1 // SPDX-License-Identifier: GPL-2.0+
3 * Read-Copy Update mechanism for mutual exclusion
5 * Copyright IBM Corporation, 2008
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 * Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version
11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
14 * For detailed explanation of Read-Copy Update mechanism see -
18 #define pr_fmt(fmt) "rcu: " fmt
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/trace_events.h>
49 #include <linux/suspend.h>
50 #include <linux/ftrace.h>
51 #include <linux/tick.h>
52 #include <linux/sysrq.h>
53 #include <linux/kprobes.h>
54 #include <linux/gfp.h>
55 #include <linux/oom.h>
56 #include <linux/smpboot.h>
57 #include <linux/jiffies.h>
58 #include <linux/sched/isolation.h>
59 #include "../time/tick-internal.h"
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
67 #define MODULE_PARAM_PREFIX "rcutree."
69 /* Data structures. */
72 * Steal a bit from the bottom of ->dynticks for idle entry/exit
73 * control. Initially this is for TLB flushing.
75 #define RCU_DYNTICK_CTRL_MASK 0x1
76 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
77 #ifndef rcu_eqs_special_exit
78 #define rcu_eqs_special_exit() do { } while (0)
81 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data
, rcu_data
) = {
82 .dynticks_nesting
= 1,
83 .dynticks_nmi_nesting
= DYNTICK_IRQ_NONIDLE
,
84 .dynticks
= ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR
),
86 struct rcu_state rcu_state
= {
87 .level
= { &rcu_state
.node
[0] },
88 .gp_state
= RCU_GP_IDLE
,
89 .gp_seq
= (0UL - 300UL) << RCU_SEQ_CTR_SHIFT
,
90 .barrier_mutex
= __MUTEX_INITIALIZER(rcu_state
.barrier_mutex
),
93 .exp_mutex
= __MUTEX_INITIALIZER(rcu_state
.exp_mutex
),
94 .exp_wake_mutex
= __MUTEX_INITIALIZER(rcu_state
.exp_wake_mutex
),
95 .ofl_lock
= __RAW_SPIN_LOCK_UNLOCKED(rcu_state
.ofl_lock
),
98 /* Dump rcu_node combining tree at boot to verify correct setup. */
99 static bool dump_tree
;
100 module_param(dump_tree
, bool, 0444);
101 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
102 static bool use_softirq
= 1;
103 module_param(use_softirq
, bool, 0444);
104 /* Control rcu_node-tree auto-balancing at boot time. */
105 static bool rcu_fanout_exact
;
106 module_param(rcu_fanout_exact
, bool, 0444);
107 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
108 static int rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
109 module_param(rcu_fanout_leaf
, int, 0444);
110 int rcu_num_lvls __read_mostly
= RCU_NUM_LVLS
;
111 /* Number of rcu_nodes at specified level. */
112 int num_rcu_lvl
[] = NUM_RCU_LVL_INIT
;
113 int rcu_num_nodes __read_mostly
= NUM_RCU_NODES
; /* Total # rcu_nodes in use. */
116 * The rcu_scheduler_active variable is initialized to the value
117 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
118 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
119 * RCU can assume that there is but one task, allowing RCU to (for example)
120 * optimize synchronize_rcu() to a simple barrier(). When this variable
121 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
122 * to detect real grace periods. This variable is also used to suppress
123 * boot-time false positives from lockdep-RCU error checking. Finally, it
124 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
125 * is fully initialized, including all of its kthreads having been spawned.
127 int rcu_scheduler_active __read_mostly
;
128 EXPORT_SYMBOL_GPL(rcu_scheduler_active
);
131 * The rcu_scheduler_fully_active variable transitions from zero to one
132 * during the early_initcall() processing, which is after the scheduler
133 * is capable of creating new tasks. So RCU processing (for example,
134 * creating tasks for RCU priority boosting) must be delayed until after
135 * rcu_scheduler_fully_active transitions from zero to one. We also
136 * currently delay invocation of any RCU callbacks until after this point.
138 * It might later prove better for people registering RCU callbacks during
139 * early boot to take responsibility for these callbacks, but one step at
142 static int rcu_scheduler_fully_active __read_mostly
;
144 static void rcu_report_qs_rnp(unsigned long mask
, struct rcu_node
*rnp
,
145 unsigned long gps
, unsigned long flags
);
146 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
);
147 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
);
148 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
);
149 static void invoke_rcu_core(void);
150 static void rcu_report_exp_rdp(struct rcu_data
*rdp
);
151 static void sync_sched_exp_online_cleanup(int cpu
);
153 /* rcuc/rcub kthread realtime priority */
154 static int kthread_prio
= IS_ENABLED(CONFIG_RCU_BOOST
) ? 1 : 0;
155 module_param(kthread_prio
, int, 0444);
157 /* Delay in jiffies for grace-period initialization delays, debug only. */
159 static int gp_preinit_delay
;
160 module_param(gp_preinit_delay
, int, 0444);
161 static int gp_init_delay
;
162 module_param(gp_init_delay
, int, 0444);
163 static int gp_cleanup_delay
;
164 module_param(gp_cleanup_delay
, int, 0444);
166 /* Retrieve RCU kthreads priority for rcutorture */
167 int rcu_get_gp_kthreads_prio(void)
171 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio
);
174 * Number of grace periods between delays, normalized by the duration of
175 * the delay. The longer the delay, the more the grace periods between
176 * each delay. The reason for this normalization is that it means that,
177 * for non-zero delays, the overall slowdown of grace periods is constant
178 * regardless of the duration of the delay. This arrangement balances
179 * the need for long delays to increase some race probabilities with the
180 * need for fast grace periods to increase other race probabilities.
182 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
185 * Compute the mask of online CPUs for the specified rcu_node structure.
186 * This will not be stable unless the rcu_node structure's ->lock is
187 * held, but the bit corresponding to the current CPU will be stable
190 unsigned long rcu_rnp_online_cpus(struct rcu_node
*rnp
)
192 return READ_ONCE(rnp
->qsmaskinitnext
);
196 * Return true if an RCU grace period is in progress. The READ_ONCE()s
197 * permit this function to be invoked without holding the root rcu_node
198 * structure's ->lock, but of course results can be subject to change.
200 static int rcu_gp_in_progress(void)
202 return rcu_seq_state(rcu_seq_current(&rcu_state
.gp_seq
));
206 * Return the number of callbacks queued on the specified CPU.
207 * Handles both the nocbs and normal cases.
209 static long rcu_get_n_cbs_cpu(int cpu
)
211 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
213 if (rcu_segcblist_is_enabled(&rdp
->cblist
)) /* Online normal CPU? */
214 return rcu_segcblist_n_cbs(&rdp
->cblist
);
215 return rcu_get_n_cbs_nocb_cpu(rdp
); /* Works for offline, too. */
218 void rcu_softirq_qs(void)
221 rcu_preempt_deferred_qs(current
);
225 * Record entry into an extended quiescent state. This is only to be
226 * called when not already in an extended quiescent state.
228 static void rcu_dynticks_eqs_enter(void)
230 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
234 * CPUs seeing atomic_add_return() must see prior RCU read-side
235 * critical sections, and we also must force ordering with the
238 seq
= atomic_add_return(RCU_DYNTICK_CTRL_CTR
, &rdp
->dynticks
);
239 /* Better be in an extended quiescent state! */
240 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
241 (seq
& RCU_DYNTICK_CTRL_CTR
));
242 /* Better not have special action (TLB flush) pending! */
243 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
244 (seq
& RCU_DYNTICK_CTRL_MASK
));
248 * Record exit from an extended quiescent state. This is only to be
249 * called from an extended quiescent state.
251 static void rcu_dynticks_eqs_exit(void)
253 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
257 * CPUs seeing atomic_add_return() must see prior idle sojourns,
258 * and we also must force ordering with the next RCU read-side
261 seq
= atomic_add_return(RCU_DYNTICK_CTRL_CTR
, &rdp
->dynticks
);
262 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
263 !(seq
& RCU_DYNTICK_CTRL_CTR
));
264 if (seq
& RCU_DYNTICK_CTRL_MASK
) {
265 atomic_andnot(RCU_DYNTICK_CTRL_MASK
, &rdp
->dynticks
);
266 smp_mb__after_atomic(); /* _exit after clearing mask. */
267 /* Prefer duplicate flushes to losing a flush. */
268 rcu_eqs_special_exit();
273 * Reset the current CPU's ->dynticks counter to indicate that the
274 * newly onlined CPU is no longer in an extended quiescent state.
275 * This will either leave the counter unchanged, or increment it
276 * to the next non-quiescent value.
278 * The non-atomic test/increment sequence works because the upper bits
279 * of the ->dynticks counter are manipulated only by the corresponding CPU,
280 * or when the corresponding CPU is offline.
282 static void rcu_dynticks_eqs_online(void)
284 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
286 if (atomic_read(&rdp
->dynticks
) & RCU_DYNTICK_CTRL_CTR
)
288 atomic_add(RCU_DYNTICK_CTRL_CTR
, &rdp
->dynticks
);
292 * Is the current CPU in an extended quiescent state?
294 * No ordering, as we are sampling CPU-local information.
296 bool rcu_dynticks_curr_cpu_in_eqs(void)
298 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
300 return !(atomic_read(&rdp
->dynticks
) & RCU_DYNTICK_CTRL_CTR
);
304 * Snapshot the ->dynticks counter with full ordering so as to allow
305 * stable comparison of this counter with past and future snapshots.
307 int rcu_dynticks_snap(struct rcu_data
*rdp
)
309 int snap
= atomic_add_return(0, &rdp
->dynticks
);
311 return snap
& ~RCU_DYNTICK_CTRL_MASK
;
315 * Return true if the snapshot returned from rcu_dynticks_snap()
316 * indicates that RCU is in an extended quiescent state.
318 static bool rcu_dynticks_in_eqs(int snap
)
320 return !(snap
& RCU_DYNTICK_CTRL_CTR
);
324 * Return true if the CPU corresponding to the specified rcu_data
325 * structure has spent some time in an extended quiescent state since
326 * rcu_dynticks_snap() returned the specified snapshot.
328 static bool rcu_dynticks_in_eqs_since(struct rcu_data
*rdp
, int snap
)
330 return snap
!= rcu_dynticks_snap(rdp
);
334 * Set the special (bottom) bit of the specified CPU so that it
335 * will take special action (such as flushing its TLB) on the
336 * next exit from an extended quiescent state. Returns true if
337 * the bit was successfully set, or false if the CPU was not in
338 * an extended quiescent state.
340 bool rcu_eqs_special_set(int cpu
)
344 struct rcu_data
*rdp
= &per_cpu(rcu_data
, cpu
);
347 old
= atomic_read(&rdp
->dynticks
);
348 if (old
& RCU_DYNTICK_CTRL_CTR
)
350 new = old
| RCU_DYNTICK_CTRL_MASK
;
351 } while (atomic_cmpxchg(&rdp
->dynticks
, old
, new) != old
);
356 * Let the RCU core know that this CPU has gone through the scheduler,
357 * which is a quiescent state. This is called when the need for a
358 * quiescent state is urgent, so we burn an atomic operation and full
359 * memory barriers to let the RCU core know about it, regardless of what
360 * this CPU might (or might not) do in the near future.
362 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
364 * The caller must have disabled interrupts and must not be idle.
366 static void __maybe_unused
rcu_momentary_dyntick_idle(void)
370 raw_cpu_write(rcu_data
.rcu_need_heavy_qs
, false);
371 special
= atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR
,
372 &this_cpu_ptr(&rcu_data
)->dynticks
);
373 /* It is illegal to call this from idle state. */
374 WARN_ON_ONCE(!(special
& RCU_DYNTICK_CTRL_CTR
));
375 rcu_preempt_deferred_qs(current
);
379 * rcu_is_cpu_rrupt_from_idle - see if interrupted from idle
381 * If the current CPU is idle and running at a first-level (not nested)
382 * interrupt from idle, return true. The caller must have at least
383 * disabled preemption.
385 static int rcu_is_cpu_rrupt_from_idle(void)
387 /* Called only from within the scheduling-clock interrupt */
388 lockdep_assert_in_irq();
390 /* Check for counter underflows */
391 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data
.dynticks_nesting
) < 0,
392 "RCU dynticks_nesting counter underflow!");
393 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data
.dynticks_nmi_nesting
) <= 0,
394 "RCU dynticks_nmi_nesting counter underflow/zero!");
396 /* Are we at first interrupt nesting level? */
397 if (__this_cpu_read(rcu_data
.dynticks_nmi_nesting
) != 1)
400 /* Does CPU appear to be idle from an RCU standpoint? */
401 return __this_cpu_read(rcu_data
.dynticks_nesting
) == 0;
404 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch ... */
405 #define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
406 static long blimit
= DEFAULT_RCU_BLIMIT
;
407 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
408 static long qhimark
= DEFAULT_RCU_QHIMARK
;
409 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
410 static long qlowmark
= DEFAULT_RCU_QLOMARK
;
412 module_param(blimit
, long, 0444);
413 module_param(qhimark
, long, 0444);
414 module_param(qlowmark
, long, 0444);
416 static ulong jiffies_till_first_fqs
= ULONG_MAX
;
417 static ulong jiffies_till_next_fqs
= ULONG_MAX
;
418 static bool rcu_kick_kthreads
;
421 * How long the grace period must be before we start recruiting
422 * quiescent-state help from rcu_note_context_switch().
424 static ulong jiffies_till_sched_qs
= ULONG_MAX
;
425 module_param(jiffies_till_sched_qs
, ulong
, 0444);
426 static ulong jiffies_to_sched_qs
; /* See adjust_jiffies_till_sched_qs(). */
427 module_param(jiffies_to_sched_qs
, ulong
, 0444); /* Display only! */
430 * Make sure that we give the grace-period kthread time to detect any
431 * idle CPUs before taking active measures to force quiescent states.
432 * However, don't go below 100 milliseconds, adjusted upwards for really
435 static void adjust_jiffies_till_sched_qs(void)
439 /* If jiffies_till_sched_qs was specified, respect the request. */
440 if (jiffies_till_sched_qs
!= ULONG_MAX
) {
441 WRITE_ONCE(jiffies_to_sched_qs
, jiffies_till_sched_qs
);
444 /* Otherwise, set to third fqs scan, but bound below on large system. */
445 j
= READ_ONCE(jiffies_till_first_fqs
) +
446 2 * READ_ONCE(jiffies_till_next_fqs
);
447 if (j
< HZ
/ 10 + nr_cpu_ids
/ RCU_JIFFIES_FQS_DIV
)
448 j
= HZ
/ 10 + nr_cpu_ids
/ RCU_JIFFIES_FQS_DIV
;
449 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j
);
450 WRITE_ONCE(jiffies_to_sched_qs
, j
);
453 static int param_set_first_fqs_jiffies(const char *val
, const struct kernel_param
*kp
)
456 int ret
= kstrtoul(val
, 0, &j
);
459 WRITE_ONCE(*(ulong
*)kp
->arg
, (j
> HZ
) ? HZ
: j
);
460 adjust_jiffies_till_sched_qs();
465 static int param_set_next_fqs_jiffies(const char *val
, const struct kernel_param
*kp
)
468 int ret
= kstrtoul(val
, 0, &j
);
471 WRITE_ONCE(*(ulong
*)kp
->arg
, (j
> HZ
) ? HZ
: (j
?: 1));
472 adjust_jiffies_till_sched_qs();
477 static struct kernel_param_ops first_fqs_jiffies_ops
= {
478 .set
= param_set_first_fqs_jiffies
,
479 .get
= param_get_ulong
,
482 static struct kernel_param_ops next_fqs_jiffies_ops
= {
483 .set
= param_set_next_fqs_jiffies
,
484 .get
= param_get_ulong
,
487 module_param_cb(jiffies_till_first_fqs
, &first_fqs_jiffies_ops
, &jiffies_till_first_fqs
, 0644);
488 module_param_cb(jiffies_till_next_fqs
, &next_fqs_jiffies_ops
, &jiffies_till_next_fqs
, 0644);
489 module_param(rcu_kick_kthreads
, bool, 0644);
491 static void force_qs_rnp(int (*f
)(struct rcu_data
*rdp
));
492 static int rcu_pending(void);
495 * Return the number of RCU GPs completed thus far for debug & stats.
497 unsigned long rcu_get_gp_seq(void)
499 return READ_ONCE(rcu_state
.gp_seq
);
501 EXPORT_SYMBOL_GPL(rcu_get_gp_seq
);
504 * Return the number of RCU expedited batches completed thus far for
505 * debug & stats. Odd numbers mean that a batch is in progress, even
506 * numbers mean idle. The value returned will thus be roughly double
507 * the cumulative batches since boot.
509 unsigned long rcu_exp_batches_completed(void)
511 return rcu_state
.expedited_sequence
;
513 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed
);
516 * Return the root node of the rcu_state structure.
518 static struct rcu_node
*rcu_get_root(void)
520 return &rcu_state
.node
[0];
524 * Convert a ->gp_state value to a character string.
526 static const char *gp_state_getname(short gs
)
528 if (gs
< 0 || gs
>= ARRAY_SIZE(gp_state_names
))
530 return gp_state_names
[gs
];
534 * Send along grace-period-related data for rcutorture diagnostics.
536 void rcutorture_get_gp_data(enum rcutorture_type test_type
, int *flags
,
537 unsigned long *gp_seq
)
541 *flags
= READ_ONCE(rcu_state
.gp_flags
);
542 *gp_seq
= rcu_seq_current(&rcu_state
.gp_seq
);
548 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data
);
551 * Enter an RCU extended quiescent state, which can be either the
552 * idle loop or adaptive-tickless usermode execution.
554 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
555 * the possibility of usermode upcalls having messed up our count
556 * of interrupt nesting level during the prior busy period.
558 static void rcu_eqs_enter(bool user
)
560 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
562 WARN_ON_ONCE(rdp
->dynticks_nmi_nesting
!= DYNTICK_IRQ_NONIDLE
);
563 WRITE_ONCE(rdp
->dynticks_nmi_nesting
, 0);
564 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
565 rdp
->dynticks_nesting
== 0);
566 if (rdp
->dynticks_nesting
!= 1) {
567 rdp
->dynticks_nesting
--;
571 lockdep_assert_irqs_disabled();
572 trace_rcu_dyntick(TPS("Start"), rdp
->dynticks_nesting
, 0, rdp
->dynticks
);
573 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) && !user
&& !is_idle_task(current
));
574 rdp
= this_cpu_ptr(&rcu_data
);
575 do_nocb_deferred_wakeup(rdp
);
576 rcu_prepare_for_idle();
577 rcu_preempt_deferred_qs(current
);
578 WRITE_ONCE(rdp
->dynticks_nesting
, 0); /* Avoid irq-access tearing. */
579 rcu_dynticks_eqs_enter();
580 rcu_dynticks_task_enter();
584 * rcu_idle_enter - inform RCU that current CPU is entering idle
586 * Enter idle mode, in other words, -leave- the mode in which RCU
587 * read-side critical sections can occur. (Though RCU read-side
588 * critical sections can occur in irq handlers in idle, a possibility
589 * handled by irq_enter() and irq_exit().)
591 * If you add or remove a call to rcu_idle_enter(), be sure to test with
592 * CONFIG_RCU_EQS_DEBUG=y.
594 void rcu_idle_enter(void)
596 lockdep_assert_irqs_disabled();
597 rcu_eqs_enter(false);
600 #ifdef CONFIG_NO_HZ_FULL
602 * rcu_user_enter - inform RCU that we are resuming userspace.
604 * Enter RCU idle mode right before resuming userspace. No use of RCU
605 * is permitted between this call and rcu_user_exit(). This way the
606 * CPU doesn't need to maintain the tick for RCU maintenance purposes
607 * when the CPU runs in userspace.
609 * If you add or remove a call to rcu_user_enter(), be sure to test with
610 * CONFIG_RCU_EQS_DEBUG=y.
612 void rcu_user_enter(void)
614 lockdep_assert_irqs_disabled();
617 #endif /* CONFIG_NO_HZ_FULL */
620 * If we are returning from the outermost NMI handler that interrupted an
621 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
622 * to let the RCU grace-period handling know that the CPU is back to
625 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
626 * with CONFIG_RCU_EQS_DEBUG=y.
628 static __always_inline
void rcu_nmi_exit_common(bool irq
)
630 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
633 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
634 * (We are exiting an NMI handler, so RCU better be paying attention
637 WARN_ON_ONCE(rdp
->dynticks_nmi_nesting
<= 0);
638 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
641 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
642 * leave it in non-RCU-idle state.
644 if (rdp
->dynticks_nmi_nesting
!= 1) {
645 trace_rcu_dyntick(TPS("--="), rdp
->dynticks_nmi_nesting
, rdp
->dynticks_nmi_nesting
- 2, rdp
->dynticks
);
646 WRITE_ONCE(rdp
->dynticks_nmi_nesting
, /* No store tearing. */
647 rdp
->dynticks_nmi_nesting
- 2);
651 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
652 trace_rcu_dyntick(TPS("Startirq"), rdp
->dynticks_nmi_nesting
, 0, rdp
->dynticks
);
653 WRITE_ONCE(rdp
->dynticks_nmi_nesting
, 0); /* Avoid store tearing. */
656 rcu_prepare_for_idle();
658 rcu_dynticks_eqs_enter();
661 rcu_dynticks_task_enter();
665 * rcu_nmi_exit - inform RCU of exit from NMI context
667 * If you add or remove a call to rcu_nmi_exit(), be sure to test
668 * with CONFIG_RCU_EQS_DEBUG=y.
670 void rcu_nmi_exit(void)
672 rcu_nmi_exit_common(false);
676 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
678 * Exit from an interrupt handler, which might possibly result in entering
679 * idle mode, in other words, leaving the mode in which read-side critical
680 * sections can occur. The caller must have disabled interrupts.
682 * This code assumes that the idle loop never does anything that might
683 * result in unbalanced calls to irq_enter() and irq_exit(). If your
684 * architecture's idle loop violates this assumption, RCU will give you what
685 * you deserve, good and hard. But very infrequently and irreproducibly.
687 * Use things like work queues to work around this limitation.
689 * You have been warned.
691 * If you add or remove a call to rcu_irq_exit(), be sure to test with
692 * CONFIG_RCU_EQS_DEBUG=y.
694 void rcu_irq_exit(void)
696 lockdep_assert_irqs_disabled();
697 rcu_nmi_exit_common(true);
701 * Wrapper for rcu_irq_exit() where interrupts are enabled.
703 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
704 * with CONFIG_RCU_EQS_DEBUG=y.
706 void rcu_irq_exit_irqson(void)
710 local_irq_save(flags
);
712 local_irq_restore(flags
);
716 * Exit an RCU extended quiescent state, which can be either the
717 * idle loop or adaptive-tickless usermode execution.
719 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
720 * allow for the possibility of usermode upcalls messing up our count of
721 * interrupt nesting level during the busy period that is just now starting.
723 static void rcu_eqs_exit(bool user
)
725 struct rcu_data
*rdp
;
728 lockdep_assert_irqs_disabled();
729 rdp
= this_cpu_ptr(&rcu_data
);
730 oldval
= rdp
->dynticks_nesting
;
731 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) && oldval
< 0);
733 rdp
->dynticks_nesting
++;
736 rcu_dynticks_task_exit();
737 rcu_dynticks_eqs_exit();
738 rcu_cleanup_after_idle();
739 trace_rcu_dyntick(TPS("End"), rdp
->dynticks_nesting
, 1, rdp
->dynticks
);
740 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) && !user
&& !is_idle_task(current
));
741 WRITE_ONCE(rdp
->dynticks_nesting
, 1);
742 WARN_ON_ONCE(rdp
->dynticks_nmi_nesting
);
743 WRITE_ONCE(rdp
->dynticks_nmi_nesting
, DYNTICK_IRQ_NONIDLE
);
747 * rcu_idle_exit - inform RCU that current CPU is leaving idle
749 * Exit idle mode, in other words, -enter- the mode in which RCU
750 * read-side critical sections can occur.
752 * If you add or remove a call to rcu_idle_exit(), be sure to test with
753 * CONFIG_RCU_EQS_DEBUG=y.
755 void rcu_idle_exit(void)
759 local_irq_save(flags
);
761 local_irq_restore(flags
);
764 #ifdef CONFIG_NO_HZ_FULL
766 * rcu_user_exit - inform RCU that we are exiting userspace.
768 * Exit RCU idle mode while entering the kernel because it can
769 * run a RCU read side critical section anytime.
771 * If you add or remove a call to rcu_user_exit(), be sure to test with
772 * CONFIG_RCU_EQS_DEBUG=y.
774 void rcu_user_exit(void)
778 #endif /* CONFIG_NO_HZ_FULL */
781 * rcu_nmi_enter_common - inform RCU of entry to NMI context
782 * @irq: Is this call from rcu_irq_enter?
784 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
785 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
786 * that the CPU is active. This implementation permits nested NMIs, as
787 * long as the nesting level does not overflow an int. (You will probably
788 * run out of stack space first.)
790 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
791 * with CONFIG_RCU_EQS_DEBUG=y.
793 static __always_inline
void rcu_nmi_enter_common(bool irq
)
795 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
798 /* Complain about underflow. */
799 WARN_ON_ONCE(rdp
->dynticks_nmi_nesting
< 0);
802 * If idle from RCU viewpoint, atomically increment ->dynticks
803 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
804 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
805 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
806 * to be in the outermost NMI handler that interrupted an RCU-idle
807 * period (observation due to Andy Lutomirski).
809 if (rcu_dynticks_curr_cpu_in_eqs()) {
812 rcu_dynticks_task_exit();
814 rcu_dynticks_eqs_exit();
817 rcu_cleanup_after_idle();
821 trace_rcu_dyntick(incby
== 1 ? TPS("Endirq") : TPS("++="),
822 rdp
->dynticks_nmi_nesting
,
823 rdp
->dynticks_nmi_nesting
+ incby
, rdp
->dynticks
);
824 WRITE_ONCE(rdp
->dynticks_nmi_nesting
, /* Prevent store tearing. */
825 rdp
->dynticks_nmi_nesting
+ incby
);
830 * rcu_nmi_enter - inform RCU of entry to NMI context
832 void rcu_nmi_enter(void)
834 rcu_nmi_enter_common(false);
836 NOKPROBE_SYMBOL(rcu_nmi_enter
);
839 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
841 * Enter an interrupt handler, which might possibly result in exiting
842 * idle mode, in other words, entering the mode in which read-side critical
843 * sections can occur. The caller must have disabled interrupts.
845 * Note that the Linux kernel is fully capable of entering an interrupt
846 * handler that it never exits, for example when doing upcalls to user mode!
847 * This code assumes that the idle loop never does upcalls to user mode.
848 * If your architecture's idle loop does do upcalls to user mode (or does
849 * anything else that results in unbalanced calls to the irq_enter() and
850 * irq_exit() functions), RCU will give you what you deserve, good and hard.
851 * But very infrequently and irreproducibly.
853 * Use things like work queues to work around this limitation.
855 * You have been warned.
857 * If you add or remove a call to rcu_irq_enter(), be sure to test with
858 * CONFIG_RCU_EQS_DEBUG=y.
860 void rcu_irq_enter(void)
862 lockdep_assert_irqs_disabled();
863 rcu_nmi_enter_common(true);
867 * Wrapper for rcu_irq_enter() where interrupts are enabled.
869 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
870 * with CONFIG_RCU_EQS_DEBUG=y.
872 void rcu_irq_enter_irqson(void)
876 local_irq_save(flags
);
878 local_irq_restore(flags
);
882 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
884 * Return true if RCU is watching the running CPU, which means that this
885 * CPU can safely enter RCU read-side critical sections. In other words,
886 * if the current CPU is not in its idle loop or is in an interrupt or
887 * NMI handler, return true.
889 bool notrace
rcu_is_watching(void)
893 preempt_disable_notrace();
894 ret
= !rcu_dynticks_curr_cpu_in_eqs();
895 preempt_enable_notrace();
898 EXPORT_SYMBOL_GPL(rcu_is_watching
);
901 * If a holdout task is actually running, request an urgent quiescent
902 * state from its CPU. This is unsynchronized, so migrations can cause
903 * the request to go to the wrong CPU. Which is OK, all that will happen
904 * is that the CPU's next context switch will be a bit slower and next
905 * time around this task will generate another request.
907 void rcu_request_urgent_qs_task(struct task_struct
*t
)
914 return; /* This task is not running on that CPU. */
915 smp_store_release(per_cpu_ptr(&rcu_data
.rcu_urgent_qs
, cpu
), true);
918 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
921 * Is the current CPU online as far as RCU is concerned?
923 * Disable preemption to avoid false positives that could otherwise
924 * happen due to the current CPU number being sampled, this task being
925 * preempted, its old CPU being taken offline, resuming on some other CPU,
926 * then determining that its old CPU is now offline.
928 * Disable checking if in an NMI handler because we cannot safely
929 * report errors from NMI handlers anyway. In addition, it is OK to use
930 * RCU on an offline processor during initial boot, hence the check for
931 * rcu_scheduler_fully_active.
933 bool rcu_lockdep_current_cpu_online(void)
935 struct rcu_data
*rdp
;
936 struct rcu_node
*rnp
;
939 if (in_nmi() || !rcu_scheduler_fully_active
)
942 rdp
= this_cpu_ptr(&rcu_data
);
944 if (rdp
->grpmask
& rcu_rnp_online_cpus(rnp
))
949 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online
);
951 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
954 * We are reporting a quiescent state on behalf of some other CPU, so
955 * it is our responsibility to check for and handle potential overflow
956 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
957 * After all, the CPU might be in deep idle state, and thus executing no
960 static void rcu_gpnum_ovf(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
962 raw_lockdep_assert_held_rcu_node(rnp
);
963 if (ULONG_CMP_LT(rcu_seq_current(&rdp
->gp_seq
) + ULONG_MAX
/ 4,
965 WRITE_ONCE(rdp
->gpwrap
, true);
966 if (ULONG_CMP_LT(rdp
->rcu_iw_gp_seq
+ ULONG_MAX
/ 4, rnp
->gp_seq
))
967 rdp
->rcu_iw_gp_seq
= rnp
->gp_seq
+ ULONG_MAX
/ 4;
971 * Snapshot the specified CPU's dynticks counter so that we can later
972 * credit them with an implicit quiescent state. Return 1 if this CPU
973 * is in dynticks idle mode, which is an extended quiescent state.
975 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
977 rdp
->dynticks_snap
= rcu_dynticks_snap(rdp
);
978 if (rcu_dynticks_in_eqs(rdp
->dynticks_snap
)) {
979 trace_rcu_fqs(rcu_state
.name
, rdp
->gp_seq
, rdp
->cpu
, TPS("dti"));
980 rcu_gpnum_ovf(rdp
->mynode
, rdp
);
987 * Return true if the specified CPU has passed through a quiescent
988 * state by virtue of being in or having passed through an dynticks
989 * idle state since the last call to dyntick_save_progress_counter()
990 * for this same CPU, or by virtue of having been offline.
992 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
997 struct rcu_node
*rnp
= rdp
->mynode
;
1000 * If the CPU passed through or entered a dynticks idle phase with
1001 * no active irq/NMI handlers, then we can safely pretend that the CPU
1002 * already acknowledged the request to pass through a quiescent
1003 * state. Either way, that CPU cannot possibly be in an RCU
1004 * read-side critical section that started before the beginning
1005 * of the current RCU grace period.
1007 if (rcu_dynticks_in_eqs_since(rdp
, rdp
->dynticks_snap
)) {
1008 trace_rcu_fqs(rcu_state
.name
, rdp
->gp_seq
, rdp
->cpu
, TPS("dti"));
1009 rcu_gpnum_ovf(rnp
, rdp
);
1013 /* If waiting too long on an offline CPU, complain. */
1014 if (!(rdp
->grpmask
& rcu_rnp_online_cpus(rnp
)) &&
1015 time_after(jiffies
, rcu_state
.gp_start
+ HZ
)) {
1017 struct rcu_node
*rnp1
;
1019 WARN_ON(1); /* Offline CPUs are supposed to report QS! */
1020 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1021 __func__
, rnp
->grplo
, rnp
->grphi
, rnp
->level
,
1022 (long)rnp
->gp_seq
, (long)rnp
->completedqs
);
1023 for (rnp1
= rnp
; rnp1
; rnp1
= rnp1
->parent
)
1024 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1025 __func__
, rnp1
->grplo
, rnp1
->grphi
, rnp1
->qsmask
, rnp1
->qsmaskinit
, rnp1
->qsmaskinitnext
, rnp1
->rcu_gp_init_mask
);
1026 onl
= !!(rdp
->grpmask
& rcu_rnp_online_cpus(rnp
));
1027 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1028 __func__
, rdp
->cpu
, ".o"[onl
],
1029 (long)rdp
->rcu_onl_gp_seq
, rdp
->rcu_onl_gp_flags
,
1030 (long)rdp
->rcu_ofl_gp_seq
, rdp
->rcu_ofl_gp_flags
);
1031 return 1; /* Break things loose after complaining. */
1035 * A CPU running for an extended time within the kernel can
1036 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1037 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1038 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1039 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1040 * variable are safe because the assignments are repeated if this
1041 * CPU failed to pass through a quiescent state. This code
1042 * also checks .jiffies_resched in case jiffies_to_sched_qs
1045 jtsq
= READ_ONCE(jiffies_to_sched_qs
);
1046 ruqp
= per_cpu_ptr(&rcu_data
.rcu_urgent_qs
, rdp
->cpu
);
1047 rnhqp
= &per_cpu(rcu_data
.rcu_need_heavy_qs
, rdp
->cpu
);
1048 if (!READ_ONCE(*rnhqp
) &&
1049 (time_after(jiffies
, rcu_state
.gp_start
+ jtsq
* 2) ||
1050 time_after(jiffies
, rcu_state
.jiffies_resched
))) {
1051 WRITE_ONCE(*rnhqp
, true);
1052 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1053 smp_store_release(ruqp
, true);
1054 } else if (time_after(jiffies
, rcu_state
.gp_start
+ jtsq
)) {
1055 WRITE_ONCE(*ruqp
, true);
1059 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1060 * The above code handles this, but only for straight cond_resched().
1061 * And some in-kernel loops check need_resched() before calling
1062 * cond_resched(), which defeats the above code for CPUs that are
1063 * running in-kernel with scheduling-clock interrupts disabled.
1064 * So hit them over the head with the resched_cpu() hammer!
1066 if (tick_nohz_full_cpu(rdp
->cpu
) &&
1068 READ_ONCE(rdp
->last_fqs_resched
) + jtsq
* 3)) {
1069 resched_cpu(rdp
->cpu
);
1070 WRITE_ONCE(rdp
->last_fqs_resched
, jiffies
);
1074 * If more than halfway to RCU CPU stall-warning time, invoke
1075 * resched_cpu() more frequently to try to loosen things up a bit.
1076 * Also check to see if the CPU is getting hammered with interrupts,
1077 * but only once per grace period, just to keep the IPIs down to
1080 if (time_after(jiffies
, rcu_state
.jiffies_resched
)) {
1081 if (time_after(jiffies
,
1082 READ_ONCE(rdp
->last_fqs_resched
) + jtsq
)) {
1083 resched_cpu(rdp
->cpu
);
1084 WRITE_ONCE(rdp
->last_fqs_resched
, jiffies
);
1086 if (IS_ENABLED(CONFIG_IRQ_WORK
) &&
1087 !rdp
->rcu_iw_pending
&& rdp
->rcu_iw_gp_seq
!= rnp
->gp_seq
&&
1088 (rnp
->ffmask
& rdp
->grpmask
)) {
1089 init_irq_work(&rdp
->rcu_iw
, rcu_iw_handler
);
1090 rdp
->rcu_iw_pending
= true;
1091 rdp
->rcu_iw_gp_seq
= rnp
->gp_seq
;
1092 irq_work_queue_on(&rdp
->rcu_iw
, rdp
->cpu
);
1099 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
1100 static void trace_rcu_this_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
,
1101 unsigned long gp_seq_req
, const char *s
)
1103 trace_rcu_future_grace_period(rcu_state
.name
, rnp
->gp_seq
, gp_seq_req
,
1104 rnp
->level
, rnp
->grplo
, rnp
->grphi
, s
);
1108 * rcu_start_this_gp - Request the start of a particular grace period
1109 * @rnp_start: The leaf node of the CPU from which to start.
1110 * @rdp: The rcu_data corresponding to the CPU from which to start.
1111 * @gp_seq_req: The gp_seq of the grace period to start.
1113 * Start the specified grace period, as needed to handle newly arrived
1114 * callbacks. The required future grace periods are recorded in each
1115 * rcu_node structure's ->gp_seq_needed field. Returns true if there
1116 * is reason to awaken the grace-period kthread.
1118 * The caller must hold the specified rcu_node structure's ->lock, which
1119 * is why the caller is responsible for waking the grace-period kthread.
1121 * Returns true if the GP thread needs to be awakened else false.
1123 static bool rcu_start_this_gp(struct rcu_node
*rnp_start
, struct rcu_data
*rdp
,
1124 unsigned long gp_seq_req
)
1127 struct rcu_node
*rnp
;
1130 * Use funnel locking to either acquire the root rcu_node
1131 * structure's lock or bail out if the need for this grace period
1132 * has already been recorded -- or if that grace period has in
1133 * fact already started. If there is already a grace period in
1134 * progress in a non-leaf node, no recording is needed because the
1135 * end of the grace period will scan the leaf rcu_node structures.
1136 * Note that rnp_start->lock must not be released.
1138 raw_lockdep_assert_held_rcu_node(rnp_start
);
1139 trace_rcu_this_gp(rnp_start
, rdp
, gp_seq_req
, TPS("Startleaf"));
1140 for (rnp
= rnp_start
; 1; rnp
= rnp
->parent
) {
1141 if (rnp
!= rnp_start
)
1142 raw_spin_lock_rcu_node(rnp
);
1143 if (ULONG_CMP_GE(rnp
->gp_seq_needed
, gp_seq_req
) ||
1144 rcu_seq_started(&rnp
->gp_seq
, gp_seq_req
) ||
1145 (rnp
!= rnp_start
&&
1146 rcu_seq_state(rcu_seq_current(&rnp
->gp_seq
)))) {
1147 trace_rcu_this_gp(rnp
, rdp
, gp_seq_req
,
1151 rnp
->gp_seq_needed
= gp_seq_req
;
1152 if (rcu_seq_state(rcu_seq_current(&rnp
->gp_seq
))) {
1154 * We just marked the leaf or internal node, and a
1155 * grace period is in progress, which means that
1156 * rcu_gp_cleanup() will see the marking. Bail to
1157 * reduce contention.
1159 trace_rcu_this_gp(rnp_start
, rdp
, gp_seq_req
,
1160 TPS("Startedleaf"));
1163 if (rnp
!= rnp_start
&& rnp
->parent
!= NULL
)
1164 raw_spin_unlock_rcu_node(rnp
);
1166 break; /* At root, and perhaps also leaf. */
1169 /* If GP already in progress, just leave, otherwise start one. */
1170 if (rcu_gp_in_progress()) {
1171 trace_rcu_this_gp(rnp
, rdp
, gp_seq_req
, TPS("Startedleafroot"));
1174 trace_rcu_this_gp(rnp
, rdp
, gp_seq_req
, TPS("Startedroot"));
1175 WRITE_ONCE(rcu_state
.gp_flags
, rcu_state
.gp_flags
| RCU_GP_FLAG_INIT
);
1176 rcu_state
.gp_req_activity
= jiffies
;
1177 if (!rcu_state
.gp_kthread
) {
1178 trace_rcu_this_gp(rnp
, rdp
, gp_seq_req
, TPS("NoGPkthread"));
1181 trace_rcu_grace_period(rcu_state
.name
, READ_ONCE(rcu_state
.gp_seq
), TPS("newreq"));
1182 ret
= true; /* Caller must wake GP kthread. */
1184 /* Push furthest requested GP to leaf node and rcu_data structure. */
1185 if (ULONG_CMP_LT(gp_seq_req
, rnp
->gp_seq_needed
)) {
1186 rnp_start
->gp_seq_needed
= rnp
->gp_seq_needed
;
1187 rdp
->gp_seq_needed
= rnp
->gp_seq_needed
;
1189 if (rnp
!= rnp_start
)
1190 raw_spin_unlock_rcu_node(rnp
);
1195 * Clean up any old requests for the just-ended grace period. Also return
1196 * whether any additional grace periods have been requested.
1198 static bool rcu_future_gp_cleanup(struct rcu_node
*rnp
)
1201 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
1203 needmore
= ULONG_CMP_LT(rnp
->gp_seq
, rnp
->gp_seq_needed
);
1205 rnp
->gp_seq_needed
= rnp
->gp_seq
; /* Avoid counter wrap. */
1206 trace_rcu_this_gp(rnp
, rdp
, rnp
->gp_seq
,
1207 needmore
? TPS("CleanupMore") : TPS("Cleanup"));
1212 * Awaken the grace-period kthread. Don't do a self-awaken (unless in
1213 * an interrupt or softirq handler), and don't bother awakening when there
1214 * is nothing for the grace-period kthread to do (as in several CPUs raced
1215 * to awaken, and we lost), and finally don't try to awaken a kthread that
1216 * has not yet been created. If all those checks are passed, track some
1217 * debug information and awaken.
1219 * So why do the self-wakeup when in an interrupt or softirq handler
1220 * in the grace-period kthread's context? Because the kthread might have
1221 * been interrupted just as it was going to sleep, and just after the final
1222 * pre-sleep check of the awaken condition. In this case, a wakeup really
1223 * is required, and is therefore supplied.
1225 static void rcu_gp_kthread_wake(void)
1227 if ((current
== rcu_state
.gp_kthread
&&
1228 !in_irq() && !in_serving_softirq()) ||
1229 !READ_ONCE(rcu_state
.gp_flags
) ||
1230 !rcu_state
.gp_kthread
)
1232 WRITE_ONCE(rcu_state
.gp_wake_time
, jiffies
);
1233 WRITE_ONCE(rcu_state
.gp_wake_seq
, READ_ONCE(rcu_state
.gp_seq
));
1234 swake_up_one(&rcu_state
.gp_wq
);
1238 * If there is room, assign a ->gp_seq number to any callbacks on this
1239 * CPU that have not already been assigned. Also accelerate any callbacks
1240 * that were previously assigned a ->gp_seq number that has since proven
1241 * to be too conservative, which can happen if callbacks get assigned a
1242 * ->gp_seq number while RCU is idle, but with reference to a non-root
1243 * rcu_node structure. This function is idempotent, so it does not hurt
1244 * to call it repeatedly. Returns an flag saying that we should awaken
1245 * the RCU grace-period kthread.
1247 * The caller must hold rnp->lock with interrupts disabled.
1249 static bool rcu_accelerate_cbs(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
1251 unsigned long gp_seq_req
;
1254 raw_lockdep_assert_held_rcu_node(rnp
);
1256 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1257 if (!rcu_segcblist_pend_cbs(&rdp
->cblist
))
1261 * Callbacks are often registered with incomplete grace-period
1262 * information. Something about the fact that getting exact
1263 * information requires acquiring a global lock... RCU therefore
1264 * makes a conservative estimate of the grace period number at which
1265 * a given callback will become ready to invoke. The following
1266 * code checks this estimate and improves it when possible, thus
1267 * accelerating callback invocation to an earlier grace-period
1270 gp_seq_req
= rcu_seq_snap(&rcu_state
.gp_seq
);
1271 if (rcu_segcblist_accelerate(&rdp
->cblist
, gp_seq_req
))
1272 ret
= rcu_start_this_gp(rnp
, rdp
, gp_seq_req
);
1274 /* Trace depending on how much we were able to accelerate. */
1275 if (rcu_segcblist_restempty(&rdp
->cblist
, RCU_WAIT_TAIL
))
1276 trace_rcu_grace_period(rcu_state
.name
, rdp
->gp_seq
, TPS("AccWaitCB"));
1278 trace_rcu_grace_period(rcu_state
.name
, rdp
->gp_seq
, TPS("AccReadyCB"));
1283 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1284 * rcu_node structure's ->lock be held. It consults the cached value
1285 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1286 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1287 * while holding the leaf rcu_node structure's ->lock.
1289 static void rcu_accelerate_cbs_unlocked(struct rcu_node
*rnp
,
1290 struct rcu_data
*rdp
)
1295 lockdep_assert_irqs_disabled();
1296 c
= rcu_seq_snap(&rcu_state
.gp_seq
);
1297 if (!rdp
->gpwrap
&& ULONG_CMP_GE(rdp
->gp_seq_needed
, c
)) {
1298 /* Old request still live, so mark recent callbacks. */
1299 (void)rcu_segcblist_accelerate(&rdp
->cblist
, c
);
1302 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
1303 needwake
= rcu_accelerate_cbs(rnp
, rdp
);
1304 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
1306 rcu_gp_kthread_wake();
1310 * Move any callbacks whose grace period has completed to the
1311 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1312 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1313 * sublist. This function is idempotent, so it does not hurt to
1314 * invoke it repeatedly. As long as it is not invoked -too- often...
1315 * Returns true if the RCU grace-period kthread needs to be awakened.
1317 * The caller must hold rnp->lock with interrupts disabled.
1319 static bool rcu_advance_cbs(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
1321 raw_lockdep_assert_held_rcu_node(rnp
);
1323 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1324 if (!rcu_segcblist_pend_cbs(&rdp
->cblist
))
1328 * Find all callbacks whose ->gp_seq numbers indicate that they
1329 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1331 rcu_segcblist_advance(&rdp
->cblist
, rnp
->gp_seq
);
1333 /* Classify any remaining callbacks. */
1334 return rcu_accelerate_cbs(rnp
, rdp
);
1338 * Update CPU-local rcu_data state to record the beginnings and ends of
1339 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1340 * structure corresponding to the current CPU, and must have irqs disabled.
1341 * Returns true if the grace-period kthread needs to be awakened.
1343 static bool __note_gp_changes(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
1348 raw_lockdep_assert_held_rcu_node(rnp
);
1350 if (rdp
->gp_seq
== rnp
->gp_seq
)
1351 return false; /* Nothing to do. */
1353 /* Handle the ends of any preceding grace periods first. */
1354 if (rcu_seq_completed_gp(rdp
->gp_seq
, rnp
->gp_seq
) ||
1355 unlikely(READ_ONCE(rdp
->gpwrap
))) {
1356 ret
= rcu_advance_cbs(rnp
, rdp
); /* Advance callbacks. */
1357 trace_rcu_grace_period(rcu_state
.name
, rdp
->gp_seq
, TPS("cpuend"));
1359 ret
= rcu_accelerate_cbs(rnp
, rdp
); /* Recent callbacks. */
1362 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1363 if (rcu_seq_new_gp(rdp
->gp_seq
, rnp
->gp_seq
) ||
1364 unlikely(READ_ONCE(rdp
->gpwrap
))) {
1366 * If the current grace period is waiting for this CPU,
1367 * set up to detect a quiescent state, otherwise don't
1368 * go looking for one.
1370 trace_rcu_grace_period(rcu_state
.name
, rnp
->gp_seq
, TPS("cpustart"));
1371 need_gp
= !!(rnp
->qsmask
& rdp
->grpmask
);
1372 rdp
->cpu_no_qs
.b
.norm
= need_gp
;
1373 rdp
->core_needs_qs
= need_gp
;
1374 zero_cpu_stall_ticks(rdp
);
1376 rdp
->gp_seq
= rnp
->gp_seq
; /* Remember new grace-period state. */
1377 if (ULONG_CMP_LT(rdp
->gp_seq_needed
, rnp
->gp_seq_needed
) || rdp
->gpwrap
)
1378 rdp
->gp_seq_needed
= rnp
->gp_seq_needed
;
1379 WRITE_ONCE(rdp
->gpwrap
, false);
1380 rcu_gpnum_ovf(rnp
, rdp
);
1384 static void note_gp_changes(struct rcu_data
*rdp
)
1386 unsigned long flags
;
1388 struct rcu_node
*rnp
;
1390 local_irq_save(flags
);
1392 if ((rdp
->gp_seq
== rcu_seq_current(&rnp
->gp_seq
) &&
1393 !unlikely(READ_ONCE(rdp
->gpwrap
))) || /* w/out lock. */
1394 !raw_spin_trylock_rcu_node(rnp
)) { /* irqs already off, so later. */
1395 local_irq_restore(flags
);
1398 needwake
= __note_gp_changes(rnp
, rdp
);
1399 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1401 rcu_gp_kthread_wake();
1404 static void rcu_gp_slow(int delay
)
1407 !(rcu_seq_ctr(rcu_state
.gp_seq
) %
1408 (rcu_num_nodes
* PER_RCU_NODE_PERIOD
* delay
)))
1409 schedule_timeout_uninterruptible(delay
);
1413 * Initialize a new grace period. Return false if no grace period required.
1415 static bool rcu_gp_init(void)
1417 unsigned long flags
;
1418 unsigned long oldmask
;
1420 struct rcu_data
*rdp
;
1421 struct rcu_node
*rnp
= rcu_get_root();
1423 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
1424 raw_spin_lock_irq_rcu_node(rnp
);
1425 if (!READ_ONCE(rcu_state
.gp_flags
)) {
1426 /* Spurious wakeup, tell caller to go back to sleep. */
1427 raw_spin_unlock_irq_rcu_node(rnp
);
1430 WRITE_ONCE(rcu_state
.gp_flags
, 0); /* Clear all flags: New GP. */
1432 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1434 * Grace period already in progress, don't start another.
1435 * Not supposed to be able to happen.
1437 raw_spin_unlock_irq_rcu_node(rnp
);
1441 /* Advance to a new grace period and initialize state. */
1442 record_gp_stall_check_time();
1443 /* Record GP times before starting GP, hence rcu_seq_start(). */
1444 rcu_seq_start(&rcu_state
.gp_seq
);
1445 trace_rcu_grace_period(rcu_state
.name
, rcu_state
.gp_seq
, TPS("start"));
1446 raw_spin_unlock_irq_rcu_node(rnp
);
1449 * Apply per-leaf buffered online and offline operations to the
1450 * rcu_node tree. Note that this new grace period need not wait
1451 * for subsequent online CPUs, and that quiescent-state forcing
1452 * will handle subsequent offline CPUs.
1454 rcu_state
.gp_state
= RCU_GP_ONOFF
;
1455 rcu_for_each_leaf_node(rnp
) {
1456 raw_spin_lock(&rcu_state
.ofl_lock
);
1457 raw_spin_lock_irq_rcu_node(rnp
);
1458 if (rnp
->qsmaskinit
== rnp
->qsmaskinitnext
&&
1459 !rnp
->wait_blkd_tasks
) {
1460 /* Nothing to do on this leaf rcu_node structure. */
1461 raw_spin_unlock_irq_rcu_node(rnp
);
1462 raw_spin_unlock(&rcu_state
.ofl_lock
);
1466 /* Record old state, apply changes to ->qsmaskinit field. */
1467 oldmask
= rnp
->qsmaskinit
;
1468 rnp
->qsmaskinit
= rnp
->qsmaskinitnext
;
1470 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1471 if (!oldmask
!= !rnp
->qsmaskinit
) {
1472 if (!oldmask
) { /* First online CPU for rcu_node. */
1473 if (!rnp
->wait_blkd_tasks
) /* Ever offline? */
1474 rcu_init_new_rnp(rnp
);
1475 } else if (rcu_preempt_has_tasks(rnp
)) {
1476 rnp
->wait_blkd_tasks
= true; /* blocked tasks */
1477 } else { /* Last offline CPU and can propagate. */
1478 rcu_cleanup_dead_rnp(rnp
);
1483 * If all waited-on tasks from prior grace period are
1484 * done, and if all this rcu_node structure's CPUs are
1485 * still offline, propagate up the rcu_node tree and
1486 * clear ->wait_blkd_tasks. Otherwise, if one of this
1487 * rcu_node structure's CPUs has since come back online,
1488 * simply clear ->wait_blkd_tasks.
1490 if (rnp
->wait_blkd_tasks
&&
1491 (!rcu_preempt_has_tasks(rnp
) || rnp
->qsmaskinit
)) {
1492 rnp
->wait_blkd_tasks
= false;
1493 if (!rnp
->qsmaskinit
)
1494 rcu_cleanup_dead_rnp(rnp
);
1497 raw_spin_unlock_irq_rcu_node(rnp
);
1498 raw_spin_unlock(&rcu_state
.ofl_lock
);
1500 rcu_gp_slow(gp_preinit_delay
); /* Races with CPU hotplug. */
1503 * Set the quiescent-state-needed bits in all the rcu_node
1504 * structures for all currently online CPUs in breadth-first
1505 * order, starting from the root rcu_node structure, relying on the
1506 * layout of the tree within the rcu_state.node[] array. Note that
1507 * other CPUs will access only the leaves of the hierarchy, thus
1508 * seeing that no grace period is in progress, at least until the
1509 * corresponding leaf node has been initialized.
1511 * The grace period cannot complete until the initialization
1512 * process finishes, because this kthread handles both.
1514 rcu_state
.gp_state
= RCU_GP_INIT
;
1515 rcu_for_each_node_breadth_first(rnp
) {
1516 rcu_gp_slow(gp_init_delay
);
1517 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1518 rdp
= this_cpu_ptr(&rcu_data
);
1519 rcu_preempt_check_blocked_tasks(rnp
);
1520 rnp
->qsmask
= rnp
->qsmaskinit
;
1521 WRITE_ONCE(rnp
->gp_seq
, rcu_state
.gp_seq
);
1522 if (rnp
== rdp
->mynode
)
1523 (void)__note_gp_changes(rnp
, rdp
);
1524 rcu_preempt_boost_start_gp(rnp
);
1525 trace_rcu_grace_period_init(rcu_state
.name
, rnp
->gp_seq
,
1526 rnp
->level
, rnp
->grplo
,
1527 rnp
->grphi
, rnp
->qsmask
);
1528 /* Quiescent states for tasks on any now-offline CPUs. */
1529 mask
= rnp
->qsmask
& ~rnp
->qsmaskinitnext
;
1530 rnp
->rcu_gp_init_mask
= mask
;
1531 if ((mask
|| rnp
->wait_blkd_tasks
) && rcu_is_leaf_node(rnp
))
1532 rcu_report_qs_rnp(mask
, rnp
, rnp
->gp_seq
, flags
);
1534 raw_spin_unlock_irq_rcu_node(rnp
);
1535 cond_resched_tasks_rcu_qs();
1536 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
1543 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1546 static bool rcu_gp_fqs_check_wake(int *gfp
)
1548 struct rcu_node
*rnp
= rcu_get_root();
1550 /* Someone like call_rcu() requested a force-quiescent-state scan. */
1551 *gfp
= READ_ONCE(rcu_state
.gp_flags
);
1552 if (*gfp
& RCU_GP_FLAG_FQS
)
1555 /* The current grace period has completed. */
1556 if (!READ_ONCE(rnp
->qsmask
) && !rcu_preempt_blocked_readers_cgp(rnp
))
1563 * Do one round of quiescent-state forcing.
1565 static void rcu_gp_fqs(bool first_time
)
1567 struct rcu_node
*rnp
= rcu_get_root();
1569 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
1570 rcu_state
.n_force_qs
++;
1572 /* Collect dyntick-idle snapshots. */
1573 force_qs_rnp(dyntick_save_progress_counter
);
1575 /* Handle dyntick-idle and offline CPUs. */
1576 force_qs_rnp(rcu_implicit_dynticks_qs
);
1578 /* Clear flag to prevent immediate re-entry. */
1579 if (READ_ONCE(rcu_state
.gp_flags
) & RCU_GP_FLAG_FQS
) {
1580 raw_spin_lock_irq_rcu_node(rnp
);
1581 WRITE_ONCE(rcu_state
.gp_flags
,
1582 READ_ONCE(rcu_state
.gp_flags
) & ~RCU_GP_FLAG_FQS
);
1583 raw_spin_unlock_irq_rcu_node(rnp
);
1588 * Loop doing repeated quiescent-state forcing until the grace period ends.
1590 static void rcu_gp_fqs_loop(void)
1596 struct rcu_node
*rnp
= rcu_get_root();
1598 first_gp_fqs
= true;
1599 j
= READ_ONCE(jiffies_till_first_fqs
);
1603 rcu_state
.jiffies_force_qs
= jiffies
+ j
;
1604 WRITE_ONCE(rcu_state
.jiffies_kick_kthreads
,
1605 jiffies
+ (j
? 3 * j
: 2));
1607 trace_rcu_grace_period(rcu_state
.name
,
1608 READ_ONCE(rcu_state
.gp_seq
),
1610 rcu_state
.gp_state
= RCU_GP_WAIT_FQS
;
1611 ret
= swait_event_idle_timeout_exclusive(
1612 rcu_state
.gp_wq
, rcu_gp_fqs_check_wake(&gf
), j
);
1613 rcu_state
.gp_state
= RCU_GP_DOING_FQS
;
1614 /* Locking provides needed memory barriers. */
1615 /* If grace period done, leave loop. */
1616 if (!READ_ONCE(rnp
->qsmask
) &&
1617 !rcu_preempt_blocked_readers_cgp(rnp
))
1619 /* If time for quiescent-state forcing, do it. */
1620 if (ULONG_CMP_GE(jiffies
, rcu_state
.jiffies_force_qs
) ||
1621 (gf
& RCU_GP_FLAG_FQS
)) {
1622 trace_rcu_grace_period(rcu_state
.name
,
1623 READ_ONCE(rcu_state
.gp_seq
),
1625 rcu_gp_fqs(first_gp_fqs
);
1626 first_gp_fqs
= false;
1627 trace_rcu_grace_period(rcu_state
.name
,
1628 READ_ONCE(rcu_state
.gp_seq
),
1630 cond_resched_tasks_rcu_qs();
1631 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
1632 ret
= 0; /* Force full wait till next FQS. */
1633 j
= READ_ONCE(jiffies_till_next_fqs
);
1635 /* Deal with stray signal. */
1636 cond_resched_tasks_rcu_qs();
1637 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
1638 WARN_ON(signal_pending(current
));
1639 trace_rcu_grace_period(rcu_state
.name
,
1640 READ_ONCE(rcu_state
.gp_seq
),
1642 ret
= 1; /* Keep old FQS timing. */
1644 if (time_after(jiffies
, rcu_state
.jiffies_force_qs
))
1647 j
= rcu_state
.jiffies_force_qs
- j
;
1653 * Clean up after the old grace period.
1655 static void rcu_gp_cleanup(void)
1657 unsigned long gp_duration
;
1658 bool needgp
= false;
1659 unsigned long new_gp_seq
;
1660 struct rcu_data
*rdp
;
1661 struct rcu_node
*rnp
= rcu_get_root();
1662 struct swait_queue_head
*sq
;
1664 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
1665 raw_spin_lock_irq_rcu_node(rnp
);
1666 rcu_state
.gp_end
= jiffies
;
1667 gp_duration
= rcu_state
.gp_end
- rcu_state
.gp_start
;
1668 if (gp_duration
> rcu_state
.gp_max
)
1669 rcu_state
.gp_max
= gp_duration
;
1672 * We know the grace period is complete, but to everyone else
1673 * it appears to still be ongoing. But it is also the case
1674 * that to everyone else it looks like there is nothing that
1675 * they can do to advance the grace period. It is therefore
1676 * safe for us to drop the lock in order to mark the grace
1677 * period as completed in all of the rcu_node structures.
1679 raw_spin_unlock_irq_rcu_node(rnp
);
1682 * Propagate new ->gp_seq value to rcu_node structures so that
1683 * other CPUs don't have to wait until the start of the next grace
1684 * period to process their callbacks. This also avoids some nasty
1685 * RCU grace-period initialization races by forcing the end of
1686 * the current grace period to be completely recorded in all of
1687 * the rcu_node structures before the beginning of the next grace
1688 * period is recorded in any of the rcu_node structures.
1690 new_gp_seq
= rcu_state
.gp_seq
;
1691 rcu_seq_end(&new_gp_seq
);
1692 rcu_for_each_node_breadth_first(rnp
) {
1693 raw_spin_lock_irq_rcu_node(rnp
);
1694 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
)))
1695 dump_blkd_tasks(rnp
, 10);
1696 WARN_ON_ONCE(rnp
->qsmask
);
1697 WRITE_ONCE(rnp
->gp_seq
, new_gp_seq
);
1698 rdp
= this_cpu_ptr(&rcu_data
);
1699 if (rnp
== rdp
->mynode
)
1700 needgp
= __note_gp_changes(rnp
, rdp
) || needgp
;
1701 /* smp_mb() provided by prior unlock-lock pair. */
1702 needgp
= rcu_future_gp_cleanup(rnp
) || needgp
;
1703 sq
= rcu_nocb_gp_get(rnp
);
1704 raw_spin_unlock_irq_rcu_node(rnp
);
1705 rcu_nocb_gp_cleanup(sq
);
1706 cond_resched_tasks_rcu_qs();
1707 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
1708 rcu_gp_slow(gp_cleanup_delay
);
1710 rnp
= rcu_get_root();
1711 raw_spin_lock_irq_rcu_node(rnp
); /* GP before ->gp_seq update. */
1713 /* Declare grace period done, trace first to use old GP number. */
1714 trace_rcu_grace_period(rcu_state
.name
, rcu_state
.gp_seq
, TPS("end"));
1715 rcu_seq_end(&rcu_state
.gp_seq
);
1716 rcu_state
.gp_state
= RCU_GP_IDLE
;
1717 /* Check for GP requests since above loop. */
1718 rdp
= this_cpu_ptr(&rcu_data
);
1719 if (!needgp
&& ULONG_CMP_LT(rnp
->gp_seq
, rnp
->gp_seq_needed
)) {
1720 trace_rcu_this_gp(rnp
, rdp
, rnp
->gp_seq_needed
,
1721 TPS("CleanupMore"));
1724 /* Advance CBs to reduce false positives below. */
1725 if (!rcu_accelerate_cbs(rnp
, rdp
) && needgp
) {
1726 WRITE_ONCE(rcu_state
.gp_flags
, RCU_GP_FLAG_INIT
);
1727 rcu_state
.gp_req_activity
= jiffies
;
1728 trace_rcu_grace_period(rcu_state
.name
,
1729 READ_ONCE(rcu_state
.gp_seq
),
1732 WRITE_ONCE(rcu_state
.gp_flags
,
1733 rcu_state
.gp_flags
& RCU_GP_FLAG_INIT
);
1735 raw_spin_unlock_irq_rcu_node(rnp
);
1739 * Body of kthread that handles grace periods.
1741 static int __noreturn
rcu_gp_kthread(void *unused
)
1743 rcu_bind_gp_kthread();
1746 /* Handle grace-period start. */
1748 trace_rcu_grace_period(rcu_state
.name
,
1749 READ_ONCE(rcu_state
.gp_seq
),
1751 rcu_state
.gp_state
= RCU_GP_WAIT_GPS
;
1752 swait_event_idle_exclusive(rcu_state
.gp_wq
,
1753 READ_ONCE(rcu_state
.gp_flags
) &
1755 rcu_state
.gp_state
= RCU_GP_DONE_GPS
;
1756 /* Locking provides needed memory barrier. */
1759 cond_resched_tasks_rcu_qs();
1760 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
1761 WARN_ON(signal_pending(current
));
1762 trace_rcu_grace_period(rcu_state
.name
,
1763 READ_ONCE(rcu_state
.gp_seq
),
1767 /* Handle quiescent-state forcing. */
1770 /* Handle grace-period end. */
1771 rcu_state
.gp_state
= RCU_GP_CLEANUP
;
1773 rcu_state
.gp_state
= RCU_GP_CLEANED
;
1778 * Report a full set of quiescent states to the rcu_state data structure.
1779 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1780 * another grace period is required. Whether we wake the grace-period
1781 * kthread or it awakens itself for the next round of quiescent-state
1782 * forcing, that kthread will clean up after the just-completed grace
1783 * period. Note that the caller must hold rnp->lock, which is released
1786 static void rcu_report_qs_rsp(unsigned long flags
)
1787 __releases(rcu_get_root()->lock
)
1789 raw_lockdep_assert_held_rcu_node(rcu_get_root());
1790 WARN_ON_ONCE(!rcu_gp_in_progress());
1791 WRITE_ONCE(rcu_state
.gp_flags
,
1792 READ_ONCE(rcu_state
.gp_flags
) | RCU_GP_FLAG_FQS
);
1793 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags
);
1794 rcu_gp_kthread_wake();
1798 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1799 * Allows quiescent states for a group of CPUs to be reported at one go
1800 * to the specified rcu_node structure, though all the CPUs in the group
1801 * must be represented by the same rcu_node structure (which need not be a
1802 * leaf rcu_node structure, though it often will be). The gps parameter
1803 * is the grace-period snapshot, which means that the quiescent states
1804 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
1805 * must be held upon entry, and it is released before return.
1807 * As a special case, if mask is zero, the bit-already-cleared check is
1808 * disabled. This allows propagating quiescent state due to resumed tasks
1809 * during grace-period initialization.
1811 static void rcu_report_qs_rnp(unsigned long mask
, struct rcu_node
*rnp
,
1812 unsigned long gps
, unsigned long flags
)
1813 __releases(rnp
->lock
)
1815 unsigned long oldmask
= 0;
1816 struct rcu_node
*rnp_c
;
1818 raw_lockdep_assert_held_rcu_node(rnp
);
1820 /* Walk up the rcu_node hierarchy. */
1822 if ((!(rnp
->qsmask
& mask
) && mask
) || rnp
->gp_seq
!= gps
) {
1825 * Our bit has already been cleared, or the
1826 * relevant grace period is already over, so done.
1828 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1831 WARN_ON_ONCE(oldmask
); /* Any child must be all zeroed! */
1832 WARN_ON_ONCE(!rcu_is_leaf_node(rnp
) &&
1833 rcu_preempt_blocked_readers_cgp(rnp
));
1834 rnp
->qsmask
&= ~mask
;
1835 trace_rcu_quiescent_state_report(rcu_state
.name
, rnp
->gp_seq
,
1836 mask
, rnp
->qsmask
, rnp
->level
,
1837 rnp
->grplo
, rnp
->grphi
,
1839 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
1841 /* Other bits still set at this level, so done. */
1842 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1845 rnp
->completedqs
= rnp
->gp_seq
;
1846 mask
= rnp
->grpmask
;
1847 if (rnp
->parent
== NULL
) {
1849 /* No more levels. Exit loop holding root lock. */
1853 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1856 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1857 oldmask
= rnp_c
->qsmask
;
1861 * Get here if we are the last CPU to pass through a quiescent
1862 * state for this grace period. Invoke rcu_report_qs_rsp()
1863 * to clean up and start the next grace period if one is needed.
1865 rcu_report_qs_rsp(flags
); /* releases rnp->lock. */
1869 * Record a quiescent state for all tasks that were previously queued
1870 * on the specified rcu_node structure and that were blocking the current
1871 * RCU grace period. The caller must hold the corresponding rnp->lock with
1872 * irqs disabled, and this lock is released upon return, but irqs remain
1875 static void __maybe_unused
1876 rcu_report_unblock_qs_rnp(struct rcu_node
*rnp
, unsigned long flags
)
1877 __releases(rnp
->lock
)
1881 struct rcu_node
*rnp_p
;
1883 raw_lockdep_assert_held_rcu_node(rnp
);
1884 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT
)) ||
1885 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
)) ||
1887 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1888 return; /* Still need more quiescent states! */
1891 rnp
->completedqs
= rnp
->gp_seq
;
1892 rnp_p
= rnp
->parent
;
1893 if (rnp_p
== NULL
) {
1895 * Only one rcu_node structure in the tree, so don't
1896 * try to report up to its nonexistent parent!
1898 rcu_report_qs_rsp(flags
);
1902 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1904 mask
= rnp
->grpmask
;
1905 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
1906 raw_spin_lock_rcu_node(rnp_p
); /* irqs already disabled. */
1907 rcu_report_qs_rnp(mask
, rnp_p
, gps
, flags
);
1911 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1912 * structure. This must be called from the specified CPU.
1915 rcu_report_qs_rdp(int cpu
, struct rcu_data
*rdp
)
1917 unsigned long flags
;
1920 struct rcu_node
*rnp
;
1923 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1924 if (rdp
->cpu_no_qs
.b
.norm
|| rdp
->gp_seq
!= rnp
->gp_seq
||
1928 * The grace period in which this quiescent state was
1929 * recorded has ended, so don't report it upwards.
1930 * We will instead need a new quiescent state that lies
1931 * within the current grace period.
1933 rdp
->cpu_no_qs
.b
.norm
= true; /* need qs for new gp. */
1934 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1937 mask
= rdp
->grpmask
;
1938 rdp
->core_needs_qs
= false;
1939 if ((rnp
->qsmask
& mask
) == 0) {
1940 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1943 * This GP can't end until cpu checks in, so all of our
1944 * callbacks can be processed during the next GP.
1946 needwake
= rcu_accelerate_cbs(rnp
, rdp
);
1948 rcu_report_qs_rnp(mask
, rnp
, rnp
->gp_seq
, flags
);
1949 /* ^^^ Released rnp->lock */
1951 rcu_gp_kthread_wake();
1956 * Check to see if there is a new grace period of which this CPU
1957 * is not yet aware, and if so, set up local rcu_data state for it.
1958 * Otherwise, see if this CPU has just passed through its first
1959 * quiescent state for this grace period, and record that fact if so.
1962 rcu_check_quiescent_state(struct rcu_data
*rdp
)
1964 /* Check for grace-period ends and beginnings. */
1965 note_gp_changes(rdp
);
1968 * Does this CPU still need to do its part for current grace period?
1969 * If no, return and let the other CPUs do their part as well.
1971 if (!rdp
->core_needs_qs
)
1975 * Was there a quiescent state since the beginning of the grace
1976 * period? If no, then exit and wait for the next call.
1978 if (rdp
->cpu_no_qs
.b
.norm
)
1982 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1985 rcu_report_qs_rdp(rdp
->cpu
, rdp
);
1989 * Near the end of the offline process. Trace the fact that this CPU
1992 int rcutree_dying_cpu(unsigned int cpu
)
1995 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
1996 struct rcu_node
*rnp
= rdp
->mynode
;
1998 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2001 blkd
= !!(rnp
->qsmask
& rdp
->grpmask
);
2002 trace_rcu_grace_period(rcu_state
.name
, rnp
->gp_seq
,
2003 blkd
? TPS("cpuofl") : TPS("cpuofl-bgp"));
2008 * All CPUs for the specified rcu_node structure have gone offline,
2009 * and all tasks that were preempted within an RCU read-side critical
2010 * section while running on one of those CPUs have since exited their RCU
2011 * read-side critical section. Some other CPU is reporting this fact with
2012 * the specified rcu_node structure's ->lock held and interrupts disabled.
2013 * This function therefore goes up the tree of rcu_node structures,
2014 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2015 * the leaf rcu_node structure's ->qsmaskinit field has already been
2018 * This function does check that the specified rcu_node structure has
2019 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2020 * prematurely. That said, invoking it after the fact will cost you
2021 * a needless lock acquisition. So once it has done its work, don't
2024 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
)
2027 struct rcu_node
*rnp
= rnp_leaf
;
2029 raw_lockdep_assert_held_rcu_node(rnp_leaf
);
2030 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) ||
2031 WARN_ON_ONCE(rnp_leaf
->qsmaskinit
) ||
2032 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf
)))
2035 mask
= rnp
->grpmask
;
2039 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
2040 rnp
->qsmaskinit
&= ~mask
;
2041 /* Between grace periods, so better already be zero! */
2042 WARN_ON_ONCE(rnp
->qsmask
);
2043 if (rnp
->qsmaskinit
) {
2044 raw_spin_unlock_rcu_node(rnp
);
2045 /* irqs remain disabled. */
2048 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2053 * The CPU has been completely removed, and some other CPU is reporting
2054 * this fact from process context. Do the remainder of the cleanup.
2055 * There can only be one CPU hotplug operation at a time, so no need for
2058 int rcutree_dead_cpu(unsigned int cpu
)
2060 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
2061 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
2063 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2066 /* Adjust any no-longer-needed kthreads. */
2067 rcu_boost_kthread_setaffinity(rnp
, -1);
2068 /* Do any needed no-CB deferred wakeups from this CPU. */
2069 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data
, cpu
));
2074 * Invoke any RCU callbacks that have made it to the end of their grace
2075 * period. Thottle as specified by rdp->blimit.
2077 static void rcu_do_batch(struct rcu_data
*rdp
)
2079 unsigned long flags
;
2080 struct rcu_head
*rhp
;
2081 struct rcu_cblist rcl
= RCU_CBLIST_INITIALIZER(rcl
);
2084 /* If no callbacks are ready, just return. */
2085 if (!rcu_segcblist_ready_cbs(&rdp
->cblist
)) {
2086 trace_rcu_batch_start(rcu_state
.name
,
2087 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
),
2088 rcu_segcblist_n_cbs(&rdp
->cblist
), 0);
2089 trace_rcu_batch_end(rcu_state
.name
, 0,
2090 !rcu_segcblist_empty(&rdp
->cblist
),
2091 need_resched(), is_idle_task(current
),
2092 rcu_is_callbacks_kthread());
2097 * Extract the list of ready callbacks, disabling to prevent
2098 * races with call_rcu() from interrupt handlers. Leave the
2099 * callback counts, as rcu_barrier() needs to be conservative.
2101 local_irq_save(flags
);
2102 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2104 trace_rcu_batch_start(rcu_state
.name
,
2105 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
),
2106 rcu_segcblist_n_cbs(&rdp
->cblist
), bl
);
2107 rcu_segcblist_extract_done_cbs(&rdp
->cblist
, &rcl
);
2108 local_irq_restore(flags
);
2110 /* Invoke callbacks. */
2111 rhp
= rcu_cblist_dequeue(&rcl
);
2112 for (; rhp
; rhp
= rcu_cblist_dequeue(&rcl
)) {
2113 debug_rcu_head_unqueue(rhp
);
2114 if (__rcu_reclaim(rcu_state
.name
, rhp
))
2115 rcu_cblist_dequeued_lazy(&rcl
);
2117 * Stop only if limit reached and CPU has something to do.
2118 * Note: The rcl structure counts down from zero.
2120 if (-rcl
.len
>= bl
&&
2122 (!is_idle_task(current
) && !rcu_is_callbacks_kthread())))
2126 local_irq_save(flags
);
2128 trace_rcu_batch_end(rcu_state
.name
, count
, !!rcl
.head
, need_resched(),
2129 is_idle_task(current
), rcu_is_callbacks_kthread());
2131 /* Update counts and requeue any remaining callbacks. */
2132 rcu_segcblist_insert_done_cbs(&rdp
->cblist
, &rcl
);
2133 smp_mb(); /* List handling before counting for rcu_barrier(). */
2134 rcu_segcblist_insert_count(&rdp
->cblist
, &rcl
);
2136 /* Reinstate batch limit if we have worked down the excess. */
2137 count
= rcu_segcblist_n_cbs(&rdp
->cblist
);
2138 if (rdp
->blimit
>= DEFAULT_MAX_RCU_BLIMIT
&& count
<= qlowmark
)
2139 rdp
->blimit
= blimit
;
2141 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2142 if (count
== 0 && rdp
->qlen_last_fqs_check
!= 0) {
2143 rdp
->qlen_last_fqs_check
= 0;
2144 rdp
->n_force_qs_snap
= rcu_state
.n_force_qs
;
2145 } else if (count
< rdp
->qlen_last_fqs_check
- qhimark
)
2146 rdp
->qlen_last_fqs_check
= count
;
2149 * The following usually indicates a double call_rcu(). To track
2150 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2152 WARN_ON_ONCE(rcu_segcblist_empty(&rdp
->cblist
) != (count
== 0));
2154 local_irq_restore(flags
);
2156 /* Re-invoke RCU core processing if there are callbacks remaining. */
2157 if (rcu_segcblist_ready_cbs(&rdp
->cblist
))
2162 * This function is invoked from each scheduling-clock interrupt,
2163 * and checks to see if this CPU is in a non-context-switch quiescent
2164 * state, for example, user mode or idle loop. It also schedules RCU
2165 * core processing. If the current grace period has gone on too long,
2166 * it will ask the scheduler to manufacture a context switch for the sole
2167 * purpose of providing a providing the needed quiescent state.
2169 void rcu_sched_clock_irq(int user
)
2171 trace_rcu_utilization(TPS("Start scheduler-tick"));
2172 raw_cpu_inc(rcu_data
.ticks_this_gp
);
2173 /* The load-acquire pairs with the store-release setting to true. */
2174 if (smp_load_acquire(this_cpu_ptr(&rcu_data
.rcu_urgent_qs
))) {
2175 /* Idle and userspace execution already are quiescent states. */
2176 if (!rcu_is_cpu_rrupt_from_idle() && !user
) {
2177 set_tsk_need_resched(current
);
2178 set_preempt_need_resched();
2180 __this_cpu_write(rcu_data
.rcu_urgent_qs
, false);
2182 rcu_flavor_sched_clock_irq(user
);
2186 trace_rcu_utilization(TPS("End scheduler-tick"));
2190 * Scan the leaf rcu_node structures. For each structure on which all
2191 * CPUs have reported a quiescent state and on which there are tasks
2192 * blocking the current grace period, initiate RCU priority boosting.
2193 * Otherwise, invoke the specified function to check dyntick state for
2194 * each CPU that has not yet reported a quiescent state.
2196 static void force_qs_rnp(int (*f
)(struct rcu_data
*rdp
))
2199 unsigned long flags
;
2201 struct rcu_node
*rnp
;
2203 rcu_for_each_leaf_node(rnp
) {
2204 cond_resched_tasks_rcu_qs();
2206 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2207 if (rnp
->qsmask
== 0) {
2208 if (!IS_ENABLED(CONFIG_PREEMPT
) ||
2209 rcu_preempt_blocked_readers_cgp(rnp
)) {
2211 * No point in scanning bits because they
2212 * are all zero. But we might need to
2213 * priority-boost blocked readers.
2215 rcu_initiate_boost(rnp
, flags
);
2216 /* rcu_initiate_boost() releases rnp->lock */
2219 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2222 for_each_leaf_node_possible_cpu(rnp
, cpu
) {
2223 unsigned long bit
= leaf_node_cpu_bit(rnp
, cpu
);
2224 if ((rnp
->qsmask
& bit
) != 0) {
2225 if (f(per_cpu_ptr(&rcu_data
, cpu
)))
2230 /* Idle/offline CPUs, report (releases rnp->lock). */
2231 rcu_report_qs_rnp(mask
, rnp
, rnp
->gp_seq
, flags
);
2233 /* Nothing to do here, so just drop the lock. */
2234 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2240 * Force quiescent states on reluctant CPUs, and also detect which
2241 * CPUs are in dyntick-idle mode.
2243 void rcu_force_quiescent_state(void)
2245 unsigned long flags
;
2247 struct rcu_node
*rnp
;
2248 struct rcu_node
*rnp_old
= NULL
;
2250 /* Funnel through hierarchy to reduce memory contention. */
2251 rnp
= __this_cpu_read(rcu_data
.mynode
);
2252 for (; rnp
!= NULL
; rnp
= rnp
->parent
) {
2253 ret
= (READ_ONCE(rcu_state
.gp_flags
) & RCU_GP_FLAG_FQS
) ||
2254 !raw_spin_trylock(&rnp
->fqslock
);
2255 if (rnp_old
!= NULL
)
2256 raw_spin_unlock(&rnp_old
->fqslock
);
2261 /* rnp_old == rcu_get_root(), rnp == NULL. */
2263 /* Reached the root of the rcu_node tree, acquire lock. */
2264 raw_spin_lock_irqsave_rcu_node(rnp_old
, flags
);
2265 raw_spin_unlock(&rnp_old
->fqslock
);
2266 if (READ_ONCE(rcu_state
.gp_flags
) & RCU_GP_FLAG_FQS
) {
2267 raw_spin_unlock_irqrestore_rcu_node(rnp_old
, flags
);
2268 return; /* Someone beat us to it. */
2270 WRITE_ONCE(rcu_state
.gp_flags
,
2271 READ_ONCE(rcu_state
.gp_flags
) | RCU_GP_FLAG_FQS
);
2272 raw_spin_unlock_irqrestore_rcu_node(rnp_old
, flags
);
2273 rcu_gp_kthread_wake();
2275 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
2277 /* Perform RCU core processing work for the current CPU. */
2278 static __latent_entropy
void rcu_core(void)
2280 unsigned long flags
;
2281 struct rcu_data
*rdp
= raw_cpu_ptr(&rcu_data
);
2282 struct rcu_node
*rnp
= rdp
->mynode
;
2284 if (cpu_is_offline(smp_processor_id()))
2286 trace_rcu_utilization(TPS("Start RCU core"));
2287 WARN_ON_ONCE(!rdp
->beenonline
);
2289 /* Report any deferred quiescent states if preemption enabled. */
2290 if (!(preempt_count() & PREEMPT_MASK
)) {
2291 rcu_preempt_deferred_qs(current
);
2292 } else if (rcu_preempt_need_deferred_qs(current
)) {
2293 set_tsk_need_resched(current
);
2294 set_preempt_need_resched();
2297 /* Update RCU state based on any recent quiescent states. */
2298 rcu_check_quiescent_state(rdp
);
2300 /* No grace period and unregistered callbacks? */
2301 if (!rcu_gp_in_progress() &&
2302 rcu_segcblist_is_enabled(&rdp
->cblist
)) {
2303 local_irq_save(flags
);
2304 if (!rcu_segcblist_restempty(&rdp
->cblist
, RCU_NEXT_READY_TAIL
))
2305 rcu_accelerate_cbs_unlocked(rnp
, rdp
);
2306 local_irq_restore(flags
);
2309 rcu_check_gp_start_stall(rnp
, rdp
, rcu_jiffies_till_stall_check());
2311 /* If there are callbacks ready, invoke them. */
2312 if (rcu_segcblist_ready_cbs(&rdp
->cblist
) &&
2313 likely(READ_ONCE(rcu_scheduler_fully_active
)))
2316 /* Do any needed deferred wakeups of rcuo kthreads. */
2317 do_nocb_deferred_wakeup(rdp
);
2318 trace_rcu_utilization(TPS("End RCU core"));
2321 static void rcu_core_si(struct softirq_action
*h
)
2326 static void rcu_wake_cond(struct task_struct
*t
, int status
)
2329 * If the thread is yielding, only wake it when this
2330 * is invoked from idle
2332 if (t
&& (status
!= RCU_KTHREAD_YIELDING
|| is_idle_task(current
)))
2336 static void invoke_rcu_core_kthread(void)
2338 struct task_struct
*t
;
2339 unsigned long flags
;
2341 local_irq_save(flags
);
2342 __this_cpu_write(rcu_data
.rcu_cpu_has_work
, 1);
2343 t
= __this_cpu_read(rcu_data
.rcu_cpu_kthread_task
);
2344 if (t
!= NULL
&& t
!= current
)
2345 rcu_wake_cond(t
, __this_cpu_read(rcu_data
.rcu_cpu_kthread_status
));
2346 local_irq_restore(flags
);
2350 * Wake up this CPU's rcuc kthread to do RCU core processing.
2352 static void invoke_rcu_core(void)
2354 if (!cpu_online(smp_processor_id()))
2357 raise_softirq(RCU_SOFTIRQ
);
2359 invoke_rcu_core_kthread();
2362 static void rcu_cpu_kthread_park(unsigned int cpu
)
2364 per_cpu(rcu_data
.rcu_cpu_kthread_status
, cpu
) = RCU_KTHREAD_OFFCPU
;
2367 static int rcu_cpu_kthread_should_run(unsigned int cpu
)
2369 return __this_cpu_read(rcu_data
.rcu_cpu_has_work
);
2373 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2374 * the RCU softirq used in configurations of RCU that do not support RCU
2375 * priority boosting.
2377 static void rcu_cpu_kthread(unsigned int cpu
)
2379 unsigned int *statusp
= this_cpu_ptr(&rcu_data
.rcu_cpu_kthread_status
);
2380 char work
, *workp
= this_cpu_ptr(&rcu_data
.rcu_cpu_has_work
);
2383 for (spincnt
= 0; spincnt
< 10; spincnt
++) {
2384 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
2386 *statusp
= RCU_KTHREAD_RUNNING
;
2387 local_irq_disable();
2395 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2396 *statusp
= RCU_KTHREAD_WAITING
;
2400 *statusp
= RCU_KTHREAD_YIELDING
;
2401 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2402 schedule_timeout_interruptible(2);
2403 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2404 *statusp
= RCU_KTHREAD_WAITING
;
2407 static struct smp_hotplug_thread rcu_cpu_thread_spec
= {
2408 .store
= &rcu_data
.rcu_cpu_kthread_task
,
2409 .thread_should_run
= rcu_cpu_kthread_should_run
,
2410 .thread_fn
= rcu_cpu_kthread
,
2411 .thread_comm
= "rcuc/%u",
2412 .setup
= rcu_cpu_kthread_setup
,
2413 .park
= rcu_cpu_kthread_park
,
2417 * Spawn per-CPU RCU core processing kthreads.
2419 static int __init
rcu_spawn_core_kthreads(void)
2423 for_each_possible_cpu(cpu
)
2424 per_cpu(rcu_data
.rcu_cpu_has_work
, cpu
) = 0;
2425 if (!IS_ENABLED(CONFIG_RCU_BOOST
) && use_softirq
)
2427 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec
),
2428 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__
);
2431 early_initcall(rcu_spawn_core_kthreads
);
2434 * Handle any core-RCU processing required by a call_rcu() invocation.
2436 static void __call_rcu_core(struct rcu_data
*rdp
, struct rcu_head
*head
,
2437 unsigned long flags
)
2440 * If called from an extended quiescent state, invoke the RCU
2441 * core in order to force a re-evaluation of RCU's idleness.
2443 if (!rcu_is_watching())
2446 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2447 if (irqs_disabled_flags(flags
) || cpu_is_offline(smp_processor_id()))
2451 * Force the grace period if too many callbacks or too long waiting.
2452 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2453 * if some other CPU has recently done so. Also, don't bother
2454 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2455 * is the only one waiting for a grace period to complete.
2457 if (unlikely(rcu_segcblist_n_cbs(&rdp
->cblist
) >
2458 rdp
->qlen_last_fqs_check
+ qhimark
)) {
2460 /* Are we ignoring a completed grace period? */
2461 note_gp_changes(rdp
);
2463 /* Start a new grace period if one not already started. */
2464 if (!rcu_gp_in_progress()) {
2465 rcu_accelerate_cbs_unlocked(rdp
->mynode
, rdp
);
2467 /* Give the grace period a kick. */
2468 rdp
->blimit
= DEFAULT_MAX_RCU_BLIMIT
;
2469 if (rcu_state
.n_force_qs
== rdp
->n_force_qs_snap
&&
2470 rcu_segcblist_first_pend_cb(&rdp
->cblist
) != head
)
2471 rcu_force_quiescent_state();
2472 rdp
->n_force_qs_snap
= rcu_state
.n_force_qs
;
2473 rdp
->qlen_last_fqs_check
= rcu_segcblist_n_cbs(&rdp
->cblist
);
2479 * RCU callback function to leak a callback.
2481 static void rcu_leak_callback(struct rcu_head
*rhp
)
2486 * Helper function for call_rcu() and friends. The cpu argument will
2487 * normally be -1, indicating "currently running CPU". It may specify
2488 * a CPU only if that CPU is a no-CBs CPU. Currently, only rcu_barrier()
2489 * is expected to specify a CPU.
2492 __call_rcu(struct rcu_head
*head
, rcu_callback_t func
, int cpu
, bool lazy
)
2494 unsigned long flags
;
2495 struct rcu_data
*rdp
;
2497 /* Misaligned rcu_head! */
2498 WARN_ON_ONCE((unsigned long)head
& (sizeof(void *) - 1));
2500 if (debug_rcu_head_queue(head
)) {
2502 * Probable double call_rcu(), so leak the callback.
2503 * Use rcu:rcu_callback trace event to find the previous
2504 * time callback was passed to __call_rcu().
2506 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2508 WRITE_ONCE(head
->func
, rcu_leak_callback
);
2513 local_irq_save(flags
);
2514 rdp
= this_cpu_ptr(&rcu_data
);
2516 /* Add the callback to our list. */
2517 if (unlikely(!rcu_segcblist_is_enabled(&rdp
->cblist
)) || cpu
!= -1) {
2521 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
2522 if (likely(rdp
->mynode
)) {
2523 /* Post-boot, so this should be for a no-CBs CPU. */
2524 offline
= !__call_rcu_nocb(rdp
, head
, lazy
, flags
);
2525 WARN_ON_ONCE(offline
);
2526 /* Offline CPU, _call_rcu() illegal, leak callback. */
2527 local_irq_restore(flags
);
2531 * Very early boot, before rcu_init(). Initialize if needed
2532 * and then drop through to queue the callback.
2534 WARN_ON_ONCE(cpu
!= -1);
2535 WARN_ON_ONCE(!rcu_is_watching());
2536 if (rcu_segcblist_empty(&rdp
->cblist
))
2537 rcu_segcblist_init(&rdp
->cblist
);
2539 rcu_segcblist_enqueue(&rdp
->cblist
, head
, lazy
);
2540 if (__is_kfree_rcu_offset((unsigned long)func
))
2541 trace_rcu_kfree_callback(rcu_state
.name
, head
,
2542 (unsigned long)func
,
2543 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
),
2544 rcu_segcblist_n_cbs(&rdp
->cblist
));
2546 trace_rcu_callback(rcu_state
.name
, head
,
2547 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
),
2548 rcu_segcblist_n_cbs(&rdp
->cblist
));
2550 /* Go handle any RCU core processing required. */
2551 __call_rcu_core(rdp
, head
, flags
);
2552 local_irq_restore(flags
);
2556 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2557 * @head: structure to be used for queueing the RCU updates.
2558 * @func: actual callback function to be invoked after the grace period
2560 * The callback function will be invoked some time after a full grace
2561 * period elapses, in other words after all pre-existing RCU read-side
2562 * critical sections have completed. However, the callback function
2563 * might well execute concurrently with RCU read-side critical sections
2564 * that started after call_rcu() was invoked. RCU read-side critical
2565 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2566 * may be nested. In addition, regions of code across which interrupts,
2567 * preemption, or softirqs have been disabled also serve as RCU read-side
2568 * critical sections. This includes hardware interrupt handlers, softirq
2569 * handlers, and NMI handlers.
2571 * Note that all CPUs must agree that the grace period extended beyond
2572 * all pre-existing RCU read-side critical section. On systems with more
2573 * than one CPU, this means that when "func()" is invoked, each CPU is
2574 * guaranteed to have executed a full memory barrier since the end of its
2575 * last RCU read-side critical section whose beginning preceded the call
2576 * to call_rcu(). It also means that each CPU executing an RCU read-side
2577 * critical section that continues beyond the start of "func()" must have
2578 * executed a memory barrier after the call_rcu() but before the beginning
2579 * of that RCU read-side critical section. Note that these guarantees
2580 * include CPUs that are offline, idle, or executing in user mode, as
2581 * well as CPUs that are executing in the kernel.
2583 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2584 * resulting RCU callback function "func()", then both CPU A and CPU B are
2585 * guaranteed to execute a full memory barrier during the time interval
2586 * between the call to call_rcu() and the invocation of "func()" -- even
2587 * if CPU A and CPU B are the same CPU (but again only if the system has
2588 * more than one CPU).
2590 void call_rcu(struct rcu_head
*head
, rcu_callback_t func
)
2592 __call_rcu(head
, func
, -1, 0);
2594 EXPORT_SYMBOL_GPL(call_rcu
);
2597 * Queue an RCU callback for lazy invocation after a grace period.
2598 * This will likely be later named something like "call_rcu_lazy()",
2599 * but this change will require some way of tagging the lazy RCU
2600 * callbacks in the list of pending callbacks. Until then, this
2601 * function may only be called from __kfree_rcu().
2603 void kfree_call_rcu(struct rcu_head
*head
, rcu_callback_t func
)
2605 __call_rcu(head
, func
, -1, 1);
2607 EXPORT_SYMBOL_GPL(kfree_call_rcu
);
2610 * During early boot, any blocking grace-period wait automatically
2611 * implies a grace period. Later on, this is never the case for PREEMPT.
2613 * Howevr, because a context switch is a grace period for !PREEMPT, any
2614 * blocking grace-period wait automatically implies a grace period if
2615 * there is only one CPU online at any point time during execution of
2616 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to
2617 * occasionally incorrectly indicate that there are multiple CPUs online
2618 * when there was in fact only one the whole time, as this just adds some
2619 * overhead: RCU still operates correctly.
2621 static int rcu_blocking_is_gp(void)
2625 if (IS_ENABLED(CONFIG_PREEMPT
))
2626 return rcu_scheduler_active
== RCU_SCHEDULER_INACTIVE
;
2627 might_sleep(); /* Check for RCU read-side critical section. */
2629 ret
= num_online_cpus() <= 1;
2635 * synchronize_rcu - wait until a grace period has elapsed.
2637 * Control will return to the caller some time after a full grace
2638 * period has elapsed, in other words after all currently executing RCU
2639 * read-side critical sections have completed. Note, however, that
2640 * upon return from synchronize_rcu(), the caller might well be executing
2641 * concurrently with new RCU read-side critical sections that began while
2642 * synchronize_rcu() was waiting. RCU read-side critical sections are
2643 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
2644 * In addition, regions of code across which interrupts, preemption, or
2645 * softirqs have been disabled also serve as RCU read-side critical
2646 * sections. This includes hardware interrupt handlers, softirq handlers,
2649 * Note that this guarantee implies further memory-ordering guarantees.
2650 * On systems with more than one CPU, when synchronize_rcu() returns,
2651 * each CPU is guaranteed to have executed a full memory barrier since
2652 * the end of its last RCU read-side critical section whose beginning
2653 * preceded the call to synchronize_rcu(). In addition, each CPU having
2654 * an RCU read-side critical section that extends beyond the return from
2655 * synchronize_rcu() is guaranteed to have executed a full memory barrier
2656 * after the beginning of synchronize_rcu() and before the beginning of
2657 * that RCU read-side critical section. Note that these guarantees include
2658 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2659 * that are executing in the kernel.
2661 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
2662 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2663 * to have executed a full memory barrier during the execution of
2664 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
2665 * again only if the system has more than one CPU).
2667 void synchronize_rcu(void)
2669 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
2670 lock_is_held(&rcu_lock_map
) ||
2671 lock_is_held(&rcu_sched_lock_map
),
2672 "Illegal synchronize_rcu() in RCU read-side critical section");
2673 if (rcu_blocking_is_gp())
2675 if (rcu_gp_is_expedited())
2676 synchronize_rcu_expedited();
2678 wait_rcu_gp(call_rcu
);
2680 EXPORT_SYMBOL_GPL(synchronize_rcu
);
2683 * get_state_synchronize_rcu - Snapshot current RCU state
2685 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2686 * to determine whether or not a full grace period has elapsed in the
2689 unsigned long get_state_synchronize_rcu(void)
2692 * Any prior manipulation of RCU-protected data must happen
2693 * before the load from ->gp_seq.
2696 return rcu_seq_snap(&rcu_state
.gp_seq
);
2698 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu
);
2701 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2703 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2705 * If a full RCU grace period has elapsed since the earlier call to
2706 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2707 * synchronize_rcu() to wait for a full grace period.
2709 * Yes, this function does not take counter wrap into account. But
2710 * counter wrap is harmless. If the counter wraps, we have waited for
2711 * more than 2 billion grace periods (and way more on a 64-bit system!),
2712 * so waiting for one additional grace period should be just fine.
2714 void cond_synchronize_rcu(unsigned long oldstate
)
2716 if (!rcu_seq_done(&rcu_state
.gp_seq
, oldstate
))
2719 smp_mb(); /* Ensure GP ends before subsequent accesses. */
2721 EXPORT_SYMBOL_GPL(cond_synchronize_rcu
);
2724 * Check to see if there is any immediate RCU-related work to be done by
2725 * the current CPU, returning 1 if so and zero otherwise. The checks are
2726 * in order of increasing expense: checks that can be carried out against
2727 * CPU-local state are performed first. However, we must check for CPU
2728 * stalls first, else we might not get a chance.
2730 static int rcu_pending(void)
2732 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
2733 struct rcu_node
*rnp
= rdp
->mynode
;
2735 /* Check for CPU stalls, if enabled. */
2736 check_cpu_stall(rdp
);
2738 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2739 if (rcu_nohz_full_cpu())
2742 /* Is the RCU core waiting for a quiescent state from this CPU? */
2743 if (rdp
->core_needs_qs
&& !rdp
->cpu_no_qs
.b
.norm
)
2746 /* Does this CPU have callbacks ready to invoke? */
2747 if (rcu_segcblist_ready_cbs(&rdp
->cblist
))
2750 /* Has RCU gone idle with this CPU needing another grace period? */
2751 if (!rcu_gp_in_progress() &&
2752 rcu_segcblist_is_enabled(&rdp
->cblist
) &&
2753 !rcu_segcblist_restempty(&rdp
->cblist
, RCU_NEXT_READY_TAIL
))
2756 /* Have RCU grace period completed or started? */
2757 if (rcu_seq_current(&rnp
->gp_seq
) != rdp
->gp_seq
||
2758 unlikely(READ_ONCE(rdp
->gpwrap
))) /* outside lock */
2761 /* Does this CPU need a deferred NOCB wakeup? */
2762 if (rcu_nocb_need_deferred_wakeup(rdp
))
2770 * Helper function for rcu_barrier() tracing. If tracing is disabled,
2771 * the compiler is expected to optimize this away.
2773 static void rcu_barrier_trace(const char *s
, int cpu
, unsigned long done
)
2775 trace_rcu_barrier(rcu_state
.name
, s
, cpu
,
2776 atomic_read(&rcu_state
.barrier_cpu_count
), done
);
2780 * RCU callback function for rcu_barrier(). If we are last, wake
2781 * up the task executing rcu_barrier().
2783 static void rcu_barrier_callback(struct rcu_head
*rhp
)
2785 if (atomic_dec_and_test(&rcu_state
.barrier_cpu_count
)) {
2786 rcu_barrier_trace(TPS("LastCB"), -1,
2787 rcu_state
.barrier_sequence
);
2788 complete(&rcu_state
.barrier_completion
);
2790 rcu_barrier_trace(TPS("CB"), -1, rcu_state
.barrier_sequence
);
2795 * Called with preemption disabled, and from cross-cpu IRQ context.
2797 static void rcu_barrier_func(void *unused
)
2799 struct rcu_data
*rdp
= raw_cpu_ptr(&rcu_data
);
2801 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state
.barrier_sequence
);
2802 rdp
->barrier_head
.func
= rcu_barrier_callback
;
2803 debug_rcu_head_queue(&rdp
->barrier_head
);
2804 if (rcu_segcblist_entrain(&rdp
->cblist
, &rdp
->barrier_head
, 0)) {
2805 atomic_inc(&rcu_state
.barrier_cpu_count
);
2807 debug_rcu_head_unqueue(&rdp
->barrier_head
);
2808 rcu_barrier_trace(TPS("IRQNQ"), -1,
2809 rcu_state
.barrier_sequence
);
2814 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
2816 * Note that this primitive does not necessarily wait for an RCU grace period
2817 * to complete. For example, if there are no RCU callbacks queued anywhere
2818 * in the system, then rcu_barrier() is within its rights to return
2819 * immediately, without waiting for anything, much less an RCU grace period.
2821 void rcu_barrier(void)
2824 struct rcu_data
*rdp
;
2825 unsigned long s
= rcu_seq_snap(&rcu_state
.barrier_sequence
);
2827 rcu_barrier_trace(TPS("Begin"), -1, s
);
2829 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2830 mutex_lock(&rcu_state
.barrier_mutex
);
2832 /* Did someone else do our work for us? */
2833 if (rcu_seq_done(&rcu_state
.barrier_sequence
, s
)) {
2834 rcu_barrier_trace(TPS("EarlyExit"), -1,
2835 rcu_state
.barrier_sequence
);
2836 smp_mb(); /* caller's subsequent code after above check. */
2837 mutex_unlock(&rcu_state
.barrier_mutex
);
2841 /* Mark the start of the barrier operation. */
2842 rcu_seq_start(&rcu_state
.barrier_sequence
);
2843 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state
.barrier_sequence
);
2846 * Initialize the count to one rather than to zero in order to
2847 * avoid a too-soon return to zero in case of a short grace period
2848 * (or preemption of this task). Exclude CPU-hotplug operations
2849 * to ensure that no offline CPU has callbacks queued.
2851 init_completion(&rcu_state
.barrier_completion
);
2852 atomic_set(&rcu_state
.barrier_cpu_count
, 1);
2856 * Force each CPU with callbacks to register a new callback.
2857 * When that callback is invoked, we will know that all of the
2858 * corresponding CPU's preceding callbacks have been invoked.
2860 for_each_possible_cpu(cpu
) {
2861 if (!cpu_online(cpu
) && !rcu_is_nocb_cpu(cpu
))
2863 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
2864 if (rcu_is_nocb_cpu(cpu
)) {
2865 if (!rcu_nocb_cpu_needs_barrier(cpu
)) {
2866 rcu_barrier_trace(TPS("OfflineNoCB"), cpu
,
2867 rcu_state
.barrier_sequence
);
2869 rcu_barrier_trace(TPS("OnlineNoCB"), cpu
,
2870 rcu_state
.barrier_sequence
);
2871 smp_mb__before_atomic();
2872 atomic_inc(&rcu_state
.barrier_cpu_count
);
2873 __call_rcu(&rdp
->barrier_head
,
2874 rcu_barrier_callback
, cpu
, 0);
2876 } else if (rcu_segcblist_n_cbs(&rdp
->cblist
)) {
2877 rcu_barrier_trace(TPS("OnlineQ"), cpu
,
2878 rcu_state
.barrier_sequence
);
2879 smp_call_function_single(cpu
, rcu_barrier_func
, NULL
, 1);
2881 rcu_barrier_trace(TPS("OnlineNQ"), cpu
,
2882 rcu_state
.barrier_sequence
);
2888 * Now that we have an rcu_barrier_callback() callback on each
2889 * CPU, and thus each counted, remove the initial count.
2891 if (atomic_dec_and_test(&rcu_state
.barrier_cpu_count
))
2892 complete(&rcu_state
.barrier_completion
);
2894 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2895 wait_for_completion(&rcu_state
.barrier_completion
);
2897 /* Mark the end of the barrier operation. */
2898 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state
.barrier_sequence
);
2899 rcu_seq_end(&rcu_state
.barrier_sequence
);
2901 /* Other rcu_barrier() invocations can now safely proceed. */
2902 mutex_unlock(&rcu_state
.barrier_mutex
);
2904 EXPORT_SYMBOL_GPL(rcu_barrier
);
2907 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
2908 * first CPU in a given leaf rcu_node structure coming online. The caller
2909 * must hold the corresponding leaf rcu_node ->lock with interrrupts
2912 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
)
2916 struct rcu_node
*rnp
= rnp_leaf
;
2918 raw_lockdep_assert_held_rcu_node(rnp_leaf
);
2919 WARN_ON_ONCE(rnp
->wait_blkd_tasks
);
2921 mask
= rnp
->grpmask
;
2925 raw_spin_lock_rcu_node(rnp
); /* Interrupts already disabled. */
2926 oldmask
= rnp
->qsmaskinit
;
2927 rnp
->qsmaskinit
|= mask
;
2928 raw_spin_unlock_rcu_node(rnp
); /* Interrupts remain disabled. */
2935 * Do boot-time initialization of a CPU's per-CPU RCU data.
2938 rcu_boot_init_percpu_data(int cpu
)
2940 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
2942 /* Set up local state, ensuring consistent view of global state. */
2943 rdp
->grpmask
= leaf_node_cpu_bit(rdp
->mynode
, cpu
);
2944 WARN_ON_ONCE(rdp
->dynticks_nesting
!= 1);
2945 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp
)));
2946 rdp
->rcu_ofl_gp_seq
= rcu_state
.gp_seq
;
2947 rdp
->rcu_ofl_gp_flags
= RCU_GP_CLEANED
;
2948 rdp
->rcu_onl_gp_seq
= rcu_state
.gp_seq
;
2949 rdp
->rcu_onl_gp_flags
= RCU_GP_CLEANED
;
2951 rcu_boot_init_nocb_percpu_data(rdp
);
2955 * Invoked early in the CPU-online process, when pretty much all services
2956 * are available. The incoming CPU is not present.
2958 * Initializes a CPU's per-CPU RCU data. Note that only one online or
2959 * offline event can be happening at a given time. Note also that we can
2960 * accept some slop in the rsp->gp_seq access due to the fact that this
2961 * CPU cannot possibly have any RCU callbacks in flight yet.
2963 int rcutree_prepare_cpu(unsigned int cpu
)
2965 unsigned long flags
;
2966 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
2967 struct rcu_node
*rnp
= rcu_get_root();
2969 /* Set up local state, ensuring consistent view of global state. */
2970 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2971 rdp
->qlen_last_fqs_check
= 0;
2972 rdp
->n_force_qs_snap
= rcu_state
.n_force_qs
;
2973 rdp
->blimit
= blimit
;
2974 if (rcu_segcblist_empty(&rdp
->cblist
) && /* No early-boot CBs? */
2975 !init_nocb_callback_list(rdp
))
2976 rcu_segcblist_init(&rdp
->cblist
); /* Re-enable callbacks. */
2977 rdp
->dynticks_nesting
= 1; /* CPU not up, no tearing. */
2978 rcu_dynticks_eqs_online();
2979 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2982 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
2983 * propagation up the rcu_node tree will happen at the beginning
2984 * of the next grace period.
2987 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
2988 rdp
->beenonline
= true; /* We have now been online. */
2989 rdp
->gp_seq
= rnp
->gp_seq
;
2990 rdp
->gp_seq_needed
= rnp
->gp_seq
;
2991 rdp
->cpu_no_qs
.b
.norm
= true;
2992 rdp
->core_needs_qs
= false;
2993 rdp
->rcu_iw_pending
= false;
2994 rdp
->rcu_iw_gp_seq
= rnp
->gp_seq
- 1;
2995 trace_rcu_grace_period(rcu_state
.name
, rdp
->gp_seq
, TPS("cpuonl"));
2996 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2997 rcu_prepare_kthreads(cpu
);
2998 rcu_spawn_cpu_nocb_kthread(cpu
);
3004 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3006 static void rcutree_affinity_setting(unsigned int cpu
, int outgoing
)
3008 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
3010 rcu_boost_kthread_setaffinity(rdp
->mynode
, outgoing
);
3014 * Near the end of the CPU-online process. Pretty much all services
3015 * enabled, and the CPU is now very much alive.
3017 int rcutree_online_cpu(unsigned int cpu
)
3019 unsigned long flags
;
3020 struct rcu_data
*rdp
;
3021 struct rcu_node
*rnp
;
3023 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
3025 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3026 rnp
->ffmask
|= rdp
->grpmask
;
3027 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3028 if (rcu_scheduler_active
== RCU_SCHEDULER_INACTIVE
)
3029 return 0; /* Too early in boot for scheduler work. */
3030 sync_sched_exp_online_cleanup(cpu
);
3031 rcutree_affinity_setting(cpu
, -1);
3036 * Near the beginning of the process. The CPU is still very much alive
3037 * with pretty much all services enabled.
3039 int rcutree_offline_cpu(unsigned int cpu
)
3041 unsigned long flags
;
3042 struct rcu_data
*rdp
;
3043 struct rcu_node
*rnp
;
3045 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
3047 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3048 rnp
->ffmask
&= ~rdp
->grpmask
;
3049 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3051 rcutree_affinity_setting(cpu
, cpu
);
3055 static DEFINE_PER_CPU(int, rcu_cpu_started
);
3058 * Mark the specified CPU as being online so that subsequent grace periods
3059 * (both expedited and normal) will wait on it. Note that this means that
3060 * incoming CPUs are not allowed to use RCU read-side critical sections
3061 * until this function is called. Failing to observe this restriction
3062 * will result in lockdep splats.
3064 * Note that this function is special in that it is invoked directly
3065 * from the incoming CPU rather than from the cpuhp_step mechanism.
3066 * This is because this function must be invoked at a precise location.
3068 void rcu_cpu_starting(unsigned int cpu
)
3070 unsigned long flags
;
3073 unsigned long oldmask
;
3074 struct rcu_data
*rdp
;
3075 struct rcu_node
*rnp
;
3077 if (per_cpu(rcu_cpu_started
, cpu
))
3080 per_cpu(rcu_cpu_started
, cpu
) = 1;
3082 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
3084 mask
= rdp
->grpmask
;
3085 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3086 rnp
->qsmaskinitnext
|= mask
;
3087 oldmask
= rnp
->expmaskinitnext
;
3088 rnp
->expmaskinitnext
|= mask
;
3089 oldmask
^= rnp
->expmaskinitnext
;
3090 nbits
= bitmap_weight(&oldmask
, BITS_PER_LONG
);
3091 /* Allow lockless access for expedited grace periods. */
3092 smp_store_release(&rcu_state
.ncpus
, rcu_state
.ncpus
+ nbits
); /* ^^^ */
3093 rcu_gpnum_ovf(rnp
, rdp
); /* Offline-induced counter wrap? */
3094 rdp
->rcu_onl_gp_seq
= READ_ONCE(rcu_state
.gp_seq
);
3095 rdp
->rcu_onl_gp_flags
= READ_ONCE(rcu_state
.gp_flags
);
3096 if (rnp
->qsmask
& mask
) { /* RCU waiting on incoming CPU? */
3097 /* Report QS -after- changing ->qsmaskinitnext! */
3098 rcu_report_qs_rnp(mask
, rnp
, rnp
->gp_seq
, flags
);
3100 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3102 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3105 #ifdef CONFIG_HOTPLUG_CPU
3107 * The outgoing function has no further need of RCU, so remove it from
3108 * the rcu_node tree's ->qsmaskinitnext bit masks.
3110 * Note that this function is special in that it is invoked directly
3111 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3112 * This is because this function must be invoked at a precise location.
3114 void rcu_report_dead(unsigned int cpu
)
3116 unsigned long flags
;
3118 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
3119 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
3121 /* QS for any half-done expedited grace period. */
3123 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data
));
3125 rcu_preempt_deferred_qs(current
);
3127 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3128 mask
= rdp
->grpmask
;
3129 raw_spin_lock(&rcu_state
.ofl_lock
);
3130 raw_spin_lock_irqsave_rcu_node(rnp
, flags
); /* Enforce GP memory-order guarantee. */
3131 rdp
->rcu_ofl_gp_seq
= READ_ONCE(rcu_state
.gp_seq
);
3132 rdp
->rcu_ofl_gp_flags
= READ_ONCE(rcu_state
.gp_flags
);
3133 if (rnp
->qsmask
& mask
) { /* RCU waiting on outgoing CPU? */
3134 /* Report quiescent state -before- changing ->qsmaskinitnext! */
3135 rcu_report_qs_rnp(mask
, rnp
, rnp
->gp_seq
, flags
);
3136 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3138 rnp
->qsmaskinitnext
&= ~mask
;
3139 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3140 raw_spin_unlock(&rcu_state
.ofl_lock
);
3142 per_cpu(rcu_cpu_started
, cpu
) = 0;
3146 * The outgoing CPU has just passed through the dying-idle state, and we
3147 * are being invoked from the CPU that was IPIed to continue the offline
3148 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
3150 void rcutree_migrate_callbacks(int cpu
)
3152 unsigned long flags
;
3153 struct rcu_data
*my_rdp
;
3154 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
3155 struct rcu_node
*rnp_root
= rcu_get_root();
3158 if (rcu_is_nocb_cpu(cpu
) || rcu_segcblist_empty(&rdp
->cblist
))
3159 return; /* No callbacks to migrate. */
3161 local_irq_save(flags
);
3162 my_rdp
= this_cpu_ptr(&rcu_data
);
3163 if (rcu_nocb_adopt_orphan_cbs(my_rdp
, rdp
, flags
)) {
3164 local_irq_restore(flags
);
3167 raw_spin_lock_rcu_node(rnp_root
); /* irqs already disabled. */
3168 /* Leverage recent GPs and set GP for new callbacks. */
3169 needwake
= rcu_advance_cbs(rnp_root
, rdp
) ||
3170 rcu_advance_cbs(rnp_root
, my_rdp
);
3171 rcu_segcblist_merge(&my_rdp
->cblist
, &rdp
->cblist
);
3172 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp
->cblist
) !=
3173 !rcu_segcblist_n_cbs(&my_rdp
->cblist
));
3174 raw_spin_unlock_irqrestore_rcu_node(rnp_root
, flags
);
3176 rcu_gp_kthread_wake();
3177 WARN_ONCE(rcu_segcblist_n_cbs(&rdp
->cblist
) != 0 ||
3178 !rcu_segcblist_empty(&rdp
->cblist
),
3179 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3180 cpu
, rcu_segcblist_n_cbs(&rdp
->cblist
),
3181 rcu_segcblist_first_cb(&rdp
->cblist
));
3186 * On non-huge systems, use expedited RCU grace periods to make suspend
3187 * and hibernation run faster.
3189 static int rcu_pm_notify(struct notifier_block
*self
,
3190 unsigned long action
, void *hcpu
)
3193 case PM_HIBERNATION_PREPARE
:
3194 case PM_SUSPEND_PREPARE
:
3197 case PM_POST_HIBERNATION
:
3198 case PM_POST_SUSPEND
:
3199 rcu_unexpedite_gp();
3208 * Spawn the kthreads that handle RCU's grace periods.
3210 static int __init
rcu_spawn_gp_kthread(void)
3212 unsigned long flags
;
3213 int kthread_prio_in
= kthread_prio
;
3214 struct rcu_node
*rnp
;
3215 struct sched_param sp
;
3216 struct task_struct
*t
;
3218 /* Force priority into range. */
3219 if (IS_ENABLED(CONFIG_RCU_BOOST
) && kthread_prio
< 2
3220 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST
))
3222 else if (IS_ENABLED(CONFIG_RCU_BOOST
) && kthread_prio
< 1)
3224 else if (kthread_prio
< 0)
3226 else if (kthread_prio
> 99)
3229 if (kthread_prio
!= kthread_prio_in
)
3230 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3231 kthread_prio
, kthread_prio_in
);
3233 rcu_scheduler_fully_active
= 1;
3234 t
= kthread_create(rcu_gp_kthread
, NULL
, "%s", rcu_state
.name
);
3235 if (WARN_ONCE(IS_ERR(t
), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__
))
3237 rnp
= rcu_get_root();
3238 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3239 rcu_state
.gp_kthread
= t
;
3241 sp
.sched_priority
= kthread_prio
;
3242 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
3244 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3246 rcu_spawn_nocb_kthreads();
3247 rcu_spawn_boost_kthreads();
3250 early_initcall(rcu_spawn_gp_kthread
);
3253 * This function is invoked towards the end of the scheduler's
3254 * initialization process. Before this is called, the idle task might
3255 * contain synchronous grace-period primitives (during which time, this idle
3256 * task is booting the system, and such primitives are no-ops). After this
3257 * function is called, any synchronous grace-period primitives are run as
3258 * expedited, with the requesting task driving the grace period forward.
3259 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3260 * runtime RCU functionality.
3262 void rcu_scheduler_starting(void)
3264 WARN_ON(num_online_cpus() != 1);
3265 WARN_ON(nr_context_switches() > 0);
3266 rcu_test_sync_prims();
3267 rcu_scheduler_active
= RCU_SCHEDULER_INIT
;
3268 rcu_test_sync_prims();
3272 * Helper function for rcu_init() that initializes the rcu_state structure.
3274 static void __init
rcu_init_one(void)
3276 static const char * const buf
[] = RCU_NODE_NAME_INIT
;
3277 static const char * const fqs
[] = RCU_FQS_NAME_INIT
;
3278 static struct lock_class_key rcu_node_class
[RCU_NUM_LVLS
];
3279 static struct lock_class_key rcu_fqs_class
[RCU_NUM_LVLS
];
3281 int levelspread
[RCU_NUM_LVLS
]; /* kids/node in each level. */
3285 struct rcu_node
*rnp
;
3287 BUILD_BUG_ON(RCU_NUM_LVLS
> ARRAY_SIZE(buf
)); /* Fix buf[] init! */
3289 /* Silence gcc 4.8 false positive about array index out of range. */
3290 if (rcu_num_lvls
<= 0 || rcu_num_lvls
> RCU_NUM_LVLS
)
3291 panic("rcu_init_one: rcu_num_lvls out of range");
3293 /* Initialize the level-tracking arrays. */
3295 for (i
= 1; i
< rcu_num_lvls
; i
++)
3296 rcu_state
.level
[i
] =
3297 rcu_state
.level
[i
- 1] + num_rcu_lvl
[i
- 1];
3298 rcu_init_levelspread(levelspread
, num_rcu_lvl
);
3300 /* Initialize the elements themselves, starting from the leaves. */
3302 for (i
= rcu_num_lvls
- 1; i
>= 0; i
--) {
3303 cpustride
*= levelspread
[i
];
3304 rnp
= rcu_state
.level
[i
];
3305 for (j
= 0; j
< num_rcu_lvl
[i
]; j
++, rnp
++) {
3306 raw_spin_lock_init(&ACCESS_PRIVATE(rnp
, lock
));
3307 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp
, lock
),
3308 &rcu_node_class
[i
], buf
[i
]);
3309 raw_spin_lock_init(&rnp
->fqslock
);
3310 lockdep_set_class_and_name(&rnp
->fqslock
,
3311 &rcu_fqs_class
[i
], fqs
[i
]);
3312 rnp
->gp_seq
= rcu_state
.gp_seq
;
3313 rnp
->gp_seq_needed
= rcu_state
.gp_seq
;
3314 rnp
->completedqs
= rcu_state
.gp_seq
;
3316 rnp
->qsmaskinit
= 0;
3317 rnp
->grplo
= j
* cpustride
;
3318 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
3319 if (rnp
->grphi
>= nr_cpu_ids
)
3320 rnp
->grphi
= nr_cpu_ids
- 1;
3326 rnp
->grpnum
= j
% levelspread
[i
- 1];
3327 rnp
->grpmask
= BIT(rnp
->grpnum
);
3328 rnp
->parent
= rcu_state
.level
[i
- 1] +
3329 j
/ levelspread
[i
- 1];
3332 INIT_LIST_HEAD(&rnp
->blkd_tasks
);
3333 rcu_init_one_nocb(rnp
);
3334 init_waitqueue_head(&rnp
->exp_wq
[0]);
3335 init_waitqueue_head(&rnp
->exp_wq
[1]);
3336 init_waitqueue_head(&rnp
->exp_wq
[2]);
3337 init_waitqueue_head(&rnp
->exp_wq
[3]);
3338 spin_lock_init(&rnp
->exp_lock
);
3342 init_swait_queue_head(&rcu_state
.gp_wq
);
3343 init_swait_queue_head(&rcu_state
.expedited_wq
);
3344 rnp
= rcu_first_leaf_node();
3345 for_each_possible_cpu(i
) {
3346 while (i
> rnp
->grphi
)
3348 per_cpu_ptr(&rcu_data
, i
)->mynode
= rnp
;
3349 rcu_boot_init_percpu_data(i
);
3354 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3355 * replace the definitions in tree.h because those are needed to size
3356 * the ->node array in the rcu_state structure.
3358 static void __init
rcu_init_geometry(void)
3362 int rcu_capacity
[RCU_NUM_LVLS
];
3365 * Initialize any unspecified boot parameters.
3366 * The default values of jiffies_till_first_fqs and
3367 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3368 * value, which is a function of HZ, then adding one for each
3369 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3371 d
= RCU_JIFFIES_TILL_FORCE_QS
+ nr_cpu_ids
/ RCU_JIFFIES_FQS_DIV
;
3372 if (jiffies_till_first_fqs
== ULONG_MAX
)
3373 jiffies_till_first_fqs
= d
;
3374 if (jiffies_till_next_fqs
== ULONG_MAX
)
3375 jiffies_till_next_fqs
= d
;
3376 adjust_jiffies_till_sched_qs();
3378 /* If the compile-time values are accurate, just leave. */
3379 if (rcu_fanout_leaf
== RCU_FANOUT_LEAF
&&
3380 nr_cpu_ids
== NR_CPUS
)
3382 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3383 rcu_fanout_leaf
, nr_cpu_ids
);
3386 * The boot-time rcu_fanout_leaf parameter must be at least two
3387 * and cannot exceed the number of bits in the rcu_node masks.
3388 * Complain and fall back to the compile-time values if this
3389 * limit is exceeded.
3391 if (rcu_fanout_leaf
< 2 ||
3392 rcu_fanout_leaf
> sizeof(unsigned long) * 8) {
3393 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
3399 * Compute number of nodes that can be handled an rcu_node tree
3400 * with the given number of levels.
3402 rcu_capacity
[0] = rcu_fanout_leaf
;
3403 for (i
= 1; i
< RCU_NUM_LVLS
; i
++)
3404 rcu_capacity
[i
] = rcu_capacity
[i
- 1] * RCU_FANOUT
;
3407 * The tree must be able to accommodate the configured number of CPUs.
3408 * If this limit is exceeded, fall back to the compile-time values.
3410 if (nr_cpu_ids
> rcu_capacity
[RCU_NUM_LVLS
- 1]) {
3411 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
3416 /* Calculate the number of levels in the tree. */
3417 for (i
= 0; nr_cpu_ids
> rcu_capacity
[i
]; i
++) {
3419 rcu_num_lvls
= i
+ 1;
3421 /* Calculate the number of rcu_nodes at each level of the tree. */
3422 for (i
= 0; i
< rcu_num_lvls
; i
++) {
3423 int cap
= rcu_capacity
[(rcu_num_lvls
- 1) - i
];
3424 num_rcu_lvl
[i
] = DIV_ROUND_UP(nr_cpu_ids
, cap
);
3427 /* Calculate the total number of rcu_node structures. */
3429 for (i
= 0; i
< rcu_num_lvls
; i
++)
3430 rcu_num_nodes
+= num_rcu_lvl
[i
];
3434 * Dump out the structure of the rcu_node combining tree associated
3435 * with the rcu_state structure.
3437 static void __init
rcu_dump_rcu_node_tree(void)
3440 struct rcu_node
*rnp
;
3442 pr_info("rcu_node tree layout dump\n");
3444 rcu_for_each_node_breadth_first(rnp
) {
3445 if (rnp
->level
!= level
) {
3450 pr_cont("%d:%d ^%d ", rnp
->grplo
, rnp
->grphi
, rnp
->grpnum
);
3455 struct workqueue_struct
*rcu_gp_wq
;
3456 struct workqueue_struct
*rcu_par_gp_wq
;
3458 void __init
rcu_init(void)
3462 rcu_early_boot_tests();
3464 rcu_bootup_announce();
3465 rcu_init_geometry();
3468 rcu_dump_rcu_node_tree();
3470 open_softirq(RCU_SOFTIRQ
, rcu_core_si
);
3473 * We don't need protection against CPU-hotplug here because
3474 * this is called early in boot, before either interrupts
3475 * or the scheduler are operational.
3477 pm_notifier(rcu_pm_notify
, 0);
3478 for_each_online_cpu(cpu
) {
3479 rcutree_prepare_cpu(cpu
);
3480 rcu_cpu_starting(cpu
);
3481 rcutree_online_cpu(cpu
);
3484 /* Create workqueue for expedited GPs and for Tree SRCU. */
3485 rcu_gp_wq
= alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM
, 0);
3486 WARN_ON(!rcu_gp_wq
);
3487 rcu_par_gp_wq
= alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM
, 0);
3488 WARN_ON(!rcu_par_gp_wq
);
3492 #include "tree_stall.h"
3493 #include "tree_exp.h"
3494 #include "tree_plugin.h"