2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
43 #include "ext4_jbd2.h"
48 #include <trace/events/ext4.h>
50 #define MPAGE_DA_EXTENT_TAIL 0x01
52 static __u32
ext4_inode_csum(struct inode
*inode
, struct ext4_inode
*raw
,
53 struct ext4_inode_info
*ei
)
55 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
60 csum_lo
= le16_to_cpu(raw
->i_checksum_lo
);
61 raw
->i_checksum_lo
= 0;
62 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
63 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
)) {
64 csum_hi
= le16_to_cpu(raw
->i_checksum_hi
);
65 raw
->i_checksum_hi
= 0;
68 csum
= ext4_chksum(sbi
, ei
->i_csum_seed
, (__u8
*)raw
,
69 EXT4_INODE_SIZE(inode
->i_sb
));
71 raw
->i_checksum_lo
= cpu_to_le16(csum_lo
);
72 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
73 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
74 raw
->i_checksum_hi
= cpu_to_le16(csum_hi
);
79 static int ext4_inode_csum_verify(struct inode
*inode
, struct ext4_inode
*raw
,
80 struct ext4_inode_info
*ei
)
82 __u32 provided
, calculated
;
84 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
85 cpu_to_le32(EXT4_OS_LINUX
) ||
86 !EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
87 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
))
90 provided
= le16_to_cpu(raw
->i_checksum_lo
);
91 calculated
= ext4_inode_csum(inode
, raw
, ei
);
92 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
93 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
94 provided
|= ((__u32
)le16_to_cpu(raw
->i_checksum_hi
)) << 16;
98 return provided
== calculated
;
101 static void ext4_inode_csum_set(struct inode
*inode
, struct ext4_inode
*raw
,
102 struct ext4_inode_info
*ei
)
106 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
107 cpu_to_le32(EXT4_OS_LINUX
) ||
108 !EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
109 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
))
112 csum
= ext4_inode_csum(inode
, raw
, ei
);
113 raw
->i_checksum_lo
= cpu_to_le16(csum
& 0xFFFF);
114 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
115 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
116 raw
->i_checksum_hi
= cpu_to_le16(csum
>> 16);
119 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
122 trace_ext4_begin_ordered_truncate(inode
, new_size
);
124 * If jinode is zero, then we never opened the file for
125 * writing, so there's no need to call
126 * jbd2_journal_begin_ordered_truncate() since there's no
127 * outstanding writes we need to flush.
129 if (!EXT4_I(inode
)->jinode
)
131 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode
),
132 EXT4_I(inode
)->jinode
,
136 static void ext4_invalidatepage(struct page
*page
, unsigned int offset
,
137 unsigned int length
);
138 static int __ext4_journalled_writepage(struct page
*page
, unsigned int len
);
139 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
);
140 static int ext4_meta_trans_blocks(struct inode
*inode
, int lblocks
,
144 * Test whether an inode is a fast symlink.
146 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
148 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
149 EXT4_CLUSTER_SIZE(inode
->i_sb
) >> 9 : 0;
151 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
155 * Restart the transaction associated with *handle. This does a commit,
156 * so before we call here everything must be consistently dirtied against
159 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
165 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
166 * moment, get_block can be called only for blocks inside i_size since
167 * page cache has been already dropped and writes are blocked by
168 * i_mutex. So we can safely drop the i_data_sem here.
170 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
171 jbd_debug(2, "restarting handle %p\n", handle
);
172 up_write(&EXT4_I(inode
)->i_data_sem
);
173 ret
= ext4_journal_restart(handle
, nblocks
);
174 down_write(&EXT4_I(inode
)->i_data_sem
);
175 ext4_discard_preallocations(inode
);
181 * Called at the last iput() if i_nlink is zero.
183 void ext4_evict_inode(struct inode
*inode
)
188 trace_ext4_evict_inode(inode
);
190 if (inode
->i_nlink
) {
192 * When journalling data dirty buffers are tracked only in the
193 * journal. So although mm thinks everything is clean and
194 * ready for reaping the inode might still have some pages to
195 * write in the running transaction or waiting to be
196 * checkpointed. Thus calling jbd2_journal_invalidatepage()
197 * (via truncate_inode_pages()) to discard these buffers can
198 * cause data loss. Also even if we did not discard these
199 * buffers, we would have no way to find them after the inode
200 * is reaped and thus user could see stale data if he tries to
201 * read them before the transaction is checkpointed. So be
202 * careful and force everything to disk here... We use
203 * ei->i_datasync_tid to store the newest transaction
204 * containing inode's data.
206 * Note that directories do not have this problem because they
207 * don't use page cache.
209 if (ext4_should_journal_data(inode
) &&
210 (S_ISLNK(inode
->i_mode
) || S_ISREG(inode
->i_mode
)) &&
211 inode
->i_ino
!= EXT4_JOURNAL_INO
) {
212 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
213 tid_t commit_tid
= EXT4_I(inode
)->i_datasync_tid
;
215 jbd2_complete_transaction(journal
, commit_tid
);
216 filemap_write_and_wait(&inode
->i_data
);
218 truncate_inode_pages_final(&inode
->i_data
);
220 WARN_ON(atomic_read(&EXT4_I(inode
)->i_ioend_count
));
224 if (!is_bad_inode(inode
))
225 dquot_initialize(inode
);
227 if (ext4_should_order_data(inode
))
228 ext4_begin_ordered_truncate(inode
, 0);
229 truncate_inode_pages_final(&inode
->i_data
);
231 WARN_ON(atomic_read(&EXT4_I(inode
)->i_ioend_count
));
232 if (is_bad_inode(inode
))
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
239 sb_start_intwrite(inode
->i_sb
);
240 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
,
241 ext4_blocks_for_truncate(inode
)+3);
242 if (IS_ERR(handle
)) {
243 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
249 ext4_orphan_del(NULL
, inode
);
250 sb_end_intwrite(inode
->i_sb
);
255 ext4_handle_sync(handle
);
257 err
= ext4_mark_inode_dirty(handle
, inode
);
259 ext4_warning(inode
->i_sb
,
260 "couldn't mark inode dirty (err %d)", err
);
264 ext4_truncate(inode
);
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
272 if (!ext4_handle_has_enough_credits(handle
, 3)) {
273 err
= ext4_journal_extend(handle
, 3);
275 err
= ext4_journal_restart(handle
, 3);
277 ext4_warning(inode
->i_sb
,
278 "couldn't extend journal (err %d)", err
);
280 ext4_journal_stop(handle
);
281 ext4_orphan_del(NULL
, inode
);
282 sb_end_intwrite(inode
->i_sb
);
288 * Kill off the orphan record which ext4_truncate created.
289 * AKPM: I think this can be inside the above `if'.
290 * Note that ext4_orphan_del() has to be able to cope with the
291 * deletion of a non-existent orphan - this is because we don't
292 * know if ext4_truncate() actually created an orphan record.
293 * (Well, we could do this if we need to, but heck - it works)
295 ext4_orphan_del(handle
, inode
);
296 EXT4_I(inode
)->i_dtime
= get_seconds();
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
305 if (ext4_mark_inode_dirty(handle
, inode
))
306 /* If that failed, just do the required in-core inode clear. */
307 ext4_clear_inode(inode
);
309 ext4_free_inode(handle
, inode
);
310 ext4_journal_stop(handle
);
311 sb_end_intwrite(inode
->i_sb
);
314 ext4_clear_inode(inode
); /* We must guarantee clearing of inode... */
318 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
320 return &EXT4_I(inode
)->i_reserved_quota
;
325 * Calculate the number of metadata blocks need to reserve
326 * to allocate a block located at @lblock
328 static int ext4_calc_metadata_amount(struct inode
*inode
, ext4_lblk_t lblock
)
330 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
331 return ext4_ext_calc_metadata_amount(inode
, lblock
);
333 return ext4_ind_calc_metadata_amount(inode
, lblock
);
337 * Called with i_data_sem down, which is important since we can call
338 * ext4_discard_preallocations() from here.
340 void ext4_da_update_reserve_space(struct inode
*inode
,
341 int used
, int quota_claim
)
343 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
344 struct ext4_inode_info
*ei
= EXT4_I(inode
);
346 spin_lock(&ei
->i_block_reservation_lock
);
347 trace_ext4_da_update_reserve_space(inode
, used
, quota_claim
);
348 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
349 ext4_warning(inode
->i_sb
, "%s: ino %lu, used %d "
350 "with only %d reserved data blocks",
351 __func__
, inode
->i_ino
, used
,
352 ei
->i_reserved_data_blocks
);
354 used
= ei
->i_reserved_data_blocks
;
357 if (unlikely(ei
->i_allocated_meta_blocks
> ei
->i_reserved_meta_blocks
)) {
358 ext4_warning(inode
->i_sb
, "ino %lu, allocated %d "
359 "with only %d reserved metadata blocks "
360 "(releasing %d blocks with reserved %d data blocks)",
361 inode
->i_ino
, ei
->i_allocated_meta_blocks
,
362 ei
->i_reserved_meta_blocks
, used
,
363 ei
->i_reserved_data_blocks
);
365 ei
->i_allocated_meta_blocks
= ei
->i_reserved_meta_blocks
;
368 /* Update per-inode reservations */
369 ei
->i_reserved_data_blocks
-= used
;
370 ei
->i_reserved_meta_blocks
-= ei
->i_allocated_meta_blocks
;
371 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
372 used
+ ei
->i_allocated_meta_blocks
);
373 ei
->i_allocated_meta_blocks
= 0;
375 if (ei
->i_reserved_data_blocks
== 0) {
377 * We can release all of the reserved metadata blocks
378 * only when we have written all of the delayed
381 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
382 ei
->i_reserved_meta_blocks
);
383 ei
->i_reserved_meta_blocks
= 0;
384 ei
->i_da_metadata_calc_len
= 0;
386 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
388 /* Update quota subsystem for data blocks */
390 dquot_claim_block(inode
, EXT4_C2B(sbi
, used
));
393 * We did fallocate with an offset that is already delayed
394 * allocated. So on delayed allocated writeback we should
395 * not re-claim the quota for fallocated blocks.
397 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, used
));
401 * If we have done all the pending block allocations and if
402 * there aren't any writers on the inode, we can discard the
403 * inode's preallocations.
405 if ((ei
->i_reserved_data_blocks
== 0) &&
406 (atomic_read(&inode
->i_writecount
) == 0))
407 ext4_discard_preallocations(inode
);
410 static int __check_block_validity(struct inode
*inode
, const char *func
,
412 struct ext4_map_blocks
*map
)
414 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), map
->m_pblk
,
416 ext4_error_inode(inode
, func
, line
, map
->m_pblk
,
417 "lblock %lu mapped to illegal pblock "
418 "(length %d)", (unsigned long) map
->m_lblk
,
425 #define check_block_validity(inode, map) \
426 __check_block_validity((inode), __func__, __LINE__, (map))
428 #ifdef ES_AGGRESSIVE_TEST
429 static void ext4_map_blocks_es_recheck(handle_t
*handle
,
431 struct ext4_map_blocks
*es_map
,
432 struct ext4_map_blocks
*map
,
439 * There is a race window that the result is not the same.
440 * e.g. xfstests #223 when dioread_nolock enables. The reason
441 * is that we lookup a block mapping in extent status tree with
442 * out taking i_data_sem. So at the time the unwritten extent
443 * could be converted.
445 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
446 down_read((&EXT4_I(inode
)->i_data_sem
));
447 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
448 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
449 EXT4_GET_BLOCKS_KEEP_SIZE
);
451 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
452 EXT4_GET_BLOCKS_KEEP_SIZE
);
454 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
455 up_read((&EXT4_I(inode
)->i_data_sem
));
457 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
458 * because it shouldn't be marked in es_map->m_flags.
460 map
->m_flags
&= ~(EXT4_MAP_FROM_CLUSTER
| EXT4_MAP_BOUNDARY
);
463 * We don't check m_len because extent will be collpased in status
464 * tree. So the m_len might not equal.
466 if (es_map
->m_lblk
!= map
->m_lblk
||
467 es_map
->m_flags
!= map
->m_flags
||
468 es_map
->m_pblk
!= map
->m_pblk
) {
469 printk("ES cache assertion failed for inode: %lu "
470 "es_cached ex [%d/%d/%llu/%x] != "
471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 inode
->i_ino
, es_map
->m_lblk
, es_map
->m_len
,
473 es_map
->m_pblk
, es_map
->m_flags
, map
->m_lblk
,
474 map
->m_len
, map
->m_pblk
, map
->m_flags
,
478 #endif /* ES_AGGRESSIVE_TEST */
481 * The ext4_map_blocks() function tries to look up the requested blocks,
482 * and returns if the blocks are already mapped.
484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485 * and store the allocated blocks in the result buffer head and mark it
488 * If file type is extents based, it will call ext4_ext_map_blocks(),
489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
492 * On success, it returns the number of blocks being mapped or allocate.
493 * if create==0 and the blocks are pre-allocated and uninitialized block,
494 * the result buffer head is unmapped. If the create ==1, it will make sure
495 * the buffer head is mapped.
497 * It returns 0 if plain look up failed (blocks have not been allocated), in
498 * that case, buffer head is unmapped
500 * It returns the error in case of allocation failure.
502 int ext4_map_blocks(handle_t
*handle
, struct inode
*inode
,
503 struct ext4_map_blocks
*map
, int flags
)
505 struct extent_status es
;
508 #ifdef ES_AGGRESSIVE_TEST
509 struct ext4_map_blocks orig_map
;
511 memcpy(&orig_map
, map
, sizeof(*map
));
515 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516 "logical block %lu\n", inode
->i_ino
, flags
, map
->m_len
,
517 (unsigned long) map
->m_lblk
);
520 * ext4_map_blocks returns an int, and m_len is an unsigned int
522 if (unlikely(map
->m_len
> INT_MAX
))
523 map
->m_len
= INT_MAX
;
525 /* Lookup extent status tree firstly */
526 if (ext4_es_lookup_extent(inode
, map
->m_lblk
, &es
)) {
527 ext4_es_lru_add(inode
);
528 if (ext4_es_is_written(&es
) || ext4_es_is_unwritten(&es
)) {
529 map
->m_pblk
= ext4_es_pblock(&es
) +
530 map
->m_lblk
- es
.es_lblk
;
531 map
->m_flags
|= ext4_es_is_written(&es
) ?
532 EXT4_MAP_MAPPED
: EXT4_MAP_UNWRITTEN
;
533 retval
= es
.es_len
- (map
->m_lblk
- es
.es_lblk
);
534 if (retval
> map
->m_len
)
537 } else if (ext4_es_is_delayed(&es
) || ext4_es_is_hole(&es
)) {
542 #ifdef ES_AGGRESSIVE_TEST
543 ext4_map_blocks_es_recheck(handle
, inode
, map
,
550 * Try to see if we can get the block without requesting a new
553 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
554 down_read((&EXT4_I(inode
)->i_data_sem
));
555 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
556 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
557 EXT4_GET_BLOCKS_KEEP_SIZE
);
559 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
560 EXT4_GET_BLOCKS_KEEP_SIZE
);
565 if (unlikely(retval
!= map
->m_len
)) {
566 ext4_warning(inode
->i_sb
,
567 "ES len assertion failed for inode "
568 "%lu: retval %d != map->m_len %d",
569 inode
->i_ino
, retval
, map
->m_len
);
573 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
574 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
575 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
576 ext4_find_delalloc_range(inode
, map
->m_lblk
,
577 map
->m_lblk
+ map
->m_len
- 1))
578 status
|= EXTENT_STATUS_DELAYED
;
579 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
,
580 map
->m_len
, map
->m_pblk
, status
);
584 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
585 up_read((&EXT4_I(inode
)->i_data_sem
));
588 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
589 ret
= check_block_validity(inode
, map
);
594 /* If it is only a block(s) look up */
595 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
599 * Returns if the blocks have already allocated
601 * Note that if blocks have been preallocated
602 * ext4_ext_get_block() returns the create = 0
603 * with buffer head unmapped.
605 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
607 * If we need to convert extent to unwritten
608 * we continue and do the actual work in
609 * ext4_ext_map_blocks()
611 if (!(flags
& EXT4_GET_BLOCKS_CONVERT_UNWRITTEN
))
615 * Here we clear m_flags because after allocating an new extent,
616 * it will be set again.
618 map
->m_flags
&= ~EXT4_MAP_FLAGS
;
621 * New blocks allocate and/or writing to uninitialized extent
622 * will possibly result in updating i_data, so we take
623 * the write lock of i_data_sem, and call get_blocks()
624 * with create == 1 flag.
626 down_write((&EXT4_I(inode
)->i_data_sem
));
629 * if the caller is from delayed allocation writeout path
630 * we have already reserved fs blocks for allocation
631 * let the underlying get_block() function know to
632 * avoid double accounting
634 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
635 ext4_set_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
637 * We need to check for EXT4 here because migrate
638 * could have changed the inode type in between
640 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
641 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
);
643 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
);
645 if (retval
> 0 && map
->m_flags
& EXT4_MAP_NEW
) {
647 * We allocated new blocks which will result in
648 * i_data's format changing. Force the migrate
649 * to fail by clearing migrate flags
651 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
655 * Update reserved blocks/metadata blocks after successful
656 * block allocation which had been deferred till now. We don't
657 * support fallocate for non extent files. So we can update
658 * reserve space here.
661 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
662 ext4_da_update_reserve_space(inode
, retval
, 1);
664 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
665 ext4_clear_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
670 if (unlikely(retval
!= map
->m_len
)) {
671 ext4_warning(inode
->i_sb
,
672 "ES len assertion failed for inode "
673 "%lu: retval %d != map->m_len %d",
674 inode
->i_ino
, retval
, map
->m_len
);
679 * If the extent has been zeroed out, we don't need to update
680 * extent status tree.
682 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
) &&
683 ext4_es_lookup_extent(inode
, map
->m_lblk
, &es
)) {
684 if (ext4_es_is_written(&es
))
687 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
688 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
689 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
690 ext4_find_delalloc_range(inode
, map
->m_lblk
,
691 map
->m_lblk
+ map
->m_len
- 1))
692 status
|= EXTENT_STATUS_DELAYED
;
693 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
694 map
->m_pblk
, status
);
700 up_write((&EXT4_I(inode
)->i_data_sem
));
701 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
702 ret
= check_block_validity(inode
, map
);
709 /* Maximum number of blocks we map for direct IO at once. */
710 #define DIO_MAX_BLOCKS 4096
712 static int _ext4_get_block(struct inode
*inode
, sector_t iblock
,
713 struct buffer_head
*bh
, int flags
)
715 handle_t
*handle
= ext4_journal_current_handle();
716 struct ext4_map_blocks map
;
717 int ret
= 0, started
= 0;
720 if (ext4_has_inline_data(inode
))
724 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
726 if (flags
&& !(flags
& EXT4_GET_BLOCKS_NO_LOCK
) && !handle
) {
727 /* Direct IO write... */
728 if (map
.m_len
> DIO_MAX_BLOCKS
)
729 map
.m_len
= DIO_MAX_BLOCKS
;
730 dio_credits
= ext4_chunk_trans_blocks(inode
, map
.m_len
);
731 handle
= ext4_journal_start(inode
, EXT4_HT_MAP_BLOCKS
,
733 if (IS_ERR(handle
)) {
734 ret
= PTR_ERR(handle
);
740 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
742 ext4_io_end_t
*io_end
= ext4_inode_aio(inode
);
744 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
745 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
746 if (io_end
&& io_end
->flag
& EXT4_IO_END_UNWRITTEN
)
747 set_buffer_defer_completion(bh
);
748 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
752 ext4_journal_stop(handle
);
756 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
757 struct buffer_head
*bh
, int create
)
759 return _ext4_get_block(inode
, iblock
, bh
,
760 create
? EXT4_GET_BLOCKS_CREATE
: 0);
764 * `handle' can be NULL if create is zero
766 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
767 ext4_lblk_t block
, int create
, int *errp
)
769 struct ext4_map_blocks map
;
770 struct buffer_head
*bh
;
773 J_ASSERT(handle
!= NULL
|| create
== 0);
777 err
= ext4_map_blocks(handle
, inode
, &map
,
778 create
? EXT4_GET_BLOCKS_CREATE
: 0);
780 /* ensure we send some value back into *errp */
783 if (create
&& err
== 0)
784 err
= -ENOSPC
; /* should never happen */
790 bh
= sb_getblk(inode
->i_sb
, map
.m_pblk
);
795 if (map
.m_flags
& EXT4_MAP_NEW
) {
796 J_ASSERT(create
!= 0);
797 J_ASSERT(handle
!= NULL
);
800 * Now that we do not always journal data, we should
801 * keep in mind whether this should always journal the
802 * new buffer as metadata. For now, regular file
803 * writes use ext4_get_block instead, so it's not a
807 BUFFER_TRACE(bh
, "call get_create_access");
808 fatal
= ext4_journal_get_create_access(handle
, bh
);
809 if (!fatal
&& !buffer_uptodate(bh
)) {
810 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
811 set_buffer_uptodate(bh
);
814 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
815 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
819 BUFFER_TRACE(bh
, "not a new buffer");
829 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
830 ext4_lblk_t block
, int create
, int *err
)
832 struct buffer_head
*bh
;
834 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
837 if (buffer_uptodate(bh
))
839 ll_rw_block(READ
| REQ_META
| REQ_PRIO
, 1, &bh
);
841 if (buffer_uptodate(bh
))
848 int ext4_walk_page_buffers(handle_t
*handle
,
849 struct buffer_head
*head
,
853 int (*fn
)(handle_t
*handle
,
854 struct buffer_head
*bh
))
856 struct buffer_head
*bh
;
857 unsigned block_start
, block_end
;
858 unsigned blocksize
= head
->b_size
;
860 struct buffer_head
*next
;
862 for (bh
= head
, block_start
= 0;
863 ret
== 0 && (bh
!= head
|| !block_start
);
864 block_start
= block_end
, bh
= next
) {
865 next
= bh
->b_this_page
;
866 block_end
= block_start
+ blocksize
;
867 if (block_end
<= from
|| block_start
>= to
) {
868 if (partial
&& !buffer_uptodate(bh
))
872 err
= (*fn
)(handle
, bh
);
880 * To preserve ordering, it is essential that the hole instantiation and
881 * the data write be encapsulated in a single transaction. We cannot
882 * close off a transaction and start a new one between the ext4_get_block()
883 * and the commit_write(). So doing the jbd2_journal_start at the start of
884 * prepare_write() is the right place.
886 * Also, this function can nest inside ext4_writepage(). In that case, we
887 * *know* that ext4_writepage() has generated enough buffer credits to do the
888 * whole page. So we won't block on the journal in that case, which is good,
889 * because the caller may be PF_MEMALLOC.
891 * By accident, ext4 can be reentered when a transaction is open via
892 * quota file writes. If we were to commit the transaction while thus
893 * reentered, there can be a deadlock - we would be holding a quota
894 * lock, and the commit would never complete if another thread had a
895 * transaction open and was blocking on the quota lock - a ranking
898 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
899 * will _not_ run commit under these circumstances because handle->h_ref
900 * is elevated. We'll still have enough credits for the tiny quotafile
903 int do_journal_get_write_access(handle_t
*handle
,
904 struct buffer_head
*bh
)
906 int dirty
= buffer_dirty(bh
);
909 if (!buffer_mapped(bh
) || buffer_freed(bh
))
912 * __block_write_begin() could have dirtied some buffers. Clean
913 * the dirty bit as jbd2_journal_get_write_access() could complain
914 * otherwise about fs integrity issues. Setting of the dirty bit
915 * by __block_write_begin() isn't a real problem here as we clear
916 * the bit before releasing a page lock and thus writeback cannot
917 * ever write the buffer.
920 clear_buffer_dirty(bh
);
921 ret
= ext4_journal_get_write_access(handle
, bh
);
923 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
927 static int ext4_get_block_write_nolock(struct inode
*inode
, sector_t iblock
,
928 struct buffer_head
*bh_result
, int create
);
929 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
930 loff_t pos
, unsigned len
, unsigned flags
,
931 struct page
**pagep
, void **fsdata
)
933 struct inode
*inode
= mapping
->host
;
934 int ret
, needed_blocks
;
941 trace_ext4_write_begin(inode
, pos
, len
, flags
);
943 * Reserve one block more for addition to orphan list in case
944 * we allocate blocks but write fails for some reason
946 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
947 index
= pos
>> PAGE_CACHE_SHIFT
;
948 from
= pos
& (PAGE_CACHE_SIZE
- 1);
951 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
952 ret
= ext4_try_to_write_inline_data(mapping
, inode
, pos
, len
,
961 * grab_cache_page_write_begin() can take a long time if the
962 * system is thrashing due to memory pressure, or if the page
963 * is being written back. So grab it first before we start
964 * the transaction handle. This also allows us to allocate
965 * the page (if needed) without using GFP_NOFS.
968 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
974 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
, needed_blocks
);
975 if (IS_ERR(handle
)) {
976 page_cache_release(page
);
977 return PTR_ERR(handle
);
981 if (page
->mapping
!= mapping
) {
982 /* The page got truncated from under us */
984 page_cache_release(page
);
985 ext4_journal_stop(handle
);
988 /* In case writeback began while the page was unlocked */
989 wait_for_stable_page(page
);
991 if (ext4_should_dioread_nolock(inode
))
992 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block_write
);
994 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block
);
996 if (!ret
&& ext4_should_journal_data(inode
)) {
997 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
),
999 do_journal_get_write_access
);
1005 * __block_write_begin may have instantiated a few blocks
1006 * outside i_size. Trim these off again. Don't need
1007 * i_size_read because we hold i_mutex.
1009 * Add inode to orphan list in case we crash before
1012 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1013 ext4_orphan_add(handle
, inode
);
1015 ext4_journal_stop(handle
);
1016 if (pos
+ len
> inode
->i_size
) {
1017 ext4_truncate_failed_write(inode
);
1019 * If truncate failed early the inode might
1020 * still be on the orphan list; we need to
1021 * make sure the inode is removed from the
1022 * orphan list in that case.
1025 ext4_orphan_del(NULL
, inode
);
1028 if (ret
== -ENOSPC
&&
1029 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1031 page_cache_release(page
);
1038 /* For write_end() in data=journal mode */
1039 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1042 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1044 set_buffer_uptodate(bh
);
1045 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1046 clear_buffer_meta(bh
);
1047 clear_buffer_prio(bh
);
1052 * We need to pick up the new inode size which generic_commit_write gave us
1053 * `file' can be NULL - eg, when called from page_symlink().
1055 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1056 * buffers are managed internally.
1058 static int ext4_write_end(struct file
*file
,
1059 struct address_space
*mapping
,
1060 loff_t pos
, unsigned len
, unsigned copied
,
1061 struct page
*page
, void *fsdata
)
1063 handle_t
*handle
= ext4_journal_current_handle();
1064 struct inode
*inode
= mapping
->host
;
1066 int i_size_changed
= 0;
1068 trace_ext4_write_end(inode
, pos
, len
, copied
);
1069 if (ext4_test_inode_state(inode
, EXT4_STATE_ORDERED_MODE
)) {
1070 ret
= ext4_jbd2_file_inode(handle
, inode
);
1073 page_cache_release(page
);
1078 if (ext4_has_inline_data(inode
)) {
1079 ret
= ext4_write_inline_data_end(inode
, pos
, len
,
1085 copied
= block_write_end(file
, mapping
, pos
,
1086 len
, copied
, page
, fsdata
);
1089 * No need to use i_size_read() here, the i_size
1090 * cannot change under us because we hole i_mutex.
1092 * But it's important to update i_size while still holding page lock:
1093 * page writeout could otherwise come in and zero beyond i_size.
1095 if (pos
+ copied
> inode
->i_size
) {
1096 i_size_write(inode
, pos
+ copied
);
1100 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
1101 /* We need to mark inode dirty even if
1102 * new_i_size is less that inode->i_size
1103 * but greater than i_disksize. (hint delalloc)
1105 ext4_update_i_disksize(inode
, (pos
+ copied
));
1109 page_cache_release(page
);
1112 * Don't mark the inode dirty under page lock. First, it unnecessarily
1113 * makes the holding time of page lock longer. Second, it forces lock
1114 * ordering of page lock and transaction start for journaling
1118 ext4_mark_inode_dirty(handle
, inode
);
1120 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1121 /* if we have allocated more blocks and copied
1122 * less. We will have blocks allocated outside
1123 * inode->i_size. So truncate them
1125 ext4_orphan_add(handle
, inode
);
1127 ret2
= ext4_journal_stop(handle
);
1131 if (pos
+ len
> inode
->i_size
) {
1132 ext4_truncate_failed_write(inode
);
1134 * If truncate failed early the inode might still be
1135 * on the orphan list; we need to make sure the inode
1136 * is removed from the orphan list in that case.
1139 ext4_orphan_del(NULL
, inode
);
1142 return ret
? ret
: copied
;
1145 static int ext4_journalled_write_end(struct file
*file
,
1146 struct address_space
*mapping
,
1147 loff_t pos
, unsigned len
, unsigned copied
,
1148 struct page
*page
, void *fsdata
)
1150 handle_t
*handle
= ext4_journal_current_handle();
1151 struct inode
*inode
= mapping
->host
;
1157 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1158 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1161 BUG_ON(!ext4_handle_valid(handle
));
1163 if (ext4_has_inline_data(inode
))
1164 copied
= ext4_write_inline_data_end(inode
, pos
, len
,
1168 if (!PageUptodate(page
))
1170 page_zero_new_buffers(page
, from
+copied
, to
);
1173 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
), from
,
1174 to
, &partial
, write_end_fn
);
1176 SetPageUptodate(page
);
1178 new_i_size
= pos
+ copied
;
1179 if (new_i_size
> inode
->i_size
)
1180 i_size_write(inode
, pos
+copied
);
1181 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1182 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1183 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1184 ext4_update_i_disksize(inode
, new_i_size
);
1185 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1191 page_cache_release(page
);
1192 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1193 /* if we have allocated more blocks and copied
1194 * less. We will have blocks allocated outside
1195 * inode->i_size. So truncate them
1197 ext4_orphan_add(handle
, inode
);
1199 ret2
= ext4_journal_stop(handle
);
1202 if (pos
+ len
> inode
->i_size
) {
1203 ext4_truncate_failed_write(inode
);
1205 * If truncate failed early the inode might still be
1206 * on the orphan list; we need to make sure the inode
1207 * is removed from the orphan list in that case.
1210 ext4_orphan_del(NULL
, inode
);
1213 return ret
? ret
: copied
;
1217 * Reserve a metadata for a single block located at lblock
1219 static int ext4_da_reserve_metadata(struct inode
*inode
, ext4_lblk_t lblock
)
1221 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1222 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1223 unsigned int md_needed
;
1224 ext4_lblk_t save_last_lblock
;
1228 * recalculate the amount of metadata blocks to reserve
1229 * in order to allocate nrblocks
1230 * worse case is one extent per block
1232 spin_lock(&ei
->i_block_reservation_lock
);
1234 * ext4_calc_metadata_amount() has side effects, which we have
1235 * to be prepared undo if we fail to claim space.
1237 save_len
= ei
->i_da_metadata_calc_len
;
1238 save_last_lblock
= ei
->i_da_metadata_calc_last_lblock
;
1239 md_needed
= EXT4_NUM_B2C(sbi
,
1240 ext4_calc_metadata_amount(inode
, lblock
));
1241 trace_ext4_da_reserve_space(inode
, md_needed
);
1244 * We do still charge estimated metadata to the sb though;
1245 * we cannot afford to run out of free blocks.
1247 if (ext4_claim_free_clusters(sbi
, md_needed
, 0)) {
1248 ei
->i_da_metadata_calc_len
= save_len
;
1249 ei
->i_da_metadata_calc_last_lblock
= save_last_lblock
;
1250 spin_unlock(&ei
->i_block_reservation_lock
);
1253 ei
->i_reserved_meta_blocks
+= md_needed
;
1254 spin_unlock(&ei
->i_block_reservation_lock
);
1256 return 0; /* success */
1260 * Reserve a single cluster located at lblock
1262 static int ext4_da_reserve_space(struct inode
*inode
, ext4_lblk_t lblock
)
1264 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1265 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1266 unsigned int md_needed
;
1268 ext4_lblk_t save_last_lblock
;
1272 * We will charge metadata quota at writeout time; this saves
1273 * us from metadata over-estimation, though we may go over by
1274 * a small amount in the end. Here we just reserve for data.
1276 ret
= dquot_reserve_block(inode
, EXT4_C2B(sbi
, 1));
1281 * recalculate the amount of metadata blocks to reserve
1282 * in order to allocate nrblocks
1283 * worse case is one extent per block
1285 spin_lock(&ei
->i_block_reservation_lock
);
1287 * ext4_calc_metadata_amount() has side effects, which we have
1288 * to be prepared undo if we fail to claim space.
1290 save_len
= ei
->i_da_metadata_calc_len
;
1291 save_last_lblock
= ei
->i_da_metadata_calc_last_lblock
;
1292 md_needed
= EXT4_NUM_B2C(sbi
,
1293 ext4_calc_metadata_amount(inode
, lblock
));
1294 trace_ext4_da_reserve_space(inode
, md_needed
);
1297 * We do still charge estimated metadata to the sb though;
1298 * we cannot afford to run out of free blocks.
1300 if (ext4_claim_free_clusters(sbi
, md_needed
+ 1, 0)) {
1301 ei
->i_da_metadata_calc_len
= save_len
;
1302 ei
->i_da_metadata_calc_last_lblock
= save_last_lblock
;
1303 spin_unlock(&ei
->i_block_reservation_lock
);
1304 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, 1));
1307 ei
->i_reserved_data_blocks
++;
1308 ei
->i_reserved_meta_blocks
+= md_needed
;
1309 spin_unlock(&ei
->i_block_reservation_lock
);
1311 return 0; /* success */
1314 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1316 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1317 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1320 return; /* Nothing to release, exit */
1322 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1324 trace_ext4_da_release_space(inode
, to_free
);
1325 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1327 * if there aren't enough reserved blocks, then the
1328 * counter is messed up somewhere. Since this
1329 * function is called from invalidate page, it's
1330 * harmless to return without any action.
1332 ext4_warning(inode
->i_sb
, "ext4_da_release_space: "
1333 "ino %lu, to_free %d with only %d reserved "
1334 "data blocks", inode
->i_ino
, to_free
,
1335 ei
->i_reserved_data_blocks
);
1337 to_free
= ei
->i_reserved_data_blocks
;
1339 ei
->i_reserved_data_blocks
-= to_free
;
1341 if (ei
->i_reserved_data_blocks
== 0) {
1343 * We can release all of the reserved metadata blocks
1344 * only when we have written all of the delayed
1345 * allocation blocks.
1346 * Note that in case of bigalloc, i_reserved_meta_blocks,
1347 * i_reserved_data_blocks, etc. refer to number of clusters.
1349 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
1350 ei
->i_reserved_meta_blocks
);
1351 ei
->i_reserved_meta_blocks
= 0;
1352 ei
->i_da_metadata_calc_len
= 0;
1355 /* update fs dirty data blocks counter */
1356 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, to_free
);
1358 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1360 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, to_free
));
1363 static void ext4_da_page_release_reservation(struct page
*page
,
1364 unsigned int offset
,
1365 unsigned int length
)
1368 struct buffer_head
*head
, *bh
;
1369 unsigned int curr_off
= 0;
1370 struct inode
*inode
= page
->mapping
->host
;
1371 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1372 unsigned int stop
= offset
+ length
;
1376 BUG_ON(stop
> PAGE_CACHE_SIZE
|| stop
< length
);
1378 head
= page_buffers(page
);
1381 unsigned int next_off
= curr_off
+ bh
->b_size
;
1383 if (next_off
> stop
)
1386 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1388 clear_buffer_delay(bh
);
1390 curr_off
= next_off
;
1391 } while ((bh
= bh
->b_this_page
) != head
);
1394 lblk
= page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1395 ext4_es_remove_extent(inode
, lblk
, to_release
);
1398 /* If we have released all the blocks belonging to a cluster, then we
1399 * need to release the reserved space for that cluster. */
1400 num_clusters
= EXT4_NUM_B2C(sbi
, to_release
);
1401 while (num_clusters
> 0) {
1402 lblk
= (page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
)) +
1403 ((num_clusters
- 1) << sbi
->s_cluster_bits
);
1404 if (sbi
->s_cluster_ratio
== 1 ||
1405 !ext4_find_delalloc_cluster(inode
, lblk
))
1406 ext4_da_release_space(inode
, 1);
1413 * Delayed allocation stuff
1416 struct mpage_da_data
{
1417 struct inode
*inode
;
1418 struct writeback_control
*wbc
;
1420 pgoff_t first_page
; /* The first page to write */
1421 pgoff_t next_page
; /* Current page to examine */
1422 pgoff_t last_page
; /* Last page to examine */
1424 * Extent to map - this can be after first_page because that can be
1425 * fully mapped. We somewhat abuse m_flags to store whether the extent
1426 * is delalloc or unwritten.
1428 struct ext4_map_blocks map
;
1429 struct ext4_io_submit io_submit
; /* IO submission data */
1432 static void mpage_release_unused_pages(struct mpage_da_data
*mpd
,
1437 struct pagevec pvec
;
1438 struct inode
*inode
= mpd
->inode
;
1439 struct address_space
*mapping
= inode
->i_mapping
;
1441 /* This is necessary when next_page == 0. */
1442 if (mpd
->first_page
>= mpd
->next_page
)
1445 index
= mpd
->first_page
;
1446 end
= mpd
->next_page
- 1;
1448 ext4_lblk_t start
, last
;
1449 start
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1450 last
= end
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1451 ext4_es_remove_extent(inode
, start
, last
- start
+ 1);
1454 pagevec_init(&pvec
, 0);
1455 while (index
<= end
) {
1456 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1459 for (i
= 0; i
< nr_pages
; i
++) {
1460 struct page
*page
= pvec
.pages
[i
];
1461 if (page
->index
> end
)
1463 BUG_ON(!PageLocked(page
));
1464 BUG_ON(PageWriteback(page
));
1466 block_invalidatepage(page
, 0, PAGE_CACHE_SIZE
);
1467 ClearPageUptodate(page
);
1471 index
= pvec
.pages
[nr_pages
- 1]->index
+ 1;
1472 pagevec_release(&pvec
);
1476 static void ext4_print_free_blocks(struct inode
*inode
)
1478 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1479 struct super_block
*sb
= inode
->i_sb
;
1480 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1482 ext4_msg(sb
, KERN_CRIT
, "Total free blocks count %lld",
1483 EXT4_C2B(EXT4_SB(inode
->i_sb
),
1484 ext4_count_free_clusters(sb
)));
1485 ext4_msg(sb
, KERN_CRIT
, "Free/Dirty block details");
1486 ext4_msg(sb
, KERN_CRIT
, "free_blocks=%lld",
1487 (long long) EXT4_C2B(EXT4_SB(sb
),
1488 percpu_counter_sum(&sbi
->s_freeclusters_counter
)));
1489 ext4_msg(sb
, KERN_CRIT
, "dirty_blocks=%lld",
1490 (long long) EXT4_C2B(EXT4_SB(sb
),
1491 percpu_counter_sum(&sbi
->s_dirtyclusters_counter
)));
1492 ext4_msg(sb
, KERN_CRIT
, "Block reservation details");
1493 ext4_msg(sb
, KERN_CRIT
, "i_reserved_data_blocks=%u",
1494 ei
->i_reserved_data_blocks
);
1495 ext4_msg(sb
, KERN_CRIT
, "i_reserved_meta_blocks=%u",
1496 ei
->i_reserved_meta_blocks
);
1497 ext4_msg(sb
, KERN_CRIT
, "i_allocated_meta_blocks=%u",
1498 ei
->i_allocated_meta_blocks
);
1502 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
1504 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
1508 * This function is grabs code from the very beginning of
1509 * ext4_map_blocks, but assumes that the caller is from delayed write
1510 * time. This function looks up the requested blocks and sets the
1511 * buffer delay bit under the protection of i_data_sem.
1513 static int ext4_da_map_blocks(struct inode
*inode
, sector_t iblock
,
1514 struct ext4_map_blocks
*map
,
1515 struct buffer_head
*bh
)
1517 struct extent_status es
;
1519 sector_t invalid_block
= ~((sector_t
) 0xffff);
1520 #ifdef ES_AGGRESSIVE_TEST
1521 struct ext4_map_blocks orig_map
;
1523 memcpy(&orig_map
, map
, sizeof(*map
));
1526 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
1530 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1531 "logical block %lu\n", inode
->i_ino
, map
->m_len
,
1532 (unsigned long) map
->m_lblk
);
1534 /* Lookup extent status tree firstly */
1535 if (ext4_es_lookup_extent(inode
, iblock
, &es
)) {
1536 ext4_es_lru_add(inode
);
1537 if (ext4_es_is_hole(&es
)) {
1539 down_read((&EXT4_I(inode
)->i_data_sem
));
1544 * Delayed extent could be allocated by fallocate.
1545 * So we need to check it.
1547 if (ext4_es_is_delayed(&es
) && !ext4_es_is_unwritten(&es
)) {
1548 map_bh(bh
, inode
->i_sb
, invalid_block
);
1550 set_buffer_delay(bh
);
1554 map
->m_pblk
= ext4_es_pblock(&es
) + iblock
- es
.es_lblk
;
1555 retval
= es
.es_len
- (iblock
- es
.es_lblk
);
1556 if (retval
> map
->m_len
)
1557 retval
= map
->m_len
;
1558 map
->m_len
= retval
;
1559 if (ext4_es_is_written(&es
))
1560 map
->m_flags
|= EXT4_MAP_MAPPED
;
1561 else if (ext4_es_is_unwritten(&es
))
1562 map
->m_flags
|= EXT4_MAP_UNWRITTEN
;
1566 #ifdef ES_AGGRESSIVE_TEST
1567 ext4_map_blocks_es_recheck(NULL
, inode
, map
, &orig_map
, 0);
1573 * Try to see if we can get the block without requesting a new
1574 * file system block.
1576 down_read((&EXT4_I(inode
)->i_data_sem
));
1577 if (ext4_has_inline_data(inode
)) {
1579 * We will soon create blocks for this page, and let
1580 * us pretend as if the blocks aren't allocated yet.
1581 * In case of clusters, we have to handle the work
1582 * of mapping from cluster so that the reserved space
1583 * is calculated properly.
1585 if ((EXT4_SB(inode
->i_sb
)->s_cluster_ratio
> 1) &&
1586 ext4_find_delalloc_cluster(inode
, map
->m_lblk
))
1587 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
1589 } else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
1590 retval
= ext4_ext_map_blocks(NULL
, inode
, map
,
1591 EXT4_GET_BLOCKS_NO_PUT_HOLE
);
1593 retval
= ext4_ind_map_blocks(NULL
, inode
, map
,
1594 EXT4_GET_BLOCKS_NO_PUT_HOLE
);
1600 * XXX: __block_prepare_write() unmaps passed block,
1604 * If the block was allocated from previously allocated cluster,
1605 * then we don't need to reserve it again. However we still need
1606 * to reserve metadata for every block we're going to write.
1608 if (!(map
->m_flags
& EXT4_MAP_FROM_CLUSTER
)) {
1609 ret
= ext4_da_reserve_space(inode
, iblock
);
1611 /* not enough space to reserve */
1616 ret
= ext4_da_reserve_metadata(inode
, iblock
);
1618 /* not enough space to reserve */
1624 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
1625 ~0, EXTENT_STATUS_DELAYED
);
1631 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1632 * and it should not appear on the bh->b_state.
1634 map
->m_flags
&= ~EXT4_MAP_FROM_CLUSTER
;
1636 map_bh(bh
, inode
->i_sb
, invalid_block
);
1638 set_buffer_delay(bh
);
1639 } else if (retval
> 0) {
1641 unsigned int status
;
1643 if (unlikely(retval
!= map
->m_len
)) {
1644 ext4_warning(inode
->i_sb
,
1645 "ES len assertion failed for inode "
1646 "%lu: retval %d != map->m_len %d",
1647 inode
->i_ino
, retval
, map
->m_len
);
1651 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
1652 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
1653 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
1654 map
->m_pblk
, status
);
1660 up_read((&EXT4_I(inode
)->i_data_sem
));
1666 * This is a special get_blocks_t callback which is used by
1667 * ext4_da_write_begin(). It will either return mapped block or
1668 * reserve space for a single block.
1670 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1671 * We also have b_blocknr = -1 and b_bdev initialized properly
1673 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1674 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1675 * initialized properly.
1677 int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
1678 struct buffer_head
*bh
, int create
)
1680 struct ext4_map_blocks map
;
1683 BUG_ON(create
== 0);
1684 BUG_ON(bh
->b_size
!= inode
->i_sb
->s_blocksize
);
1686 map
.m_lblk
= iblock
;
1690 * first, we need to know whether the block is allocated already
1691 * preallocated blocks are unmapped but should treated
1692 * the same as allocated blocks.
1694 ret
= ext4_da_map_blocks(inode
, iblock
, &map
, bh
);
1698 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
1699 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
1701 if (buffer_unwritten(bh
)) {
1702 /* A delayed write to unwritten bh should be marked
1703 * new and mapped. Mapped ensures that we don't do
1704 * get_block multiple times when we write to the same
1705 * offset and new ensures that we do proper zero out
1706 * for partial write.
1709 set_buffer_mapped(bh
);
1714 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1720 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1726 static int __ext4_journalled_writepage(struct page
*page
,
1729 struct address_space
*mapping
= page
->mapping
;
1730 struct inode
*inode
= mapping
->host
;
1731 struct buffer_head
*page_bufs
= NULL
;
1732 handle_t
*handle
= NULL
;
1733 int ret
= 0, err
= 0;
1734 int inline_data
= ext4_has_inline_data(inode
);
1735 struct buffer_head
*inode_bh
= NULL
;
1737 ClearPageChecked(page
);
1740 BUG_ON(page
->index
!= 0);
1741 BUG_ON(len
> ext4_get_max_inline_size(inode
));
1742 inode_bh
= ext4_journalled_write_inline_data(inode
, len
, page
);
1743 if (inode_bh
== NULL
)
1746 page_bufs
= page_buffers(page
);
1751 ext4_walk_page_buffers(handle
, page_bufs
, 0, len
,
1754 /* As soon as we unlock the page, it can go away, but we have
1755 * references to buffers so we are safe */
1758 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
1759 ext4_writepage_trans_blocks(inode
));
1760 if (IS_ERR(handle
)) {
1761 ret
= PTR_ERR(handle
);
1765 BUG_ON(!ext4_handle_valid(handle
));
1768 ret
= ext4_journal_get_write_access(handle
, inode_bh
);
1770 err
= ext4_handle_dirty_metadata(handle
, inode
, inode_bh
);
1773 ret
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1774 do_journal_get_write_access
);
1776 err
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1781 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1782 err
= ext4_journal_stop(handle
);
1786 if (!ext4_has_inline_data(inode
))
1787 ext4_walk_page_buffers(NULL
, page_bufs
, 0, len
,
1789 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1796 * Note that we don't need to start a transaction unless we're journaling data
1797 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1798 * need to file the inode to the transaction's list in ordered mode because if
1799 * we are writing back data added by write(), the inode is already there and if
1800 * we are writing back data modified via mmap(), no one guarantees in which
1801 * transaction the data will hit the disk. In case we are journaling data, we
1802 * cannot start transaction directly because transaction start ranks above page
1803 * lock so we have to do some magic.
1805 * This function can get called via...
1806 * - ext4_writepages after taking page lock (have journal handle)
1807 * - journal_submit_inode_data_buffers (no journal handle)
1808 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1809 * - grab_page_cache when doing write_begin (have journal handle)
1811 * We don't do any block allocation in this function. If we have page with
1812 * multiple blocks we need to write those buffer_heads that are mapped. This
1813 * is important for mmaped based write. So if we do with blocksize 1K
1814 * truncate(f, 1024);
1815 * a = mmap(f, 0, 4096);
1817 * truncate(f, 4096);
1818 * we have in the page first buffer_head mapped via page_mkwrite call back
1819 * but other buffer_heads would be unmapped but dirty (dirty done via the
1820 * do_wp_page). So writepage should write the first block. If we modify
1821 * the mmap area beyond 1024 we will again get a page_fault and the
1822 * page_mkwrite callback will do the block allocation and mark the
1823 * buffer_heads mapped.
1825 * We redirty the page if we have any buffer_heads that is either delay or
1826 * unwritten in the page.
1828 * We can get recursively called as show below.
1830 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1833 * But since we don't do any block allocation we should not deadlock.
1834 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1836 static int ext4_writepage(struct page
*page
,
1837 struct writeback_control
*wbc
)
1842 struct buffer_head
*page_bufs
= NULL
;
1843 struct inode
*inode
= page
->mapping
->host
;
1844 struct ext4_io_submit io_submit
;
1846 trace_ext4_writepage(page
);
1847 size
= i_size_read(inode
);
1848 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
1849 len
= size
& ~PAGE_CACHE_MASK
;
1851 len
= PAGE_CACHE_SIZE
;
1853 page_bufs
= page_buffers(page
);
1855 * We cannot do block allocation or other extent handling in this
1856 * function. If there are buffers needing that, we have to redirty
1857 * the page. But we may reach here when we do a journal commit via
1858 * journal_submit_inode_data_buffers() and in that case we must write
1859 * allocated buffers to achieve data=ordered mode guarantees.
1861 if (ext4_walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
1862 ext4_bh_delay_or_unwritten
)) {
1863 redirty_page_for_writepage(wbc
, page
);
1864 if (current
->flags
& PF_MEMALLOC
) {
1866 * For memory cleaning there's no point in writing only
1867 * some buffers. So just bail out. Warn if we came here
1868 * from direct reclaim.
1870 WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
))
1877 if (PageChecked(page
) && ext4_should_journal_data(inode
))
1879 * It's mmapped pagecache. Add buffers and journal it. There
1880 * doesn't seem much point in redirtying the page here.
1882 return __ext4_journalled_writepage(page
, len
);
1884 ext4_io_submit_init(&io_submit
, wbc
);
1885 io_submit
.io_end
= ext4_init_io_end(inode
, GFP_NOFS
);
1886 if (!io_submit
.io_end
) {
1887 redirty_page_for_writepage(wbc
, page
);
1891 ret
= ext4_bio_write_page(&io_submit
, page
, len
, wbc
);
1892 ext4_io_submit(&io_submit
);
1893 /* Drop io_end reference we got from init */
1894 ext4_put_io_end_defer(io_submit
.io_end
);
1898 static int mpage_submit_page(struct mpage_da_data
*mpd
, struct page
*page
)
1901 loff_t size
= i_size_read(mpd
->inode
);
1904 BUG_ON(page
->index
!= mpd
->first_page
);
1905 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
1906 len
= size
& ~PAGE_CACHE_MASK
;
1908 len
= PAGE_CACHE_SIZE
;
1909 clear_page_dirty_for_io(page
);
1910 err
= ext4_bio_write_page(&mpd
->io_submit
, page
, len
, mpd
->wbc
);
1912 mpd
->wbc
->nr_to_write
--;
1918 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1921 * mballoc gives us at most this number of blocks...
1922 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1923 * The rest of mballoc seems to handle chunks up to full group size.
1925 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1928 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1930 * @mpd - extent of blocks
1931 * @lblk - logical number of the block in the file
1932 * @bh - buffer head we want to add to the extent
1934 * The function is used to collect contig. blocks in the same state. If the
1935 * buffer doesn't require mapping for writeback and we haven't started the
1936 * extent of buffers to map yet, the function returns 'true' immediately - the
1937 * caller can write the buffer right away. Otherwise the function returns true
1938 * if the block has been added to the extent, false if the block couldn't be
1941 static bool mpage_add_bh_to_extent(struct mpage_da_data
*mpd
, ext4_lblk_t lblk
,
1942 struct buffer_head
*bh
)
1944 struct ext4_map_blocks
*map
= &mpd
->map
;
1946 /* Buffer that doesn't need mapping for writeback? */
1947 if (!buffer_dirty(bh
) || !buffer_mapped(bh
) ||
1948 (!buffer_delay(bh
) && !buffer_unwritten(bh
))) {
1949 /* So far no extent to map => we write the buffer right away */
1950 if (map
->m_len
== 0)
1955 /* First block in the extent? */
1956 if (map
->m_len
== 0) {
1959 map
->m_flags
= bh
->b_state
& BH_FLAGS
;
1963 /* Don't go larger than mballoc is willing to allocate */
1964 if (map
->m_len
>= MAX_WRITEPAGES_EXTENT_LEN
)
1967 /* Can we merge the block to our big extent? */
1968 if (lblk
== map
->m_lblk
+ map
->m_len
&&
1969 (bh
->b_state
& BH_FLAGS
) == map
->m_flags
) {
1977 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1979 * @mpd - extent of blocks for mapping
1980 * @head - the first buffer in the page
1981 * @bh - buffer we should start processing from
1982 * @lblk - logical number of the block in the file corresponding to @bh
1984 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1985 * the page for IO if all buffers in this page were mapped and there's no
1986 * accumulated extent of buffers to map or add buffers in the page to the
1987 * extent of buffers to map. The function returns 1 if the caller can continue
1988 * by processing the next page, 0 if it should stop adding buffers to the
1989 * extent to map because we cannot extend it anymore. It can also return value
1990 * < 0 in case of error during IO submission.
1992 static int mpage_process_page_bufs(struct mpage_da_data
*mpd
,
1993 struct buffer_head
*head
,
1994 struct buffer_head
*bh
,
1997 struct inode
*inode
= mpd
->inode
;
1999 ext4_lblk_t blocks
= (i_size_read(inode
) + (1 << inode
->i_blkbits
) - 1)
2000 >> inode
->i_blkbits
;
2003 BUG_ON(buffer_locked(bh
));
2005 if (lblk
>= blocks
|| !mpage_add_bh_to_extent(mpd
, lblk
, bh
)) {
2006 /* Found extent to map? */
2009 /* Everything mapped so far and we hit EOF */
2012 } while (lblk
++, (bh
= bh
->b_this_page
) != head
);
2013 /* So far everything mapped? Submit the page for IO. */
2014 if (mpd
->map
.m_len
== 0) {
2015 err
= mpage_submit_page(mpd
, head
->b_page
);
2019 return lblk
< blocks
;
2023 * mpage_map_buffers - update buffers corresponding to changed extent and
2024 * submit fully mapped pages for IO
2026 * @mpd - description of extent to map, on return next extent to map
2028 * Scan buffers corresponding to changed extent (we expect corresponding pages
2029 * to be already locked) and update buffer state according to new extent state.
2030 * We map delalloc buffers to their physical location, clear unwritten bits,
2031 * and mark buffers as uninit when we perform writes to uninitialized extents
2032 * and do extent conversion after IO is finished. If the last page is not fully
2033 * mapped, we update @map to the next extent in the last page that needs
2034 * mapping. Otherwise we submit the page for IO.
2036 static int mpage_map_and_submit_buffers(struct mpage_da_data
*mpd
)
2038 struct pagevec pvec
;
2040 struct inode
*inode
= mpd
->inode
;
2041 struct buffer_head
*head
, *bh
;
2042 int bpp_bits
= PAGE_CACHE_SHIFT
- inode
->i_blkbits
;
2048 start
= mpd
->map
.m_lblk
>> bpp_bits
;
2049 end
= (mpd
->map
.m_lblk
+ mpd
->map
.m_len
- 1) >> bpp_bits
;
2050 lblk
= start
<< bpp_bits
;
2051 pblock
= mpd
->map
.m_pblk
;
2053 pagevec_init(&pvec
, 0);
2054 while (start
<= end
) {
2055 nr_pages
= pagevec_lookup(&pvec
, inode
->i_mapping
, start
,
2059 for (i
= 0; i
< nr_pages
; i
++) {
2060 struct page
*page
= pvec
.pages
[i
];
2062 if (page
->index
> end
)
2064 /* Up to 'end' pages must be contiguous */
2065 BUG_ON(page
->index
!= start
);
2066 bh
= head
= page_buffers(page
);
2068 if (lblk
< mpd
->map
.m_lblk
)
2070 if (lblk
>= mpd
->map
.m_lblk
+ mpd
->map
.m_len
) {
2072 * Buffer after end of mapped extent.
2073 * Find next buffer in the page to map.
2076 mpd
->map
.m_flags
= 0;
2078 * FIXME: If dioread_nolock supports
2079 * blocksize < pagesize, we need to make
2080 * sure we add size mapped so far to
2081 * io_end->size as the following call
2082 * can submit the page for IO.
2084 err
= mpage_process_page_bufs(mpd
, head
,
2086 pagevec_release(&pvec
);
2091 if (buffer_delay(bh
)) {
2092 clear_buffer_delay(bh
);
2093 bh
->b_blocknr
= pblock
++;
2095 clear_buffer_unwritten(bh
);
2096 } while (lblk
++, (bh
= bh
->b_this_page
) != head
);
2099 * FIXME: This is going to break if dioread_nolock
2100 * supports blocksize < pagesize as we will try to
2101 * convert potentially unmapped parts of inode.
2103 mpd
->io_submit
.io_end
->size
+= PAGE_CACHE_SIZE
;
2104 /* Page fully mapped - let IO run! */
2105 err
= mpage_submit_page(mpd
, page
);
2107 pagevec_release(&pvec
);
2112 pagevec_release(&pvec
);
2114 /* Extent fully mapped and matches with page boundary. We are done. */
2116 mpd
->map
.m_flags
= 0;
2120 static int mpage_map_one_extent(handle_t
*handle
, struct mpage_da_data
*mpd
)
2122 struct inode
*inode
= mpd
->inode
;
2123 struct ext4_map_blocks
*map
= &mpd
->map
;
2124 int get_blocks_flags
;
2127 trace_ext4_da_write_pages_extent(inode
, map
);
2129 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2130 * to convert an uninitialized extent to be initialized (in the case
2131 * where we have written into one or more preallocated blocks). It is
2132 * possible that we're going to need more metadata blocks than
2133 * previously reserved. However we must not fail because we're in
2134 * writeback and there is nothing we can do about it so it might result
2135 * in data loss. So use reserved blocks to allocate metadata if
2138 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2139 * in question are delalloc blocks. This affects functions in many
2140 * different parts of the allocation call path. This flag exists
2141 * primarily because we don't want to change *many* call functions, so
2142 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2143 * once the inode's allocation semaphore is taken.
2145 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
|
2146 EXT4_GET_BLOCKS_METADATA_NOFAIL
;
2147 if (ext4_should_dioread_nolock(inode
))
2148 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
2149 if (map
->m_flags
& (1 << BH_Delay
))
2150 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
2152 err
= ext4_map_blocks(handle
, inode
, map
, get_blocks_flags
);
2155 if (map
->m_flags
& EXT4_MAP_UNINIT
) {
2156 if (!mpd
->io_submit
.io_end
->handle
&&
2157 ext4_handle_valid(handle
)) {
2158 mpd
->io_submit
.io_end
->handle
= handle
->h_rsv_handle
;
2159 handle
->h_rsv_handle
= NULL
;
2161 ext4_set_io_unwritten_flag(inode
, mpd
->io_submit
.io_end
);
2164 BUG_ON(map
->m_len
== 0);
2165 if (map
->m_flags
& EXT4_MAP_NEW
) {
2166 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
2169 for (i
= 0; i
< map
->m_len
; i
++)
2170 unmap_underlying_metadata(bdev
, map
->m_pblk
+ i
);
2176 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2177 * mpd->len and submit pages underlying it for IO
2179 * @handle - handle for journal operations
2180 * @mpd - extent to map
2181 * @give_up_on_write - we set this to true iff there is a fatal error and there
2182 * is no hope of writing the data. The caller should discard
2183 * dirty pages to avoid infinite loops.
2185 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2186 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2187 * them to initialized or split the described range from larger unwritten
2188 * extent. Note that we need not map all the described range since allocation
2189 * can return less blocks or the range is covered by more unwritten extents. We
2190 * cannot map more because we are limited by reserved transaction credits. On
2191 * the other hand we always make sure that the last touched page is fully
2192 * mapped so that it can be written out (and thus forward progress is
2193 * guaranteed). After mapping we submit all mapped pages for IO.
2195 static int mpage_map_and_submit_extent(handle_t
*handle
,
2196 struct mpage_da_data
*mpd
,
2197 bool *give_up_on_write
)
2199 struct inode
*inode
= mpd
->inode
;
2200 struct ext4_map_blocks
*map
= &mpd
->map
;
2204 mpd
->io_submit
.io_end
->offset
=
2205 ((loff_t
)map
->m_lblk
) << inode
->i_blkbits
;
2207 err
= mpage_map_one_extent(handle
, mpd
);
2209 struct super_block
*sb
= inode
->i_sb
;
2211 if (EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)
2212 goto invalidate_dirty_pages
;
2214 * Let the uper layers retry transient errors.
2215 * In the case of ENOSPC, if ext4_count_free_blocks()
2216 * is non-zero, a commit should free up blocks.
2218 if ((err
== -ENOMEM
) ||
2219 (err
== -ENOSPC
&& ext4_count_free_clusters(sb
)))
2221 ext4_msg(sb
, KERN_CRIT
,
2222 "Delayed block allocation failed for "
2223 "inode %lu at logical offset %llu with"
2224 " max blocks %u with error %d",
2226 (unsigned long long)map
->m_lblk
,
2227 (unsigned)map
->m_len
, -err
);
2228 ext4_msg(sb
, KERN_CRIT
,
2229 "This should not happen!! Data will "
2232 ext4_print_free_blocks(inode
);
2233 invalidate_dirty_pages
:
2234 *give_up_on_write
= true;
2238 * Update buffer state, submit mapped pages, and get us new
2241 err
= mpage_map_and_submit_buffers(mpd
);
2244 } while (map
->m_len
);
2246 /* Update on-disk size after IO is submitted */
2247 disksize
= ((loff_t
)mpd
->first_page
) << PAGE_CACHE_SHIFT
;
2248 if (disksize
> EXT4_I(inode
)->i_disksize
) {
2251 ext4_wb_update_i_disksize(inode
, disksize
);
2252 err2
= ext4_mark_inode_dirty(handle
, inode
);
2254 ext4_error(inode
->i_sb
,
2255 "Failed to mark inode %lu dirty",
2264 * Calculate the total number of credits to reserve for one writepages
2265 * iteration. This is called from ext4_writepages(). We map an extent of
2266 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2267 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2268 * bpp - 1 blocks in bpp different extents.
2270 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2272 int bpp
= ext4_journal_blocks_per_page(inode
);
2274 return ext4_meta_trans_blocks(inode
,
2275 MAX_WRITEPAGES_EXTENT_LEN
+ bpp
- 1, bpp
);
2279 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2280 * and underlying extent to map
2282 * @mpd - where to look for pages
2284 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2285 * IO immediately. When we find a page which isn't mapped we start accumulating
2286 * extent of buffers underlying these pages that needs mapping (formed by
2287 * either delayed or unwritten buffers). We also lock the pages containing
2288 * these buffers. The extent found is returned in @mpd structure (starting at
2289 * mpd->lblk with length mpd->len blocks).
2291 * Note that this function can attach bios to one io_end structure which are
2292 * neither logically nor physically contiguous. Although it may seem as an
2293 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2294 * case as we need to track IO to all buffers underlying a page in one io_end.
2296 static int mpage_prepare_extent_to_map(struct mpage_da_data
*mpd
)
2298 struct address_space
*mapping
= mpd
->inode
->i_mapping
;
2299 struct pagevec pvec
;
2300 unsigned int nr_pages
;
2301 long left
= mpd
->wbc
->nr_to_write
;
2302 pgoff_t index
= mpd
->first_page
;
2303 pgoff_t end
= mpd
->last_page
;
2306 int blkbits
= mpd
->inode
->i_blkbits
;
2308 struct buffer_head
*head
;
2310 if (mpd
->wbc
->sync_mode
== WB_SYNC_ALL
|| mpd
->wbc
->tagged_writepages
)
2311 tag
= PAGECACHE_TAG_TOWRITE
;
2313 tag
= PAGECACHE_TAG_DIRTY
;
2315 pagevec_init(&pvec
, 0);
2317 mpd
->next_page
= index
;
2318 while (index
<= end
) {
2319 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
2320 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
2324 for (i
= 0; i
< nr_pages
; i
++) {
2325 struct page
*page
= pvec
.pages
[i
];
2328 * At this point, the page may be truncated or
2329 * invalidated (changing page->mapping to NULL), or
2330 * even swizzled back from swapper_space to tmpfs file
2331 * mapping. However, page->index will not change
2332 * because we have a reference on the page.
2334 if (page
->index
> end
)
2338 * Accumulated enough dirty pages? This doesn't apply
2339 * to WB_SYNC_ALL mode. For integrity sync we have to
2340 * keep going because someone may be concurrently
2341 * dirtying pages, and we might have synced a lot of
2342 * newly appeared dirty pages, but have not synced all
2343 * of the old dirty pages.
2345 if (mpd
->wbc
->sync_mode
== WB_SYNC_NONE
&& left
<= 0)
2348 /* If we can't merge this page, we are done. */
2349 if (mpd
->map
.m_len
> 0 && mpd
->next_page
!= page
->index
)
2354 * If the page is no longer dirty, or its mapping no
2355 * longer corresponds to inode we are writing (which
2356 * means it has been truncated or invalidated), or the
2357 * page is already under writeback and we are not doing
2358 * a data integrity writeback, skip the page
2360 if (!PageDirty(page
) ||
2361 (PageWriteback(page
) &&
2362 (mpd
->wbc
->sync_mode
== WB_SYNC_NONE
)) ||
2363 unlikely(page
->mapping
!= mapping
)) {
2368 wait_on_page_writeback(page
);
2369 BUG_ON(PageWriteback(page
));
2371 if (mpd
->map
.m_len
== 0)
2372 mpd
->first_page
= page
->index
;
2373 mpd
->next_page
= page
->index
+ 1;
2374 /* Add all dirty buffers to mpd */
2375 lblk
= ((ext4_lblk_t
)page
->index
) <<
2376 (PAGE_CACHE_SHIFT
- blkbits
);
2377 head
= page_buffers(page
);
2378 err
= mpage_process_page_bufs(mpd
, head
, head
, lblk
);
2384 pagevec_release(&pvec
);
2389 pagevec_release(&pvec
);
2393 static int __writepage(struct page
*page
, struct writeback_control
*wbc
,
2396 struct address_space
*mapping
= data
;
2397 int ret
= ext4_writepage(page
, wbc
);
2398 mapping_set_error(mapping
, ret
);
2402 static int ext4_writepages(struct address_space
*mapping
,
2403 struct writeback_control
*wbc
)
2405 pgoff_t writeback_index
= 0;
2406 long nr_to_write
= wbc
->nr_to_write
;
2407 int range_whole
= 0;
2409 handle_t
*handle
= NULL
;
2410 struct mpage_da_data mpd
;
2411 struct inode
*inode
= mapping
->host
;
2412 int needed_blocks
, rsv_blocks
= 0, ret
= 0;
2413 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2415 struct blk_plug plug
;
2416 bool give_up_on_write
= false;
2418 trace_ext4_writepages(inode
, wbc
);
2421 * No pages to write? This is mainly a kludge to avoid starting
2422 * a transaction for special inodes like journal inode on last iput()
2423 * because that could violate lock ordering on umount
2425 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2426 goto out_writepages
;
2428 if (ext4_should_journal_data(inode
)) {
2429 struct blk_plug plug
;
2431 blk_start_plug(&plug
);
2432 ret
= write_cache_pages(mapping
, wbc
, __writepage
, mapping
);
2433 blk_finish_plug(&plug
);
2434 goto out_writepages
;
2438 * If the filesystem has aborted, it is read-only, so return
2439 * right away instead of dumping stack traces later on that
2440 * will obscure the real source of the problem. We test
2441 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2442 * the latter could be true if the filesystem is mounted
2443 * read-only, and in that case, ext4_writepages should
2444 * *never* be called, so if that ever happens, we would want
2447 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
)) {
2449 goto out_writepages
;
2452 if (ext4_should_dioread_nolock(inode
)) {
2454 * We may need to convert up to one extent per block in
2455 * the page and we may dirty the inode.
2457 rsv_blocks
= 1 + (PAGE_CACHE_SIZE
>> inode
->i_blkbits
);
2461 * If we have inline data and arrive here, it means that
2462 * we will soon create the block for the 1st page, so
2463 * we'd better clear the inline data here.
2465 if (ext4_has_inline_data(inode
)) {
2466 /* Just inode will be modified... */
2467 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 1);
2468 if (IS_ERR(handle
)) {
2469 ret
= PTR_ERR(handle
);
2470 goto out_writepages
;
2472 BUG_ON(ext4_test_inode_state(inode
,
2473 EXT4_STATE_MAY_INLINE_DATA
));
2474 ext4_destroy_inline_data(handle
, inode
);
2475 ext4_journal_stop(handle
);
2478 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2481 if (wbc
->range_cyclic
) {
2482 writeback_index
= mapping
->writeback_index
;
2483 if (writeback_index
)
2485 mpd
.first_page
= writeback_index
;
2488 mpd
.first_page
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2489 mpd
.last_page
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2494 ext4_io_submit_init(&mpd
.io_submit
, wbc
);
2496 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2497 tag_pages_for_writeback(mapping
, mpd
.first_page
, mpd
.last_page
);
2499 blk_start_plug(&plug
);
2500 while (!done
&& mpd
.first_page
<= mpd
.last_page
) {
2501 /* For each extent of pages we use new io_end */
2502 mpd
.io_submit
.io_end
= ext4_init_io_end(inode
, GFP_KERNEL
);
2503 if (!mpd
.io_submit
.io_end
) {
2509 * We have two constraints: We find one extent to map and we
2510 * must always write out whole page (makes a difference when
2511 * blocksize < pagesize) so that we don't block on IO when we
2512 * try to write out the rest of the page. Journalled mode is
2513 * not supported by delalloc.
2515 BUG_ON(ext4_should_journal_data(inode
));
2516 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2518 /* start a new transaction */
2519 handle
= ext4_journal_start_with_reserve(inode
,
2520 EXT4_HT_WRITE_PAGE
, needed_blocks
, rsv_blocks
);
2521 if (IS_ERR(handle
)) {
2522 ret
= PTR_ERR(handle
);
2523 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2524 "%ld pages, ino %lu; err %d", __func__
,
2525 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2526 /* Release allocated io_end */
2527 ext4_put_io_end(mpd
.io_submit
.io_end
);
2531 trace_ext4_da_write_pages(inode
, mpd
.first_page
, mpd
.wbc
);
2532 ret
= mpage_prepare_extent_to_map(&mpd
);
2535 ret
= mpage_map_and_submit_extent(handle
, &mpd
,
2539 * We scanned the whole range (or exhausted
2540 * nr_to_write), submitted what was mapped and
2541 * didn't find anything needing mapping. We are
2547 ext4_journal_stop(handle
);
2548 /* Submit prepared bio */
2549 ext4_io_submit(&mpd
.io_submit
);
2550 /* Unlock pages we didn't use */
2551 mpage_release_unused_pages(&mpd
, give_up_on_write
);
2552 /* Drop our io_end reference we got from init */
2553 ext4_put_io_end(mpd
.io_submit
.io_end
);
2555 if (ret
== -ENOSPC
&& sbi
->s_journal
) {
2557 * Commit the transaction which would
2558 * free blocks released in the transaction
2561 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2565 /* Fatal error - ENOMEM, EIO... */
2569 blk_finish_plug(&plug
);
2570 if (!ret
&& !cycled
&& wbc
->nr_to_write
> 0) {
2572 mpd
.last_page
= writeback_index
- 1;
2578 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2580 * Set the writeback_index so that range_cyclic
2581 * mode will write it back later
2583 mapping
->writeback_index
= mpd
.first_page
;
2586 trace_ext4_writepages_result(inode
, wbc
, ret
,
2587 nr_to_write
- wbc
->nr_to_write
);
2591 static int ext4_nonda_switch(struct super_block
*sb
)
2593 s64 free_clusters
, dirty_clusters
;
2594 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2597 * switch to non delalloc mode if we are running low
2598 * on free block. The free block accounting via percpu
2599 * counters can get slightly wrong with percpu_counter_batch getting
2600 * accumulated on each CPU without updating global counters
2601 * Delalloc need an accurate free block accounting. So switch
2602 * to non delalloc when we are near to error range.
2605 percpu_counter_read_positive(&sbi
->s_freeclusters_counter
);
2607 percpu_counter_read_positive(&sbi
->s_dirtyclusters_counter
);
2609 * Start pushing delalloc when 1/2 of free blocks are dirty.
2611 if (dirty_clusters
&& (free_clusters
< 2 * dirty_clusters
))
2612 try_to_writeback_inodes_sb(sb
, WB_REASON_FS_FREE_SPACE
);
2614 if (2 * free_clusters
< 3 * dirty_clusters
||
2615 free_clusters
< (dirty_clusters
+ EXT4_FREECLUSTERS_WATERMARK
)) {
2617 * free block count is less than 150% of dirty blocks
2618 * or free blocks is less than watermark
2625 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2626 loff_t pos
, unsigned len
, unsigned flags
,
2627 struct page
**pagep
, void **fsdata
)
2629 int ret
, retries
= 0;
2632 struct inode
*inode
= mapping
->host
;
2635 index
= pos
>> PAGE_CACHE_SHIFT
;
2637 if (ext4_nonda_switch(inode
->i_sb
)) {
2638 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
2639 return ext4_write_begin(file
, mapping
, pos
,
2640 len
, flags
, pagep
, fsdata
);
2642 *fsdata
= (void *)0;
2643 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
2645 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
2646 ret
= ext4_da_write_inline_data_begin(mapping
, inode
,
2656 * grab_cache_page_write_begin() can take a long time if the
2657 * system is thrashing due to memory pressure, or if the page
2658 * is being written back. So grab it first before we start
2659 * the transaction handle. This also allows us to allocate
2660 * the page (if needed) without using GFP_NOFS.
2663 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2669 * With delayed allocation, we don't log the i_disksize update
2670 * if there is delayed block allocation. But we still need
2671 * to journalling the i_disksize update if writes to the end
2672 * of file which has an already mapped buffer.
2675 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
, 1);
2676 if (IS_ERR(handle
)) {
2677 page_cache_release(page
);
2678 return PTR_ERR(handle
);
2682 if (page
->mapping
!= mapping
) {
2683 /* The page got truncated from under us */
2685 page_cache_release(page
);
2686 ext4_journal_stop(handle
);
2689 /* In case writeback began while the page was unlocked */
2690 wait_for_stable_page(page
);
2692 ret
= __block_write_begin(page
, pos
, len
, ext4_da_get_block_prep
);
2695 ext4_journal_stop(handle
);
2697 * block_write_begin may have instantiated a few blocks
2698 * outside i_size. Trim these off again. Don't need
2699 * i_size_read because we hold i_mutex.
2701 if (pos
+ len
> inode
->i_size
)
2702 ext4_truncate_failed_write(inode
);
2704 if (ret
== -ENOSPC
&&
2705 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
2708 page_cache_release(page
);
2717 * Check if we should update i_disksize
2718 * when write to the end of file but not require block allocation
2720 static int ext4_da_should_update_i_disksize(struct page
*page
,
2721 unsigned long offset
)
2723 struct buffer_head
*bh
;
2724 struct inode
*inode
= page
->mapping
->host
;
2728 bh
= page_buffers(page
);
2729 idx
= offset
>> inode
->i_blkbits
;
2731 for (i
= 0; i
< idx
; i
++)
2732 bh
= bh
->b_this_page
;
2734 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
2739 static int ext4_da_write_end(struct file
*file
,
2740 struct address_space
*mapping
,
2741 loff_t pos
, unsigned len
, unsigned copied
,
2742 struct page
*page
, void *fsdata
)
2744 struct inode
*inode
= mapping
->host
;
2746 handle_t
*handle
= ext4_journal_current_handle();
2748 unsigned long start
, end
;
2749 int write_mode
= (int)(unsigned long)fsdata
;
2751 if (write_mode
== FALL_BACK_TO_NONDELALLOC
)
2752 return ext4_write_end(file
, mapping
, pos
,
2753 len
, copied
, page
, fsdata
);
2755 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
2756 start
= pos
& (PAGE_CACHE_SIZE
- 1);
2757 end
= start
+ copied
- 1;
2760 * generic_write_end() will run mark_inode_dirty() if i_size
2761 * changes. So let's piggyback the i_disksize mark_inode_dirty
2764 new_i_size
= pos
+ copied
;
2765 if (copied
&& new_i_size
> EXT4_I(inode
)->i_disksize
) {
2766 if (ext4_has_inline_data(inode
) ||
2767 ext4_da_should_update_i_disksize(page
, end
)) {
2768 down_write(&EXT4_I(inode
)->i_data_sem
);
2769 if (new_i_size
> EXT4_I(inode
)->i_disksize
)
2770 EXT4_I(inode
)->i_disksize
= new_i_size
;
2771 up_write(&EXT4_I(inode
)->i_data_sem
);
2772 /* We need to mark inode dirty even if
2773 * new_i_size is less that inode->i_size
2774 * bu greater than i_disksize.(hint delalloc)
2776 ext4_mark_inode_dirty(handle
, inode
);
2780 if (write_mode
!= CONVERT_INLINE_DATA
&&
2781 ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
) &&
2782 ext4_has_inline_data(inode
))
2783 ret2
= ext4_da_write_inline_data_end(inode
, pos
, len
, copied
,
2786 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
2792 ret2
= ext4_journal_stop(handle
);
2796 return ret
? ret
: copied
;
2799 static void ext4_da_invalidatepage(struct page
*page
, unsigned int offset
,
2800 unsigned int length
)
2803 * Drop reserved blocks
2805 BUG_ON(!PageLocked(page
));
2806 if (!page_has_buffers(page
))
2809 ext4_da_page_release_reservation(page
, offset
, length
);
2812 ext4_invalidatepage(page
, offset
, length
);
2818 * Force all delayed allocation blocks to be allocated for a given inode.
2820 int ext4_alloc_da_blocks(struct inode
*inode
)
2822 trace_ext4_alloc_da_blocks(inode
);
2824 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
2825 !EXT4_I(inode
)->i_reserved_meta_blocks
)
2829 * We do something simple for now. The filemap_flush() will
2830 * also start triggering a write of the data blocks, which is
2831 * not strictly speaking necessary (and for users of
2832 * laptop_mode, not even desirable). However, to do otherwise
2833 * would require replicating code paths in:
2835 * ext4_writepages() ->
2836 * write_cache_pages() ---> (via passed in callback function)
2837 * __mpage_da_writepage() -->
2838 * mpage_add_bh_to_extent()
2839 * mpage_da_map_blocks()
2841 * The problem is that write_cache_pages(), located in
2842 * mm/page-writeback.c, marks pages clean in preparation for
2843 * doing I/O, which is not desirable if we're not planning on
2846 * We could call write_cache_pages(), and then redirty all of
2847 * the pages by calling redirty_page_for_writepage() but that
2848 * would be ugly in the extreme. So instead we would need to
2849 * replicate parts of the code in the above functions,
2850 * simplifying them because we wouldn't actually intend to
2851 * write out the pages, but rather only collect contiguous
2852 * logical block extents, call the multi-block allocator, and
2853 * then update the buffer heads with the block allocations.
2855 * For now, though, we'll cheat by calling filemap_flush(),
2856 * which will map the blocks, and start the I/O, but not
2857 * actually wait for the I/O to complete.
2859 return filemap_flush(inode
->i_mapping
);
2863 * bmap() is special. It gets used by applications such as lilo and by
2864 * the swapper to find the on-disk block of a specific piece of data.
2866 * Naturally, this is dangerous if the block concerned is still in the
2867 * journal. If somebody makes a swapfile on an ext4 data-journaling
2868 * filesystem and enables swap, then they may get a nasty shock when the
2869 * data getting swapped to that swapfile suddenly gets overwritten by
2870 * the original zero's written out previously to the journal and
2871 * awaiting writeback in the kernel's buffer cache.
2873 * So, if we see any bmap calls here on a modified, data-journaled file,
2874 * take extra steps to flush any blocks which might be in the cache.
2876 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
2878 struct inode
*inode
= mapping
->host
;
2883 * We can get here for an inline file via the FIBMAP ioctl
2885 if (ext4_has_inline_data(inode
))
2888 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
2889 test_opt(inode
->i_sb
, DELALLOC
)) {
2891 * With delalloc we want to sync the file
2892 * so that we can make sure we allocate
2895 filemap_write_and_wait(mapping
);
2898 if (EXT4_JOURNAL(inode
) &&
2899 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
2901 * This is a REALLY heavyweight approach, but the use of
2902 * bmap on dirty files is expected to be extremely rare:
2903 * only if we run lilo or swapon on a freshly made file
2904 * do we expect this to happen.
2906 * (bmap requires CAP_SYS_RAWIO so this does not
2907 * represent an unprivileged user DOS attack --- we'd be
2908 * in trouble if mortal users could trigger this path at
2911 * NB. EXT4_STATE_JDATA is not set on files other than
2912 * regular files. If somebody wants to bmap a directory
2913 * or symlink and gets confused because the buffer
2914 * hasn't yet been flushed to disk, they deserve
2915 * everything they get.
2918 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
2919 journal
= EXT4_JOURNAL(inode
);
2920 jbd2_journal_lock_updates(journal
);
2921 err
= jbd2_journal_flush(journal
);
2922 jbd2_journal_unlock_updates(journal
);
2928 return generic_block_bmap(mapping
, block
, ext4_get_block
);
2931 static int ext4_readpage(struct file
*file
, struct page
*page
)
2934 struct inode
*inode
= page
->mapping
->host
;
2936 trace_ext4_readpage(page
);
2938 if (ext4_has_inline_data(inode
))
2939 ret
= ext4_readpage_inline(inode
, page
);
2942 return mpage_readpage(page
, ext4_get_block
);
2948 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
2949 struct list_head
*pages
, unsigned nr_pages
)
2951 struct inode
*inode
= mapping
->host
;
2953 /* If the file has inline data, no need to do readpages. */
2954 if (ext4_has_inline_data(inode
))
2957 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
2960 static void ext4_invalidatepage(struct page
*page
, unsigned int offset
,
2961 unsigned int length
)
2963 trace_ext4_invalidatepage(page
, offset
, length
);
2965 /* No journalling happens on data buffers when this function is used */
2966 WARN_ON(page_has_buffers(page
) && buffer_jbd(page_buffers(page
)));
2968 block_invalidatepage(page
, offset
, length
);
2971 static int __ext4_journalled_invalidatepage(struct page
*page
,
2972 unsigned int offset
,
2973 unsigned int length
)
2975 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
2977 trace_ext4_journalled_invalidatepage(page
, offset
, length
);
2980 * If it's a full truncate we just forget about the pending dirtying
2982 if (offset
== 0 && length
== PAGE_CACHE_SIZE
)
2983 ClearPageChecked(page
);
2985 return jbd2_journal_invalidatepage(journal
, page
, offset
, length
);
2988 /* Wrapper for aops... */
2989 static void ext4_journalled_invalidatepage(struct page
*page
,
2990 unsigned int offset
,
2991 unsigned int length
)
2993 WARN_ON(__ext4_journalled_invalidatepage(page
, offset
, length
) < 0);
2996 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
2998 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3000 trace_ext4_releasepage(page
);
3002 /* Page has dirty journalled data -> cannot release */
3003 if (PageChecked(page
))
3006 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3008 return try_to_free_buffers(page
);
3012 * ext4_get_block used when preparing for a DIO write or buffer write.
3013 * We allocate an uinitialized extent if blocks haven't been allocated.
3014 * The extent will be converted to initialized after the IO is complete.
3016 int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
3017 struct buffer_head
*bh_result
, int create
)
3019 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3020 inode
->i_ino
, create
);
3021 return _ext4_get_block(inode
, iblock
, bh_result
,
3022 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
3025 static int ext4_get_block_write_nolock(struct inode
*inode
, sector_t iblock
,
3026 struct buffer_head
*bh_result
, int create
)
3028 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3029 inode
->i_ino
, create
);
3030 return _ext4_get_block(inode
, iblock
, bh_result
,
3031 EXT4_GET_BLOCKS_NO_LOCK
);
3034 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
3035 ssize_t size
, void *private)
3037 ext4_io_end_t
*io_end
= iocb
->private;
3039 /* if not async direct IO just return */
3043 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3044 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3045 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
3048 iocb
->private = NULL
;
3049 io_end
->offset
= offset
;
3050 io_end
->size
= size
;
3051 ext4_put_io_end(io_end
);
3055 * For ext4 extent files, ext4 will do direct-io write to holes,
3056 * preallocated extents, and those write extend the file, no need to
3057 * fall back to buffered IO.
3059 * For holes, we fallocate those blocks, mark them as uninitialized
3060 * If those blocks were preallocated, we mark sure they are split, but
3061 * still keep the range to write as uninitialized.
3063 * The unwritten extents will be converted to written when DIO is completed.
3064 * For async direct IO, since the IO may still pending when return, we
3065 * set up an end_io call back function, which will do the conversion
3066 * when async direct IO completed.
3068 * If the O_DIRECT write will extend the file then add this inode to the
3069 * orphan list. So recovery will truncate it back to the original size
3070 * if the machine crashes during the write.
3073 static ssize_t
ext4_ext_direct_IO(int rw
, struct kiocb
*iocb
,
3074 const struct iovec
*iov
, loff_t offset
,
3075 unsigned long nr_segs
)
3077 struct file
*file
= iocb
->ki_filp
;
3078 struct inode
*inode
= file
->f_mapping
->host
;
3080 size_t count
= iov_length(iov
, nr_segs
);
3082 get_block_t
*get_block_func
= NULL
;
3084 loff_t final_size
= offset
+ count
;
3085 ext4_io_end_t
*io_end
= NULL
;
3087 /* Use the old path for reads and writes beyond i_size. */
3088 if (rw
!= WRITE
|| final_size
> inode
->i_size
)
3089 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3091 BUG_ON(iocb
->private == NULL
);
3094 * Make all waiters for direct IO properly wait also for extent
3095 * conversion. This also disallows race between truncate() and
3096 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3099 atomic_inc(&inode
->i_dio_count
);
3101 /* If we do a overwrite dio, i_mutex locking can be released */
3102 overwrite
= *((int *)iocb
->private);
3105 down_read(&EXT4_I(inode
)->i_data_sem
);
3106 mutex_unlock(&inode
->i_mutex
);
3110 * We could direct write to holes and fallocate.
3112 * Allocated blocks to fill the hole are marked as
3113 * uninitialized to prevent parallel buffered read to expose
3114 * the stale data before DIO complete the data IO.
3116 * As to previously fallocated extents, ext4 get_block will
3117 * just simply mark the buffer mapped but still keep the
3118 * extents uninitialized.
3120 * For non AIO case, we will convert those unwritten extents
3121 * to written after return back from blockdev_direct_IO.
3123 * For async DIO, the conversion needs to be deferred when the
3124 * IO is completed. The ext4 end_io callback function will be
3125 * called to take care of the conversion work. Here for async
3126 * case, we allocate an io_end structure to hook to the iocb.
3128 iocb
->private = NULL
;
3129 ext4_inode_aio_set(inode
, NULL
);
3130 if (!is_sync_kiocb(iocb
)) {
3131 io_end
= ext4_init_io_end(inode
, GFP_NOFS
);
3137 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3139 iocb
->private = ext4_get_io_end(io_end
);
3141 * we save the io structure for current async direct
3142 * IO, so that later ext4_map_blocks() could flag the
3143 * io structure whether there is a unwritten extents
3144 * needs to be converted when IO is completed.
3146 ext4_inode_aio_set(inode
, io_end
);
3150 get_block_func
= ext4_get_block_write_nolock
;
3152 get_block_func
= ext4_get_block_write
;
3153 dio_flags
= DIO_LOCKING
;
3155 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
3156 inode
->i_sb
->s_bdev
, iov
,
3164 * Put our reference to io_end. This can free the io_end structure e.g.
3165 * in sync IO case or in case of error. It can even perform extent
3166 * conversion if all bios we submitted finished before we got here.
3167 * Note that in that case iocb->private can be already set to NULL
3171 ext4_inode_aio_set(inode
, NULL
);
3172 ext4_put_io_end(io_end
);
3174 * When no IO was submitted ext4_end_io_dio() was not
3175 * called so we have to put iocb's reference.
3177 if (ret
<= 0 && ret
!= -EIOCBQUEUED
&& iocb
->private) {
3178 WARN_ON(iocb
->private != io_end
);
3179 WARN_ON(io_end
->flag
& EXT4_IO_END_UNWRITTEN
);
3180 ext4_put_io_end(io_end
);
3181 iocb
->private = NULL
;
3184 if (ret
> 0 && !overwrite
&& ext4_test_inode_state(inode
,
3185 EXT4_STATE_DIO_UNWRITTEN
)) {
3188 * for non AIO case, since the IO is already
3189 * completed, we could do the conversion right here
3191 err
= ext4_convert_unwritten_extents(NULL
, inode
,
3195 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3200 inode_dio_done(inode
);
3201 /* take i_mutex locking again if we do a ovewrite dio */
3203 up_read(&EXT4_I(inode
)->i_data_sem
);
3204 mutex_lock(&inode
->i_mutex
);
3210 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
3211 const struct iovec
*iov
, loff_t offset
,
3212 unsigned long nr_segs
)
3214 struct file
*file
= iocb
->ki_filp
;
3215 struct inode
*inode
= file
->f_mapping
->host
;
3219 * If we are doing data journalling we don't support O_DIRECT
3221 if (ext4_should_journal_data(inode
))
3224 /* Let buffer I/O handle the inline data case. */
3225 if (ext4_has_inline_data(inode
))
3228 trace_ext4_direct_IO_enter(inode
, offset
, iov_length(iov
, nr_segs
), rw
);
3229 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3230 ret
= ext4_ext_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3232 ret
= ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3233 trace_ext4_direct_IO_exit(inode
, offset
,
3234 iov_length(iov
, nr_segs
), rw
, ret
);
3239 * Pages can be marked dirty completely asynchronously from ext4's journalling
3240 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3241 * much here because ->set_page_dirty is called under VFS locks. The page is
3242 * not necessarily locked.
3244 * We cannot just dirty the page and leave attached buffers clean, because the
3245 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3246 * or jbddirty because all the journalling code will explode.
3248 * So what we do is to mark the page "pending dirty" and next time writepage
3249 * is called, propagate that into the buffers appropriately.
3251 static int ext4_journalled_set_page_dirty(struct page
*page
)
3253 SetPageChecked(page
);
3254 return __set_page_dirty_nobuffers(page
);
3257 static const struct address_space_operations ext4_aops
= {
3258 .readpage
= ext4_readpage
,
3259 .readpages
= ext4_readpages
,
3260 .writepage
= ext4_writepage
,
3261 .writepages
= ext4_writepages
,
3262 .write_begin
= ext4_write_begin
,
3263 .write_end
= ext4_write_end
,
3265 .invalidatepage
= ext4_invalidatepage
,
3266 .releasepage
= ext4_releasepage
,
3267 .direct_IO
= ext4_direct_IO
,
3268 .migratepage
= buffer_migrate_page
,
3269 .is_partially_uptodate
= block_is_partially_uptodate
,
3270 .error_remove_page
= generic_error_remove_page
,
3273 static const struct address_space_operations ext4_journalled_aops
= {
3274 .readpage
= ext4_readpage
,
3275 .readpages
= ext4_readpages
,
3276 .writepage
= ext4_writepage
,
3277 .writepages
= ext4_writepages
,
3278 .write_begin
= ext4_write_begin
,
3279 .write_end
= ext4_journalled_write_end
,
3280 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3282 .invalidatepage
= ext4_journalled_invalidatepage
,
3283 .releasepage
= ext4_releasepage
,
3284 .direct_IO
= ext4_direct_IO
,
3285 .is_partially_uptodate
= block_is_partially_uptodate
,
3286 .error_remove_page
= generic_error_remove_page
,
3289 static const struct address_space_operations ext4_da_aops
= {
3290 .readpage
= ext4_readpage
,
3291 .readpages
= ext4_readpages
,
3292 .writepage
= ext4_writepage
,
3293 .writepages
= ext4_writepages
,
3294 .write_begin
= ext4_da_write_begin
,
3295 .write_end
= ext4_da_write_end
,
3297 .invalidatepage
= ext4_da_invalidatepage
,
3298 .releasepage
= ext4_releasepage
,
3299 .direct_IO
= ext4_direct_IO
,
3300 .migratepage
= buffer_migrate_page
,
3301 .is_partially_uptodate
= block_is_partially_uptodate
,
3302 .error_remove_page
= generic_error_remove_page
,
3305 void ext4_set_aops(struct inode
*inode
)
3307 switch (ext4_inode_journal_mode(inode
)) {
3308 case EXT4_INODE_ORDERED_DATA_MODE
:
3309 ext4_set_inode_state(inode
, EXT4_STATE_ORDERED_MODE
);
3311 case EXT4_INODE_WRITEBACK_DATA_MODE
:
3312 ext4_clear_inode_state(inode
, EXT4_STATE_ORDERED_MODE
);
3314 case EXT4_INODE_JOURNAL_DATA_MODE
:
3315 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3320 if (test_opt(inode
->i_sb
, DELALLOC
))
3321 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3323 inode
->i_mapping
->a_ops
= &ext4_aops
;
3327 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3328 * starting from file offset 'from'. The range to be zero'd must
3329 * be contained with in one block. If the specified range exceeds
3330 * the end of the block it will be shortened to end of the block
3331 * that cooresponds to 'from'
3333 static int ext4_block_zero_page_range(handle_t
*handle
,
3334 struct address_space
*mapping
, loff_t from
, loff_t length
)
3336 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3337 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3338 unsigned blocksize
, max
, pos
;
3340 struct inode
*inode
= mapping
->host
;
3341 struct buffer_head
*bh
;
3345 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3346 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3350 blocksize
= inode
->i_sb
->s_blocksize
;
3351 max
= blocksize
- (offset
& (blocksize
- 1));
3354 * correct length if it does not fall between
3355 * 'from' and the end of the block
3357 if (length
> max
|| length
< 0)
3360 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3362 if (!page_has_buffers(page
))
3363 create_empty_buffers(page
, blocksize
, 0);
3365 /* Find the buffer that contains "offset" */
3366 bh
= page_buffers(page
);
3368 while (offset
>= pos
) {
3369 bh
= bh
->b_this_page
;
3373 if (buffer_freed(bh
)) {
3374 BUFFER_TRACE(bh
, "freed: skip");
3377 if (!buffer_mapped(bh
)) {
3378 BUFFER_TRACE(bh
, "unmapped");
3379 ext4_get_block(inode
, iblock
, bh
, 0);
3380 /* unmapped? It's a hole - nothing to do */
3381 if (!buffer_mapped(bh
)) {
3382 BUFFER_TRACE(bh
, "still unmapped");
3387 /* Ok, it's mapped. Make sure it's up-to-date */
3388 if (PageUptodate(page
))
3389 set_buffer_uptodate(bh
);
3391 if (!buffer_uptodate(bh
)) {
3393 ll_rw_block(READ
, 1, &bh
);
3395 /* Uhhuh. Read error. Complain and punt. */
3396 if (!buffer_uptodate(bh
))
3399 if (ext4_should_journal_data(inode
)) {
3400 BUFFER_TRACE(bh
, "get write access");
3401 err
= ext4_journal_get_write_access(handle
, bh
);
3405 zero_user(page
, offset
, length
);
3406 BUFFER_TRACE(bh
, "zeroed end of block");
3408 if (ext4_should_journal_data(inode
)) {
3409 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3412 mark_buffer_dirty(bh
);
3413 if (ext4_test_inode_state(inode
, EXT4_STATE_ORDERED_MODE
))
3414 err
= ext4_jbd2_file_inode(handle
, inode
);
3419 page_cache_release(page
);
3424 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3425 * up to the end of the block which corresponds to `from'.
3426 * This required during truncate. We need to physically zero the tail end
3427 * of that block so it doesn't yield old data if the file is later grown.
3429 int ext4_block_truncate_page(handle_t
*handle
,
3430 struct address_space
*mapping
, loff_t from
)
3432 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3435 struct inode
*inode
= mapping
->host
;
3437 blocksize
= inode
->i_sb
->s_blocksize
;
3438 length
= blocksize
- (offset
& (blocksize
- 1));
3440 return ext4_block_zero_page_range(handle
, mapping
, from
, length
);
3443 int ext4_zero_partial_blocks(handle_t
*handle
, struct inode
*inode
,
3444 loff_t lstart
, loff_t length
)
3446 struct super_block
*sb
= inode
->i_sb
;
3447 struct address_space
*mapping
= inode
->i_mapping
;
3448 unsigned partial_start
, partial_end
;
3449 ext4_fsblk_t start
, end
;
3450 loff_t byte_end
= (lstart
+ length
- 1);
3453 partial_start
= lstart
& (sb
->s_blocksize
- 1);
3454 partial_end
= byte_end
& (sb
->s_blocksize
- 1);
3456 start
= lstart
>> sb
->s_blocksize_bits
;
3457 end
= byte_end
>> sb
->s_blocksize_bits
;
3459 /* Handle partial zero within the single block */
3461 (partial_start
|| (partial_end
!= sb
->s_blocksize
- 1))) {
3462 err
= ext4_block_zero_page_range(handle
, mapping
,
3466 /* Handle partial zero out on the start of the range */
3467 if (partial_start
) {
3468 err
= ext4_block_zero_page_range(handle
, mapping
,
3469 lstart
, sb
->s_blocksize
);
3473 /* Handle partial zero out on the end of the range */
3474 if (partial_end
!= sb
->s_blocksize
- 1)
3475 err
= ext4_block_zero_page_range(handle
, mapping
,
3476 byte_end
- partial_end
,
3481 int ext4_can_truncate(struct inode
*inode
)
3483 if (S_ISREG(inode
->i_mode
))
3485 if (S_ISDIR(inode
->i_mode
))
3487 if (S_ISLNK(inode
->i_mode
))
3488 return !ext4_inode_is_fast_symlink(inode
);
3493 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3494 * associated with the given offset and length
3496 * @inode: File inode
3497 * @offset: The offset where the hole will begin
3498 * @len: The length of the hole
3500 * Returns: 0 on success or negative on failure
3503 int ext4_punch_hole(struct inode
*inode
, loff_t offset
, loff_t length
)
3505 struct super_block
*sb
= inode
->i_sb
;
3506 ext4_lblk_t first_block
, stop_block
;
3507 struct address_space
*mapping
= inode
->i_mapping
;
3508 loff_t first_block_offset
, last_block_offset
;
3510 unsigned int credits
;
3513 if (!S_ISREG(inode
->i_mode
))
3516 trace_ext4_punch_hole(inode
, offset
, length
, 0);
3519 * Write out all dirty pages to avoid race conditions
3520 * Then release them.
3522 if (mapping
->nrpages
&& mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
3523 ret
= filemap_write_and_wait_range(mapping
, offset
,
3524 offset
+ length
- 1);
3529 mutex_lock(&inode
->i_mutex
);
3530 /* It's not possible punch hole on append only file */
3531 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
)) {
3535 if (IS_SWAPFILE(inode
)) {
3540 /* No need to punch hole beyond i_size */
3541 if (offset
>= inode
->i_size
)
3545 * If the hole extends beyond i_size, set the hole
3546 * to end after the page that contains i_size
3548 if (offset
+ length
> inode
->i_size
) {
3549 length
= inode
->i_size
+
3550 PAGE_CACHE_SIZE
- (inode
->i_size
& (PAGE_CACHE_SIZE
- 1)) -
3554 if (offset
& (sb
->s_blocksize
- 1) ||
3555 (offset
+ length
) & (sb
->s_blocksize
- 1)) {
3557 * Attach jinode to inode for jbd2 if we do any zeroing of
3560 ret
= ext4_inode_attach_jinode(inode
);
3566 first_block_offset
= round_up(offset
, sb
->s_blocksize
);
3567 last_block_offset
= round_down((offset
+ length
), sb
->s_blocksize
) - 1;
3569 /* Now release the pages and zero block aligned part of pages*/
3570 if (last_block_offset
> first_block_offset
)
3571 truncate_pagecache_range(inode
, first_block_offset
,
3574 /* Wait all existing dio workers, newcomers will block on i_mutex */
3575 ext4_inode_block_unlocked_dio(inode
);
3576 inode_dio_wait(inode
);
3578 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3579 credits
= ext4_writepage_trans_blocks(inode
);
3581 credits
= ext4_blocks_for_truncate(inode
);
3582 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
3583 if (IS_ERR(handle
)) {
3584 ret
= PTR_ERR(handle
);
3585 ext4_std_error(sb
, ret
);
3589 ret
= ext4_zero_partial_blocks(handle
, inode
, offset
,
3594 first_block
= (offset
+ sb
->s_blocksize
- 1) >>
3595 EXT4_BLOCK_SIZE_BITS(sb
);
3596 stop_block
= (offset
+ length
) >> EXT4_BLOCK_SIZE_BITS(sb
);
3598 /* If there are no blocks to remove, return now */
3599 if (first_block
>= stop_block
)
3602 down_write(&EXT4_I(inode
)->i_data_sem
);
3603 ext4_discard_preallocations(inode
);
3605 ret
= ext4_es_remove_extent(inode
, first_block
,
3606 stop_block
- first_block
);
3608 up_write(&EXT4_I(inode
)->i_data_sem
);
3612 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3613 ret
= ext4_ext_remove_space(inode
, first_block
,
3616 ret
= ext4_free_hole_blocks(handle
, inode
, first_block
,
3619 ext4_discard_preallocations(inode
);
3620 up_write(&EXT4_I(inode
)->i_data_sem
);
3622 ext4_handle_sync(handle
);
3624 /* Now release the pages again to reduce race window */
3625 if (last_block_offset
> first_block_offset
)
3626 truncate_pagecache_range(inode
, first_block_offset
,
3629 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
3630 ext4_mark_inode_dirty(handle
, inode
);
3632 ext4_journal_stop(handle
);
3634 ext4_inode_resume_unlocked_dio(inode
);
3636 mutex_unlock(&inode
->i_mutex
);
3640 int ext4_inode_attach_jinode(struct inode
*inode
)
3642 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3643 struct jbd2_inode
*jinode
;
3645 if (ei
->jinode
|| !EXT4_SB(inode
->i_sb
)->s_journal
)
3648 jinode
= jbd2_alloc_inode(GFP_KERNEL
);
3649 spin_lock(&inode
->i_lock
);
3652 spin_unlock(&inode
->i_lock
);
3655 ei
->jinode
= jinode
;
3656 jbd2_journal_init_jbd_inode(ei
->jinode
, inode
);
3659 spin_unlock(&inode
->i_lock
);
3660 if (unlikely(jinode
!= NULL
))
3661 jbd2_free_inode(jinode
);
3668 * We block out ext4_get_block() block instantiations across the entire
3669 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3670 * simultaneously on behalf of the same inode.
3672 * As we work through the truncate and commit bits of it to the journal there
3673 * is one core, guiding principle: the file's tree must always be consistent on
3674 * disk. We must be able to restart the truncate after a crash.
3676 * The file's tree may be transiently inconsistent in memory (although it
3677 * probably isn't), but whenever we close off and commit a journal transaction,
3678 * the contents of (the filesystem + the journal) must be consistent and
3679 * restartable. It's pretty simple, really: bottom up, right to left (although
3680 * left-to-right works OK too).
3682 * Note that at recovery time, journal replay occurs *before* the restart of
3683 * truncate against the orphan inode list.
3685 * The committed inode has the new, desired i_size (which is the same as
3686 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3687 * that this inode's truncate did not complete and it will again call
3688 * ext4_truncate() to have another go. So there will be instantiated blocks
3689 * to the right of the truncation point in a crashed ext4 filesystem. But
3690 * that's fine - as long as they are linked from the inode, the post-crash
3691 * ext4_truncate() run will find them and release them.
3693 void ext4_truncate(struct inode
*inode
)
3695 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3696 unsigned int credits
;
3698 struct address_space
*mapping
= inode
->i_mapping
;
3701 * There is a possibility that we're either freeing the inode
3702 * or it's a completely new inode. In those cases we might not
3703 * have i_mutex locked because it's not necessary.
3705 if (!(inode
->i_state
& (I_NEW
|I_FREEING
)))
3706 WARN_ON(!mutex_is_locked(&inode
->i_mutex
));
3707 trace_ext4_truncate_enter(inode
);
3709 if (!ext4_can_truncate(inode
))
3712 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
3714 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
3715 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
3717 if (ext4_has_inline_data(inode
)) {
3720 ext4_inline_data_truncate(inode
, &has_inline
);
3725 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3726 if (inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1)) {
3727 if (ext4_inode_attach_jinode(inode
) < 0)
3731 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3732 credits
= ext4_writepage_trans_blocks(inode
);
3734 credits
= ext4_blocks_for_truncate(inode
);
3736 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
3737 if (IS_ERR(handle
)) {
3738 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
3742 if (inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1))
3743 ext4_block_truncate_page(handle
, mapping
, inode
->i_size
);
3746 * We add the inode to the orphan list, so that if this
3747 * truncate spans multiple transactions, and we crash, we will
3748 * resume the truncate when the filesystem recovers. It also
3749 * marks the inode dirty, to catch the new size.
3751 * Implication: the file must always be in a sane, consistent
3752 * truncatable state while each transaction commits.
3754 if (ext4_orphan_add(handle
, inode
))
3757 down_write(&EXT4_I(inode
)->i_data_sem
);
3759 ext4_discard_preallocations(inode
);
3761 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3762 ext4_ext_truncate(handle
, inode
);
3764 ext4_ind_truncate(handle
, inode
);
3766 up_write(&ei
->i_data_sem
);
3769 ext4_handle_sync(handle
);
3773 * If this was a simple ftruncate() and the file will remain alive,
3774 * then we need to clear up the orphan record which we created above.
3775 * However, if this was a real unlink then we were called by
3776 * ext4_delete_inode(), and we allow that function to clean up the
3777 * orphan info for us.
3780 ext4_orphan_del(handle
, inode
);
3782 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
3783 ext4_mark_inode_dirty(handle
, inode
);
3784 ext4_journal_stop(handle
);
3786 trace_ext4_truncate_exit(inode
);
3790 * ext4_get_inode_loc returns with an extra refcount against the inode's
3791 * underlying buffer_head on success. If 'in_mem' is true, we have all
3792 * data in memory that is needed to recreate the on-disk version of this
3795 static int __ext4_get_inode_loc(struct inode
*inode
,
3796 struct ext4_iloc
*iloc
, int in_mem
)
3798 struct ext4_group_desc
*gdp
;
3799 struct buffer_head
*bh
;
3800 struct super_block
*sb
= inode
->i_sb
;
3802 int inodes_per_block
, inode_offset
;
3805 if (!ext4_valid_inum(sb
, inode
->i_ino
))
3808 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
3809 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
3814 * Figure out the offset within the block group inode table
3816 inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
3817 inode_offset
= ((inode
->i_ino
- 1) %
3818 EXT4_INODES_PER_GROUP(sb
));
3819 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
3820 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
3822 bh
= sb_getblk(sb
, block
);
3825 if (!buffer_uptodate(bh
)) {
3829 * If the buffer has the write error flag, we have failed
3830 * to write out another inode in the same block. In this
3831 * case, we don't have to read the block because we may
3832 * read the old inode data successfully.
3834 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
3835 set_buffer_uptodate(bh
);
3837 if (buffer_uptodate(bh
)) {
3838 /* someone brought it uptodate while we waited */
3844 * If we have all information of the inode in memory and this
3845 * is the only valid inode in the block, we need not read the
3849 struct buffer_head
*bitmap_bh
;
3852 start
= inode_offset
& ~(inodes_per_block
- 1);
3854 /* Is the inode bitmap in cache? */
3855 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
3856 if (unlikely(!bitmap_bh
))
3860 * If the inode bitmap isn't in cache then the
3861 * optimisation may end up performing two reads instead
3862 * of one, so skip it.
3864 if (!buffer_uptodate(bitmap_bh
)) {
3868 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
3869 if (i
== inode_offset
)
3871 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
3875 if (i
== start
+ inodes_per_block
) {
3876 /* all other inodes are free, so skip I/O */
3877 memset(bh
->b_data
, 0, bh
->b_size
);
3878 set_buffer_uptodate(bh
);
3886 * If we need to do any I/O, try to pre-readahead extra
3887 * blocks from the inode table.
3889 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
3890 ext4_fsblk_t b
, end
, table
;
3892 __u32 ra_blks
= EXT4_SB(sb
)->s_inode_readahead_blks
;
3894 table
= ext4_inode_table(sb
, gdp
);
3895 /* s_inode_readahead_blks is always a power of 2 */
3896 b
= block
& ~((ext4_fsblk_t
) ra_blks
- 1);
3900 num
= EXT4_INODES_PER_GROUP(sb
);
3901 if (ext4_has_group_desc_csum(sb
))
3902 num
-= ext4_itable_unused_count(sb
, gdp
);
3903 table
+= num
/ inodes_per_block
;
3907 sb_breadahead(sb
, b
++);
3911 * There are other valid inodes in the buffer, this inode
3912 * has in-inode xattrs, or we don't have this inode in memory.
3913 * Read the block from disk.
3915 trace_ext4_load_inode(inode
);
3917 bh
->b_end_io
= end_buffer_read_sync
;
3918 submit_bh(READ
| REQ_META
| REQ_PRIO
, bh
);
3920 if (!buffer_uptodate(bh
)) {
3921 EXT4_ERROR_INODE_BLOCK(inode
, block
,
3922 "unable to read itable block");
3932 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
3934 /* We have all inode data except xattrs in memory here. */
3935 return __ext4_get_inode_loc(inode
, iloc
,
3936 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
3939 void ext4_set_inode_flags(struct inode
*inode
)
3941 unsigned int flags
= EXT4_I(inode
)->i_flags
;
3942 unsigned int new_fl
= 0;
3944 if (flags
& EXT4_SYNC_FL
)
3946 if (flags
& EXT4_APPEND_FL
)
3948 if (flags
& EXT4_IMMUTABLE_FL
)
3949 new_fl
|= S_IMMUTABLE
;
3950 if (flags
& EXT4_NOATIME_FL
)
3951 new_fl
|= S_NOATIME
;
3952 if (flags
& EXT4_DIRSYNC_FL
)
3953 new_fl
|= S_DIRSYNC
;
3954 inode_set_flags(inode
, new_fl
,
3955 S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
3958 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3959 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
3961 unsigned int vfs_fl
;
3962 unsigned long old_fl
, new_fl
;
3965 vfs_fl
= ei
->vfs_inode
.i_flags
;
3966 old_fl
= ei
->i_flags
;
3967 new_fl
= old_fl
& ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
3968 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|
3970 if (vfs_fl
& S_SYNC
)
3971 new_fl
|= EXT4_SYNC_FL
;
3972 if (vfs_fl
& S_APPEND
)
3973 new_fl
|= EXT4_APPEND_FL
;
3974 if (vfs_fl
& S_IMMUTABLE
)
3975 new_fl
|= EXT4_IMMUTABLE_FL
;
3976 if (vfs_fl
& S_NOATIME
)
3977 new_fl
|= EXT4_NOATIME_FL
;
3978 if (vfs_fl
& S_DIRSYNC
)
3979 new_fl
|= EXT4_DIRSYNC_FL
;
3980 } while (cmpxchg(&ei
->i_flags
, old_fl
, new_fl
) != old_fl
);
3983 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
3984 struct ext4_inode_info
*ei
)
3987 struct inode
*inode
= &(ei
->vfs_inode
);
3988 struct super_block
*sb
= inode
->i_sb
;
3990 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3991 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
3992 /* we are using combined 48 bit field */
3993 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
3994 le32_to_cpu(raw_inode
->i_blocks_lo
);
3995 if (ext4_test_inode_flag(inode
, EXT4_INODE_HUGE_FILE
)) {
3996 /* i_blocks represent file system block size */
3997 return i_blocks
<< (inode
->i_blkbits
- 9);
4002 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4006 static inline void ext4_iget_extra_inode(struct inode
*inode
,
4007 struct ext4_inode
*raw_inode
,
4008 struct ext4_inode_info
*ei
)
4010 __le32
*magic
= (void *)raw_inode
+
4011 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
;
4012 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4013 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
4014 ext4_find_inline_data_nolock(inode
);
4016 EXT4_I(inode
)->i_inline_off
= 0;
4019 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4021 struct ext4_iloc iloc
;
4022 struct ext4_inode
*raw_inode
;
4023 struct ext4_inode_info
*ei
;
4024 struct inode
*inode
;
4025 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
4031 inode
= iget_locked(sb
, ino
);
4033 return ERR_PTR(-ENOMEM
);
4034 if (!(inode
->i_state
& I_NEW
))
4040 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4043 raw_inode
= ext4_raw_inode(&iloc
);
4045 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4046 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4047 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4048 EXT4_INODE_SIZE(inode
->i_sb
)) {
4049 EXT4_ERROR_INODE(inode
, "bad extra_isize (%u != %u)",
4050 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
,
4051 EXT4_INODE_SIZE(inode
->i_sb
));
4056 ei
->i_extra_isize
= 0;
4058 /* Precompute checksum seed for inode metadata */
4059 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4060 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
)) {
4061 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4063 __le32 inum
= cpu_to_le32(inode
->i_ino
);
4064 __le32 gen
= raw_inode
->i_generation
;
4065 csum
= ext4_chksum(sbi
, sbi
->s_csum_seed
, (__u8
*)&inum
,
4067 ei
->i_csum_seed
= ext4_chksum(sbi
, csum
, (__u8
*)&gen
,
4071 if (!ext4_inode_csum_verify(inode
, raw_inode
, ei
)) {
4072 EXT4_ERROR_INODE(inode
, "checksum invalid");
4077 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4078 i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4079 i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4080 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4081 i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4082 i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4084 i_uid_write(inode
, i_uid
);
4085 i_gid_write(inode
, i_gid
);
4086 set_nlink(inode
, le16_to_cpu(raw_inode
->i_links_count
));
4088 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
4089 ei
->i_inline_off
= 0;
4090 ei
->i_dir_start_lookup
= 0;
4091 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4092 /* We now have enough fields to check if the inode was active or not.
4093 * This is needed because nfsd might try to access dead inodes
4094 * the test is that same one that e2fsck uses
4095 * NeilBrown 1999oct15
4097 if (inode
->i_nlink
== 0) {
4098 if ((inode
->i_mode
== 0 ||
4099 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) &&
4100 ino
!= EXT4_BOOT_LOADER_INO
) {
4101 /* this inode is deleted */
4105 /* The only unlinked inodes we let through here have
4106 * valid i_mode and are being read by the orphan
4107 * recovery code: that's fine, we're about to complete
4108 * the process of deleting those.
4109 * OR it is the EXT4_BOOT_LOADER_INO which is
4110 * not initialized on a new filesystem. */
4112 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4113 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4114 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4115 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
4117 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4118 inode
->i_size
= ext4_isize(raw_inode
);
4119 ei
->i_disksize
= inode
->i_size
;
4121 ei
->i_reserved_quota
= 0;
4123 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4124 ei
->i_block_group
= iloc
.block_group
;
4125 ei
->i_last_alloc_group
= ~0;
4127 * NOTE! The in-memory inode i_data array is in little-endian order
4128 * even on big-endian machines: we do NOT byteswap the block numbers!
4130 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4131 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4132 INIT_LIST_HEAD(&ei
->i_orphan
);
4135 * Set transaction id's of transactions that have to be committed
4136 * to finish f[data]sync. We set them to currently running transaction
4137 * as we cannot be sure that the inode or some of its metadata isn't
4138 * part of the transaction - the inode could have been reclaimed and
4139 * now it is reread from disk.
4142 transaction_t
*transaction
;
4145 read_lock(&journal
->j_state_lock
);
4146 if (journal
->j_running_transaction
)
4147 transaction
= journal
->j_running_transaction
;
4149 transaction
= journal
->j_committing_transaction
;
4151 tid
= transaction
->t_tid
;
4153 tid
= journal
->j_commit_sequence
;
4154 read_unlock(&journal
->j_state_lock
);
4155 ei
->i_sync_tid
= tid
;
4156 ei
->i_datasync_tid
= tid
;
4159 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4160 if (ei
->i_extra_isize
== 0) {
4161 /* The extra space is currently unused. Use it. */
4162 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4163 EXT4_GOOD_OLD_INODE_SIZE
;
4165 ext4_iget_extra_inode(inode
, raw_inode
, ei
);
4169 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4170 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4171 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4172 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4174 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
))) {
4175 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
4176 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4177 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4179 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4184 if (ei
->i_file_acl
&&
4185 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
4186 EXT4_ERROR_INODE(inode
, "bad extended attribute block %llu",
4190 } else if (!ext4_has_inline_data(inode
)) {
4191 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
4192 if ((S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4193 (S_ISLNK(inode
->i_mode
) &&
4194 !ext4_inode_is_fast_symlink(inode
))))
4195 /* Validate extent which is part of inode */
4196 ret
= ext4_ext_check_inode(inode
);
4197 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4198 (S_ISLNK(inode
->i_mode
) &&
4199 !ext4_inode_is_fast_symlink(inode
))) {
4200 /* Validate block references which are part of inode */
4201 ret
= ext4_ind_check_inode(inode
);
4207 if (S_ISREG(inode
->i_mode
)) {
4208 inode
->i_op
= &ext4_file_inode_operations
;
4209 inode
->i_fop
= &ext4_file_operations
;
4210 ext4_set_aops(inode
);
4211 } else if (S_ISDIR(inode
->i_mode
)) {
4212 inode
->i_op
= &ext4_dir_inode_operations
;
4213 inode
->i_fop
= &ext4_dir_operations
;
4214 } else if (S_ISLNK(inode
->i_mode
)) {
4215 if (ext4_inode_is_fast_symlink(inode
)) {
4216 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
4217 nd_terminate_link(ei
->i_data
, inode
->i_size
,
4218 sizeof(ei
->i_data
) - 1);
4220 inode
->i_op
= &ext4_symlink_inode_operations
;
4221 ext4_set_aops(inode
);
4223 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
4224 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
4225 inode
->i_op
= &ext4_special_inode_operations
;
4226 if (raw_inode
->i_block
[0])
4227 init_special_inode(inode
, inode
->i_mode
,
4228 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
4230 init_special_inode(inode
, inode
->i_mode
,
4231 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
4232 } else if (ino
== EXT4_BOOT_LOADER_INO
) {
4233 make_bad_inode(inode
);
4236 EXT4_ERROR_INODE(inode
, "bogus i_mode (%o)", inode
->i_mode
);
4240 ext4_set_inode_flags(inode
);
4241 unlock_new_inode(inode
);
4247 return ERR_PTR(ret
);
4250 static int ext4_inode_blocks_set(handle_t
*handle
,
4251 struct ext4_inode
*raw_inode
,
4252 struct ext4_inode_info
*ei
)
4254 struct inode
*inode
= &(ei
->vfs_inode
);
4255 u64 i_blocks
= inode
->i_blocks
;
4256 struct super_block
*sb
= inode
->i_sb
;
4258 if (i_blocks
<= ~0U) {
4260 * i_blocks can be represented in a 32 bit variable
4261 * as multiple of 512 bytes
4263 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4264 raw_inode
->i_blocks_high
= 0;
4265 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4268 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
4271 if (i_blocks
<= 0xffffffffffffULL
) {
4273 * i_blocks can be represented in a 48 bit variable
4274 * as multiple of 512 bytes
4276 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4277 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4278 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4280 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4281 /* i_block is stored in file system block size */
4282 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
4283 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4284 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4290 * Post the struct inode info into an on-disk inode location in the
4291 * buffer-cache. This gobbles the caller's reference to the
4292 * buffer_head in the inode location struct.
4294 * The caller must have write access to iloc->bh.
4296 static int ext4_do_update_inode(handle_t
*handle
,
4297 struct inode
*inode
,
4298 struct ext4_iloc
*iloc
)
4300 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
4301 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4302 struct buffer_head
*bh
= iloc
->bh
;
4303 int err
= 0, rc
, block
;
4304 int need_datasync
= 0;
4308 /* For fields not not tracking in the in-memory inode,
4309 * initialise them to zero for new inodes. */
4310 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
4311 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
4313 ext4_get_inode_flags(ei
);
4314 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
4315 i_uid
= i_uid_read(inode
);
4316 i_gid
= i_gid_read(inode
);
4317 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4318 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(i_uid
));
4319 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(i_gid
));
4321 * Fix up interoperability with old kernels. Otherwise, old inodes get
4322 * re-used with the upper 16 bits of the uid/gid intact
4325 raw_inode
->i_uid_high
=
4326 cpu_to_le16(high_16_bits(i_uid
));
4327 raw_inode
->i_gid_high
=
4328 cpu_to_le16(high_16_bits(i_gid
));
4330 raw_inode
->i_uid_high
= 0;
4331 raw_inode
->i_gid_high
= 0;
4334 raw_inode
->i_uid_low
= cpu_to_le16(fs_high2lowuid(i_uid
));
4335 raw_inode
->i_gid_low
= cpu_to_le16(fs_high2lowgid(i_gid
));
4336 raw_inode
->i_uid_high
= 0;
4337 raw_inode
->i_gid_high
= 0;
4339 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
4341 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
4342 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
4343 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
4344 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
4346 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
4348 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
4349 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& 0xFFFFFFFF);
4350 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
)))
4351 raw_inode
->i_file_acl_high
=
4352 cpu_to_le16(ei
->i_file_acl
>> 32);
4353 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
4354 if (ei
->i_disksize
!= ext4_isize(raw_inode
)) {
4355 ext4_isize_set(raw_inode
, ei
->i_disksize
);
4358 if (ei
->i_disksize
> 0x7fffffffULL
) {
4359 struct super_block
*sb
= inode
->i_sb
;
4360 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4361 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
4362 EXT4_SB(sb
)->s_es
->s_rev_level
==
4363 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
4364 /* If this is the first large file
4365 * created, add a flag to the superblock.
4367 err
= ext4_journal_get_write_access(handle
,
4368 EXT4_SB(sb
)->s_sbh
);
4371 ext4_update_dynamic_rev(sb
);
4372 EXT4_SET_RO_COMPAT_FEATURE(sb
,
4373 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
4374 ext4_handle_sync(handle
);
4375 err
= ext4_handle_dirty_super(handle
, sb
);
4378 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
4379 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
4380 if (old_valid_dev(inode
->i_rdev
)) {
4381 raw_inode
->i_block
[0] =
4382 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
4383 raw_inode
->i_block
[1] = 0;
4385 raw_inode
->i_block
[0] = 0;
4386 raw_inode
->i_block
[1] =
4387 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
4388 raw_inode
->i_block
[2] = 0;
4390 } else if (!ext4_has_inline_data(inode
)) {
4391 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4392 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
4395 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
))) {
4396 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
4397 if (ei
->i_extra_isize
) {
4398 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4399 raw_inode
->i_version_hi
=
4400 cpu_to_le32(inode
->i_version
>> 32);
4401 raw_inode
->i_extra_isize
=
4402 cpu_to_le16(ei
->i_extra_isize
);
4406 ext4_inode_csum_set(inode
, raw_inode
, ei
);
4408 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4409 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
4412 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
4414 ext4_update_inode_fsync_trans(handle
, inode
, need_datasync
);
4417 ext4_std_error(inode
->i_sb
, err
);
4422 * ext4_write_inode()
4424 * We are called from a few places:
4426 * - Within generic_file_write() for O_SYNC files.
4427 * Here, there will be no transaction running. We wait for any running
4428 * transaction to commit.
4430 * - Within sys_sync(), kupdate and such.
4431 * We wait on commit, if tol to.
4433 * - Within prune_icache() (PF_MEMALLOC == true)
4434 * Here we simply return. We can't afford to block kswapd on the
4437 * In all cases it is actually safe for us to return without doing anything,
4438 * because the inode has been copied into a raw inode buffer in
4439 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4442 * Note that we are absolutely dependent upon all inode dirtiers doing the
4443 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4444 * which we are interested.
4446 * It would be a bug for them to not do this. The code:
4448 * mark_inode_dirty(inode)
4450 * inode->i_size = expr;
4452 * is in error because a kswapd-driven write_inode() could occur while
4453 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4454 * will no longer be on the superblock's dirty inode list.
4456 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4460 if (current
->flags
& PF_MEMALLOC
)
4463 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
4464 if (ext4_journal_current_handle()) {
4465 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4471 * No need to force transaction in WB_SYNC_NONE mode. Also
4472 * ext4_sync_fs() will force the commit after everything is
4475 if (wbc
->sync_mode
!= WB_SYNC_ALL
|| wbc
->for_sync
)
4478 err
= ext4_force_commit(inode
->i_sb
);
4480 struct ext4_iloc iloc
;
4482 err
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4486 * sync(2) will flush the whole buffer cache. No need to do
4487 * it here separately for each inode.
4489 if (wbc
->sync_mode
== WB_SYNC_ALL
&& !wbc
->for_sync
)
4490 sync_dirty_buffer(iloc
.bh
);
4491 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
4492 EXT4_ERROR_INODE_BLOCK(inode
, iloc
.bh
->b_blocknr
,
4493 "IO error syncing inode");
4502 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4503 * buffers that are attached to a page stradding i_size and are undergoing
4504 * commit. In that case we have to wait for commit to finish and try again.
4506 static void ext4_wait_for_tail_page_commit(struct inode
*inode
)
4510 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
4511 tid_t commit_tid
= 0;
4514 offset
= inode
->i_size
& (PAGE_CACHE_SIZE
- 1);
4516 * All buffers in the last page remain valid? Then there's nothing to
4517 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4520 if (offset
> PAGE_CACHE_SIZE
- (1 << inode
->i_blkbits
))
4523 page
= find_lock_page(inode
->i_mapping
,
4524 inode
->i_size
>> PAGE_CACHE_SHIFT
);
4527 ret
= __ext4_journalled_invalidatepage(page
, offset
,
4528 PAGE_CACHE_SIZE
- offset
);
4530 page_cache_release(page
);
4534 read_lock(&journal
->j_state_lock
);
4535 if (journal
->j_committing_transaction
)
4536 commit_tid
= journal
->j_committing_transaction
->t_tid
;
4537 read_unlock(&journal
->j_state_lock
);
4539 jbd2_log_wait_commit(journal
, commit_tid
);
4546 * Called from notify_change.
4548 * We want to trap VFS attempts to truncate the file as soon as
4549 * possible. In particular, we want to make sure that when the VFS
4550 * shrinks i_size, we put the inode on the orphan list and modify
4551 * i_disksize immediately, so that during the subsequent flushing of
4552 * dirty pages and freeing of disk blocks, we can guarantee that any
4553 * commit will leave the blocks being flushed in an unused state on
4554 * disk. (On recovery, the inode will get truncated and the blocks will
4555 * be freed, so we have a strong guarantee that no future commit will
4556 * leave these blocks visible to the user.)
4558 * Another thing we have to assure is that if we are in ordered mode
4559 * and inode is still attached to the committing transaction, we must
4560 * we start writeout of all the dirty pages which are being truncated.
4561 * This way we are sure that all the data written in the previous
4562 * transaction are already on disk (truncate waits for pages under
4565 * Called with inode->i_mutex down.
4567 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4569 struct inode
*inode
= dentry
->d_inode
;
4572 const unsigned int ia_valid
= attr
->ia_valid
;
4574 error
= inode_change_ok(inode
, attr
);
4578 if (is_quota_modification(inode
, attr
))
4579 dquot_initialize(inode
);
4580 if ((ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)) ||
4581 (ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
))) {
4584 /* (user+group)*(old+new) structure, inode write (sb,
4585 * inode block, ? - but truncate inode update has it) */
4586 handle
= ext4_journal_start(inode
, EXT4_HT_QUOTA
,
4587 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
) +
4588 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
)) + 3);
4589 if (IS_ERR(handle
)) {
4590 error
= PTR_ERR(handle
);
4593 error
= dquot_transfer(inode
, attr
);
4595 ext4_journal_stop(handle
);
4598 /* Update corresponding info in inode so that everything is in
4599 * one transaction */
4600 if (attr
->ia_valid
& ATTR_UID
)
4601 inode
->i_uid
= attr
->ia_uid
;
4602 if (attr
->ia_valid
& ATTR_GID
)
4603 inode
->i_gid
= attr
->ia_gid
;
4604 error
= ext4_mark_inode_dirty(handle
, inode
);
4605 ext4_journal_stop(handle
);
4608 if (attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
!= inode
->i_size
) {
4611 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
4612 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4614 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
)
4618 if (IS_I_VERSION(inode
) && attr
->ia_size
!= inode
->i_size
)
4619 inode_inc_iversion(inode
);
4621 if (S_ISREG(inode
->i_mode
) &&
4622 (attr
->ia_size
< inode
->i_size
)) {
4623 if (ext4_should_order_data(inode
)) {
4624 error
= ext4_begin_ordered_truncate(inode
,
4629 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 3);
4630 if (IS_ERR(handle
)) {
4631 error
= PTR_ERR(handle
);
4634 if (ext4_handle_valid(handle
)) {
4635 error
= ext4_orphan_add(handle
, inode
);
4638 down_write(&EXT4_I(inode
)->i_data_sem
);
4639 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
4640 rc
= ext4_mark_inode_dirty(handle
, inode
);
4644 * We have to update i_size under i_data_sem together
4645 * with i_disksize to avoid races with writeback code
4646 * running ext4_wb_update_i_disksize().
4649 i_size_write(inode
, attr
->ia_size
);
4650 up_write(&EXT4_I(inode
)->i_data_sem
);
4651 ext4_journal_stop(handle
);
4653 ext4_orphan_del(NULL
, inode
);
4657 i_size_write(inode
, attr
->ia_size
);
4660 * Blocks are going to be removed from the inode. Wait
4661 * for dio in flight. Temporarily disable
4662 * dioread_nolock to prevent livelock.
4665 if (!ext4_should_journal_data(inode
)) {
4666 ext4_inode_block_unlocked_dio(inode
);
4667 inode_dio_wait(inode
);
4668 ext4_inode_resume_unlocked_dio(inode
);
4670 ext4_wait_for_tail_page_commit(inode
);
4673 * Truncate pagecache after we've waited for commit
4674 * in data=journal mode to make pages freeable.
4676 truncate_pagecache(inode
, inode
->i_size
);
4679 * We want to call ext4_truncate() even if attr->ia_size ==
4680 * inode->i_size for cases like truncation of fallocated space
4682 if (attr
->ia_valid
& ATTR_SIZE
)
4683 ext4_truncate(inode
);
4686 setattr_copy(inode
, attr
);
4687 mark_inode_dirty(inode
);
4691 * If the call to ext4_truncate failed to get a transaction handle at
4692 * all, we need to clean up the in-core orphan list manually.
4694 if (orphan
&& inode
->i_nlink
)
4695 ext4_orphan_del(NULL
, inode
);
4697 if (!rc
&& (ia_valid
& ATTR_MODE
))
4698 rc
= posix_acl_chmod(inode
, inode
->i_mode
);
4701 ext4_std_error(inode
->i_sb
, error
);
4707 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
4710 struct inode
*inode
;
4711 unsigned long long delalloc_blocks
;
4713 inode
= dentry
->d_inode
;
4714 generic_fillattr(inode
, stat
);
4717 * If there is inline data in the inode, the inode will normally not
4718 * have data blocks allocated (it may have an external xattr block).
4719 * Report at least one sector for such files, so tools like tar, rsync,
4720 * others doen't incorrectly think the file is completely sparse.
4722 if (unlikely(ext4_has_inline_data(inode
)))
4723 stat
->blocks
+= (stat
->size
+ 511) >> 9;
4726 * We can't update i_blocks if the block allocation is delayed
4727 * otherwise in the case of system crash before the real block
4728 * allocation is done, we will have i_blocks inconsistent with
4729 * on-disk file blocks.
4730 * We always keep i_blocks updated together with real
4731 * allocation. But to not confuse with user, stat
4732 * will return the blocks that include the delayed allocation
4733 * blocks for this file.
4735 delalloc_blocks
= EXT4_C2B(EXT4_SB(inode
->i_sb
),
4736 EXT4_I(inode
)->i_reserved_data_blocks
);
4737 stat
->blocks
+= delalloc_blocks
<< (inode
->i_sb
->s_blocksize_bits
- 9);
4741 static int ext4_index_trans_blocks(struct inode
*inode
, int lblocks
,
4744 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4745 return ext4_ind_trans_blocks(inode
, lblocks
);
4746 return ext4_ext_index_trans_blocks(inode
, pextents
);
4750 * Account for index blocks, block groups bitmaps and block group
4751 * descriptor blocks if modify datablocks and index blocks
4752 * worse case, the indexs blocks spread over different block groups
4754 * If datablocks are discontiguous, they are possible to spread over
4755 * different block groups too. If they are contiguous, with flexbg,
4756 * they could still across block group boundary.
4758 * Also account for superblock, inode, quota and xattr blocks
4760 static int ext4_meta_trans_blocks(struct inode
*inode
, int lblocks
,
4763 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
4769 * How many index blocks need to touch to map @lblocks logical blocks
4770 * to @pextents physical extents?
4772 idxblocks
= ext4_index_trans_blocks(inode
, lblocks
, pextents
);
4777 * Now let's see how many group bitmaps and group descriptors need
4780 groups
= idxblocks
+ pextents
;
4782 if (groups
> ngroups
)
4784 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
4785 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
4787 /* bitmaps and block group descriptor blocks */
4788 ret
+= groups
+ gdpblocks
;
4790 /* Blocks for super block, inode, quota and xattr blocks */
4791 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
4797 * Calculate the total number of credits to reserve to fit
4798 * the modification of a single pages into a single transaction,
4799 * which may include multiple chunks of block allocations.
4801 * This could be called via ext4_write_begin()
4803 * We need to consider the worse case, when
4804 * one new block per extent.
4806 int ext4_writepage_trans_blocks(struct inode
*inode
)
4808 int bpp
= ext4_journal_blocks_per_page(inode
);
4811 ret
= ext4_meta_trans_blocks(inode
, bpp
, bpp
);
4813 /* Account for data blocks for journalled mode */
4814 if (ext4_should_journal_data(inode
))
4820 * Calculate the journal credits for a chunk of data modification.
4822 * This is called from DIO, fallocate or whoever calling
4823 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4825 * journal buffers for data blocks are not included here, as DIO
4826 * and fallocate do no need to journal data buffers.
4828 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
4830 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
4834 * The caller must have previously called ext4_reserve_inode_write().
4835 * Give this, we know that the caller already has write access to iloc->bh.
4837 int ext4_mark_iloc_dirty(handle_t
*handle
,
4838 struct inode
*inode
, struct ext4_iloc
*iloc
)
4842 if (IS_I_VERSION(inode
))
4843 inode_inc_iversion(inode
);
4845 /* the do_update_inode consumes one bh->b_count */
4848 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4849 err
= ext4_do_update_inode(handle
, inode
, iloc
);
4855 * On success, We end up with an outstanding reference count against
4856 * iloc->bh. This _must_ be cleaned up later.
4860 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
4861 struct ext4_iloc
*iloc
)
4865 err
= ext4_get_inode_loc(inode
, iloc
);
4867 BUFFER_TRACE(iloc
->bh
, "get_write_access");
4868 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
4874 ext4_std_error(inode
->i_sb
, err
);
4879 * Expand an inode by new_extra_isize bytes.
4880 * Returns 0 on success or negative error number on failure.
4882 static int ext4_expand_extra_isize(struct inode
*inode
,
4883 unsigned int new_extra_isize
,
4884 struct ext4_iloc iloc
,
4887 struct ext4_inode
*raw_inode
;
4888 struct ext4_xattr_ibody_header
*header
;
4890 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
4893 raw_inode
= ext4_raw_inode(&iloc
);
4895 header
= IHDR(inode
, raw_inode
);
4897 /* No extended attributes present */
4898 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
4899 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4900 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
4902 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
4906 /* try to expand with EAs present */
4907 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
4912 * What we do here is to mark the in-core inode as clean with respect to inode
4913 * dirtiness (it may still be data-dirty).
4914 * This means that the in-core inode may be reaped by prune_icache
4915 * without having to perform any I/O. This is a very good thing,
4916 * because *any* task may call prune_icache - even ones which
4917 * have a transaction open against a different journal.
4919 * Is this cheating? Not really. Sure, we haven't written the
4920 * inode out, but prune_icache isn't a user-visible syncing function.
4921 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4922 * we start and wait on commits.
4924 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
4926 struct ext4_iloc iloc
;
4927 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4928 static unsigned int mnt_count
;
4932 trace_ext4_mark_inode_dirty(inode
, _RET_IP_
);
4933 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
4934 if (ext4_handle_valid(handle
) &&
4935 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
4936 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
4938 * We need extra buffer credits since we may write into EA block
4939 * with this same handle. If journal_extend fails, then it will
4940 * only result in a minor loss of functionality for that inode.
4941 * If this is felt to be critical, then e2fsck should be run to
4942 * force a large enough s_min_extra_isize.
4944 if ((jbd2_journal_extend(handle
,
4945 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
4946 ret
= ext4_expand_extra_isize(inode
,
4947 sbi
->s_want_extra_isize
,
4950 ext4_set_inode_state(inode
,
4951 EXT4_STATE_NO_EXPAND
);
4953 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
4954 ext4_warning(inode
->i_sb
,
4955 "Unable to expand inode %lu. Delete"
4956 " some EAs or run e2fsck.",
4959 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
4965 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
4970 * ext4_dirty_inode() is called from __mark_inode_dirty()
4972 * We're really interested in the case where a file is being extended.
4973 * i_size has been changed by generic_commit_write() and we thus need
4974 * to include the updated inode in the current transaction.
4976 * Also, dquot_alloc_block() will always dirty the inode when blocks
4977 * are allocated to the file.
4979 * If the inode is marked synchronous, we don't honour that here - doing
4980 * so would cause a commit on atime updates, which we don't bother doing.
4981 * We handle synchronous inodes at the highest possible level.
4983 void ext4_dirty_inode(struct inode
*inode
, int flags
)
4987 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 2);
4991 ext4_mark_inode_dirty(handle
, inode
);
4993 ext4_journal_stop(handle
);
5000 * Bind an inode's backing buffer_head into this transaction, to prevent
5001 * it from being flushed to disk early. Unlike
5002 * ext4_reserve_inode_write, this leaves behind no bh reference and
5003 * returns no iloc structure, so the caller needs to repeat the iloc
5004 * lookup to mark the inode dirty later.
5006 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
5008 struct ext4_iloc iloc
;
5012 err
= ext4_get_inode_loc(inode
, &iloc
);
5014 BUFFER_TRACE(iloc
.bh
, "get_write_access");
5015 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
5017 err
= ext4_handle_dirty_metadata(handle
,
5023 ext4_std_error(inode
->i_sb
, err
);
5028 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5035 * We have to be very careful here: changing a data block's
5036 * journaling status dynamically is dangerous. If we write a
5037 * data block to the journal, change the status and then delete
5038 * that block, we risk forgetting to revoke the old log record
5039 * from the journal and so a subsequent replay can corrupt data.
5040 * So, first we make sure that the journal is empty and that
5041 * nobody is changing anything.
5044 journal
= EXT4_JOURNAL(inode
);
5047 if (is_journal_aborted(journal
))
5049 /* We have to allocate physical blocks for delalloc blocks
5050 * before flushing journal. otherwise delalloc blocks can not
5051 * be allocated any more. even more truncate on delalloc blocks
5052 * could trigger BUG by flushing delalloc blocks in journal.
5053 * There is no delalloc block in non-journal data mode.
5055 if (val
&& test_opt(inode
->i_sb
, DELALLOC
)) {
5056 err
= ext4_alloc_da_blocks(inode
);
5061 /* Wait for all existing dio workers */
5062 ext4_inode_block_unlocked_dio(inode
);
5063 inode_dio_wait(inode
);
5065 jbd2_journal_lock_updates(journal
);
5068 * OK, there are no updates running now, and all cached data is
5069 * synced to disk. We are now in a completely consistent state
5070 * which doesn't have anything in the journal, and we know that
5071 * no filesystem updates are running, so it is safe to modify
5072 * the inode's in-core data-journaling state flag now.
5076 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5078 jbd2_journal_flush(journal
);
5079 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5081 ext4_set_aops(inode
);
5083 jbd2_journal_unlock_updates(journal
);
5084 ext4_inode_resume_unlocked_dio(inode
);
5086 /* Finally we can mark the inode as dirty. */
5088 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 1);
5090 return PTR_ERR(handle
);
5092 err
= ext4_mark_inode_dirty(handle
, inode
);
5093 ext4_handle_sync(handle
);
5094 ext4_journal_stop(handle
);
5095 ext4_std_error(inode
->i_sb
, err
);
5100 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5102 return !buffer_mapped(bh
);
5105 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5107 struct page
*page
= vmf
->page
;
5111 struct file
*file
= vma
->vm_file
;
5112 struct inode
*inode
= file_inode(file
);
5113 struct address_space
*mapping
= inode
->i_mapping
;
5115 get_block_t
*get_block
;
5118 sb_start_pagefault(inode
->i_sb
);
5119 file_update_time(vma
->vm_file
);
5120 /* Delalloc case is easy... */
5121 if (test_opt(inode
->i_sb
, DELALLOC
) &&
5122 !ext4_should_journal_data(inode
) &&
5123 !ext4_nonda_switch(inode
->i_sb
)) {
5125 ret
= __block_page_mkwrite(vma
, vmf
,
5126 ext4_da_get_block_prep
);
5127 } while (ret
== -ENOSPC
&&
5128 ext4_should_retry_alloc(inode
->i_sb
, &retries
));
5133 size
= i_size_read(inode
);
5134 /* Page got truncated from under us? */
5135 if (page
->mapping
!= mapping
|| page_offset(page
) > size
) {
5137 ret
= VM_FAULT_NOPAGE
;
5141 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
5142 len
= size
& ~PAGE_CACHE_MASK
;
5144 len
= PAGE_CACHE_SIZE
;
5146 * Return if we have all the buffers mapped. This avoids the need to do
5147 * journal_start/journal_stop which can block and take a long time
5149 if (page_has_buffers(page
)) {
5150 if (!ext4_walk_page_buffers(NULL
, page_buffers(page
),
5152 ext4_bh_unmapped
)) {
5153 /* Wait so that we don't change page under IO */
5154 wait_for_stable_page(page
);
5155 ret
= VM_FAULT_LOCKED
;
5160 /* OK, we need to fill the hole... */
5161 if (ext4_should_dioread_nolock(inode
))
5162 get_block
= ext4_get_block_write
;
5164 get_block
= ext4_get_block
;
5166 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
5167 ext4_writepage_trans_blocks(inode
));
5168 if (IS_ERR(handle
)) {
5169 ret
= VM_FAULT_SIGBUS
;
5172 ret
= __block_page_mkwrite(vma
, vmf
, get_block
);
5173 if (!ret
&& ext4_should_journal_data(inode
)) {
5174 if (ext4_walk_page_buffers(handle
, page_buffers(page
), 0,
5175 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
)) {
5177 ret
= VM_FAULT_SIGBUS
;
5178 ext4_journal_stop(handle
);
5181 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
5183 ext4_journal_stop(handle
);
5184 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
5187 ret
= block_page_mkwrite_return(ret
);
5189 sb_end_pagefault(inode
->i_sb
);