2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
36 static struct vfsmount
*shm_mnt
;
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
73 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
83 * shmem_fallocate and shmem_writepage communicate via inode->i_private
84 * (with i_mutex making sure that it has only one user at a time):
85 * we would prefer not to enlarge the shmem inode just for that.
88 pgoff_t start
; /* start of range currently being fallocated */
89 pgoff_t next
; /* the next page offset to be fallocated */
90 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
91 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
94 /* Flag allocation requirements to shmem_getpage */
96 SGP_READ
, /* don't exceed i_size, don't allocate page */
97 SGP_CACHE
, /* don't exceed i_size, may allocate page */
98 SGP_DIRTY
, /* like SGP_CACHE, but set new page dirty */
99 SGP_WRITE
, /* may exceed i_size, may allocate !Uptodate page */
100 SGP_FALLOC
, /* like SGP_WRITE, but make existing page Uptodate */
104 static unsigned long shmem_default_max_blocks(void)
106 return totalram_pages
/ 2;
109 static unsigned long shmem_default_max_inodes(void)
111 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
115 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
116 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
117 struct shmem_inode_info
*info
, pgoff_t index
);
118 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
119 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
);
121 static inline int shmem_getpage(struct inode
*inode
, pgoff_t index
,
122 struct page
**pagep
, enum sgp_type sgp
, int *fault_type
)
124 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
125 mapping_gfp_mask(inode
->i_mapping
), fault_type
);
128 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
130 return sb
->s_fs_info
;
134 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
135 * for shared memory and for shared anonymous (/dev/zero) mappings
136 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
137 * consistent with the pre-accounting of private mappings ...
139 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
141 return (flags
& VM_NORESERVE
) ?
142 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
145 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
147 if (!(flags
& VM_NORESERVE
))
148 vm_unacct_memory(VM_ACCT(size
));
152 * ... whereas tmpfs objects are accounted incrementally as
153 * pages are allocated, in order to allow huge sparse files.
154 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
155 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157 static inline int shmem_acct_block(unsigned long flags
)
159 return (flags
& VM_NORESERVE
) ?
160 security_vm_enough_memory_mm(current
->mm
, VM_ACCT(PAGE_CACHE_SIZE
)) : 0;
163 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
165 if (flags
& VM_NORESERVE
)
166 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
169 static const struct super_operations shmem_ops
;
170 static const struct address_space_operations shmem_aops
;
171 static const struct file_operations shmem_file_operations
;
172 static const struct inode_operations shmem_inode_operations
;
173 static const struct inode_operations shmem_dir_inode_operations
;
174 static const struct inode_operations shmem_special_inode_operations
;
175 static const struct vm_operations_struct shmem_vm_ops
;
177 static struct backing_dev_info shmem_backing_dev_info __read_mostly
= {
178 .ra_pages
= 0, /* No readahead */
179 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
| BDI_CAP_SWAP_BACKED
,
182 static LIST_HEAD(shmem_swaplist
);
183 static DEFINE_MUTEX(shmem_swaplist_mutex
);
185 static int shmem_reserve_inode(struct super_block
*sb
)
187 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
188 if (sbinfo
->max_inodes
) {
189 spin_lock(&sbinfo
->stat_lock
);
190 if (!sbinfo
->free_inodes
) {
191 spin_unlock(&sbinfo
->stat_lock
);
194 sbinfo
->free_inodes
--;
195 spin_unlock(&sbinfo
->stat_lock
);
200 static void shmem_free_inode(struct super_block
*sb
)
202 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
203 if (sbinfo
->max_inodes
) {
204 spin_lock(&sbinfo
->stat_lock
);
205 sbinfo
->free_inodes
++;
206 spin_unlock(&sbinfo
->stat_lock
);
211 * shmem_recalc_inode - recalculate the block usage of an inode
212 * @inode: inode to recalc
214 * We have to calculate the free blocks since the mm can drop
215 * undirtied hole pages behind our back.
217 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
218 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220 * It has to be called with the spinlock held.
222 static void shmem_recalc_inode(struct inode
*inode
)
224 struct shmem_inode_info
*info
= SHMEM_I(inode
);
227 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
229 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
230 if (sbinfo
->max_blocks
)
231 percpu_counter_add(&sbinfo
->used_blocks
, -freed
);
232 info
->alloced
-= freed
;
233 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
234 shmem_unacct_blocks(info
->flags
, freed
);
239 * Replace item expected in radix tree by a new item, while holding tree lock.
241 static int shmem_radix_tree_replace(struct address_space
*mapping
,
242 pgoff_t index
, void *expected
, void *replacement
)
247 VM_BUG_ON(!expected
);
248 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
, index
);
250 item
= radix_tree_deref_slot_protected(pslot
,
251 &mapping
->tree_lock
);
252 if (item
!= expected
)
255 radix_tree_replace_slot(pslot
, replacement
);
257 radix_tree_delete(&mapping
->page_tree
, index
);
262 * Sometimes, before we decide whether to proceed or to fail, we must check
263 * that an entry was not already brought back from swap by a racing thread.
265 * Checking page is not enough: by the time a SwapCache page is locked, it
266 * might be reused, and again be SwapCache, using the same swap as before.
268 static bool shmem_confirm_swap(struct address_space
*mapping
,
269 pgoff_t index
, swp_entry_t swap
)
274 item
= radix_tree_lookup(&mapping
->page_tree
, index
);
276 return item
== swp_to_radix_entry(swap
);
280 * Like add_to_page_cache_locked, but error if expected item has gone.
282 static int shmem_add_to_page_cache(struct page
*page
,
283 struct address_space
*mapping
,
284 pgoff_t index
, gfp_t gfp
, void *expected
)
288 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
289 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
291 page_cache_get(page
);
292 page
->mapping
= mapping
;
295 spin_lock_irq(&mapping
->tree_lock
);
297 error
= radix_tree_insert(&mapping
->page_tree
, index
, page
);
299 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
303 __inc_zone_page_state(page
, NR_FILE_PAGES
);
304 __inc_zone_page_state(page
, NR_SHMEM
);
305 spin_unlock_irq(&mapping
->tree_lock
);
307 page
->mapping
= NULL
;
308 spin_unlock_irq(&mapping
->tree_lock
);
309 page_cache_release(page
);
315 * Like delete_from_page_cache, but substitutes swap for page.
317 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
319 struct address_space
*mapping
= page
->mapping
;
322 spin_lock_irq(&mapping
->tree_lock
);
323 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
324 page
->mapping
= NULL
;
326 __dec_zone_page_state(page
, NR_FILE_PAGES
);
327 __dec_zone_page_state(page
, NR_SHMEM
);
328 spin_unlock_irq(&mapping
->tree_lock
);
329 page_cache_release(page
);
334 * Like find_get_pages, but collecting swap entries as well as pages.
336 static unsigned shmem_find_get_pages_and_swap(struct address_space
*mapping
,
337 pgoff_t start
, unsigned int nr_pages
,
338 struct page
**pages
, pgoff_t
*indices
)
341 unsigned int ret
= 0;
342 struct radix_tree_iter iter
;
349 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
352 page
= radix_tree_deref_slot(slot
);
355 if (radix_tree_exception(page
)) {
356 if (radix_tree_deref_retry(page
))
359 * Otherwise, we must be storing a swap entry
360 * here as an exceptional entry: so return it
361 * without attempting to raise page count.
365 if (!page_cache_get_speculative(page
))
368 /* Has the page moved? */
369 if (unlikely(page
!= *slot
)) {
370 page_cache_release(page
);
374 indices
[ret
] = iter
.index
;
376 if (++ret
== nr_pages
)
384 * Remove swap entry from radix tree, free the swap and its page cache.
386 static int shmem_free_swap(struct address_space
*mapping
,
387 pgoff_t index
, void *radswap
)
391 spin_lock_irq(&mapping
->tree_lock
);
392 error
= shmem_radix_tree_replace(mapping
, index
, radswap
, NULL
);
393 spin_unlock_irq(&mapping
->tree_lock
);
395 free_swap_and_cache(radix_to_swp_entry(radswap
));
400 * Pagevec may contain swap entries, so shuffle up pages before releasing.
402 static void shmem_deswap_pagevec(struct pagevec
*pvec
)
406 for (i
= 0, j
= 0; i
< pagevec_count(pvec
); i
++) {
407 struct page
*page
= pvec
->pages
[i
];
408 if (!radix_tree_exceptional_entry(page
))
409 pvec
->pages
[j
++] = page
;
415 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
417 void shmem_unlock_mapping(struct address_space
*mapping
)
420 pgoff_t indices
[PAGEVEC_SIZE
];
423 pagevec_init(&pvec
, 0);
425 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
427 while (!mapping_unevictable(mapping
)) {
429 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
430 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
432 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
433 PAGEVEC_SIZE
, pvec
.pages
, indices
);
436 index
= indices
[pvec
.nr
- 1] + 1;
437 shmem_deswap_pagevec(&pvec
);
438 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
439 pagevec_release(&pvec
);
445 * Remove range of pages and swap entries from radix tree, and free them.
446 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
448 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
451 struct address_space
*mapping
= inode
->i_mapping
;
452 struct shmem_inode_info
*info
= SHMEM_I(inode
);
453 pgoff_t start
= (lstart
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
454 pgoff_t end
= (lend
+ 1) >> PAGE_CACHE_SHIFT
;
455 unsigned int partial_start
= lstart
& (PAGE_CACHE_SIZE
- 1);
456 unsigned int partial_end
= (lend
+ 1) & (PAGE_CACHE_SIZE
- 1);
458 pgoff_t indices
[PAGEVEC_SIZE
];
459 long nr_swaps_freed
= 0;
464 end
= -1; /* unsigned, so actually very big */
466 pagevec_init(&pvec
, 0);
468 while (index
< end
) {
469 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
470 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
471 pvec
.pages
, indices
);
474 mem_cgroup_uncharge_start();
475 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
476 struct page
*page
= pvec
.pages
[i
];
482 if (radix_tree_exceptional_entry(page
)) {
485 nr_swaps_freed
+= !shmem_free_swap(mapping
,
490 if (!trylock_page(page
))
492 if (!unfalloc
|| !PageUptodate(page
)) {
493 if (page
->mapping
== mapping
) {
494 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
495 truncate_inode_page(mapping
, page
);
500 shmem_deswap_pagevec(&pvec
);
501 pagevec_release(&pvec
);
502 mem_cgroup_uncharge_end();
508 struct page
*page
= NULL
;
509 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
, NULL
);
511 unsigned int top
= PAGE_CACHE_SIZE
;
516 zero_user_segment(page
, partial_start
, top
);
517 set_page_dirty(page
);
519 page_cache_release(page
);
523 struct page
*page
= NULL
;
524 shmem_getpage(inode
, end
, &page
, SGP_READ
, NULL
);
526 zero_user_segment(page
, 0, partial_end
);
527 set_page_dirty(page
);
529 page_cache_release(page
);
538 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
539 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
540 pvec
.pages
, indices
);
542 if (index
== start
|| unfalloc
)
547 if ((index
== start
|| unfalloc
) && indices
[0] >= end
) {
548 shmem_deswap_pagevec(&pvec
);
549 pagevec_release(&pvec
);
552 mem_cgroup_uncharge_start();
553 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
554 struct page
*page
= pvec
.pages
[i
];
560 if (radix_tree_exceptional_entry(page
)) {
563 nr_swaps_freed
+= !shmem_free_swap(mapping
,
569 if (!unfalloc
|| !PageUptodate(page
)) {
570 if (page
->mapping
== mapping
) {
571 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
572 truncate_inode_page(mapping
, page
);
577 shmem_deswap_pagevec(&pvec
);
578 pagevec_release(&pvec
);
579 mem_cgroup_uncharge_end();
583 spin_lock(&info
->lock
);
584 info
->swapped
-= nr_swaps_freed
;
585 shmem_recalc_inode(inode
);
586 spin_unlock(&info
->lock
);
589 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
591 shmem_undo_range(inode
, lstart
, lend
, false);
592 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
594 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
596 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
598 struct inode
*inode
= dentry
->d_inode
;
601 error
= inode_change_ok(inode
, attr
);
605 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
606 loff_t oldsize
= inode
->i_size
;
607 loff_t newsize
= attr
->ia_size
;
609 if (newsize
!= oldsize
) {
610 i_size_write(inode
, newsize
);
611 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
613 if (newsize
< oldsize
) {
614 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
615 unmap_mapping_range(inode
->i_mapping
, holebegin
, 0, 1);
616 shmem_truncate_range(inode
, newsize
, (loff_t
)-1);
617 /* unmap again to remove racily COWed private pages */
618 unmap_mapping_range(inode
->i_mapping
, holebegin
, 0, 1);
622 setattr_copy(inode
, attr
);
623 if (attr
->ia_valid
& ATTR_MODE
)
624 error
= posix_acl_chmod(inode
, inode
->i_mode
);
628 static void shmem_evict_inode(struct inode
*inode
)
630 struct shmem_inode_info
*info
= SHMEM_I(inode
);
632 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
633 shmem_unacct_size(info
->flags
, inode
->i_size
);
635 shmem_truncate_range(inode
, 0, (loff_t
)-1);
636 if (!list_empty(&info
->swaplist
)) {
637 mutex_lock(&shmem_swaplist_mutex
);
638 list_del_init(&info
->swaplist
);
639 mutex_unlock(&shmem_swaplist_mutex
);
642 kfree(info
->symlink
);
644 simple_xattrs_free(&info
->xattrs
);
645 WARN_ON(inode
->i_blocks
);
646 shmem_free_inode(inode
->i_sb
);
651 * If swap found in inode, free it and move page from swapcache to filecache.
653 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
654 swp_entry_t swap
, struct page
**pagep
)
656 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
662 radswap
= swp_to_radix_entry(swap
);
663 index
= radix_tree_locate_item(&mapping
->page_tree
, radswap
);
668 * Move _head_ to start search for next from here.
669 * But be careful: shmem_evict_inode checks list_empty without taking
670 * mutex, and there's an instant in list_move_tail when info->swaplist
671 * would appear empty, if it were the only one on shmem_swaplist.
673 if (shmem_swaplist
.next
!= &info
->swaplist
)
674 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
676 gfp
= mapping_gfp_mask(mapping
);
677 if (shmem_should_replace_page(*pagep
, gfp
)) {
678 mutex_unlock(&shmem_swaplist_mutex
);
679 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
680 mutex_lock(&shmem_swaplist_mutex
);
682 * We needed to drop mutex to make that restrictive page
683 * allocation, but the inode might have been freed while we
684 * dropped it: although a racing shmem_evict_inode() cannot
685 * complete without emptying the radix_tree, our page lock
686 * on this swapcache page is not enough to prevent that -
687 * free_swap_and_cache() of our swap entry will only
688 * trylock_page(), removing swap from radix_tree whatever.
690 * We must not proceed to shmem_add_to_page_cache() if the
691 * inode has been freed, but of course we cannot rely on
692 * inode or mapping or info to check that. However, we can
693 * safely check if our swap entry is still in use (and here
694 * it can't have got reused for another page): if it's still
695 * in use, then the inode cannot have been freed yet, and we
696 * can safely proceed (if it's no longer in use, that tells
697 * nothing about the inode, but we don't need to unuse swap).
699 if (!page_swapcount(*pagep
))
704 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
705 * but also to hold up shmem_evict_inode(): so inode cannot be freed
706 * beneath us (pagelock doesn't help until the page is in pagecache).
709 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
710 GFP_NOWAIT
, radswap
);
711 if (error
!= -ENOMEM
) {
713 * Truncation and eviction use free_swap_and_cache(), which
714 * only does trylock page: if we raced, best clean up here.
716 delete_from_swap_cache(*pagep
);
717 set_page_dirty(*pagep
);
719 spin_lock(&info
->lock
);
721 spin_unlock(&info
->lock
);
724 error
= 1; /* not an error, but entry was found */
730 * Search through swapped inodes to find and replace swap by page.
732 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
734 struct list_head
*this, *next
;
735 struct shmem_inode_info
*info
;
740 * There's a faint possibility that swap page was replaced before
741 * caller locked it: caller will come back later with the right page.
743 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
747 * Charge page using GFP_KERNEL while we can wait, before taking
748 * the shmem_swaplist_mutex which might hold up shmem_writepage().
749 * Charged back to the user (not to caller) when swap account is used.
751 error
= mem_cgroup_cache_charge(page
, current
->mm
, GFP_KERNEL
);
754 /* No radix_tree_preload: swap entry keeps a place for page in tree */
756 mutex_lock(&shmem_swaplist_mutex
);
757 list_for_each_safe(this, next
, &shmem_swaplist
) {
758 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
760 found
= shmem_unuse_inode(info
, swap
, &page
);
762 list_del_init(&info
->swaplist
);
767 mutex_unlock(&shmem_swaplist_mutex
);
773 page_cache_release(page
);
778 * Move the page from the page cache to the swap cache.
780 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
782 struct shmem_inode_info
*info
;
783 struct address_space
*mapping
;
788 BUG_ON(!PageLocked(page
));
789 mapping
= page
->mapping
;
791 inode
= mapping
->host
;
792 info
= SHMEM_I(inode
);
793 if (info
->flags
& VM_LOCKED
)
795 if (!total_swap_pages
)
799 * shmem_backing_dev_info's capabilities prevent regular writeback or
800 * sync from ever calling shmem_writepage; but a stacking filesystem
801 * might use ->writepage of its underlying filesystem, in which case
802 * tmpfs should write out to swap only in response to memory pressure,
803 * and not for the writeback threads or sync.
805 if (!wbc
->for_reclaim
) {
806 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
811 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
812 * value into swapfile.c, the only way we can correctly account for a
813 * fallocated page arriving here is now to initialize it and write it.
815 * That's okay for a page already fallocated earlier, but if we have
816 * not yet completed the fallocation, then (a) we want to keep track
817 * of this page in case we have to undo it, and (b) it may not be a
818 * good idea to continue anyway, once we're pushing into swap. So
819 * reactivate the page, and let shmem_fallocate() quit when too many.
821 if (!PageUptodate(page
)) {
822 if (inode
->i_private
) {
823 struct shmem_falloc
*shmem_falloc
;
824 spin_lock(&inode
->i_lock
);
825 shmem_falloc
= inode
->i_private
;
827 index
>= shmem_falloc
->start
&&
828 index
< shmem_falloc
->next
)
829 shmem_falloc
->nr_unswapped
++;
832 spin_unlock(&inode
->i_lock
);
836 clear_highpage(page
);
837 flush_dcache_page(page
);
838 SetPageUptodate(page
);
841 swap
= get_swap_page();
846 * Add inode to shmem_unuse()'s list of swapped-out inodes,
847 * if it's not already there. Do it now before the page is
848 * moved to swap cache, when its pagelock no longer protects
849 * the inode from eviction. But don't unlock the mutex until
850 * we've incremented swapped, because shmem_unuse_inode() will
851 * prune a !swapped inode from the swaplist under this mutex.
853 mutex_lock(&shmem_swaplist_mutex
);
854 if (list_empty(&info
->swaplist
))
855 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
857 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
858 swap_shmem_alloc(swap
);
859 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
861 spin_lock(&info
->lock
);
863 shmem_recalc_inode(inode
);
864 spin_unlock(&info
->lock
);
866 mutex_unlock(&shmem_swaplist_mutex
);
867 BUG_ON(page_mapped(page
));
868 swap_writepage(page
, wbc
);
872 mutex_unlock(&shmem_swaplist_mutex
);
873 swapcache_free(swap
, NULL
);
875 set_page_dirty(page
);
876 if (wbc
->for_reclaim
)
877 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
884 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
888 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
889 return; /* show nothing */
891 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
893 seq_printf(seq
, ",mpol=%s", buffer
);
896 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
898 struct mempolicy
*mpol
= NULL
;
900 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
903 spin_unlock(&sbinfo
->stat_lock
);
907 #endif /* CONFIG_TMPFS */
909 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
910 struct shmem_inode_info
*info
, pgoff_t index
)
912 struct vm_area_struct pvma
;
915 /* Create a pseudo vma that just contains the policy */
917 /* Bias interleave by inode number to distribute better across nodes */
918 pvma
.vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
920 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
922 page
= swapin_readahead(swap
, gfp
, &pvma
, 0);
924 /* Drop reference taken by mpol_shared_policy_lookup() */
925 mpol_cond_put(pvma
.vm_policy
);
930 static struct page
*shmem_alloc_page(gfp_t gfp
,
931 struct shmem_inode_info
*info
, pgoff_t index
)
933 struct vm_area_struct pvma
;
936 /* Create a pseudo vma that just contains the policy */
938 /* Bias interleave by inode number to distribute better across nodes */
939 pvma
.vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
941 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
943 page
= alloc_page_vma(gfp
, &pvma
, 0);
945 /* Drop reference taken by mpol_shared_policy_lookup() */
946 mpol_cond_put(pvma
.vm_policy
);
950 #else /* !CONFIG_NUMA */
952 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
955 #endif /* CONFIG_TMPFS */
957 static inline struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
958 struct shmem_inode_info
*info
, pgoff_t index
)
960 return swapin_readahead(swap
, gfp
, NULL
, 0);
963 static inline struct page
*shmem_alloc_page(gfp_t gfp
,
964 struct shmem_inode_info
*info
, pgoff_t index
)
966 return alloc_page(gfp
);
968 #endif /* CONFIG_NUMA */
970 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
971 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
978 * When a page is moved from swapcache to shmem filecache (either by the
979 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
980 * shmem_unuse_inode()), it may have been read in earlier from swap, in
981 * ignorance of the mapping it belongs to. If that mapping has special
982 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
983 * we may need to copy to a suitable page before moving to filecache.
985 * In a future release, this may well be extended to respect cpuset and
986 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
987 * but for now it is a simple matter of zone.
989 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
991 return page_zonenum(page
) > gfp_zone(gfp
);
994 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
995 struct shmem_inode_info
*info
, pgoff_t index
)
997 struct page
*oldpage
, *newpage
;
998 struct address_space
*swap_mapping
;
1003 swap_index
= page_private(oldpage
);
1004 swap_mapping
= page_mapping(oldpage
);
1007 * We have arrived here because our zones are constrained, so don't
1008 * limit chance of success by further cpuset and node constraints.
1010 gfp
&= ~GFP_CONSTRAINT_MASK
;
1011 newpage
= shmem_alloc_page(gfp
, info
, index
);
1015 page_cache_get(newpage
);
1016 copy_highpage(newpage
, oldpage
);
1017 flush_dcache_page(newpage
);
1019 __set_page_locked(newpage
);
1020 SetPageUptodate(newpage
);
1021 SetPageSwapBacked(newpage
);
1022 set_page_private(newpage
, swap_index
);
1023 SetPageSwapCache(newpage
);
1026 * Our caller will very soon move newpage out of swapcache, but it's
1027 * a nice clean interface for us to replace oldpage by newpage there.
1029 spin_lock_irq(&swap_mapping
->tree_lock
);
1030 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
1033 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
1034 __dec_zone_page_state(oldpage
, NR_FILE_PAGES
);
1036 spin_unlock_irq(&swap_mapping
->tree_lock
);
1038 if (unlikely(error
)) {
1040 * Is this possible? I think not, now that our callers check
1041 * both PageSwapCache and page_private after getting page lock;
1042 * but be defensive. Reverse old to newpage for clear and free.
1046 mem_cgroup_replace_page_cache(oldpage
, newpage
);
1047 lru_cache_add_anon(newpage
);
1051 ClearPageSwapCache(oldpage
);
1052 set_page_private(oldpage
, 0);
1054 unlock_page(oldpage
);
1055 page_cache_release(oldpage
);
1056 page_cache_release(oldpage
);
1061 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1063 * If we allocate a new one we do not mark it dirty. That's up to the
1064 * vm. If we swap it in we mark it dirty since we also free the swap
1065 * entry since a page cannot live in both the swap and page cache
1067 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1068 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
)
1070 struct address_space
*mapping
= inode
->i_mapping
;
1071 struct shmem_inode_info
*info
;
1072 struct shmem_sb_info
*sbinfo
;
1079 if (index
> (MAX_LFS_FILESIZE
>> PAGE_CACHE_SHIFT
))
1083 page
= find_lock_page(mapping
, index
);
1084 if (radix_tree_exceptional_entry(page
)) {
1085 swap
= radix_to_swp_entry(page
);
1089 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1090 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1095 /* fallocated page? */
1096 if (page
&& !PageUptodate(page
)) {
1097 if (sgp
!= SGP_READ
)
1100 page_cache_release(page
);
1103 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1109 * Fast cache lookup did not find it:
1110 * bring it back from swap or allocate.
1112 info
= SHMEM_I(inode
);
1113 sbinfo
= SHMEM_SB(inode
->i_sb
);
1116 /* Look it up and read it in.. */
1117 page
= lookup_swap_cache(swap
);
1119 /* here we actually do the io */
1121 *fault_type
|= VM_FAULT_MAJOR
;
1122 page
= shmem_swapin(swap
, gfp
, info
, index
);
1129 /* We have to do this with page locked to prevent races */
1131 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1132 !shmem_confirm_swap(mapping
, index
, swap
)) {
1133 error
= -EEXIST
; /* try again */
1136 if (!PageUptodate(page
)) {
1140 wait_on_page_writeback(page
);
1142 if (shmem_should_replace_page(page
, gfp
)) {
1143 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1148 error
= mem_cgroup_cache_charge(page
, current
->mm
,
1149 gfp
& GFP_RECLAIM_MASK
);
1151 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1152 gfp
, swp_to_radix_entry(swap
));
1154 * We already confirmed swap under page lock, and make
1155 * no memory allocation here, so usually no possibility
1156 * of error; but free_swap_and_cache() only trylocks a
1157 * page, so it is just possible that the entry has been
1158 * truncated or holepunched since swap was confirmed.
1159 * shmem_undo_range() will have done some of the
1160 * unaccounting, now delete_from_swap_cache() will do
1161 * the rest (including mem_cgroup_uncharge_swapcache).
1162 * Reset swap.val? No, leave it so "failed" goes back to
1163 * "repeat": reading a hole and writing should succeed.
1166 delete_from_swap_cache(page
);
1171 spin_lock(&info
->lock
);
1173 shmem_recalc_inode(inode
);
1174 spin_unlock(&info
->lock
);
1176 delete_from_swap_cache(page
);
1177 set_page_dirty(page
);
1181 if (shmem_acct_block(info
->flags
)) {
1185 if (sbinfo
->max_blocks
) {
1186 if (percpu_counter_compare(&sbinfo
->used_blocks
,
1187 sbinfo
->max_blocks
) >= 0) {
1191 percpu_counter_inc(&sbinfo
->used_blocks
);
1194 page
= shmem_alloc_page(gfp
, info
, index
);
1200 SetPageSwapBacked(page
);
1201 __set_page_locked(page
);
1202 error
= mem_cgroup_cache_charge(page
, current
->mm
,
1203 gfp
& GFP_RECLAIM_MASK
);
1206 error
= radix_tree_maybe_preload(gfp
& GFP_RECLAIM_MASK
);
1208 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1210 radix_tree_preload_end();
1213 mem_cgroup_uncharge_cache_page(page
);
1216 lru_cache_add_anon(page
);
1218 spin_lock(&info
->lock
);
1220 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1221 shmem_recalc_inode(inode
);
1222 spin_unlock(&info
->lock
);
1226 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1228 if (sgp
== SGP_FALLOC
)
1232 * Let SGP_WRITE caller clear ends if write does not fill page;
1233 * but SGP_FALLOC on a page fallocated earlier must initialize
1234 * it now, lest undo on failure cancel our earlier guarantee.
1236 if (sgp
!= SGP_WRITE
) {
1237 clear_highpage(page
);
1238 flush_dcache_page(page
);
1239 SetPageUptodate(page
);
1241 if (sgp
== SGP_DIRTY
)
1242 set_page_dirty(page
);
1245 /* Perhaps the file has been truncated since we checked */
1246 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1247 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1261 info
= SHMEM_I(inode
);
1262 ClearPageDirty(page
);
1263 delete_from_page_cache(page
);
1264 spin_lock(&info
->lock
);
1266 inode
->i_blocks
-= BLOCKS_PER_PAGE
;
1267 spin_unlock(&info
->lock
);
1269 sbinfo
= SHMEM_SB(inode
->i_sb
);
1270 if (sbinfo
->max_blocks
)
1271 percpu_counter_add(&sbinfo
->used_blocks
, -1);
1273 shmem_unacct_blocks(info
->flags
, 1);
1275 if (swap
.val
&& error
!= -EINVAL
&&
1276 !shmem_confirm_swap(mapping
, index
, swap
))
1281 page_cache_release(page
);
1283 if (error
== -ENOSPC
&& !once
++) {
1284 info
= SHMEM_I(inode
);
1285 spin_lock(&info
->lock
);
1286 shmem_recalc_inode(inode
);
1287 spin_unlock(&info
->lock
);
1290 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1295 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1297 struct inode
*inode
= file_inode(vma
->vm_file
);
1299 int ret
= VM_FAULT_LOCKED
;
1301 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_CACHE
, &ret
);
1303 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1305 if (ret
& VM_FAULT_MAJOR
) {
1306 count_vm_event(PGMAJFAULT
);
1307 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
1313 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
1315 struct inode
*inode
= file_inode(vma
->vm_file
);
1316 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
1319 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1322 struct inode
*inode
= file_inode(vma
->vm_file
);
1325 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1326 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
1330 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1332 struct inode
*inode
= file_inode(file
);
1333 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1334 int retval
= -ENOMEM
;
1336 spin_lock(&info
->lock
);
1337 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1338 if (!user_shm_lock(inode
->i_size
, user
))
1340 info
->flags
|= VM_LOCKED
;
1341 mapping_set_unevictable(file
->f_mapping
);
1343 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1344 user_shm_unlock(inode
->i_size
, user
);
1345 info
->flags
&= ~VM_LOCKED
;
1346 mapping_clear_unevictable(file
->f_mapping
);
1351 spin_unlock(&info
->lock
);
1355 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1357 file_accessed(file
);
1358 vma
->vm_ops
= &shmem_vm_ops
;
1362 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
1363 umode_t mode
, dev_t dev
, unsigned long flags
)
1365 struct inode
*inode
;
1366 struct shmem_inode_info
*info
;
1367 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1369 if (shmem_reserve_inode(sb
))
1372 inode
= new_inode(sb
);
1374 inode
->i_ino
= get_next_ino();
1375 inode_init_owner(inode
, dir
, mode
);
1376 inode
->i_blocks
= 0;
1377 inode
->i_mapping
->backing_dev_info
= &shmem_backing_dev_info
;
1378 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1379 inode
->i_generation
= get_seconds();
1380 info
= SHMEM_I(inode
);
1381 memset(info
, 0, (char *)inode
- (char *)info
);
1382 spin_lock_init(&info
->lock
);
1383 info
->flags
= flags
& VM_NORESERVE
;
1384 INIT_LIST_HEAD(&info
->swaplist
);
1385 simple_xattrs_init(&info
->xattrs
);
1386 cache_no_acl(inode
);
1388 switch (mode
& S_IFMT
) {
1390 inode
->i_op
= &shmem_special_inode_operations
;
1391 init_special_inode(inode
, mode
, dev
);
1394 inode
->i_mapping
->a_ops
= &shmem_aops
;
1395 inode
->i_op
= &shmem_inode_operations
;
1396 inode
->i_fop
= &shmem_file_operations
;
1397 mpol_shared_policy_init(&info
->policy
,
1398 shmem_get_sbmpol(sbinfo
));
1402 /* Some things misbehave if size == 0 on a directory */
1403 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1404 inode
->i_op
= &shmem_dir_inode_operations
;
1405 inode
->i_fop
= &simple_dir_operations
;
1409 * Must not load anything in the rbtree,
1410 * mpol_free_shared_policy will not be called.
1412 mpol_shared_policy_init(&info
->policy
, NULL
);
1416 shmem_free_inode(sb
);
1421 static const struct inode_operations shmem_symlink_inode_operations
;
1422 static const struct inode_operations shmem_short_symlink_operations
;
1424 #ifdef CONFIG_TMPFS_XATTR
1425 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
1427 #define shmem_initxattrs NULL
1431 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1432 loff_t pos
, unsigned len
, unsigned flags
,
1433 struct page
**pagep
, void **fsdata
)
1435 struct inode
*inode
= mapping
->host
;
1436 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1437 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1441 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1442 loff_t pos
, unsigned len
, unsigned copied
,
1443 struct page
*page
, void *fsdata
)
1445 struct inode
*inode
= mapping
->host
;
1447 if (pos
+ copied
> inode
->i_size
)
1448 i_size_write(inode
, pos
+ copied
);
1450 if (!PageUptodate(page
)) {
1451 if (copied
< PAGE_CACHE_SIZE
) {
1452 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
1453 zero_user_segments(page
, 0, from
,
1454 from
+ copied
, PAGE_CACHE_SIZE
);
1456 SetPageUptodate(page
);
1458 set_page_dirty(page
);
1460 page_cache_release(page
);
1465 static void do_shmem_file_read(struct file
*filp
, loff_t
*ppos
, read_descriptor_t
*desc
, read_actor_t actor
)
1467 struct inode
*inode
= file_inode(filp
);
1468 struct address_space
*mapping
= inode
->i_mapping
;
1470 unsigned long offset
;
1471 enum sgp_type sgp
= SGP_READ
;
1474 * Might this read be for a stacking filesystem? Then when reading
1475 * holes of a sparse file, we actually need to allocate those pages,
1476 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1478 if (segment_eq(get_fs(), KERNEL_DS
))
1481 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1482 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1485 struct page
*page
= NULL
;
1487 unsigned long nr
, ret
;
1488 loff_t i_size
= i_size_read(inode
);
1490 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1491 if (index
> end_index
)
1493 if (index
== end_index
) {
1494 nr
= i_size
& ~PAGE_CACHE_MASK
;
1499 desc
->error
= shmem_getpage(inode
, index
, &page
, sgp
, NULL
);
1501 if (desc
->error
== -EINVAL
)
1509 * We must evaluate after, since reads (unlike writes)
1510 * are called without i_mutex protection against truncate
1512 nr
= PAGE_CACHE_SIZE
;
1513 i_size
= i_size_read(inode
);
1514 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1515 if (index
== end_index
) {
1516 nr
= i_size
& ~PAGE_CACHE_MASK
;
1519 page_cache_release(page
);
1527 * If users can be writing to this page using arbitrary
1528 * virtual addresses, take care about potential aliasing
1529 * before reading the page on the kernel side.
1531 if (mapping_writably_mapped(mapping
))
1532 flush_dcache_page(page
);
1534 * Mark the page accessed if we read the beginning.
1537 mark_page_accessed(page
);
1539 page
= ZERO_PAGE(0);
1540 page_cache_get(page
);
1544 * Ok, we have the page, and it's up-to-date, so
1545 * now we can copy it to user space...
1547 * The actor routine returns how many bytes were actually used..
1548 * NOTE! This may not be the same as how much of a user buffer
1549 * we filled up (we may be padding etc), so we can only update
1550 * "pos" here (the actor routine has to update the user buffer
1551 * pointers and the remaining count).
1553 ret
= actor(desc
, page
, offset
, nr
);
1555 index
+= offset
>> PAGE_CACHE_SHIFT
;
1556 offset
&= ~PAGE_CACHE_MASK
;
1558 page_cache_release(page
);
1559 if (ret
!= nr
|| !desc
->count
)
1565 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1566 file_accessed(filp
);
1569 static ssize_t
shmem_file_aio_read(struct kiocb
*iocb
,
1570 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
1572 struct file
*filp
= iocb
->ki_filp
;
1576 loff_t
*ppos
= &iocb
->ki_pos
;
1578 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1582 for (seg
= 0; seg
< nr_segs
; seg
++) {
1583 read_descriptor_t desc
;
1586 desc
.arg
.buf
= iov
[seg
].iov_base
;
1587 desc
.count
= iov
[seg
].iov_len
;
1588 if (desc
.count
== 0)
1591 do_shmem_file_read(filp
, ppos
, &desc
, file_read_actor
);
1592 retval
+= desc
.written
;
1594 retval
= retval
?: desc
.error
;
1603 static ssize_t
shmem_file_splice_read(struct file
*in
, loff_t
*ppos
,
1604 struct pipe_inode_info
*pipe
, size_t len
,
1607 struct address_space
*mapping
= in
->f_mapping
;
1608 struct inode
*inode
= mapping
->host
;
1609 unsigned int loff
, nr_pages
, req_pages
;
1610 struct page
*pages
[PIPE_DEF_BUFFERS
];
1611 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1613 pgoff_t index
, end_index
;
1616 struct splice_pipe_desc spd
= {
1619 .nr_pages_max
= PIPE_DEF_BUFFERS
,
1621 .ops
= &page_cache_pipe_buf_ops
,
1622 .spd_release
= spd_release_page
,
1625 isize
= i_size_read(inode
);
1626 if (unlikely(*ppos
>= isize
))
1629 left
= isize
- *ppos
;
1630 if (unlikely(left
< len
))
1633 if (splice_grow_spd(pipe
, &spd
))
1636 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1637 loff
= *ppos
& ~PAGE_CACHE_MASK
;
1638 req_pages
= (len
+ loff
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1639 nr_pages
= min(req_pages
, pipe
->buffers
);
1641 spd
.nr_pages
= find_get_pages_contig(mapping
, index
,
1642 nr_pages
, spd
.pages
);
1643 index
+= spd
.nr_pages
;
1646 while (spd
.nr_pages
< nr_pages
) {
1647 error
= shmem_getpage(inode
, index
, &page
, SGP_CACHE
, NULL
);
1651 spd
.pages
[spd
.nr_pages
++] = page
;
1655 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1656 nr_pages
= spd
.nr_pages
;
1659 for (page_nr
= 0; page_nr
< nr_pages
; page_nr
++) {
1660 unsigned int this_len
;
1665 this_len
= min_t(unsigned long, len
, PAGE_CACHE_SIZE
- loff
);
1666 page
= spd
.pages
[page_nr
];
1668 if (!PageUptodate(page
) || page
->mapping
!= mapping
) {
1669 error
= shmem_getpage(inode
, index
, &page
,
1674 page_cache_release(spd
.pages
[page_nr
]);
1675 spd
.pages
[page_nr
] = page
;
1678 isize
= i_size_read(inode
);
1679 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1680 if (unlikely(!isize
|| index
> end_index
))
1683 if (end_index
== index
) {
1686 plen
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1690 this_len
= min(this_len
, plen
- loff
);
1694 spd
.partial
[page_nr
].offset
= loff
;
1695 spd
.partial
[page_nr
].len
= this_len
;
1702 while (page_nr
< nr_pages
)
1703 page_cache_release(spd
.pages
[page_nr
++]);
1706 error
= splice_to_pipe(pipe
, &spd
);
1708 splice_shrink_spd(&spd
);
1718 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1720 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
1721 pgoff_t index
, pgoff_t end
, int whence
)
1724 struct pagevec pvec
;
1725 pgoff_t indices
[PAGEVEC_SIZE
];
1729 pagevec_init(&pvec
, 0);
1730 pvec
.nr
= 1; /* start small: we may be there already */
1732 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
1733 pvec
.nr
, pvec
.pages
, indices
);
1735 if (whence
== SEEK_DATA
)
1739 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
1740 if (index
< indices
[i
]) {
1741 if (whence
== SEEK_HOLE
) {
1747 page
= pvec
.pages
[i
];
1748 if (page
&& !radix_tree_exceptional_entry(page
)) {
1749 if (!PageUptodate(page
))
1753 (page
&& whence
== SEEK_DATA
) ||
1754 (!page
&& whence
== SEEK_HOLE
)) {
1759 shmem_deswap_pagevec(&pvec
);
1760 pagevec_release(&pvec
);
1761 pvec
.nr
= PAGEVEC_SIZE
;
1767 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
1769 struct address_space
*mapping
= file
->f_mapping
;
1770 struct inode
*inode
= mapping
->host
;
1774 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
1775 return generic_file_llseek_size(file
, offset
, whence
,
1776 MAX_LFS_FILESIZE
, i_size_read(inode
));
1777 mutex_lock(&inode
->i_mutex
);
1778 /* We're holding i_mutex so we can access i_size directly */
1782 else if (offset
>= inode
->i_size
)
1785 start
= offset
>> PAGE_CACHE_SHIFT
;
1786 end
= (inode
->i_size
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1787 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
1788 new_offset
<<= PAGE_CACHE_SHIFT
;
1789 if (new_offset
> offset
) {
1790 if (new_offset
< inode
->i_size
)
1791 offset
= new_offset
;
1792 else if (whence
== SEEK_DATA
)
1795 offset
= inode
->i_size
;
1800 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
1801 mutex_unlock(&inode
->i_mutex
);
1805 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
1808 struct inode
*inode
= file_inode(file
);
1809 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1810 struct shmem_falloc shmem_falloc
;
1811 pgoff_t start
, index
, end
;
1814 mutex_lock(&inode
->i_mutex
);
1816 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
1817 struct address_space
*mapping
= file
->f_mapping
;
1818 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
1819 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
1821 if ((u64
)unmap_end
> (u64
)unmap_start
)
1822 unmap_mapping_range(mapping
, unmap_start
,
1823 1 + unmap_end
- unmap_start
, 0);
1824 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
1825 /* No need to unmap again: hole-punching leaves COWed pages */
1830 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1831 error
= inode_newsize_ok(inode
, offset
+ len
);
1835 start
= offset
>> PAGE_CACHE_SHIFT
;
1836 end
= (offset
+ len
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1837 /* Try to avoid a swapstorm if len is impossible to satisfy */
1838 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
1843 shmem_falloc
.start
= start
;
1844 shmem_falloc
.next
= start
;
1845 shmem_falloc
.nr_falloced
= 0;
1846 shmem_falloc
.nr_unswapped
= 0;
1847 spin_lock(&inode
->i_lock
);
1848 inode
->i_private
= &shmem_falloc
;
1849 spin_unlock(&inode
->i_lock
);
1851 for (index
= start
; index
< end
; index
++) {
1855 * Good, the fallocate(2) manpage permits EINTR: we may have
1856 * been interrupted because we are using up too much memory.
1858 if (signal_pending(current
))
1860 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
1863 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
,
1866 /* Remove the !PageUptodate pages we added */
1867 shmem_undo_range(inode
,
1868 (loff_t
)start
<< PAGE_CACHE_SHIFT
,
1869 (loff_t
)index
<< PAGE_CACHE_SHIFT
, true);
1874 * Inform shmem_writepage() how far we have reached.
1875 * No need for lock or barrier: we have the page lock.
1877 shmem_falloc
.next
++;
1878 if (!PageUptodate(page
))
1879 shmem_falloc
.nr_falloced
++;
1882 * If !PageUptodate, leave it that way so that freeable pages
1883 * can be recognized if we need to rollback on error later.
1884 * But set_page_dirty so that memory pressure will swap rather
1885 * than free the pages we are allocating (and SGP_CACHE pages
1886 * might still be clean: we now need to mark those dirty too).
1888 set_page_dirty(page
);
1890 page_cache_release(page
);
1894 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
1895 i_size_write(inode
, offset
+ len
);
1896 inode
->i_ctime
= CURRENT_TIME
;
1898 spin_lock(&inode
->i_lock
);
1899 inode
->i_private
= NULL
;
1900 spin_unlock(&inode
->i_lock
);
1902 mutex_unlock(&inode
->i_mutex
);
1906 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1908 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
1910 buf
->f_type
= TMPFS_MAGIC
;
1911 buf
->f_bsize
= PAGE_CACHE_SIZE
;
1912 buf
->f_namelen
= NAME_MAX
;
1913 if (sbinfo
->max_blocks
) {
1914 buf
->f_blocks
= sbinfo
->max_blocks
;
1916 buf
->f_bfree
= sbinfo
->max_blocks
-
1917 percpu_counter_sum(&sbinfo
->used_blocks
);
1919 if (sbinfo
->max_inodes
) {
1920 buf
->f_files
= sbinfo
->max_inodes
;
1921 buf
->f_ffree
= sbinfo
->free_inodes
;
1923 /* else leave those fields 0 like simple_statfs */
1928 * File creation. Allocate an inode, and we're done..
1931 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
1933 struct inode
*inode
;
1934 int error
= -ENOSPC
;
1936 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
1938 error
= simple_acl_create(dir
, inode
);
1941 error
= security_inode_init_security(inode
, dir
,
1943 shmem_initxattrs
, NULL
);
1944 if (error
&& error
!= -EOPNOTSUPP
)
1948 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1949 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1950 d_instantiate(dentry
, inode
);
1951 dget(dentry
); /* Extra count - pin the dentry in core */
1960 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
1962 struct inode
*inode
;
1963 int error
= -ENOSPC
;
1965 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
1967 error
= security_inode_init_security(inode
, dir
,
1969 shmem_initxattrs
, NULL
);
1970 if (error
&& error
!= -EOPNOTSUPP
)
1972 error
= simple_acl_create(dir
, inode
);
1975 d_tmpfile(dentry
, inode
);
1983 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
1987 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
1993 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
1996 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
2002 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
2004 struct inode
*inode
= old_dentry
->d_inode
;
2008 * No ordinary (disk based) filesystem counts links as inodes;
2009 * but each new link needs a new dentry, pinning lowmem, and
2010 * tmpfs dentries cannot be pruned until they are unlinked.
2012 ret
= shmem_reserve_inode(inode
->i_sb
);
2016 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2017 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2019 ihold(inode
); /* New dentry reference */
2020 dget(dentry
); /* Extra pinning count for the created dentry */
2021 d_instantiate(dentry
, inode
);
2026 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
2028 struct inode
*inode
= dentry
->d_inode
;
2030 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
2031 shmem_free_inode(inode
->i_sb
);
2033 dir
->i_size
-= BOGO_DIRENT_SIZE
;
2034 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2036 dput(dentry
); /* Undo the count from "create" - this does all the work */
2040 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2042 if (!simple_empty(dentry
))
2045 drop_nlink(dentry
->d_inode
);
2047 return shmem_unlink(dir
, dentry
);
2051 * The VFS layer already does all the dentry stuff for rename,
2052 * we just have to decrement the usage count for the target if
2053 * it exists so that the VFS layer correctly free's it when it
2056 static int shmem_rename(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
2058 struct inode
*inode
= old_dentry
->d_inode
;
2059 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
2061 if (!simple_empty(new_dentry
))
2064 if (new_dentry
->d_inode
) {
2065 (void) shmem_unlink(new_dir
, new_dentry
);
2067 drop_nlink(old_dir
);
2068 } else if (they_are_dirs
) {
2069 drop_nlink(old_dir
);
2073 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
2074 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
2075 old_dir
->i_ctime
= old_dir
->i_mtime
=
2076 new_dir
->i_ctime
= new_dir
->i_mtime
=
2077 inode
->i_ctime
= CURRENT_TIME
;
2081 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
2085 struct inode
*inode
;
2088 struct shmem_inode_info
*info
;
2090 len
= strlen(symname
) + 1;
2091 if (len
> PAGE_CACHE_SIZE
)
2092 return -ENAMETOOLONG
;
2094 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
2098 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
2099 shmem_initxattrs
, NULL
);
2101 if (error
!= -EOPNOTSUPP
) {
2108 info
= SHMEM_I(inode
);
2109 inode
->i_size
= len
-1;
2110 if (len
<= SHORT_SYMLINK_LEN
) {
2111 info
->symlink
= kmemdup(symname
, len
, GFP_KERNEL
);
2112 if (!info
->symlink
) {
2116 inode
->i_op
= &shmem_short_symlink_operations
;
2118 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
2123 inode
->i_mapping
->a_ops
= &shmem_aops
;
2124 inode
->i_op
= &shmem_symlink_inode_operations
;
2125 kaddr
= kmap_atomic(page
);
2126 memcpy(kaddr
, symname
, len
);
2127 kunmap_atomic(kaddr
);
2128 SetPageUptodate(page
);
2129 set_page_dirty(page
);
2131 page_cache_release(page
);
2133 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2134 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2135 d_instantiate(dentry
, inode
);
2140 static void *shmem_follow_short_symlink(struct dentry
*dentry
, struct nameidata
*nd
)
2142 nd_set_link(nd
, SHMEM_I(dentry
->d_inode
)->symlink
);
2146 static void *shmem_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
2148 struct page
*page
= NULL
;
2149 int error
= shmem_getpage(dentry
->d_inode
, 0, &page
, SGP_READ
, NULL
);
2150 nd_set_link(nd
, error
? ERR_PTR(error
) : kmap(page
));
2156 static void shmem_put_link(struct dentry
*dentry
, struct nameidata
*nd
, void *cookie
)
2158 if (!IS_ERR(nd_get_link(nd
))) {
2159 struct page
*page
= cookie
;
2161 mark_page_accessed(page
);
2162 page_cache_release(page
);
2166 #ifdef CONFIG_TMPFS_XATTR
2168 * Superblocks without xattr inode operations may get some security.* xattr
2169 * support from the LSM "for free". As soon as we have any other xattrs
2170 * like ACLs, we also need to implement the security.* handlers at
2171 * filesystem level, though.
2175 * Callback for security_inode_init_security() for acquiring xattrs.
2177 static int shmem_initxattrs(struct inode
*inode
,
2178 const struct xattr
*xattr_array
,
2181 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2182 const struct xattr
*xattr
;
2183 struct simple_xattr
*new_xattr
;
2186 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
2187 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
2191 len
= strlen(xattr
->name
) + 1;
2192 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
2194 if (!new_xattr
->name
) {
2199 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
2200 XATTR_SECURITY_PREFIX_LEN
);
2201 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
2204 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
2210 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
2211 #ifdef CONFIG_TMPFS_POSIX_ACL
2212 &posix_acl_access_xattr_handler
,
2213 &posix_acl_default_xattr_handler
,
2218 static int shmem_xattr_validate(const char *name
)
2220 struct { const char *prefix
; size_t len
; } arr
[] = {
2221 { XATTR_SECURITY_PREFIX
, XATTR_SECURITY_PREFIX_LEN
},
2222 { XATTR_TRUSTED_PREFIX
, XATTR_TRUSTED_PREFIX_LEN
}
2226 for (i
= 0; i
< ARRAY_SIZE(arr
); i
++) {
2227 size_t preflen
= arr
[i
].len
;
2228 if (strncmp(name
, arr
[i
].prefix
, preflen
) == 0) {
2237 static ssize_t
shmem_getxattr(struct dentry
*dentry
, const char *name
,
2238 void *buffer
, size_t size
)
2240 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2244 * If this is a request for a synthetic attribute in the system.*
2245 * namespace use the generic infrastructure to resolve a handler
2246 * for it via sb->s_xattr.
2248 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2249 return generic_getxattr(dentry
, name
, buffer
, size
);
2251 err
= shmem_xattr_validate(name
);
2255 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
2258 static int shmem_setxattr(struct dentry
*dentry
, const char *name
,
2259 const void *value
, size_t size
, int flags
)
2261 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2265 * If this is a request for a synthetic attribute in the system.*
2266 * namespace use the generic infrastructure to resolve a handler
2267 * for it via sb->s_xattr.
2269 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2270 return generic_setxattr(dentry
, name
, value
, size
, flags
);
2272 err
= shmem_xattr_validate(name
);
2276 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
2279 static int shmem_removexattr(struct dentry
*dentry
, const char *name
)
2281 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2285 * If this is a request for a synthetic attribute in the system.*
2286 * namespace use the generic infrastructure to resolve a handler
2287 * for it via sb->s_xattr.
2289 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2290 return generic_removexattr(dentry
, name
);
2292 err
= shmem_xattr_validate(name
);
2296 return simple_xattr_remove(&info
->xattrs
, name
);
2299 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
2301 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2302 return simple_xattr_list(&info
->xattrs
, buffer
, size
);
2304 #endif /* CONFIG_TMPFS_XATTR */
2306 static const struct inode_operations shmem_short_symlink_operations
= {
2307 .readlink
= generic_readlink
,
2308 .follow_link
= shmem_follow_short_symlink
,
2309 #ifdef CONFIG_TMPFS_XATTR
2310 .setxattr
= shmem_setxattr
,
2311 .getxattr
= shmem_getxattr
,
2312 .listxattr
= shmem_listxattr
,
2313 .removexattr
= shmem_removexattr
,
2317 static const struct inode_operations shmem_symlink_inode_operations
= {
2318 .readlink
= generic_readlink
,
2319 .follow_link
= shmem_follow_link
,
2320 .put_link
= shmem_put_link
,
2321 #ifdef CONFIG_TMPFS_XATTR
2322 .setxattr
= shmem_setxattr
,
2323 .getxattr
= shmem_getxattr
,
2324 .listxattr
= shmem_listxattr
,
2325 .removexattr
= shmem_removexattr
,
2329 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2331 return ERR_PTR(-ESTALE
);
2334 static int shmem_match(struct inode
*ino
, void *vfh
)
2338 inum
= (inum
<< 32) | fh
[1];
2339 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2342 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2343 struct fid
*fid
, int fh_len
, int fh_type
)
2345 struct inode
*inode
;
2346 struct dentry
*dentry
= NULL
;
2353 inum
= (inum
<< 32) | fid
->raw
[1];
2355 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2356 shmem_match
, fid
->raw
);
2358 dentry
= d_find_alias(inode
);
2365 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
2366 struct inode
*parent
)
2370 return FILEID_INVALID
;
2373 if (inode_unhashed(inode
)) {
2374 /* Unfortunately insert_inode_hash is not idempotent,
2375 * so as we hash inodes here rather than at creation
2376 * time, we need a lock to ensure we only try
2379 static DEFINE_SPINLOCK(lock
);
2381 if (inode_unhashed(inode
))
2382 __insert_inode_hash(inode
,
2383 inode
->i_ino
+ inode
->i_generation
);
2387 fh
[0] = inode
->i_generation
;
2388 fh
[1] = inode
->i_ino
;
2389 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2395 static const struct export_operations shmem_export_ops
= {
2396 .get_parent
= shmem_get_parent
,
2397 .encode_fh
= shmem_encode_fh
,
2398 .fh_to_dentry
= shmem_fh_to_dentry
,
2401 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
2404 char *this_char
, *value
, *rest
;
2405 struct mempolicy
*mpol
= NULL
;
2409 while (options
!= NULL
) {
2410 this_char
= options
;
2413 * NUL-terminate this option: unfortunately,
2414 * mount options form a comma-separated list,
2415 * but mpol's nodelist may also contain commas.
2417 options
= strchr(options
, ',');
2418 if (options
== NULL
)
2421 if (!isdigit(*options
)) {
2428 if ((value
= strchr(this_char
,'=')) != NULL
) {
2432 "tmpfs: No value for mount option '%s'\n",
2437 if (!strcmp(this_char
,"size")) {
2438 unsigned long long size
;
2439 size
= memparse(value
,&rest
);
2441 size
<<= PAGE_SHIFT
;
2442 size
*= totalram_pages
;
2448 sbinfo
->max_blocks
=
2449 DIV_ROUND_UP(size
, PAGE_CACHE_SIZE
);
2450 } else if (!strcmp(this_char
,"nr_blocks")) {
2451 sbinfo
->max_blocks
= memparse(value
, &rest
);
2454 } else if (!strcmp(this_char
,"nr_inodes")) {
2455 sbinfo
->max_inodes
= memparse(value
, &rest
);
2458 } else if (!strcmp(this_char
,"mode")) {
2461 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
2464 } else if (!strcmp(this_char
,"uid")) {
2467 uid
= simple_strtoul(value
, &rest
, 0);
2470 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
2471 if (!uid_valid(sbinfo
->uid
))
2473 } else if (!strcmp(this_char
,"gid")) {
2476 gid
= simple_strtoul(value
, &rest
, 0);
2479 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
2480 if (!gid_valid(sbinfo
->gid
))
2482 } else if (!strcmp(this_char
,"mpol")) {
2485 if (mpol_parse_str(value
, &mpol
))
2488 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2493 sbinfo
->mpol
= mpol
;
2497 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2505 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2507 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2508 struct shmem_sb_info config
= *sbinfo
;
2509 unsigned long inodes
;
2510 int error
= -EINVAL
;
2513 if (shmem_parse_options(data
, &config
, true))
2516 spin_lock(&sbinfo
->stat_lock
);
2517 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2518 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
2520 if (config
.max_inodes
< inodes
)
2523 * Those tests disallow limited->unlimited while any are in use;
2524 * but we must separately disallow unlimited->limited, because
2525 * in that case we have no record of how much is already in use.
2527 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
2529 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
2533 sbinfo
->max_blocks
= config
.max_blocks
;
2534 sbinfo
->max_inodes
= config
.max_inodes
;
2535 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
2538 * Preserve previous mempolicy unless mpol remount option was specified.
2541 mpol_put(sbinfo
->mpol
);
2542 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
2545 spin_unlock(&sbinfo
->stat_lock
);
2549 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
2551 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
2553 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
2554 seq_printf(seq
, ",size=%luk",
2555 sbinfo
->max_blocks
<< (PAGE_CACHE_SHIFT
- 10));
2556 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
2557 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
2558 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
2559 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
2560 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
2561 seq_printf(seq
, ",uid=%u",
2562 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
2563 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
2564 seq_printf(seq
, ",gid=%u",
2565 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
2566 shmem_show_mpol(seq
, sbinfo
->mpol
);
2569 #endif /* CONFIG_TMPFS */
2571 static void shmem_put_super(struct super_block
*sb
)
2573 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2575 percpu_counter_destroy(&sbinfo
->used_blocks
);
2576 mpol_put(sbinfo
->mpol
);
2578 sb
->s_fs_info
= NULL
;
2581 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
2583 struct inode
*inode
;
2584 struct shmem_sb_info
*sbinfo
;
2587 /* Round up to L1_CACHE_BYTES to resist false sharing */
2588 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
2589 L1_CACHE_BYTES
), GFP_KERNEL
);
2593 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
2594 sbinfo
->uid
= current_fsuid();
2595 sbinfo
->gid
= current_fsgid();
2596 sb
->s_fs_info
= sbinfo
;
2600 * Per default we only allow half of the physical ram per
2601 * tmpfs instance, limiting inodes to one per page of lowmem;
2602 * but the internal instance is left unlimited.
2604 if (!(sb
->s_flags
& MS_KERNMOUNT
)) {
2605 sbinfo
->max_blocks
= shmem_default_max_blocks();
2606 sbinfo
->max_inodes
= shmem_default_max_inodes();
2607 if (shmem_parse_options(data
, sbinfo
, false)) {
2612 sb
->s_flags
|= MS_NOUSER
;
2614 sb
->s_export_op
= &shmem_export_ops
;
2615 sb
->s_flags
|= MS_NOSEC
;
2617 sb
->s_flags
|= MS_NOUSER
;
2620 spin_lock_init(&sbinfo
->stat_lock
);
2621 if (percpu_counter_init(&sbinfo
->used_blocks
, 0))
2623 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
2625 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
2626 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
2627 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
2628 sb
->s_magic
= TMPFS_MAGIC
;
2629 sb
->s_op
= &shmem_ops
;
2630 sb
->s_time_gran
= 1;
2631 #ifdef CONFIG_TMPFS_XATTR
2632 sb
->s_xattr
= shmem_xattr_handlers
;
2634 #ifdef CONFIG_TMPFS_POSIX_ACL
2635 sb
->s_flags
|= MS_POSIXACL
;
2638 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
2641 inode
->i_uid
= sbinfo
->uid
;
2642 inode
->i_gid
= sbinfo
->gid
;
2643 sb
->s_root
= d_make_root(inode
);
2649 shmem_put_super(sb
);
2653 static struct kmem_cache
*shmem_inode_cachep
;
2655 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
2657 struct shmem_inode_info
*info
;
2658 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
2661 return &info
->vfs_inode
;
2664 static void shmem_destroy_callback(struct rcu_head
*head
)
2666 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
2667 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
2670 static void shmem_destroy_inode(struct inode
*inode
)
2672 if (S_ISREG(inode
->i_mode
))
2673 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
2674 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
2677 static void shmem_init_inode(void *foo
)
2679 struct shmem_inode_info
*info
= foo
;
2680 inode_init_once(&info
->vfs_inode
);
2683 static int shmem_init_inodecache(void)
2685 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
2686 sizeof(struct shmem_inode_info
),
2687 0, SLAB_PANIC
, shmem_init_inode
);
2691 static void shmem_destroy_inodecache(void)
2693 kmem_cache_destroy(shmem_inode_cachep
);
2696 static const struct address_space_operations shmem_aops
= {
2697 .writepage
= shmem_writepage
,
2698 .set_page_dirty
= __set_page_dirty_no_writeback
,
2700 .write_begin
= shmem_write_begin
,
2701 .write_end
= shmem_write_end
,
2703 .migratepage
= migrate_page
,
2704 .error_remove_page
= generic_error_remove_page
,
2707 static const struct file_operations shmem_file_operations
= {
2710 .llseek
= shmem_file_llseek
,
2711 .read
= do_sync_read
,
2712 .write
= do_sync_write
,
2713 .aio_read
= shmem_file_aio_read
,
2714 .aio_write
= generic_file_aio_write
,
2715 .fsync
= noop_fsync
,
2716 .splice_read
= shmem_file_splice_read
,
2717 .splice_write
= generic_file_splice_write
,
2718 .fallocate
= shmem_fallocate
,
2722 static const struct inode_operations shmem_inode_operations
= {
2723 .setattr
= shmem_setattr
,
2724 #ifdef CONFIG_TMPFS_XATTR
2725 .setxattr
= shmem_setxattr
,
2726 .getxattr
= shmem_getxattr
,
2727 .listxattr
= shmem_listxattr
,
2728 .removexattr
= shmem_removexattr
,
2729 .set_acl
= simple_set_acl
,
2733 static const struct inode_operations shmem_dir_inode_operations
= {
2735 .create
= shmem_create
,
2736 .lookup
= simple_lookup
,
2738 .unlink
= shmem_unlink
,
2739 .symlink
= shmem_symlink
,
2740 .mkdir
= shmem_mkdir
,
2741 .rmdir
= shmem_rmdir
,
2742 .mknod
= shmem_mknod
,
2743 .rename
= shmem_rename
,
2744 .tmpfile
= shmem_tmpfile
,
2746 #ifdef CONFIG_TMPFS_XATTR
2747 .setxattr
= shmem_setxattr
,
2748 .getxattr
= shmem_getxattr
,
2749 .listxattr
= shmem_listxattr
,
2750 .removexattr
= shmem_removexattr
,
2752 #ifdef CONFIG_TMPFS_POSIX_ACL
2753 .setattr
= shmem_setattr
,
2754 .set_acl
= simple_set_acl
,
2758 static const struct inode_operations shmem_special_inode_operations
= {
2759 #ifdef CONFIG_TMPFS_XATTR
2760 .setxattr
= shmem_setxattr
,
2761 .getxattr
= shmem_getxattr
,
2762 .listxattr
= shmem_listxattr
,
2763 .removexattr
= shmem_removexattr
,
2765 #ifdef CONFIG_TMPFS_POSIX_ACL
2766 .setattr
= shmem_setattr
,
2767 .set_acl
= simple_set_acl
,
2771 static const struct super_operations shmem_ops
= {
2772 .alloc_inode
= shmem_alloc_inode
,
2773 .destroy_inode
= shmem_destroy_inode
,
2775 .statfs
= shmem_statfs
,
2776 .remount_fs
= shmem_remount_fs
,
2777 .show_options
= shmem_show_options
,
2779 .evict_inode
= shmem_evict_inode
,
2780 .drop_inode
= generic_delete_inode
,
2781 .put_super
= shmem_put_super
,
2784 static const struct vm_operations_struct shmem_vm_ops
= {
2785 .fault
= shmem_fault
,
2787 .set_policy
= shmem_set_policy
,
2788 .get_policy
= shmem_get_policy
,
2790 .remap_pages
= generic_file_remap_pages
,
2793 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
2794 int flags
, const char *dev_name
, void *data
)
2796 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
2799 static struct file_system_type shmem_fs_type
= {
2800 .owner
= THIS_MODULE
,
2802 .mount
= shmem_mount
,
2803 .kill_sb
= kill_litter_super
,
2804 .fs_flags
= FS_USERNS_MOUNT
,
2807 int __init
shmem_init(void)
2811 /* If rootfs called this, don't re-init */
2812 if (shmem_inode_cachep
)
2815 error
= bdi_init(&shmem_backing_dev_info
);
2819 error
= shmem_init_inodecache();
2823 error
= register_filesystem(&shmem_fs_type
);
2825 printk(KERN_ERR
"Could not register tmpfs\n");
2829 shm_mnt
= kern_mount(&shmem_fs_type
);
2830 if (IS_ERR(shm_mnt
)) {
2831 error
= PTR_ERR(shm_mnt
);
2832 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
2838 unregister_filesystem(&shmem_fs_type
);
2840 shmem_destroy_inodecache();
2842 bdi_destroy(&shmem_backing_dev_info
);
2844 shm_mnt
= ERR_PTR(error
);
2848 #else /* !CONFIG_SHMEM */
2851 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2853 * This is intended for small system where the benefits of the full
2854 * shmem code (swap-backed and resource-limited) are outweighed by
2855 * their complexity. On systems without swap this code should be
2856 * effectively equivalent, but much lighter weight.
2859 static struct file_system_type shmem_fs_type
= {
2861 .mount
= ramfs_mount
,
2862 .kill_sb
= kill_litter_super
,
2863 .fs_flags
= FS_USERNS_MOUNT
,
2866 int __init
shmem_init(void)
2868 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
2870 shm_mnt
= kern_mount(&shmem_fs_type
);
2871 BUG_ON(IS_ERR(shm_mnt
));
2876 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
2881 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2886 void shmem_unlock_mapping(struct address_space
*mapping
)
2890 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
2892 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
2894 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
2896 #define shmem_vm_ops generic_file_vm_ops
2897 #define shmem_file_operations ramfs_file_operations
2898 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2899 #define shmem_acct_size(flags, size) 0
2900 #define shmem_unacct_size(flags, size) do {} while (0)
2902 #endif /* CONFIG_SHMEM */
2906 static struct dentry_operations anon_ops
= {
2907 .d_dname
= simple_dname
2910 static struct file
*__shmem_file_setup(const char *name
, loff_t size
,
2911 unsigned long flags
, unsigned int i_flags
)
2914 struct inode
*inode
;
2916 struct super_block
*sb
;
2919 if (IS_ERR(shm_mnt
))
2920 return ERR_CAST(shm_mnt
);
2922 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
2923 return ERR_PTR(-EINVAL
);
2925 if (shmem_acct_size(flags
, size
))
2926 return ERR_PTR(-ENOMEM
);
2928 res
= ERR_PTR(-ENOMEM
);
2930 this.len
= strlen(name
);
2931 this.hash
= 0; /* will go */
2932 sb
= shm_mnt
->mnt_sb
;
2933 path
.dentry
= d_alloc_pseudo(sb
, &this);
2936 d_set_d_op(path
.dentry
, &anon_ops
);
2937 path
.mnt
= mntget(shm_mnt
);
2939 res
= ERR_PTR(-ENOSPC
);
2940 inode
= shmem_get_inode(sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
2944 inode
->i_flags
|= i_flags
;
2945 d_instantiate(path
.dentry
, inode
);
2946 inode
->i_size
= size
;
2947 clear_nlink(inode
); /* It is unlinked */
2948 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
2952 res
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
2953 &shmem_file_operations
);
2962 shmem_unacct_size(flags
, size
);
2967 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2968 * kernel internal. There will be NO LSM permission checks against the
2969 * underlying inode. So users of this interface must do LSM checks at a
2970 * higher layer. The one user is the big_key implementation. LSM checks
2971 * are provided at the key level rather than the inode level.
2972 * @name: name for dentry (to be seen in /proc/<pid>/maps
2973 * @size: size to be set for the file
2974 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2976 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
2978 return __shmem_file_setup(name
, size
, flags
, S_PRIVATE
);
2982 * shmem_file_setup - get an unlinked file living in tmpfs
2983 * @name: name for dentry (to be seen in /proc/<pid>/maps
2984 * @size: size to be set for the file
2985 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2987 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
2989 return __shmem_file_setup(name
, size
, flags
, 0);
2991 EXPORT_SYMBOL_GPL(shmem_file_setup
);
2994 * shmem_zero_setup - setup a shared anonymous mapping
2995 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2997 int shmem_zero_setup(struct vm_area_struct
*vma
)
3000 loff_t size
= vma
->vm_end
- vma
->vm_start
;
3002 file
= shmem_file_setup("dev/zero", size
, vma
->vm_flags
);
3004 return PTR_ERR(file
);
3008 vma
->vm_file
= file
;
3009 vma
->vm_ops
= &shmem_vm_ops
;
3014 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3015 * @mapping: the page's address_space
3016 * @index: the page index
3017 * @gfp: the page allocator flags to use if allocating
3019 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3020 * with any new page allocations done using the specified allocation flags.
3021 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3022 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3023 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3025 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3026 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3028 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
3029 pgoff_t index
, gfp_t gfp
)
3032 struct inode
*inode
= mapping
->host
;
3036 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
3037 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
, gfp
, NULL
);
3039 page
= ERR_PTR(error
);
3045 * The tiny !SHMEM case uses ramfs without swap
3047 return read_cache_page_gfp(mapping
, index
, gfp
);
3050 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);