize the request if it can fit in one extent so
4672 * that it doesn't get unnecessarily split into multiple
4673 * extents.
4675 if (len <= EXT_UNINIT_MAX_LEN)
4676 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4679 * credits to insert 1 extent into extent tree
4681 credits = ext4_chunk_trans_blocks(inode, len);
4683 retry:
4684 while (ret >= 0 && ret < len) {
4685 map.m_lblk = map.m_lblk + ret;
4686 map.m_len = len = len - ret;
4687 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4688 credits);
4689 if (IS_ERR(handle)) {
4690 ret = PTR_ERR(handle);
4691 break;
4693 ret = ext4_map_blocks(handle, inode, &map, flags);
4694 if (ret <= 0) {
4695 ext4_debug("inode #%lu: block %u: len %u: "
4696 "ext4_ext_map_blocks returned %d",
4697 inode->i_ino, map.m_lblk,
4698 map.m_len, ret);
4699 ext4_mark_inode_dirty(handle, inode);
4700 ret2 = ext4_journal_stop(handle);
4701 break;
4703 ret2 = ext4_journal_stop(handle);
4704 if (ret2)
4705 break;
4707 if (ret == -ENOSPC &&
4708 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4709 ret = 0;
4710 goto retry;
4713 return ret > 0 ? ret2 : ret;
4716 static long ext4_zero_range(struct file *file, loff_t offset,
4717 loff_t len, int mode)
4719 struct inode *inode = file_inode(file);
4720 handle_t *handle = NULL;
4721 unsigned int max_blocks;
4722 loff_t new_size = 0;
4723 int ret = 0;
4724 int flags;
4725 int partial;
4726 loff_t start, end;
4727 ext4_lblk_t lblk;
4728 struct address_space *mapping = inode->i_mapping;
4729 unsigned int blkbits = inode->i_blkbits;
4731 trace_ext4_zero_range(inode, offset, len, mode);
4734 * Write out all dirty pages to avoid race conditions
4735 * Then release them.
4737 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4738 ret = filemap_write_and_wait_range(mapping, offset,
4739 offset + len - 1);
4740 if (ret)
4741 return ret;
4745 * Round up offset. This is not fallocate, we neet to zero out
4746 * blocks, so convert interior block aligned part of the range to
4747 * unwritten and possibly manually zero out unaligned parts of the
4748 * range.
4750 start = round_up(offset, 1 << blkbits);
4751 end = round_down((offset + len), 1 << blkbits);
4753 if (start < offset || end > offset + len)
4754 return -EINVAL;
4755 partial = (offset + len) & ((1 << blkbits) - 1);
4757 lblk = start >> blkbits;
4758 max_blocks = (end >> blkbits);
4759 if (max_blocks < lblk)
4760 max_blocks = 0;
4761 else
4762 max_blocks -= lblk;
4764 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT |
4765 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN;
4766 if (mode & FALLOC_FL_KEEP_SIZE)
4767 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4769 mutex_lock(&inode->i_mutex);
4772 * Indirect files do not support unwritten extnets
4774 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4775 ret = -EOPNOTSUPP;
4776 goto out_mutex;
4779 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4780 offset + len > i_size_read(inode)) {
4781 new_size = offset + len;
4782 ret = inode_newsize_ok(inode, new_size);
4783 if (ret)
4784 goto out_mutex;
4786 * If we have a partial block after EOF we have to allocate
4787 * the entire block.
4789 if (partial)
4790 max_blocks += 1;
4793 if (max_blocks > 0) {
4795 /* Now release the pages and zero block aligned part of pages*/
4796 truncate_pagecache_range(inode, start, end - 1);
4798 /* Wait all existing dio workers, newcomers will block on i_mutex */
4799 ext4_inode_block_unlocked_dio(inode);
4800 inode_dio_wait(inode);
4803 * Remove entire range from the extent status tree.
4805 ret = ext4_es_remove_extent(inode, lblk, max_blocks);
4806 if (ret)
4807 goto out_dio;
4809 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, flags,
4810 mode);
4811 if (ret)
4812 goto out_dio;
4815 handle = ext4_journal_start(inode, EXT4_HT_MISC, 4);
4816 if (IS_ERR(handle)) {
4817 ret = PTR_ERR(handle);
4818 ext4_std_error(inode->i_sb, ret);
4819 goto out_dio;
4822 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4824 if (new_size) {
4825 if (new_size > i_size_read(inode))
4826 i_size_write(inode, new_size);
4827 if (new_size > EXT4_I(inode)->i_disksize)
4828 ext4_update_i_disksize(inode, new_size);
4829 } else {
4831 * Mark that we allocate beyond EOF so the subsequent truncate
4832 * can proceed even if the new size is the same as i_size.
4834 if ((offset + len) > i_size_read(inode))
4835 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4838 ext4_mark_inode_dirty(handle, inode);
4840 /* Zero out partial block at the edges of the range */
4841 ret = ext4_zero_partial_blocks(handle, inode, offset, len);
4843 if (file->f_flags & O_SYNC)
4844 ext4_handle_sync(handle);
4846 ext4_journal_stop(handle);
4847 out_dio:
4848 ext4_inode_resume_unlocked_dio(inode);
4849 out_mutex:
4850 mutex_unlock(&inode->i_mutex);
4851 return ret;
4855 * preallocate space for a file. This implements ext4's fallocate file
4856 * operation, which gets called from sys_fallocate system call.
4857 * For block-mapped files, posix_fallocate should fall back to the method
4858 * of writing zeroes to the required new blocks (the same behavior which is
4859 * expected for file systems which do not support fallocate() system call).
4861 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4863 struct inode *inode = file_inode(file);
4864 handle_t *handle;
4865 loff_t new_size = 0;
4866 unsigned int max_blocks;
4867 int ret = 0;
4868 int flags;
4869 ext4_lblk_t lblk;
4870 struct timespec tv;
4871 unsigned int blkbits = inode->i_blkbits;
4873 /* Return error if mode is not supported */
4874 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4875 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
4876 return -EOPNOTSUPP;
4878 if (mode & FALLOC_FL_PUNCH_HOLE)
4879 return ext4_punch_hole(inode, offset, len);
4881 if (mode & FALLOC_FL_COLLAPSE_RANGE)
4882 return ext4_collapse_range(inode, offset, len);
4884 ret = ext4_convert_inline_data(inode);
4885 if (ret)
4886 return ret;
4889 * currently supporting (pre)allocate mode for extent-based
4890 * files _only_
4892 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4893 return -EOPNOTSUPP;
4895 if (mode & FALLOC_FL_ZERO_RANGE)
4896 return ext4_zero_range(file, offset, len, mode);
4898 trace_ext4_fallocate_enter(inode, offset, len, mode);
4899 lblk = offset >> blkbits;
4901 * We can't just convert len to max_blocks because
4902 * If blocksize = 4096 offset = 3072 and len = 2048
4904 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4905 - lblk;
4907 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4908 if (mode & FALLOC_FL_KEEP_SIZE)
4909 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4911 mutex_lock(&inode->i_mutex);
4913 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4914 offset + len > i_size_read(inode)) {
4915 new_size = offset + len;
4916 ret = inode_newsize_ok(inode, new_size);
4917 if (ret)
4918 goto out;
4921 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, flags, mode);
4922 if (ret)
4923 goto out;
4925 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4926 if (IS_ERR(handle))
4927 goto out;
4929 tv = inode->i_ctime = ext4_current_time(inode);
4931 if (new_size) {
4932 if (new_size > i_size_read(inode)) {
4933 i_size_write(inode, new_size);
4934 inode->i_mtime = tv;
4936 if (new_size > EXT4_I(inode)->i_disksize)
4937 ext4_update_i_disksize(inode, new_size);
4938 } else {
4940 * Mark that we allocate beyond EOF so the subsequent truncate
4941 * can proceed even if the new size is the same as i_size.
4943 if ((offset + len) > i_size_read(inode))
4944 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4946 ext4_mark_inode_dirty(handle, inode);
4947 if (file->f_flags & O_SYNC)
4948 ext4_handle_sync(handle);
4950 ext4_journal_stop(handle);
4951 out:
4952 mutex_unlock(&inode->i_mutex);
4953 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4954 return ret;
4958 * This function convert a range of blocks to written extents
4959 * The caller of this function will pass the start offset and the size.
4960 * all unwritten extents within this range will be converted to
4961 * written extents.
4963 * This function is called from the direct IO end io call back
4964 * function, to convert the fallocated extents after IO is completed.
4965 * Returns 0 on success.
4967 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
4968 loff_t offset, ssize_t len)
4970 unsigned int max_blocks;
4971 int ret = 0;
4972 int ret2 = 0;
4973 struct ext4_map_blocks map;
4974 unsigned int credits, blkbits = inode->i_blkbits;
4976 map.m_lblk = offset >> blkbits;
4978 * We can't just convert len to max_blocks because
4979 * If blocksize = 4096 offset = 3072 and len = 2048
4981 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4982 map.m_lblk);
4984 * This is somewhat ugly but the idea is clear: When transaction is
4985 * reserved, everything goes into it. Otherwise we rather start several
4986 * smaller transactions for conversion of each extent separately.
4988 if (handle) {
4989 handle = ext4_journal_start_reserved(handle,
4990 EXT4_HT_EXT_CONVERT);
4991 if (IS_ERR(handle))
4992 return PTR_ERR(handle);
4993 credits = 0;
4994 } else {
4996 * credits to insert 1 extent into extent tree
4998 credits = ext4_chunk_trans_blocks(inode, max_blocks);
5000 while (ret >= 0 && ret < max_blocks) {
5001 map.m_lblk += ret;
5002 map.m_len = (max_blocks -= ret);
5003 if (credits) {
5004 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
5005 credits);
5006 if (IS_ERR(handle)) {
5007 ret = PTR_ERR(handle);
5008 break;
5011 ret = ext4_map_blocks(handle, inode, &map,
5012 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
5013 if (ret <= 0)
5014 ext4_warning(inode->i_sb,
5015 "inode #%lu: block %u: len %u: "
5016 "ext4_ext_map_blocks returned %d",
5017 inode->i_ino, map.m_lblk,
5018 map.m_len, ret);
5019 ext4_mark_inode_dirty(handle, inode);
5020 if (credits)
5021 ret2 = ext4_journal_stop(handle);
5022 if (ret <= 0 || ret2)
5023 break;
5025 if (!credits)
5026 ret2 = ext4_journal_stop(handle);
5027 return ret > 0 ? ret2 : ret;
5031 * If newes is not existing extent (newes->ec_pblk equals zero) find
5032 * delayed extent at start of newes and update newes accordingly and
5033 * return start of the next delayed extent.
5035 * If newes is existing extent (newes->ec_pblk is not equal zero)
5036 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
5037 * extent found. Leave newes unmodified.
5039 static int ext4_find_delayed_extent(struct inode *inode,
5040 struct extent_status *newes)
5042 struct extent_status es;
5043 ext4_lblk_t block, next_del;
5045 if (newes->es_pblk == 0) {
5046 ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
5047 newes->es_lblk + newes->es_len - 1, &es);
5050 * No extent in extent-tree contains block @newes->es_pblk,
5051 * then the block may stay in 1)a hole or 2)delayed-extent.
5053 if (es.es_len == 0)
5054 /* A hole found. */
5055 return 0;
5057 if (es.es_lblk > newes->es_lblk) {
5058 /* A hole found. */
5059 newes->es_len = min(es.es_lblk - newes->es_lblk,
5060 newes->es_len);
5061 return 0;
5064 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
5067 block = newes->es_lblk + newes->es_len;
5068 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
5069 if (es.es_len == 0)
5070 next_del = EXT_MAX_BLOCKS;
5071 else
5072 next_del = es.es_lblk;
5074 return next_del;
5076 /* fiemap flags we can handle specified here */
5077 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
5079 static int ext4_xattr_fiemap(struct inode *inode,
5080 struct fiemap_extent_info *fieinfo)
5082 __u64 physical = 0;
5083 __u64 length;
5084 __u32 flags = FIEMAP_EXTENT_LAST;
5085 int blockbits = inode->i_sb->s_blocksize_bits;
5086 int error = 0;
5088 /* in-inode? */
5089 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
5090 struct ext4_iloc iloc;
5091 int offset; /* offset of xattr in inode */
5093 error = ext4_get_inode_loc(inode, &iloc);
5094 if (error)
5095 return error;
5096 physical = (__u64)iloc.bh->b_blocknr << blockbits;
5097 offset = EXT4_GOOD_OLD_INODE_SIZE +
5098 EXT4_I(inode)->i_extra_isize;
5099 physical += offset;
5100 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
5101 flags |= FIEMAP_EXTENT_DATA_INLINE;
5102 brelse(iloc.bh);
5103 } else { /* external block */
5104 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
5105 length = inode->i_sb->s_blocksize;
5108 if (physical)
5109 error = fiemap_fill_next_extent(fieinfo, 0, physical,
5110 length, flags);
5111 return (error < 0 ? error : 0);
5114 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5115 __u64 start, __u64 len)
5117 ext4_lblk_t start_blk;
5118 int error = 0;
5120 if (ext4_has_inline_data(inode)) {
5121 int has_inline = 1;
5123 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
5125 if (has_inline)
5126 return error;
5129 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
5130 error = ext4_ext_precache(inode);
5131 if (error)
5132 return error;
5135 /* fallback to generic here if not in extents fmt */
5136 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5137 return generic_block_fiemap(inode, fieinfo, start, len,
5138 ext4_get_block);
5140 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5141 return -EBADR;
5143 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5144 error = ext4_xattr_fiemap(inode, fieinfo);
5145 } else {
5146 ext4_lblk_t len_blks;
5147 __u64 last_blk;
5149 start_blk = start >> inode->i_sb->s_blocksize_bits;
5150 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5151 if (last_blk >= EXT_MAX_BLOCKS)
5152 last_blk = EXT_MAX_BLOCKS-1;
5153 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5156 * Walk the extent tree gathering extent information
5157 * and pushing extents back to the user.
5159 error = ext4_fill_fiemap_extents(inode, start_blk,
5160 len_blks, fieinfo);
5162 ext4_es_lru_add(inode);
5163 return error;
5167 * ext4_access_path:
5168 * Function to access the path buffer for marking it dirty.
5169 * It also checks if there are sufficient credits left in the journal handle
5170 * to update path.
5172 static int
5173 ext4_access_path(handle_t *handle, struct inode *inode,
5174 struct ext4_ext_path *path)
5176 int credits, err;
5178 if (!ext4_handle_valid(handle))
5179 return 0;
5182 * Check if need to extend journal credits
5183 * 3 for leaf, sb, and inode plus 2 (bmap and group
5184 * descriptor) for each block group; assume two block
5185 * groups
5187 if (handle->h_buffer_credits < 7) {
5188 credits = ext4_writepage_trans_blocks(inode);
5189 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
5190 /* EAGAIN is success */
5191 if (err && err != -EAGAIN)
5192 return err;
5195 err = ext4_ext_get_access(handle, inode, path);
5196 return err;
5200 * ext4_ext_shift_path_extents:
5201 * Shift the extents of a path structure lying between path[depth].p_ext
5202 * and EXT_LAST_EXTENT(path[depth].p_hdr) downwards, by subtracting shift
5203 * from starting block for each extent.
5205 static int
5206 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
5207 struct inode *inode, handle_t *handle,
5208 ext4_lblk_t *start)
5210 int depth, err = 0;
5211 struct ext4_extent *ex_start, *ex_last;
5212 bool update = 0;
5213 depth = path->p_depth;
5215 while (depth >= 0) {
5216 if (depth == path->p_depth) {
5217 ex_start = path[depth].p_ext;
5218 if (!ex_start)
5219 return -EIO;
5221 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
5222 if (!ex_last)
5223 return -EIO;
5225 err = ext4_access_path(handle, inode, path + depth);
5226 if (err)
5227 goto out;
5229 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
5230 update = 1;
5232 *start = ex_last->ee_block +
5233 ext4_ext_get_actual_len(ex_last);
5235 while (ex_start <= ex_last) {
5236 ex_start->ee_block -= shift;
5237 if (ex_start >
5238 EXT_FIRST_EXTENT(path[depth].p_hdr)) {
5239 if (ext4_ext_try_to_merge_right(inode,
5240 path, ex_start - 1))
5241 ex_last--;
5243 ex_start++;
5245 err = ext4_ext_dirty(handle, inode, path + depth);
5246 if (err)
5247 goto out;
5249 if (--depth < 0 || !update)
5250 break;
5253 /* Update index too */
5254 err = ext4_access_path(handle, inode, path + depth);
5255 if (err)
5256 goto out;
5258 path[depth].p_idx->ei_block -= shift;
5259 err = ext4_ext_dirty(handle, inode, path + depth);
5260 if (err)
5261 goto out;
5263 /* we are done if current index is not a starting index */
5264 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
5265 break;
5267 depth--;
5270 out:
5271 return err;
5275 * ext4_ext_shift_extents:
5276 * All the extents which lies in the range from start to the last allocated
5277 * block for the file are shifted downwards by shift blocks.
5278 * On success, 0 is returned, error otherwise.
5280 static int
5281 ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5282 ext4_lblk_t start, ext4_lblk_t shift)
5284 struct ext4_ext_path *path;
5285 int ret = 0, depth;
5286 struct ext4_extent *extent;
5287 ext4_lblk_t stop_block, current_block;
5288 ext4_lblk_t ex_start, ex_end;
5290 /* Let path point to the last extent */
5291 path = ext4_ext_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0);
5292 if (IS_ERR(path))
5293 return PTR_ERR(path);
5295 depth = path->p_depth;
5296 extent = path[depth].p_ext;
5297 if (!extent) {
5298 ext4_ext_drop_refs(path);
5299 kfree(path);
5300 return ret;
5303 stop_block = extent->ee_block + ext4_ext_get_actual_len(extent);
5304 ext4_ext_drop_refs(path);
5305 kfree(path);
5307 /* Nothing to shift, if hole is at the end of file */
5308 if (start >= stop_block)
5309 return ret;
5312 * Don't start shifting extents until we make sure the hole is big
5313 * enough to accomodate the shift.
5315 path = ext4_ext_find_extent(inode, start - 1, NULL, 0);
5316 depth = path->p_depth;
5317 extent = path[depth].p_ext;
5318 ex_start = extent->ee_block;
5319 ex_end = extent->ee_block + ext4_ext_get_actual_len(extent);
5320 ext4_ext_drop_refs(path);
5321 kfree(path);
5323 if ((start == ex_start && shift > ex_start) ||
5324 (shift > start - ex_end))
5325 return -EINVAL;
5327 /* Its safe to start updating extents */
5328 while (start < stop_block) {
5329 path = ext4_ext_find_extent(inode, start, NULL, 0);
5330 if (IS_ERR(path))
5331 return PTR_ERR(path);
5332 depth = path->p_depth;
5333 extent = path[depth].p_ext;
5334 current_block = extent->ee_block;
5335 if (start > current_block) {
5336 /* Hole, move to the next extent */
5337 ret = mext_next_extent(inode, path, &extent);
5338 if (ret != 0) {
5339 ext4_ext_drop_refs(path);
5340 kfree(path);
5341 if (ret == 1)
5342 ret = 0;
5343 break;
5346 ret = ext4_ext_shift_path_extents(path, shift, inode,
5347 handle, &start);
5348 ext4_ext_drop_refs(path);
5349 kfree(path);
5350 if (ret)
5351 break;
5354 return ret;
5358 * ext4_collapse_range:
5359 * This implements the fallocate's collapse range functionality for ext4
5360 * Returns: 0 and non-zero on error.
5362 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5364 struct super_block *sb = inode->i_sb;
5365 ext4_lblk_t punch_start, punch_stop;
5366 handle_t *handle;
5367 unsigned int credits;
5368 loff_t new_size;
5369 int ret;
5371 BUG_ON(offset + len > i_size_read(inode));
5373 /* Collapse range works only on fs block size aligned offsets. */
5374 if (offset & (EXT4_BLOCK_SIZE(sb) - 1) ||
5375 len & (EXT4_BLOCK_SIZE(sb) - 1))
5376 return -EINVAL;
5378 if (!S_ISREG(inode->i_mode))
5379 return -EOPNOTSUPP;
5381 trace_ext4_collapse_range(inode, offset, len);
5383 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5384 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5386 /* Write out all dirty pages */
5387 ret = filemap_write_and_wait_range(inode->i_mapping, offset, -1);
5388 if (ret)
5389 return ret;
5391 /* Take mutex lock */
5392 mutex_lock(&inode->i_mutex);
5394 /* It's not possible punch hole on append only file */
5395 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5396 ret = -EPERM;
5397 goto out_mutex;
5400 if (IS_SWAPFILE(inode)) {
5401 ret = -ETXTBSY;
5402 goto out_mutex;
5405 /* Currently just for extent based files */
5406 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5407 ret = -EOPNOTSUPP;
5408 goto out_mutex;
5411 truncate_pagecache_range(inode, offset, -1);
5413 /* Wait for existing dio to complete */
5414 ext4_inode_block_unlocked_dio(inode);
5415 inode_dio_wait(inode);
5417 credits = ext4_writepage_trans_blocks(inode);
5418 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5419 if (IS_ERR(handle)) {
5420 ret = PTR_ERR(handle);
5421 goto out_dio;
5424 down_write(&EXT4_I(inode)->i_data_sem);
5425 ext4_discard_preallocations(inode);
5427 ret = ext4_es_remove_extent(inode, punch_start,
5428 EXT_MAX_BLOCKS - punch_start - 1);
5429 if (ret) {
5430 up_write(&EXT4_I(inode)->i_data_sem);
5431 goto out_stop;
5434 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5435 if (ret) {
5436 up_write(&EXT4_I(inode)->i_data_sem);
5437 goto out_stop;
5440 ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5441 punch_stop - punch_start);
5442 if (ret) {
5443 up_write(&EXT4_I(inode)->i_data_sem);
5444 goto out_stop;
5447 new_size = i_size_read(inode) - len;
5448 truncate_setsize(inode, new_size);
5449 EXT4_I(inode)->i_disksize = new_size;
5451 ext4_discard_preallocations(inode);
5452 up_write(&EXT4_I(inode)->i_data_sem);
5453 if (IS_SYNC(inode))
5454 ext4_handle_sync(handle);
5455 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
5456 ext4_mark_inode_dirty(handle, inode);
5458 out_stop:
5459 ext4_journal_stop(handle);
5460 out_dio:
5461 ext4_inode_resume_unlocked_dio(inode);
5462 out_mutex:
5463 mutex_unlock(&inode->i_mutex);
5464 return ret;