mm/slab: sanity-check page type when looking up cache
[linux/fpc-iii.git] / kernel / rcu / tree.c
bloba14e5fbbea467ecd6cbadd390f5382bd320b07f3
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Read-Copy Update mechanism for mutual exclusion
5 * Copyright IBM Corporation, 2008
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 * Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version
11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
14 * For detailed explanation of Read-Copy Update mechanism see -
15 * Documentation/RCU
18 #define pr_fmt(fmt) "rcu: " fmt
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/trace_events.h>
49 #include <linux/suspend.h>
50 #include <linux/ftrace.h>
51 #include <linux/tick.h>
52 #include <linux/sysrq.h>
53 #include <linux/kprobes.h>
54 #include <linux/gfp.h>
55 #include <linux/oom.h>
56 #include <linux/smpboot.h>
57 #include <linux/jiffies.h>
58 #include <linux/sched/isolation.h>
59 #include "../time/tick-internal.h"
61 #include "tree.h"
62 #include "rcu.h"
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "rcutree."
69 /* Data structures. */
72 * Steal a bit from the bottom of ->dynticks for idle entry/exit
73 * control. Initially this is for TLB flushing.
75 #define RCU_DYNTICK_CTRL_MASK 0x1
76 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
77 #ifndef rcu_eqs_special_exit
78 #define rcu_eqs_special_exit() do { } while (0)
79 #endif
81 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
82 .dynticks_nesting = 1,
83 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
84 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
86 struct rcu_state rcu_state = {
87 .level = { &rcu_state.node[0] },
88 .gp_state = RCU_GP_IDLE,
89 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
90 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
91 .name = RCU_NAME,
92 .abbr = RCU_ABBR,
93 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
94 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
95 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
98 /* Dump rcu_node combining tree at boot to verify correct setup. */
99 static bool dump_tree;
100 module_param(dump_tree, bool, 0444);
101 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
102 static bool use_softirq = 1;
103 module_param(use_softirq, bool, 0444);
104 /* Control rcu_node-tree auto-balancing at boot time. */
105 static bool rcu_fanout_exact;
106 module_param(rcu_fanout_exact, bool, 0444);
107 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
108 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
109 module_param(rcu_fanout_leaf, int, 0444);
110 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
111 /* Number of rcu_nodes at specified level. */
112 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
113 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
116 * The rcu_scheduler_active variable is initialized to the value
117 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
118 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
119 * RCU can assume that there is but one task, allowing RCU to (for example)
120 * optimize synchronize_rcu() to a simple barrier(). When this variable
121 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
122 * to detect real grace periods. This variable is also used to suppress
123 * boot-time false positives from lockdep-RCU error checking. Finally, it
124 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
125 * is fully initialized, including all of its kthreads having been spawned.
127 int rcu_scheduler_active __read_mostly;
128 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131 * The rcu_scheduler_fully_active variable transitions from zero to one
132 * during the early_initcall() processing, which is after the scheduler
133 * is capable of creating new tasks. So RCU processing (for example,
134 * creating tasks for RCU priority boosting) must be delayed until after
135 * rcu_scheduler_fully_active transitions from zero to one. We also
136 * currently delay invocation of any RCU callbacks until after this point.
138 * It might later prove better for people registering RCU callbacks during
139 * early boot to take responsibility for these callbacks, but one step at
140 * a time.
142 static int rcu_scheduler_fully_active __read_mostly;
144 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
145 unsigned long gps, unsigned long flags);
146 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
147 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
148 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
149 static void invoke_rcu_core(void);
150 static void rcu_report_exp_rdp(struct rcu_data *rdp);
151 static void sync_sched_exp_online_cleanup(int cpu);
153 /* rcuc/rcub kthread realtime priority */
154 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
155 module_param(kthread_prio, int, 0444);
157 /* Delay in jiffies for grace-period initialization delays, debug only. */
159 static int gp_preinit_delay;
160 module_param(gp_preinit_delay, int, 0444);
161 static int gp_init_delay;
162 module_param(gp_init_delay, int, 0444);
163 static int gp_cleanup_delay;
164 module_param(gp_cleanup_delay, int, 0444);
166 /* Retrieve RCU kthreads priority for rcutorture */
167 int rcu_get_gp_kthreads_prio(void)
169 return kthread_prio;
171 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
174 * Number of grace periods between delays, normalized by the duration of
175 * the delay. The longer the delay, the more the grace periods between
176 * each delay. The reason for this normalization is that it means that,
177 * for non-zero delays, the overall slowdown of grace periods is constant
178 * regardless of the duration of the delay. This arrangement balances
179 * the need for long delays to increase some race probabilities with the
180 * need for fast grace periods to increase other race probabilities.
182 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
185 * Compute the mask of online CPUs for the specified rcu_node structure.
186 * This will not be stable unless the rcu_node structure's ->lock is
187 * held, but the bit corresponding to the current CPU will be stable
188 * in most contexts.
190 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
192 return READ_ONCE(rnp->qsmaskinitnext);
196 * Return true if an RCU grace period is in progress. The READ_ONCE()s
197 * permit this function to be invoked without holding the root rcu_node
198 * structure's ->lock, but of course results can be subject to change.
200 static int rcu_gp_in_progress(void)
202 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
206 * Return the number of callbacks queued on the specified CPU.
207 * Handles both the nocbs and normal cases.
209 static long rcu_get_n_cbs_cpu(int cpu)
211 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
213 if (rcu_segcblist_is_enabled(&rdp->cblist)) /* Online normal CPU? */
214 return rcu_segcblist_n_cbs(&rdp->cblist);
215 return rcu_get_n_cbs_nocb_cpu(rdp); /* Works for offline, too. */
218 void rcu_softirq_qs(void)
220 rcu_qs();
221 rcu_preempt_deferred_qs(current);
225 * Record entry into an extended quiescent state. This is only to be
226 * called when not already in an extended quiescent state.
228 static void rcu_dynticks_eqs_enter(void)
230 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
231 int seq;
234 * CPUs seeing atomic_add_return() must see prior RCU read-side
235 * critical sections, and we also must force ordering with the
236 * next idle sojourn.
238 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
239 /* Better be in an extended quiescent state! */
240 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
241 (seq & RCU_DYNTICK_CTRL_CTR));
242 /* Better not have special action (TLB flush) pending! */
243 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
244 (seq & RCU_DYNTICK_CTRL_MASK));
248 * Record exit from an extended quiescent state. This is only to be
249 * called from an extended quiescent state.
251 static void rcu_dynticks_eqs_exit(void)
253 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
254 int seq;
257 * CPUs seeing atomic_add_return() must see prior idle sojourns,
258 * and we also must force ordering with the next RCU read-side
259 * critical section.
261 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
262 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
263 !(seq & RCU_DYNTICK_CTRL_CTR));
264 if (seq & RCU_DYNTICK_CTRL_MASK) {
265 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
266 smp_mb__after_atomic(); /* _exit after clearing mask. */
267 /* Prefer duplicate flushes to losing a flush. */
268 rcu_eqs_special_exit();
273 * Reset the current CPU's ->dynticks counter to indicate that the
274 * newly onlined CPU is no longer in an extended quiescent state.
275 * This will either leave the counter unchanged, or increment it
276 * to the next non-quiescent value.
278 * The non-atomic test/increment sequence works because the upper bits
279 * of the ->dynticks counter are manipulated only by the corresponding CPU,
280 * or when the corresponding CPU is offline.
282 static void rcu_dynticks_eqs_online(void)
284 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
286 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
287 return;
288 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
292 * Is the current CPU in an extended quiescent state?
294 * No ordering, as we are sampling CPU-local information.
296 bool rcu_dynticks_curr_cpu_in_eqs(void)
298 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
300 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
304 * Snapshot the ->dynticks counter with full ordering so as to allow
305 * stable comparison of this counter with past and future snapshots.
307 int rcu_dynticks_snap(struct rcu_data *rdp)
309 int snap = atomic_add_return(0, &rdp->dynticks);
311 return snap & ~RCU_DYNTICK_CTRL_MASK;
315 * Return true if the snapshot returned from rcu_dynticks_snap()
316 * indicates that RCU is in an extended quiescent state.
318 static bool rcu_dynticks_in_eqs(int snap)
320 return !(snap & RCU_DYNTICK_CTRL_CTR);
324 * Return true if the CPU corresponding to the specified rcu_data
325 * structure has spent some time in an extended quiescent state since
326 * rcu_dynticks_snap() returned the specified snapshot.
328 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
330 return snap != rcu_dynticks_snap(rdp);
334 * Set the special (bottom) bit of the specified CPU so that it
335 * will take special action (such as flushing its TLB) on the
336 * next exit from an extended quiescent state. Returns true if
337 * the bit was successfully set, or false if the CPU was not in
338 * an extended quiescent state.
340 bool rcu_eqs_special_set(int cpu)
342 int old;
343 int new;
344 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
346 do {
347 old = atomic_read(&rdp->dynticks);
348 if (old & RCU_DYNTICK_CTRL_CTR)
349 return false;
350 new = old | RCU_DYNTICK_CTRL_MASK;
351 } while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
352 return true;
356 * Let the RCU core know that this CPU has gone through the scheduler,
357 * which is a quiescent state. This is called when the need for a
358 * quiescent state is urgent, so we burn an atomic operation and full
359 * memory barriers to let the RCU core know about it, regardless of what
360 * this CPU might (or might not) do in the near future.
362 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
364 * The caller must have disabled interrupts and must not be idle.
366 static void __maybe_unused rcu_momentary_dyntick_idle(void)
368 int special;
370 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
371 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
372 &this_cpu_ptr(&rcu_data)->dynticks);
373 /* It is illegal to call this from idle state. */
374 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
375 rcu_preempt_deferred_qs(current);
379 * rcu_is_cpu_rrupt_from_idle - see if interrupted from idle
381 * If the current CPU is idle and running at a first-level (not nested)
382 * interrupt from idle, return true. The caller must have at least
383 * disabled preemption.
385 static int rcu_is_cpu_rrupt_from_idle(void)
387 /* Called only from within the scheduling-clock interrupt */
388 lockdep_assert_in_irq();
390 /* Check for counter underflows */
391 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
392 "RCU dynticks_nesting counter underflow!");
393 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
394 "RCU dynticks_nmi_nesting counter underflow/zero!");
396 /* Are we at first interrupt nesting level? */
397 if (__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 1)
398 return false;
400 /* Does CPU appear to be idle from an RCU standpoint? */
401 return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
404 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch ... */
405 #define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
406 static long blimit = DEFAULT_RCU_BLIMIT;
407 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
408 static long qhimark = DEFAULT_RCU_QHIMARK;
409 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
410 static long qlowmark = DEFAULT_RCU_QLOMARK;
412 module_param(blimit, long, 0444);
413 module_param(qhimark, long, 0444);
414 module_param(qlowmark, long, 0444);
416 static ulong jiffies_till_first_fqs = ULONG_MAX;
417 static ulong jiffies_till_next_fqs = ULONG_MAX;
418 static bool rcu_kick_kthreads;
421 * How long the grace period must be before we start recruiting
422 * quiescent-state help from rcu_note_context_switch().
424 static ulong jiffies_till_sched_qs = ULONG_MAX;
425 module_param(jiffies_till_sched_qs, ulong, 0444);
426 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
427 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
430 * Make sure that we give the grace-period kthread time to detect any
431 * idle CPUs before taking active measures to force quiescent states.
432 * However, don't go below 100 milliseconds, adjusted upwards for really
433 * large systems.
435 static void adjust_jiffies_till_sched_qs(void)
437 unsigned long j;
439 /* If jiffies_till_sched_qs was specified, respect the request. */
440 if (jiffies_till_sched_qs != ULONG_MAX) {
441 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
442 return;
444 /* Otherwise, set to third fqs scan, but bound below on large system. */
445 j = READ_ONCE(jiffies_till_first_fqs) +
446 2 * READ_ONCE(jiffies_till_next_fqs);
447 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
448 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
449 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
450 WRITE_ONCE(jiffies_to_sched_qs, j);
453 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
455 ulong j;
456 int ret = kstrtoul(val, 0, &j);
458 if (!ret) {
459 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
460 adjust_jiffies_till_sched_qs();
462 return ret;
465 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
467 ulong j;
468 int ret = kstrtoul(val, 0, &j);
470 if (!ret) {
471 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
472 adjust_jiffies_till_sched_qs();
474 return ret;
477 static struct kernel_param_ops first_fqs_jiffies_ops = {
478 .set = param_set_first_fqs_jiffies,
479 .get = param_get_ulong,
482 static struct kernel_param_ops next_fqs_jiffies_ops = {
483 .set = param_set_next_fqs_jiffies,
484 .get = param_get_ulong,
487 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
488 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
489 module_param(rcu_kick_kthreads, bool, 0644);
491 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
492 static int rcu_pending(void);
495 * Return the number of RCU GPs completed thus far for debug & stats.
497 unsigned long rcu_get_gp_seq(void)
499 return READ_ONCE(rcu_state.gp_seq);
501 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
504 * Return the number of RCU expedited batches completed thus far for
505 * debug & stats. Odd numbers mean that a batch is in progress, even
506 * numbers mean idle. The value returned will thus be roughly double
507 * the cumulative batches since boot.
509 unsigned long rcu_exp_batches_completed(void)
511 return rcu_state.expedited_sequence;
513 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
516 * Return the root node of the rcu_state structure.
518 static struct rcu_node *rcu_get_root(void)
520 return &rcu_state.node[0];
524 * Convert a ->gp_state value to a character string.
526 static const char *gp_state_getname(short gs)
528 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
529 return "???";
530 return gp_state_names[gs];
534 * Send along grace-period-related data for rcutorture diagnostics.
536 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
537 unsigned long *gp_seq)
539 switch (test_type) {
540 case RCU_FLAVOR:
541 *flags = READ_ONCE(rcu_state.gp_flags);
542 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
543 break;
544 default:
545 break;
548 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
551 * Enter an RCU extended quiescent state, which can be either the
552 * idle loop or adaptive-tickless usermode execution.
554 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
555 * the possibility of usermode upcalls having messed up our count
556 * of interrupt nesting level during the prior busy period.
558 static void rcu_eqs_enter(bool user)
560 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
562 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
563 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
564 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
565 rdp->dynticks_nesting == 0);
566 if (rdp->dynticks_nesting != 1) {
567 rdp->dynticks_nesting--;
568 return;
571 lockdep_assert_irqs_disabled();
572 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
573 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
574 rdp = this_cpu_ptr(&rcu_data);
575 do_nocb_deferred_wakeup(rdp);
576 rcu_prepare_for_idle();
577 rcu_preempt_deferred_qs(current);
578 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
579 rcu_dynticks_eqs_enter();
580 rcu_dynticks_task_enter();
584 * rcu_idle_enter - inform RCU that current CPU is entering idle
586 * Enter idle mode, in other words, -leave- the mode in which RCU
587 * read-side critical sections can occur. (Though RCU read-side
588 * critical sections can occur in irq handlers in idle, a possibility
589 * handled by irq_enter() and irq_exit().)
591 * If you add or remove a call to rcu_idle_enter(), be sure to test with
592 * CONFIG_RCU_EQS_DEBUG=y.
594 void rcu_idle_enter(void)
596 lockdep_assert_irqs_disabled();
597 rcu_eqs_enter(false);
600 #ifdef CONFIG_NO_HZ_FULL
602 * rcu_user_enter - inform RCU that we are resuming userspace.
604 * Enter RCU idle mode right before resuming userspace. No use of RCU
605 * is permitted between this call and rcu_user_exit(). This way the
606 * CPU doesn't need to maintain the tick for RCU maintenance purposes
607 * when the CPU runs in userspace.
609 * If you add or remove a call to rcu_user_enter(), be sure to test with
610 * CONFIG_RCU_EQS_DEBUG=y.
612 void rcu_user_enter(void)
614 lockdep_assert_irqs_disabled();
615 rcu_eqs_enter(true);
617 #endif /* CONFIG_NO_HZ_FULL */
620 * If we are returning from the outermost NMI handler that interrupted an
621 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
622 * to let the RCU grace-period handling know that the CPU is back to
623 * being RCU-idle.
625 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
626 * with CONFIG_RCU_EQS_DEBUG=y.
628 static __always_inline void rcu_nmi_exit_common(bool irq)
630 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
633 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
634 * (We are exiting an NMI handler, so RCU better be paying attention
635 * to us!)
637 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
638 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
641 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
642 * leave it in non-RCU-idle state.
644 if (rdp->dynticks_nmi_nesting != 1) {
645 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
646 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
647 rdp->dynticks_nmi_nesting - 2);
648 return;
651 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
652 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
653 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
655 if (irq)
656 rcu_prepare_for_idle();
658 rcu_dynticks_eqs_enter();
660 if (irq)
661 rcu_dynticks_task_enter();
665 * rcu_nmi_exit - inform RCU of exit from NMI context
667 * If you add or remove a call to rcu_nmi_exit(), be sure to test
668 * with CONFIG_RCU_EQS_DEBUG=y.
670 void rcu_nmi_exit(void)
672 rcu_nmi_exit_common(false);
676 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
678 * Exit from an interrupt handler, which might possibly result in entering
679 * idle mode, in other words, leaving the mode in which read-side critical
680 * sections can occur. The caller must have disabled interrupts.
682 * This code assumes that the idle loop never does anything that might
683 * result in unbalanced calls to irq_enter() and irq_exit(). If your
684 * architecture's idle loop violates this assumption, RCU will give you what
685 * you deserve, good and hard. But very infrequently and irreproducibly.
687 * Use things like work queues to work around this limitation.
689 * You have been warned.
691 * If you add or remove a call to rcu_irq_exit(), be sure to test with
692 * CONFIG_RCU_EQS_DEBUG=y.
694 void rcu_irq_exit(void)
696 lockdep_assert_irqs_disabled();
697 rcu_nmi_exit_common(true);
701 * Wrapper for rcu_irq_exit() where interrupts are enabled.
703 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
704 * with CONFIG_RCU_EQS_DEBUG=y.
706 void rcu_irq_exit_irqson(void)
708 unsigned long flags;
710 local_irq_save(flags);
711 rcu_irq_exit();
712 local_irq_restore(flags);
716 * Exit an RCU extended quiescent state, which can be either the
717 * idle loop or adaptive-tickless usermode execution.
719 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
720 * allow for the possibility of usermode upcalls messing up our count of
721 * interrupt nesting level during the busy period that is just now starting.
723 static void rcu_eqs_exit(bool user)
725 struct rcu_data *rdp;
726 long oldval;
728 lockdep_assert_irqs_disabled();
729 rdp = this_cpu_ptr(&rcu_data);
730 oldval = rdp->dynticks_nesting;
731 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
732 if (oldval) {
733 rdp->dynticks_nesting++;
734 return;
736 rcu_dynticks_task_exit();
737 rcu_dynticks_eqs_exit();
738 rcu_cleanup_after_idle();
739 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
740 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
741 WRITE_ONCE(rdp->dynticks_nesting, 1);
742 WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
743 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
747 * rcu_idle_exit - inform RCU that current CPU is leaving idle
749 * Exit idle mode, in other words, -enter- the mode in which RCU
750 * read-side critical sections can occur.
752 * If you add or remove a call to rcu_idle_exit(), be sure to test with
753 * CONFIG_RCU_EQS_DEBUG=y.
755 void rcu_idle_exit(void)
757 unsigned long flags;
759 local_irq_save(flags);
760 rcu_eqs_exit(false);
761 local_irq_restore(flags);
764 #ifdef CONFIG_NO_HZ_FULL
766 * rcu_user_exit - inform RCU that we are exiting userspace.
768 * Exit RCU idle mode while entering the kernel because it can
769 * run a RCU read side critical section anytime.
771 * If you add or remove a call to rcu_user_exit(), be sure to test with
772 * CONFIG_RCU_EQS_DEBUG=y.
774 void rcu_user_exit(void)
776 rcu_eqs_exit(1);
778 #endif /* CONFIG_NO_HZ_FULL */
781 * rcu_nmi_enter_common - inform RCU of entry to NMI context
782 * @irq: Is this call from rcu_irq_enter?
784 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
785 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
786 * that the CPU is active. This implementation permits nested NMIs, as
787 * long as the nesting level does not overflow an int. (You will probably
788 * run out of stack space first.)
790 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
791 * with CONFIG_RCU_EQS_DEBUG=y.
793 static __always_inline void rcu_nmi_enter_common(bool irq)
795 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
796 long incby = 2;
798 /* Complain about underflow. */
799 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
802 * If idle from RCU viewpoint, atomically increment ->dynticks
803 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
804 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
805 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
806 * to be in the outermost NMI handler that interrupted an RCU-idle
807 * period (observation due to Andy Lutomirski).
809 if (rcu_dynticks_curr_cpu_in_eqs()) {
811 if (irq)
812 rcu_dynticks_task_exit();
814 rcu_dynticks_eqs_exit();
816 if (irq)
817 rcu_cleanup_after_idle();
819 incby = 1;
821 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
822 rdp->dynticks_nmi_nesting,
823 rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
824 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
825 rdp->dynticks_nmi_nesting + incby);
826 barrier();
830 * rcu_nmi_enter - inform RCU of entry to NMI context
832 void rcu_nmi_enter(void)
834 rcu_nmi_enter_common(false);
836 NOKPROBE_SYMBOL(rcu_nmi_enter);
839 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
841 * Enter an interrupt handler, which might possibly result in exiting
842 * idle mode, in other words, entering the mode in which read-side critical
843 * sections can occur. The caller must have disabled interrupts.
845 * Note that the Linux kernel is fully capable of entering an interrupt
846 * handler that it never exits, for example when doing upcalls to user mode!
847 * This code assumes that the idle loop never does upcalls to user mode.
848 * If your architecture's idle loop does do upcalls to user mode (or does
849 * anything else that results in unbalanced calls to the irq_enter() and
850 * irq_exit() functions), RCU will give you what you deserve, good and hard.
851 * But very infrequently and irreproducibly.
853 * Use things like work queues to work around this limitation.
855 * You have been warned.
857 * If you add or remove a call to rcu_irq_enter(), be sure to test with
858 * CONFIG_RCU_EQS_DEBUG=y.
860 void rcu_irq_enter(void)
862 lockdep_assert_irqs_disabled();
863 rcu_nmi_enter_common(true);
867 * Wrapper for rcu_irq_enter() where interrupts are enabled.
869 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
870 * with CONFIG_RCU_EQS_DEBUG=y.
872 void rcu_irq_enter_irqson(void)
874 unsigned long flags;
876 local_irq_save(flags);
877 rcu_irq_enter();
878 local_irq_restore(flags);
882 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
884 * Return true if RCU is watching the running CPU, which means that this
885 * CPU can safely enter RCU read-side critical sections. In other words,
886 * if the current CPU is not in its idle loop or is in an interrupt or
887 * NMI handler, return true.
889 bool notrace rcu_is_watching(void)
891 bool ret;
893 preempt_disable_notrace();
894 ret = !rcu_dynticks_curr_cpu_in_eqs();
895 preempt_enable_notrace();
896 return ret;
898 EXPORT_SYMBOL_GPL(rcu_is_watching);
901 * If a holdout task is actually running, request an urgent quiescent
902 * state from its CPU. This is unsynchronized, so migrations can cause
903 * the request to go to the wrong CPU. Which is OK, all that will happen
904 * is that the CPU's next context switch will be a bit slower and next
905 * time around this task will generate another request.
907 void rcu_request_urgent_qs_task(struct task_struct *t)
909 int cpu;
911 barrier();
912 cpu = task_cpu(t);
913 if (!task_curr(t))
914 return; /* This task is not running on that CPU. */
915 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
918 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
921 * Is the current CPU online as far as RCU is concerned?
923 * Disable preemption to avoid false positives that could otherwise
924 * happen due to the current CPU number being sampled, this task being
925 * preempted, its old CPU being taken offline, resuming on some other CPU,
926 * then determining that its old CPU is now offline.
928 * Disable checking if in an NMI handler because we cannot safely
929 * report errors from NMI handlers anyway. In addition, it is OK to use
930 * RCU on an offline processor during initial boot, hence the check for
931 * rcu_scheduler_fully_active.
933 bool rcu_lockdep_current_cpu_online(void)
935 struct rcu_data *rdp;
936 struct rcu_node *rnp;
937 bool ret = false;
939 if (in_nmi() || !rcu_scheduler_fully_active)
940 return true;
941 preempt_disable();
942 rdp = this_cpu_ptr(&rcu_data);
943 rnp = rdp->mynode;
944 if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
945 ret = true;
946 preempt_enable();
947 return ret;
949 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
951 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
954 * We are reporting a quiescent state on behalf of some other CPU, so
955 * it is our responsibility to check for and handle potential overflow
956 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
957 * After all, the CPU might be in deep idle state, and thus executing no
958 * code whatsoever.
960 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
962 raw_lockdep_assert_held_rcu_node(rnp);
963 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
964 rnp->gp_seq))
965 WRITE_ONCE(rdp->gpwrap, true);
966 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
967 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
971 * Snapshot the specified CPU's dynticks counter so that we can later
972 * credit them with an implicit quiescent state. Return 1 if this CPU
973 * is in dynticks idle mode, which is an extended quiescent state.
975 static int dyntick_save_progress_counter(struct rcu_data *rdp)
977 rdp->dynticks_snap = rcu_dynticks_snap(rdp);
978 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
979 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
980 rcu_gpnum_ovf(rdp->mynode, rdp);
981 return 1;
983 return 0;
987 * Return true if the specified CPU has passed through a quiescent
988 * state by virtue of being in or having passed through an dynticks
989 * idle state since the last call to dyntick_save_progress_counter()
990 * for this same CPU, or by virtue of having been offline.
992 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
994 unsigned long jtsq;
995 bool *rnhqp;
996 bool *ruqp;
997 struct rcu_node *rnp = rdp->mynode;
1000 * If the CPU passed through or entered a dynticks idle phase with
1001 * no active irq/NMI handlers, then we can safely pretend that the CPU
1002 * already acknowledged the request to pass through a quiescent
1003 * state. Either way, that CPU cannot possibly be in an RCU
1004 * read-side critical section that started before the beginning
1005 * of the current RCU grace period.
1007 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1008 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1009 rcu_gpnum_ovf(rnp, rdp);
1010 return 1;
1013 /* If waiting too long on an offline CPU, complain. */
1014 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1015 time_after(jiffies, rcu_state.gp_start + HZ)) {
1016 bool onl;
1017 struct rcu_node *rnp1;
1019 WARN_ON(1); /* Offline CPUs are supposed to report QS! */
1020 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1021 __func__, rnp->grplo, rnp->grphi, rnp->level,
1022 (long)rnp->gp_seq, (long)rnp->completedqs);
1023 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1024 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1025 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1026 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1027 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1028 __func__, rdp->cpu, ".o"[onl],
1029 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1030 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1031 return 1; /* Break things loose after complaining. */
1035 * A CPU running for an extended time within the kernel can
1036 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1037 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1038 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1039 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1040 * variable are safe because the assignments are repeated if this
1041 * CPU failed to pass through a quiescent state. This code
1042 * also checks .jiffies_resched in case jiffies_to_sched_qs
1043 * is set way high.
1045 jtsq = READ_ONCE(jiffies_to_sched_qs);
1046 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1047 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1048 if (!READ_ONCE(*rnhqp) &&
1049 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1050 time_after(jiffies, rcu_state.jiffies_resched))) {
1051 WRITE_ONCE(*rnhqp, true);
1052 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1053 smp_store_release(ruqp, true);
1054 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1055 WRITE_ONCE(*ruqp, true);
1059 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1060 * The above code handles this, but only for straight cond_resched().
1061 * And some in-kernel loops check need_resched() before calling
1062 * cond_resched(), which defeats the above code for CPUs that are
1063 * running in-kernel with scheduling-clock interrupts disabled.
1064 * So hit them over the head with the resched_cpu() hammer!
1066 if (tick_nohz_full_cpu(rdp->cpu) &&
1067 time_after(jiffies,
1068 READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
1069 resched_cpu(rdp->cpu);
1070 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1074 * If more than halfway to RCU CPU stall-warning time, invoke
1075 * resched_cpu() more frequently to try to loosen things up a bit.
1076 * Also check to see if the CPU is getting hammered with interrupts,
1077 * but only once per grace period, just to keep the IPIs down to
1078 * a dull roar.
1080 if (time_after(jiffies, rcu_state.jiffies_resched)) {
1081 if (time_after(jiffies,
1082 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1083 resched_cpu(rdp->cpu);
1084 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1086 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1087 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1088 (rnp->ffmask & rdp->grpmask)) {
1089 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1090 rdp->rcu_iw_pending = true;
1091 rdp->rcu_iw_gp_seq = rnp->gp_seq;
1092 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1096 return 0;
1099 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
1100 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1101 unsigned long gp_seq_req, const char *s)
1103 trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
1104 rnp->level, rnp->grplo, rnp->grphi, s);
1108 * rcu_start_this_gp - Request the start of a particular grace period
1109 * @rnp_start: The leaf node of the CPU from which to start.
1110 * @rdp: The rcu_data corresponding to the CPU from which to start.
1111 * @gp_seq_req: The gp_seq of the grace period to start.
1113 * Start the specified grace period, as needed to handle newly arrived
1114 * callbacks. The required future grace periods are recorded in each
1115 * rcu_node structure's ->gp_seq_needed field. Returns true if there
1116 * is reason to awaken the grace-period kthread.
1118 * The caller must hold the specified rcu_node structure's ->lock, which
1119 * is why the caller is responsible for waking the grace-period kthread.
1121 * Returns true if the GP thread needs to be awakened else false.
1123 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1124 unsigned long gp_seq_req)
1126 bool ret = false;
1127 struct rcu_node *rnp;
1130 * Use funnel locking to either acquire the root rcu_node
1131 * structure's lock or bail out if the need for this grace period
1132 * has already been recorded -- or if that grace period has in
1133 * fact already started. If there is already a grace period in
1134 * progress in a non-leaf node, no recording is needed because the
1135 * end of the grace period will scan the leaf rcu_node structures.
1136 * Note that rnp_start->lock must not be released.
1138 raw_lockdep_assert_held_rcu_node(rnp_start);
1139 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1140 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1141 if (rnp != rnp_start)
1142 raw_spin_lock_rcu_node(rnp);
1143 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1144 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1145 (rnp != rnp_start &&
1146 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1147 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1148 TPS("Prestarted"));
1149 goto unlock_out;
1151 rnp->gp_seq_needed = gp_seq_req;
1152 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1154 * We just marked the leaf or internal node, and a
1155 * grace period is in progress, which means that
1156 * rcu_gp_cleanup() will see the marking. Bail to
1157 * reduce contention.
1159 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1160 TPS("Startedleaf"));
1161 goto unlock_out;
1163 if (rnp != rnp_start && rnp->parent != NULL)
1164 raw_spin_unlock_rcu_node(rnp);
1165 if (!rnp->parent)
1166 break; /* At root, and perhaps also leaf. */
1169 /* If GP already in progress, just leave, otherwise start one. */
1170 if (rcu_gp_in_progress()) {
1171 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1172 goto unlock_out;
1174 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1175 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1176 rcu_state.gp_req_activity = jiffies;
1177 if (!rcu_state.gp_kthread) {
1178 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1179 goto unlock_out;
1181 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
1182 ret = true; /* Caller must wake GP kthread. */
1183 unlock_out:
1184 /* Push furthest requested GP to leaf node and rcu_data structure. */
1185 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1186 rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1187 rdp->gp_seq_needed = rnp->gp_seq_needed;
1189 if (rnp != rnp_start)
1190 raw_spin_unlock_rcu_node(rnp);
1191 return ret;
1195 * Clean up any old requests for the just-ended grace period. Also return
1196 * whether any additional grace periods have been requested.
1198 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1200 bool needmore;
1201 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1203 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1204 if (!needmore)
1205 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1206 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1207 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1208 return needmore;
1212 * Awaken the grace-period kthread. Don't do a self-awaken (unless in
1213 * an interrupt or softirq handler), and don't bother awakening when there
1214 * is nothing for the grace-period kthread to do (as in several CPUs raced
1215 * to awaken, and we lost), and finally don't try to awaken a kthread that
1216 * has not yet been created. If all those checks are passed, track some
1217 * debug information and awaken.
1219 * So why do the self-wakeup when in an interrupt or softirq handler
1220 * in the grace-period kthread's context? Because the kthread might have
1221 * been interrupted just as it was going to sleep, and just after the final
1222 * pre-sleep check of the awaken condition. In this case, a wakeup really
1223 * is required, and is therefore supplied.
1225 static void rcu_gp_kthread_wake(void)
1227 if ((current == rcu_state.gp_kthread &&
1228 !in_irq() && !in_serving_softirq()) ||
1229 !READ_ONCE(rcu_state.gp_flags) ||
1230 !rcu_state.gp_kthread)
1231 return;
1232 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1233 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1234 swake_up_one(&rcu_state.gp_wq);
1238 * If there is room, assign a ->gp_seq number to any callbacks on this
1239 * CPU that have not already been assigned. Also accelerate any callbacks
1240 * that were previously assigned a ->gp_seq number that has since proven
1241 * to be too conservative, which can happen if callbacks get assigned a
1242 * ->gp_seq number while RCU is idle, but with reference to a non-root
1243 * rcu_node structure. This function is idempotent, so it does not hurt
1244 * to call it repeatedly. Returns an flag saying that we should awaken
1245 * the RCU grace-period kthread.
1247 * The caller must hold rnp->lock with interrupts disabled.
1249 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1251 unsigned long gp_seq_req;
1252 bool ret = false;
1254 raw_lockdep_assert_held_rcu_node(rnp);
1256 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1257 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1258 return false;
1261 * Callbacks are often registered with incomplete grace-period
1262 * information. Something about the fact that getting exact
1263 * information requires acquiring a global lock... RCU therefore
1264 * makes a conservative estimate of the grace period number at which
1265 * a given callback will become ready to invoke. The following
1266 * code checks this estimate and improves it when possible, thus
1267 * accelerating callback invocation to an earlier grace-period
1268 * number.
1270 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1271 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1272 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1274 /* Trace depending on how much we were able to accelerate. */
1275 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1276 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1277 else
1278 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1279 return ret;
1283 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1284 * rcu_node structure's ->lock be held. It consults the cached value
1285 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1286 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1287 * while holding the leaf rcu_node structure's ->lock.
1289 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1290 struct rcu_data *rdp)
1292 unsigned long c;
1293 bool needwake;
1295 lockdep_assert_irqs_disabled();
1296 c = rcu_seq_snap(&rcu_state.gp_seq);
1297 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1298 /* Old request still live, so mark recent callbacks. */
1299 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1300 return;
1302 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1303 needwake = rcu_accelerate_cbs(rnp, rdp);
1304 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1305 if (needwake)
1306 rcu_gp_kthread_wake();
1310 * Move any callbacks whose grace period has completed to the
1311 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1312 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1313 * sublist. This function is idempotent, so it does not hurt to
1314 * invoke it repeatedly. As long as it is not invoked -too- often...
1315 * Returns true if the RCU grace-period kthread needs to be awakened.
1317 * The caller must hold rnp->lock with interrupts disabled.
1319 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1321 raw_lockdep_assert_held_rcu_node(rnp);
1323 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1324 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1325 return false;
1328 * Find all callbacks whose ->gp_seq numbers indicate that they
1329 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1331 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1333 /* Classify any remaining callbacks. */
1334 return rcu_accelerate_cbs(rnp, rdp);
1338 * Update CPU-local rcu_data state to record the beginnings and ends of
1339 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1340 * structure corresponding to the current CPU, and must have irqs disabled.
1341 * Returns true if the grace-period kthread needs to be awakened.
1343 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1345 bool ret;
1346 bool need_gp;
1348 raw_lockdep_assert_held_rcu_node(rnp);
1350 if (rdp->gp_seq == rnp->gp_seq)
1351 return false; /* Nothing to do. */
1353 /* Handle the ends of any preceding grace periods first. */
1354 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1355 unlikely(READ_ONCE(rdp->gpwrap))) {
1356 ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */
1357 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1358 } else {
1359 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */
1362 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1363 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1364 unlikely(READ_ONCE(rdp->gpwrap))) {
1366 * If the current grace period is waiting for this CPU,
1367 * set up to detect a quiescent state, otherwise don't
1368 * go looking for one.
1370 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1371 need_gp = !!(rnp->qsmask & rdp->grpmask);
1372 rdp->cpu_no_qs.b.norm = need_gp;
1373 rdp->core_needs_qs = need_gp;
1374 zero_cpu_stall_ticks(rdp);
1376 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1377 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1378 rdp->gp_seq_needed = rnp->gp_seq_needed;
1379 WRITE_ONCE(rdp->gpwrap, false);
1380 rcu_gpnum_ovf(rnp, rdp);
1381 return ret;
1384 static void note_gp_changes(struct rcu_data *rdp)
1386 unsigned long flags;
1387 bool needwake;
1388 struct rcu_node *rnp;
1390 local_irq_save(flags);
1391 rnp = rdp->mynode;
1392 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1393 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1394 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1395 local_irq_restore(flags);
1396 return;
1398 needwake = __note_gp_changes(rnp, rdp);
1399 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1400 if (needwake)
1401 rcu_gp_kthread_wake();
1404 static void rcu_gp_slow(int delay)
1406 if (delay > 0 &&
1407 !(rcu_seq_ctr(rcu_state.gp_seq) %
1408 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1409 schedule_timeout_uninterruptible(delay);
1413 * Initialize a new grace period. Return false if no grace period required.
1415 static bool rcu_gp_init(void)
1417 unsigned long flags;
1418 unsigned long oldmask;
1419 unsigned long mask;
1420 struct rcu_data *rdp;
1421 struct rcu_node *rnp = rcu_get_root();
1423 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1424 raw_spin_lock_irq_rcu_node(rnp);
1425 if (!READ_ONCE(rcu_state.gp_flags)) {
1426 /* Spurious wakeup, tell caller to go back to sleep. */
1427 raw_spin_unlock_irq_rcu_node(rnp);
1428 return false;
1430 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1432 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1434 * Grace period already in progress, don't start another.
1435 * Not supposed to be able to happen.
1437 raw_spin_unlock_irq_rcu_node(rnp);
1438 return false;
1441 /* Advance to a new grace period and initialize state. */
1442 record_gp_stall_check_time();
1443 /* Record GP times before starting GP, hence rcu_seq_start(). */
1444 rcu_seq_start(&rcu_state.gp_seq);
1445 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1446 raw_spin_unlock_irq_rcu_node(rnp);
1449 * Apply per-leaf buffered online and offline operations to the
1450 * rcu_node tree. Note that this new grace period need not wait
1451 * for subsequent online CPUs, and that quiescent-state forcing
1452 * will handle subsequent offline CPUs.
1454 rcu_state.gp_state = RCU_GP_ONOFF;
1455 rcu_for_each_leaf_node(rnp) {
1456 raw_spin_lock(&rcu_state.ofl_lock);
1457 raw_spin_lock_irq_rcu_node(rnp);
1458 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1459 !rnp->wait_blkd_tasks) {
1460 /* Nothing to do on this leaf rcu_node structure. */
1461 raw_spin_unlock_irq_rcu_node(rnp);
1462 raw_spin_unlock(&rcu_state.ofl_lock);
1463 continue;
1466 /* Record old state, apply changes to ->qsmaskinit field. */
1467 oldmask = rnp->qsmaskinit;
1468 rnp->qsmaskinit = rnp->qsmaskinitnext;
1470 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1471 if (!oldmask != !rnp->qsmaskinit) {
1472 if (!oldmask) { /* First online CPU for rcu_node. */
1473 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1474 rcu_init_new_rnp(rnp);
1475 } else if (rcu_preempt_has_tasks(rnp)) {
1476 rnp->wait_blkd_tasks = true; /* blocked tasks */
1477 } else { /* Last offline CPU and can propagate. */
1478 rcu_cleanup_dead_rnp(rnp);
1483 * If all waited-on tasks from prior grace period are
1484 * done, and if all this rcu_node structure's CPUs are
1485 * still offline, propagate up the rcu_node tree and
1486 * clear ->wait_blkd_tasks. Otherwise, if one of this
1487 * rcu_node structure's CPUs has since come back online,
1488 * simply clear ->wait_blkd_tasks.
1490 if (rnp->wait_blkd_tasks &&
1491 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1492 rnp->wait_blkd_tasks = false;
1493 if (!rnp->qsmaskinit)
1494 rcu_cleanup_dead_rnp(rnp);
1497 raw_spin_unlock_irq_rcu_node(rnp);
1498 raw_spin_unlock(&rcu_state.ofl_lock);
1500 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1503 * Set the quiescent-state-needed bits in all the rcu_node
1504 * structures for all currently online CPUs in breadth-first
1505 * order, starting from the root rcu_node structure, relying on the
1506 * layout of the tree within the rcu_state.node[] array. Note that
1507 * other CPUs will access only the leaves of the hierarchy, thus
1508 * seeing that no grace period is in progress, at least until the
1509 * corresponding leaf node has been initialized.
1511 * The grace period cannot complete until the initialization
1512 * process finishes, because this kthread handles both.
1514 rcu_state.gp_state = RCU_GP_INIT;
1515 rcu_for_each_node_breadth_first(rnp) {
1516 rcu_gp_slow(gp_init_delay);
1517 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1518 rdp = this_cpu_ptr(&rcu_data);
1519 rcu_preempt_check_blocked_tasks(rnp);
1520 rnp->qsmask = rnp->qsmaskinit;
1521 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1522 if (rnp == rdp->mynode)
1523 (void)__note_gp_changes(rnp, rdp);
1524 rcu_preempt_boost_start_gp(rnp);
1525 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1526 rnp->level, rnp->grplo,
1527 rnp->grphi, rnp->qsmask);
1528 /* Quiescent states for tasks on any now-offline CPUs. */
1529 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1530 rnp->rcu_gp_init_mask = mask;
1531 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1532 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1533 else
1534 raw_spin_unlock_irq_rcu_node(rnp);
1535 cond_resched_tasks_rcu_qs();
1536 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1539 return true;
1543 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1544 * time.
1546 static bool rcu_gp_fqs_check_wake(int *gfp)
1548 struct rcu_node *rnp = rcu_get_root();
1550 /* Someone like call_rcu() requested a force-quiescent-state scan. */
1551 *gfp = READ_ONCE(rcu_state.gp_flags);
1552 if (*gfp & RCU_GP_FLAG_FQS)
1553 return true;
1555 /* The current grace period has completed. */
1556 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1557 return true;
1559 return false;
1563 * Do one round of quiescent-state forcing.
1565 static void rcu_gp_fqs(bool first_time)
1567 struct rcu_node *rnp = rcu_get_root();
1569 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1570 rcu_state.n_force_qs++;
1571 if (first_time) {
1572 /* Collect dyntick-idle snapshots. */
1573 force_qs_rnp(dyntick_save_progress_counter);
1574 } else {
1575 /* Handle dyntick-idle and offline CPUs. */
1576 force_qs_rnp(rcu_implicit_dynticks_qs);
1578 /* Clear flag to prevent immediate re-entry. */
1579 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1580 raw_spin_lock_irq_rcu_node(rnp);
1581 WRITE_ONCE(rcu_state.gp_flags,
1582 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1583 raw_spin_unlock_irq_rcu_node(rnp);
1588 * Loop doing repeated quiescent-state forcing until the grace period ends.
1590 static void rcu_gp_fqs_loop(void)
1592 bool first_gp_fqs;
1593 int gf;
1594 unsigned long j;
1595 int ret;
1596 struct rcu_node *rnp = rcu_get_root();
1598 first_gp_fqs = true;
1599 j = READ_ONCE(jiffies_till_first_fqs);
1600 ret = 0;
1601 for (;;) {
1602 if (!ret) {
1603 rcu_state.jiffies_force_qs = jiffies + j;
1604 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1605 jiffies + (j ? 3 * j : 2));
1607 trace_rcu_grace_period(rcu_state.name,
1608 READ_ONCE(rcu_state.gp_seq),
1609 TPS("fqswait"));
1610 rcu_state.gp_state = RCU_GP_WAIT_FQS;
1611 ret = swait_event_idle_timeout_exclusive(
1612 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1613 rcu_state.gp_state = RCU_GP_DOING_FQS;
1614 /* Locking provides needed memory barriers. */
1615 /* If grace period done, leave loop. */
1616 if (!READ_ONCE(rnp->qsmask) &&
1617 !rcu_preempt_blocked_readers_cgp(rnp))
1618 break;
1619 /* If time for quiescent-state forcing, do it. */
1620 if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1621 (gf & RCU_GP_FLAG_FQS)) {
1622 trace_rcu_grace_period(rcu_state.name,
1623 READ_ONCE(rcu_state.gp_seq),
1624 TPS("fqsstart"));
1625 rcu_gp_fqs(first_gp_fqs);
1626 first_gp_fqs = false;
1627 trace_rcu_grace_period(rcu_state.name,
1628 READ_ONCE(rcu_state.gp_seq),
1629 TPS("fqsend"));
1630 cond_resched_tasks_rcu_qs();
1631 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1632 ret = 0; /* Force full wait till next FQS. */
1633 j = READ_ONCE(jiffies_till_next_fqs);
1634 } else {
1635 /* Deal with stray signal. */
1636 cond_resched_tasks_rcu_qs();
1637 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1638 WARN_ON(signal_pending(current));
1639 trace_rcu_grace_period(rcu_state.name,
1640 READ_ONCE(rcu_state.gp_seq),
1641 TPS("fqswaitsig"));
1642 ret = 1; /* Keep old FQS timing. */
1643 j = jiffies;
1644 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1645 j = 1;
1646 else
1647 j = rcu_state.jiffies_force_qs - j;
1653 * Clean up after the old grace period.
1655 static void rcu_gp_cleanup(void)
1657 unsigned long gp_duration;
1658 bool needgp = false;
1659 unsigned long new_gp_seq;
1660 struct rcu_data *rdp;
1661 struct rcu_node *rnp = rcu_get_root();
1662 struct swait_queue_head *sq;
1664 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1665 raw_spin_lock_irq_rcu_node(rnp);
1666 rcu_state.gp_end = jiffies;
1667 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1668 if (gp_duration > rcu_state.gp_max)
1669 rcu_state.gp_max = gp_duration;
1672 * We know the grace period is complete, but to everyone else
1673 * it appears to still be ongoing. But it is also the case
1674 * that to everyone else it looks like there is nothing that
1675 * they can do to advance the grace period. It is therefore
1676 * safe for us to drop the lock in order to mark the grace
1677 * period as completed in all of the rcu_node structures.
1679 raw_spin_unlock_irq_rcu_node(rnp);
1682 * Propagate new ->gp_seq value to rcu_node structures so that
1683 * other CPUs don't have to wait until the start of the next grace
1684 * period to process their callbacks. This also avoids some nasty
1685 * RCU grace-period initialization races by forcing the end of
1686 * the current grace period to be completely recorded in all of
1687 * the rcu_node structures before the beginning of the next grace
1688 * period is recorded in any of the rcu_node structures.
1690 new_gp_seq = rcu_state.gp_seq;
1691 rcu_seq_end(&new_gp_seq);
1692 rcu_for_each_node_breadth_first(rnp) {
1693 raw_spin_lock_irq_rcu_node(rnp);
1694 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1695 dump_blkd_tasks(rnp, 10);
1696 WARN_ON_ONCE(rnp->qsmask);
1697 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1698 rdp = this_cpu_ptr(&rcu_data);
1699 if (rnp == rdp->mynode)
1700 needgp = __note_gp_changes(rnp, rdp) || needgp;
1701 /* smp_mb() provided by prior unlock-lock pair. */
1702 needgp = rcu_future_gp_cleanup(rnp) || needgp;
1703 sq = rcu_nocb_gp_get(rnp);
1704 raw_spin_unlock_irq_rcu_node(rnp);
1705 rcu_nocb_gp_cleanup(sq);
1706 cond_resched_tasks_rcu_qs();
1707 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1708 rcu_gp_slow(gp_cleanup_delay);
1710 rnp = rcu_get_root();
1711 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1713 /* Declare grace period done, trace first to use old GP number. */
1714 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1715 rcu_seq_end(&rcu_state.gp_seq);
1716 rcu_state.gp_state = RCU_GP_IDLE;
1717 /* Check for GP requests since above loop. */
1718 rdp = this_cpu_ptr(&rcu_data);
1719 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1720 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1721 TPS("CleanupMore"));
1722 needgp = true;
1724 /* Advance CBs to reduce false positives below. */
1725 if (!rcu_accelerate_cbs(rnp, rdp) && needgp) {
1726 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1727 rcu_state.gp_req_activity = jiffies;
1728 trace_rcu_grace_period(rcu_state.name,
1729 READ_ONCE(rcu_state.gp_seq),
1730 TPS("newreq"));
1731 } else {
1732 WRITE_ONCE(rcu_state.gp_flags,
1733 rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1735 raw_spin_unlock_irq_rcu_node(rnp);
1739 * Body of kthread that handles grace periods.
1741 static int __noreturn rcu_gp_kthread(void *unused)
1743 rcu_bind_gp_kthread();
1744 for (;;) {
1746 /* Handle grace-period start. */
1747 for (;;) {
1748 trace_rcu_grace_period(rcu_state.name,
1749 READ_ONCE(rcu_state.gp_seq),
1750 TPS("reqwait"));
1751 rcu_state.gp_state = RCU_GP_WAIT_GPS;
1752 swait_event_idle_exclusive(rcu_state.gp_wq,
1753 READ_ONCE(rcu_state.gp_flags) &
1754 RCU_GP_FLAG_INIT);
1755 rcu_state.gp_state = RCU_GP_DONE_GPS;
1756 /* Locking provides needed memory barrier. */
1757 if (rcu_gp_init())
1758 break;
1759 cond_resched_tasks_rcu_qs();
1760 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1761 WARN_ON(signal_pending(current));
1762 trace_rcu_grace_period(rcu_state.name,
1763 READ_ONCE(rcu_state.gp_seq),
1764 TPS("reqwaitsig"));
1767 /* Handle quiescent-state forcing. */
1768 rcu_gp_fqs_loop();
1770 /* Handle grace-period end. */
1771 rcu_state.gp_state = RCU_GP_CLEANUP;
1772 rcu_gp_cleanup();
1773 rcu_state.gp_state = RCU_GP_CLEANED;
1778 * Report a full set of quiescent states to the rcu_state data structure.
1779 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1780 * another grace period is required. Whether we wake the grace-period
1781 * kthread or it awakens itself for the next round of quiescent-state
1782 * forcing, that kthread will clean up after the just-completed grace
1783 * period. Note that the caller must hold rnp->lock, which is released
1784 * before return.
1786 static void rcu_report_qs_rsp(unsigned long flags)
1787 __releases(rcu_get_root()->lock)
1789 raw_lockdep_assert_held_rcu_node(rcu_get_root());
1790 WARN_ON_ONCE(!rcu_gp_in_progress());
1791 WRITE_ONCE(rcu_state.gp_flags,
1792 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1793 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1794 rcu_gp_kthread_wake();
1798 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1799 * Allows quiescent states for a group of CPUs to be reported at one go
1800 * to the specified rcu_node structure, though all the CPUs in the group
1801 * must be represented by the same rcu_node structure (which need not be a
1802 * leaf rcu_node structure, though it often will be). The gps parameter
1803 * is the grace-period snapshot, which means that the quiescent states
1804 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
1805 * must be held upon entry, and it is released before return.
1807 * As a special case, if mask is zero, the bit-already-cleared check is
1808 * disabled. This allows propagating quiescent state due to resumed tasks
1809 * during grace-period initialization.
1811 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1812 unsigned long gps, unsigned long flags)
1813 __releases(rnp->lock)
1815 unsigned long oldmask = 0;
1816 struct rcu_node *rnp_c;
1818 raw_lockdep_assert_held_rcu_node(rnp);
1820 /* Walk up the rcu_node hierarchy. */
1821 for (;;) {
1822 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1825 * Our bit has already been cleared, or the
1826 * relevant grace period is already over, so done.
1828 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1829 return;
1831 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1832 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1833 rcu_preempt_blocked_readers_cgp(rnp));
1834 rnp->qsmask &= ~mask;
1835 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1836 mask, rnp->qsmask, rnp->level,
1837 rnp->grplo, rnp->grphi,
1838 !!rnp->gp_tasks);
1839 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1841 /* Other bits still set at this level, so done. */
1842 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1843 return;
1845 rnp->completedqs = rnp->gp_seq;
1846 mask = rnp->grpmask;
1847 if (rnp->parent == NULL) {
1849 /* No more levels. Exit loop holding root lock. */
1851 break;
1853 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1854 rnp_c = rnp;
1855 rnp = rnp->parent;
1856 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1857 oldmask = rnp_c->qsmask;
1861 * Get here if we are the last CPU to pass through a quiescent
1862 * state for this grace period. Invoke rcu_report_qs_rsp()
1863 * to clean up and start the next grace period if one is needed.
1865 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1869 * Record a quiescent state for all tasks that were previously queued
1870 * on the specified rcu_node structure and that were blocking the current
1871 * RCU grace period. The caller must hold the corresponding rnp->lock with
1872 * irqs disabled, and this lock is released upon return, but irqs remain
1873 * disabled.
1875 static void __maybe_unused
1876 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1877 __releases(rnp->lock)
1879 unsigned long gps;
1880 unsigned long mask;
1881 struct rcu_node *rnp_p;
1883 raw_lockdep_assert_held_rcu_node(rnp);
1884 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) ||
1885 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1886 rnp->qsmask != 0) {
1887 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1888 return; /* Still need more quiescent states! */
1891 rnp->completedqs = rnp->gp_seq;
1892 rnp_p = rnp->parent;
1893 if (rnp_p == NULL) {
1895 * Only one rcu_node structure in the tree, so don't
1896 * try to report up to its nonexistent parent!
1898 rcu_report_qs_rsp(flags);
1899 return;
1902 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1903 gps = rnp->gp_seq;
1904 mask = rnp->grpmask;
1905 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1906 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
1907 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1911 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1912 * structure. This must be called from the specified CPU.
1914 static void
1915 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
1917 unsigned long flags;
1918 unsigned long mask;
1919 bool needwake;
1920 struct rcu_node *rnp;
1922 rnp = rdp->mynode;
1923 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1924 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1925 rdp->gpwrap) {
1928 * The grace period in which this quiescent state was
1929 * recorded has ended, so don't report it upwards.
1930 * We will instead need a new quiescent state that lies
1931 * within the current grace period.
1933 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
1934 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1935 return;
1937 mask = rdp->grpmask;
1938 rdp->core_needs_qs = false;
1939 if ((rnp->qsmask & mask) == 0) {
1940 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1941 } else {
1943 * This GP can't end until cpu checks in, so all of our
1944 * callbacks can be processed during the next GP.
1946 needwake = rcu_accelerate_cbs(rnp, rdp);
1948 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1949 /* ^^^ Released rnp->lock */
1950 if (needwake)
1951 rcu_gp_kthread_wake();
1956 * Check to see if there is a new grace period of which this CPU
1957 * is not yet aware, and if so, set up local rcu_data state for it.
1958 * Otherwise, see if this CPU has just passed through its first
1959 * quiescent state for this grace period, and record that fact if so.
1961 static void
1962 rcu_check_quiescent_state(struct rcu_data *rdp)
1964 /* Check for grace-period ends and beginnings. */
1965 note_gp_changes(rdp);
1968 * Does this CPU still need to do its part for current grace period?
1969 * If no, return and let the other CPUs do their part as well.
1971 if (!rdp->core_needs_qs)
1972 return;
1975 * Was there a quiescent state since the beginning of the grace
1976 * period? If no, then exit and wait for the next call.
1978 if (rdp->cpu_no_qs.b.norm)
1979 return;
1982 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1983 * judge of that).
1985 rcu_report_qs_rdp(rdp->cpu, rdp);
1989 * Near the end of the offline process. Trace the fact that this CPU
1990 * is going offline.
1992 int rcutree_dying_cpu(unsigned int cpu)
1994 bool blkd;
1995 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1996 struct rcu_node *rnp = rdp->mynode;
1998 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
1999 return 0;
2001 blkd = !!(rnp->qsmask & rdp->grpmask);
2002 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
2003 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2004 return 0;
2008 * All CPUs for the specified rcu_node structure have gone offline,
2009 * and all tasks that were preempted within an RCU read-side critical
2010 * section while running on one of those CPUs have since exited their RCU
2011 * read-side critical section. Some other CPU is reporting this fact with
2012 * the specified rcu_node structure's ->lock held and interrupts disabled.
2013 * This function therefore goes up the tree of rcu_node structures,
2014 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2015 * the leaf rcu_node structure's ->qsmaskinit field has already been
2016 * updated.
2018 * This function does check that the specified rcu_node structure has
2019 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2020 * prematurely. That said, invoking it after the fact will cost you
2021 * a needless lock acquisition. So once it has done its work, don't
2022 * invoke it again.
2024 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2026 long mask;
2027 struct rcu_node *rnp = rnp_leaf;
2029 raw_lockdep_assert_held_rcu_node(rnp_leaf);
2030 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2031 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2032 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2033 return;
2034 for (;;) {
2035 mask = rnp->grpmask;
2036 rnp = rnp->parent;
2037 if (!rnp)
2038 break;
2039 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2040 rnp->qsmaskinit &= ~mask;
2041 /* Between grace periods, so better already be zero! */
2042 WARN_ON_ONCE(rnp->qsmask);
2043 if (rnp->qsmaskinit) {
2044 raw_spin_unlock_rcu_node(rnp);
2045 /* irqs remain disabled. */
2046 return;
2048 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2053 * The CPU has been completely removed, and some other CPU is reporting
2054 * this fact from process context. Do the remainder of the cleanup.
2055 * There can only be one CPU hotplug operation at a time, so no need for
2056 * explicit locking.
2058 int rcutree_dead_cpu(unsigned int cpu)
2060 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2061 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2063 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2064 return 0;
2066 /* Adjust any no-longer-needed kthreads. */
2067 rcu_boost_kthread_setaffinity(rnp, -1);
2068 /* Do any needed no-CB deferred wakeups from this CPU. */
2069 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2070 return 0;
2074 * Invoke any RCU callbacks that have made it to the end of their grace
2075 * period. Thottle as specified by rdp->blimit.
2077 static void rcu_do_batch(struct rcu_data *rdp)
2079 unsigned long flags;
2080 struct rcu_head *rhp;
2081 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2082 long bl, count;
2084 /* If no callbacks are ready, just return. */
2085 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2086 trace_rcu_batch_start(rcu_state.name,
2087 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2088 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2089 trace_rcu_batch_end(rcu_state.name, 0,
2090 !rcu_segcblist_empty(&rdp->cblist),
2091 need_resched(), is_idle_task(current),
2092 rcu_is_callbacks_kthread());
2093 return;
2097 * Extract the list of ready callbacks, disabling to prevent
2098 * races with call_rcu() from interrupt handlers. Leave the
2099 * callback counts, as rcu_barrier() needs to be conservative.
2101 local_irq_save(flags);
2102 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2103 bl = rdp->blimit;
2104 trace_rcu_batch_start(rcu_state.name,
2105 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2106 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2107 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2108 local_irq_restore(flags);
2110 /* Invoke callbacks. */
2111 rhp = rcu_cblist_dequeue(&rcl);
2112 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2113 debug_rcu_head_unqueue(rhp);
2114 if (__rcu_reclaim(rcu_state.name, rhp))
2115 rcu_cblist_dequeued_lazy(&rcl);
2117 * Stop only if limit reached and CPU has something to do.
2118 * Note: The rcl structure counts down from zero.
2120 if (-rcl.len >= bl &&
2121 (need_resched() ||
2122 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2123 break;
2126 local_irq_save(flags);
2127 count = -rcl.len;
2128 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2129 is_idle_task(current), rcu_is_callbacks_kthread());
2131 /* Update counts and requeue any remaining callbacks. */
2132 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2133 smp_mb(); /* List handling before counting for rcu_barrier(). */
2134 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2136 /* Reinstate batch limit if we have worked down the excess. */
2137 count = rcu_segcblist_n_cbs(&rdp->cblist);
2138 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2139 rdp->blimit = blimit;
2141 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2142 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2143 rdp->qlen_last_fqs_check = 0;
2144 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2145 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2146 rdp->qlen_last_fqs_check = count;
2149 * The following usually indicates a double call_rcu(). To track
2150 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2152 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2154 local_irq_restore(flags);
2156 /* Re-invoke RCU core processing if there are callbacks remaining. */
2157 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2158 invoke_rcu_core();
2162 * This function is invoked from each scheduling-clock interrupt,
2163 * and checks to see if this CPU is in a non-context-switch quiescent
2164 * state, for example, user mode or idle loop. It also schedules RCU
2165 * core processing. If the current grace period has gone on too long,
2166 * it will ask the scheduler to manufacture a context switch for the sole
2167 * purpose of providing a providing the needed quiescent state.
2169 void rcu_sched_clock_irq(int user)
2171 trace_rcu_utilization(TPS("Start scheduler-tick"));
2172 raw_cpu_inc(rcu_data.ticks_this_gp);
2173 /* The load-acquire pairs with the store-release setting to true. */
2174 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2175 /* Idle and userspace execution already are quiescent states. */
2176 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2177 set_tsk_need_resched(current);
2178 set_preempt_need_resched();
2180 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2182 rcu_flavor_sched_clock_irq(user);
2183 if (rcu_pending())
2184 invoke_rcu_core();
2186 trace_rcu_utilization(TPS("End scheduler-tick"));
2190 * Scan the leaf rcu_node structures. For each structure on which all
2191 * CPUs have reported a quiescent state and on which there are tasks
2192 * blocking the current grace period, initiate RCU priority boosting.
2193 * Otherwise, invoke the specified function to check dyntick state for
2194 * each CPU that has not yet reported a quiescent state.
2196 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2198 int cpu;
2199 unsigned long flags;
2200 unsigned long mask;
2201 struct rcu_node *rnp;
2203 rcu_for_each_leaf_node(rnp) {
2204 cond_resched_tasks_rcu_qs();
2205 mask = 0;
2206 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2207 if (rnp->qsmask == 0) {
2208 if (!IS_ENABLED(CONFIG_PREEMPT) ||
2209 rcu_preempt_blocked_readers_cgp(rnp)) {
2211 * No point in scanning bits because they
2212 * are all zero. But we might need to
2213 * priority-boost blocked readers.
2215 rcu_initiate_boost(rnp, flags);
2216 /* rcu_initiate_boost() releases rnp->lock */
2217 continue;
2219 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2220 continue;
2222 for_each_leaf_node_possible_cpu(rnp, cpu) {
2223 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2224 if ((rnp->qsmask & bit) != 0) {
2225 if (f(per_cpu_ptr(&rcu_data, cpu)))
2226 mask |= bit;
2229 if (mask != 0) {
2230 /* Idle/offline CPUs, report (releases rnp->lock). */
2231 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2232 } else {
2233 /* Nothing to do here, so just drop the lock. */
2234 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2240 * Force quiescent states on reluctant CPUs, and also detect which
2241 * CPUs are in dyntick-idle mode.
2243 void rcu_force_quiescent_state(void)
2245 unsigned long flags;
2246 bool ret;
2247 struct rcu_node *rnp;
2248 struct rcu_node *rnp_old = NULL;
2250 /* Funnel through hierarchy to reduce memory contention. */
2251 rnp = __this_cpu_read(rcu_data.mynode);
2252 for (; rnp != NULL; rnp = rnp->parent) {
2253 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2254 !raw_spin_trylock(&rnp->fqslock);
2255 if (rnp_old != NULL)
2256 raw_spin_unlock(&rnp_old->fqslock);
2257 if (ret)
2258 return;
2259 rnp_old = rnp;
2261 /* rnp_old == rcu_get_root(), rnp == NULL. */
2263 /* Reached the root of the rcu_node tree, acquire lock. */
2264 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2265 raw_spin_unlock(&rnp_old->fqslock);
2266 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2267 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2268 return; /* Someone beat us to it. */
2270 WRITE_ONCE(rcu_state.gp_flags,
2271 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2272 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2273 rcu_gp_kthread_wake();
2275 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2277 /* Perform RCU core processing work for the current CPU. */
2278 static __latent_entropy void rcu_core(void)
2280 unsigned long flags;
2281 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2282 struct rcu_node *rnp = rdp->mynode;
2284 if (cpu_is_offline(smp_processor_id()))
2285 return;
2286 trace_rcu_utilization(TPS("Start RCU core"));
2287 WARN_ON_ONCE(!rdp->beenonline);
2289 /* Report any deferred quiescent states if preemption enabled. */
2290 if (!(preempt_count() & PREEMPT_MASK)) {
2291 rcu_preempt_deferred_qs(current);
2292 } else if (rcu_preempt_need_deferred_qs(current)) {
2293 set_tsk_need_resched(current);
2294 set_preempt_need_resched();
2297 /* Update RCU state based on any recent quiescent states. */
2298 rcu_check_quiescent_state(rdp);
2300 /* No grace period and unregistered callbacks? */
2301 if (!rcu_gp_in_progress() &&
2302 rcu_segcblist_is_enabled(&rdp->cblist)) {
2303 local_irq_save(flags);
2304 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2305 rcu_accelerate_cbs_unlocked(rnp, rdp);
2306 local_irq_restore(flags);
2309 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2311 /* If there are callbacks ready, invoke them. */
2312 if (rcu_segcblist_ready_cbs(&rdp->cblist) &&
2313 likely(READ_ONCE(rcu_scheduler_fully_active)))
2314 rcu_do_batch(rdp);
2316 /* Do any needed deferred wakeups of rcuo kthreads. */
2317 do_nocb_deferred_wakeup(rdp);
2318 trace_rcu_utilization(TPS("End RCU core"));
2321 static void rcu_core_si(struct softirq_action *h)
2323 rcu_core();
2326 static void rcu_wake_cond(struct task_struct *t, int status)
2329 * If the thread is yielding, only wake it when this
2330 * is invoked from idle
2332 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2333 wake_up_process(t);
2336 static void invoke_rcu_core_kthread(void)
2338 struct task_struct *t;
2339 unsigned long flags;
2341 local_irq_save(flags);
2342 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2343 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2344 if (t != NULL && t != current)
2345 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2346 local_irq_restore(flags);
2350 * Wake up this CPU's rcuc kthread to do RCU core processing.
2352 static void invoke_rcu_core(void)
2354 if (!cpu_online(smp_processor_id()))
2355 return;
2356 if (use_softirq)
2357 raise_softirq(RCU_SOFTIRQ);
2358 else
2359 invoke_rcu_core_kthread();
2362 static void rcu_cpu_kthread_park(unsigned int cpu)
2364 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2367 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2369 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2373 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2374 * the RCU softirq used in configurations of RCU that do not support RCU
2375 * priority boosting.
2377 static void rcu_cpu_kthread(unsigned int cpu)
2379 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2380 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2381 int spincnt;
2383 for (spincnt = 0; spincnt < 10; spincnt++) {
2384 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
2385 local_bh_disable();
2386 *statusp = RCU_KTHREAD_RUNNING;
2387 local_irq_disable();
2388 work = *workp;
2389 *workp = 0;
2390 local_irq_enable();
2391 if (work)
2392 rcu_core();
2393 local_bh_enable();
2394 if (*workp == 0) {
2395 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2396 *statusp = RCU_KTHREAD_WAITING;
2397 return;
2400 *statusp = RCU_KTHREAD_YIELDING;
2401 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2402 schedule_timeout_interruptible(2);
2403 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2404 *statusp = RCU_KTHREAD_WAITING;
2407 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2408 .store = &rcu_data.rcu_cpu_kthread_task,
2409 .thread_should_run = rcu_cpu_kthread_should_run,
2410 .thread_fn = rcu_cpu_kthread,
2411 .thread_comm = "rcuc/%u",
2412 .setup = rcu_cpu_kthread_setup,
2413 .park = rcu_cpu_kthread_park,
2417 * Spawn per-CPU RCU core processing kthreads.
2419 static int __init rcu_spawn_core_kthreads(void)
2421 int cpu;
2423 for_each_possible_cpu(cpu)
2424 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2425 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2426 return 0;
2427 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2428 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2429 return 0;
2431 early_initcall(rcu_spawn_core_kthreads);
2434 * Handle any core-RCU processing required by a call_rcu() invocation.
2436 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2437 unsigned long flags)
2440 * If called from an extended quiescent state, invoke the RCU
2441 * core in order to force a re-evaluation of RCU's idleness.
2443 if (!rcu_is_watching())
2444 invoke_rcu_core();
2446 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2447 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2448 return;
2451 * Force the grace period if too many callbacks or too long waiting.
2452 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2453 * if some other CPU has recently done so. Also, don't bother
2454 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2455 * is the only one waiting for a grace period to complete.
2457 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2458 rdp->qlen_last_fqs_check + qhimark)) {
2460 /* Are we ignoring a completed grace period? */
2461 note_gp_changes(rdp);
2463 /* Start a new grace period if one not already started. */
2464 if (!rcu_gp_in_progress()) {
2465 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2466 } else {
2467 /* Give the grace period a kick. */
2468 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2469 if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2470 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2471 rcu_force_quiescent_state();
2472 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2473 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2479 * RCU callback function to leak a callback.
2481 static void rcu_leak_callback(struct rcu_head *rhp)
2486 * Helper function for call_rcu() and friends. The cpu argument will
2487 * normally be -1, indicating "currently running CPU". It may specify
2488 * a CPU only if that CPU is a no-CBs CPU. Currently, only rcu_barrier()
2489 * is expected to specify a CPU.
2491 static void
2492 __call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy)
2494 unsigned long flags;
2495 struct rcu_data *rdp;
2497 /* Misaligned rcu_head! */
2498 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2500 if (debug_rcu_head_queue(head)) {
2502 * Probable double call_rcu(), so leak the callback.
2503 * Use rcu:rcu_callback trace event to find the previous
2504 * time callback was passed to __call_rcu().
2506 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2507 head, head->func);
2508 WRITE_ONCE(head->func, rcu_leak_callback);
2509 return;
2511 head->func = func;
2512 head->next = NULL;
2513 local_irq_save(flags);
2514 rdp = this_cpu_ptr(&rcu_data);
2516 /* Add the callback to our list. */
2517 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
2518 int offline;
2520 if (cpu != -1)
2521 rdp = per_cpu_ptr(&rcu_data, cpu);
2522 if (likely(rdp->mynode)) {
2523 /* Post-boot, so this should be for a no-CBs CPU. */
2524 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2525 WARN_ON_ONCE(offline);
2526 /* Offline CPU, _call_rcu() illegal, leak callback. */
2527 local_irq_restore(flags);
2528 return;
2531 * Very early boot, before rcu_init(). Initialize if needed
2532 * and then drop through to queue the callback.
2534 WARN_ON_ONCE(cpu != -1);
2535 WARN_ON_ONCE(!rcu_is_watching());
2536 if (rcu_segcblist_empty(&rdp->cblist))
2537 rcu_segcblist_init(&rdp->cblist);
2539 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
2540 if (__is_kfree_rcu_offset((unsigned long)func))
2541 trace_rcu_kfree_callback(rcu_state.name, head,
2542 (unsigned long)func,
2543 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2544 rcu_segcblist_n_cbs(&rdp->cblist));
2545 else
2546 trace_rcu_callback(rcu_state.name, head,
2547 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2548 rcu_segcblist_n_cbs(&rdp->cblist));
2550 /* Go handle any RCU core processing required. */
2551 __call_rcu_core(rdp, head, flags);
2552 local_irq_restore(flags);
2556 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2557 * @head: structure to be used for queueing the RCU updates.
2558 * @func: actual callback function to be invoked after the grace period
2560 * The callback function will be invoked some time after a full grace
2561 * period elapses, in other words after all pre-existing RCU read-side
2562 * critical sections have completed. However, the callback function
2563 * might well execute concurrently with RCU read-side critical sections
2564 * that started after call_rcu() was invoked. RCU read-side critical
2565 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2566 * may be nested. In addition, regions of code across which interrupts,
2567 * preemption, or softirqs have been disabled also serve as RCU read-side
2568 * critical sections. This includes hardware interrupt handlers, softirq
2569 * handlers, and NMI handlers.
2571 * Note that all CPUs must agree that the grace period extended beyond
2572 * all pre-existing RCU read-side critical section. On systems with more
2573 * than one CPU, this means that when "func()" is invoked, each CPU is
2574 * guaranteed to have executed a full memory barrier since the end of its
2575 * last RCU read-side critical section whose beginning preceded the call
2576 * to call_rcu(). It also means that each CPU executing an RCU read-side
2577 * critical section that continues beyond the start of "func()" must have
2578 * executed a memory barrier after the call_rcu() but before the beginning
2579 * of that RCU read-side critical section. Note that these guarantees
2580 * include CPUs that are offline, idle, or executing in user mode, as
2581 * well as CPUs that are executing in the kernel.
2583 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2584 * resulting RCU callback function "func()", then both CPU A and CPU B are
2585 * guaranteed to execute a full memory barrier during the time interval
2586 * between the call to call_rcu() and the invocation of "func()" -- even
2587 * if CPU A and CPU B are the same CPU (but again only if the system has
2588 * more than one CPU).
2590 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2592 __call_rcu(head, func, -1, 0);
2594 EXPORT_SYMBOL_GPL(call_rcu);
2597 * Queue an RCU callback for lazy invocation after a grace period.
2598 * This will likely be later named something like "call_rcu_lazy()",
2599 * but this change will require some way of tagging the lazy RCU
2600 * callbacks in the list of pending callbacks. Until then, this
2601 * function may only be called from __kfree_rcu().
2603 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
2605 __call_rcu(head, func, -1, 1);
2607 EXPORT_SYMBOL_GPL(kfree_call_rcu);
2610 * During early boot, any blocking grace-period wait automatically
2611 * implies a grace period. Later on, this is never the case for PREEMPT.
2613 * Howevr, because a context switch is a grace period for !PREEMPT, any
2614 * blocking grace-period wait automatically implies a grace period if
2615 * there is only one CPU online at any point time during execution of
2616 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to
2617 * occasionally incorrectly indicate that there are multiple CPUs online
2618 * when there was in fact only one the whole time, as this just adds some
2619 * overhead: RCU still operates correctly.
2621 static int rcu_blocking_is_gp(void)
2623 int ret;
2625 if (IS_ENABLED(CONFIG_PREEMPT))
2626 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
2627 might_sleep(); /* Check for RCU read-side critical section. */
2628 preempt_disable();
2629 ret = num_online_cpus() <= 1;
2630 preempt_enable();
2631 return ret;
2635 * synchronize_rcu - wait until a grace period has elapsed.
2637 * Control will return to the caller some time after a full grace
2638 * period has elapsed, in other words after all currently executing RCU
2639 * read-side critical sections have completed. Note, however, that
2640 * upon return from synchronize_rcu(), the caller might well be executing
2641 * concurrently with new RCU read-side critical sections that began while
2642 * synchronize_rcu() was waiting. RCU read-side critical sections are
2643 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
2644 * In addition, regions of code across which interrupts, preemption, or
2645 * softirqs have been disabled also serve as RCU read-side critical
2646 * sections. This includes hardware interrupt handlers, softirq handlers,
2647 * and NMI handlers.
2649 * Note that this guarantee implies further memory-ordering guarantees.
2650 * On systems with more than one CPU, when synchronize_rcu() returns,
2651 * each CPU is guaranteed to have executed a full memory barrier since
2652 * the end of its last RCU read-side critical section whose beginning
2653 * preceded the call to synchronize_rcu(). In addition, each CPU having
2654 * an RCU read-side critical section that extends beyond the return from
2655 * synchronize_rcu() is guaranteed to have executed a full memory barrier
2656 * after the beginning of synchronize_rcu() and before the beginning of
2657 * that RCU read-side critical section. Note that these guarantees include
2658 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2659 * that are executing in the kernel.
2661 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
2662 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2663 * to have executed a full memory barrier during the execution of
2664 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
2665 * again only if the system has more than one CPU).
2667 void synchronize_rcu(void)
2669 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
2670 lock_is_held(&rcu_lock_map) ||
2671 lock_is_held(&rcu_sched_lock_map),
2672 "Illegal synchronize_rcu() in RCU read-side critical section");
2673 if (rcu_blocking_is_gp())
2674 return;
2675 if (rcu_gp_is_expedited())
2676 synchronize_rcu_expedited();
2677 else
2678 wait_rcu_gp(call_rcu);
2680 EXPORT_SYMBOL_GPL(synchronize_rcu);
2683 * get_state_synchronize_rcu - Snapshot current RCU state
2685 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2686 * to determine whether or not a full grace period has elapsed in the
2687 * meantime.
2689 unsigned long get_state_synchronize_rcu(void)
2692 * Any prior manipulation of RCU-protected data must happen
2693 * before the load from ->gp_seq.
2695 smp_mb(); /* ^^^ */
2696 return rcu_seq_snap(&rcu_state.gp_seq);
2698 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2701 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2703 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2705 * If a full RCU grace period has elapsed since the earlier call to
2706 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2707 * synchronize_rcu() to wait for a full grace period.
2709 * Yes, this function does not take counter wrap into account. But
2710 * counter wrap is harmless. If the counter wraps, we have waited for
2711 * more than 2 billion grace periods (and way more on a 64-bit system!),
2712 * so waiting for one additional grace period should be just fine.
2714 void cond_synchronize_rcu(unsigned long oldstate)
2716 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
2717 synchronize_rcu();
2718 else
2719 smp_mb(); /* Ensure GP ends before subsequent accesses. */
2721 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2724 * Check to see if there is any immediate RCU-related work to be done by
2725 * the current CPU, returning 1 if so and zero otherwise. The checks are
2726 * in order of increasing expense: checks that can be carried out against
2727 * CPU-local state are performed first. However, we must check for CPU
2728 * stalls first, else we might not get a chance.
2730 static int rcu_pending(void)
2732 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2733 struct rcu_node *rnp = rdp->mynode;
2735 /* Check for CPU stalls, if enabled. */
2736 check_cpu_stall(rdp);
2738 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2739 if (rcu_nohz_full_cpu())
2740 return 0;
2742 /* Is the RCU core waiting for a quiescent state from this CPU? */
2743 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
2744 return 1;
2746 /* Does this CPU have callbacks ready to invoke? */
2747 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2748 return 1;
2750 /* Has RCU gone idle with this CPU needing another grace period? */
2751 if (!rcu_gp_in_progress() &&
2752 rcu_segcblist_is_enabled(&rdp->cblist) &&
2753 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2754 return 1;
2756 /* Have RCU grace period completed or started? */
2757 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
2758 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
2759 return 1;
2761 /* Does this CPU need a deferred NOCB wakeup? */
2762 if (rcu_nocb_need_deferred_wakeup(rdp))
2763 return 1;
2765 /* nothing to do */
2766 return 0;
2770 * Helper function for rcu_barrier() tracing. If tracing is disabled,
2771 * the compiler is expected to optimize this away.
2773 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
2775 trace_rcu_barrier(rcu_state.name, s, cpu,
2776 atomic_read(&rcu_state.barrier_cpu_count), done);
2780 * RCU callback function for rcu_barrier(). If we are last, wake
2781 * up the task executing rcu_barrier().
2783 static void rcu_barrier_callback(struct rcu_head *rhp)
2785 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
2786 rcu_barrier_trace(TPS("LastCB"), -1,
2787 rcu_state.barrier_sequence);
2788 complete(&rcu_state.barrier_completion);
2789 } else {
2790 rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
2795 * Called with preemption disabled, and from cross-cpu IRQ context.
2797 static void rcu_barrier_func(void *unused)
2799 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2801 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
2802 rdp->barrier_head.func = rcu_barrier_callback;
2803 debug_rcu_head_queue(&rdp->barrier_head);
2804 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
2805 atomic_inc(&rcu_state.barrier_cpu_count);
2806 } else {
2807 debug_rcu_head_unqueue(&rdp->barrier_head);
2808 rcu_barrier_trace(TPS("IRQNQ"), -1,
2809 rcu_state.barrier_sequence);
2814 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
2816 * Note that this primitive does not necessarily wait for an RCU grace period
2817 * to complete. For example, if there are no RCU callbacks queued anywhere
2818 * in the system, then rcu_barrier() is within its rights to return
2819 * immediately, without waiting for anything, much less an RCU grace period.
2821 void rcu_barrier(void)
2823 int cpu;
2824 struct rcu_data *rdp;
2825 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
2827 rcu_barrier_trace(TPS("Begin"), -1, s);
2829 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2830 mutex_lock(&rcu_state.barrier_mutex);
2832 /* Did someone else do our work for us? */
2833 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
2834 rcu_barrier_trace(TPS("EarlyExit"), -1,
2835 rcu_state.barrier_sequence);
2836 smp_mb(); /* caller's subsequent code after above check. */
2837 mutex_unlock(&rcu_state.barrier_mutex);
2838 return;
2841 /* Mark the start of the barrier operation. */
2842 rcu_seq_start(&rcu_state.barrier_sequence);
2843 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
2846 * Initialize the count to one rather than to zero in order to
2847 * avoid a too-soon return to zero in case of a short grace period
2848 * (or preemption of this task). Exclude CPU-hotplug operations
2849 * to ensure that no offline CPU has callbacks queued.
2851 init_completion(&rcu_state.barrier_completion);
2852 atomic_set(&rcu_state.barrier_cpu_count, 1);
2853 get_online_cpus();
2856 * Force each CPU with callbacks to register a new callback.
2857 * When that callback is invoked, we will know that all of the
2858 * corresponding CPU's preceding callbacks have been invoked.
2860 for_each_possible_cpu(cpu) {
2861 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
2862 continue;
2863 rdp = per_cpu_ptr(&rcu_data, cpu);
2864 if (rcu_is_nocb_cpu(cpu)) {
2865 if (!rcu_nocb_cpu_needs_barrier(cpu)) {
2866 rcu_barrier_trace(TPS("OfflineNoCB"), cpu,
2867 rcu_state.barrier_sequence);
2868 } else {
2869 rcu_barrier_trace(TPS("OnlineNoCB"), cpu,
2870 rcu_state.barrier_sequence);
2871 smp_mb__before_atomic();
2872 atomic_inc(&rcu_state.barrier_cpu_count);
2873 __call_rcu(&rdp->barrier_head,
2874 rcu_barrier_callback, cpu, 0);
2876 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
2877 rcu_barrier_trace(TPS("OnlineQ"), cpu,
2878 rcu_state.barrier_sequence);
2879 smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
2880 } else {
2881 rcu_barrier_trace(TPS("OnlineNQ"), cpu,
2882 rcu_state.barrier_sequence);
2885 put_online_cpus();
2888 * Now that we have an rcu_barrier_callback() callback on each
2889 * CPU, and thus each counted, remove the initial count.
2891 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
2892 complete(&rcu_state.barrier_completion);
2894 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2895 wait_for_completion(&rcu_state.barrier_completion);
2897 /* Mark the end of the barrier operation. */
2898 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
2899 rcu_seq_end(&rcu_state.barrier_sequence);
2901 /* Other rcu_barrier() invocations can now safely proceed. */
2902 mutex_unlock(&rcu_state.barrier_mutex);
2904 EXPORT_SYMBOL_GPL(rcu_barrier);
2907 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
2908 * first CPU in a given leaf rcu_node structure coming online. The caller
2909 * must hold the corresponding leaf rcu_node ->lock with interrrupts
2910 * disabled.
2912 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
2914 long mask;
2915 long oldmask;
2916 struct rcu_node *rnp = rnp_leaf;
2918 raw_lockdep_assert_held_rcu_node(rnp_leaf);
2919 WARN_ON_ONCE(rnp->wait_blkd_tasks);
2920 for (;;) {
2921 mask = rnp->grpmask;
2922 rnp = rnp->parent;
2923 if (rnp == NULL)
2924 return;
2925 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
2926 oldmask = rnp->qsmaskinit;
2927 rnp->qsmaskinit |= mask;
2928 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
2929 if (oldmask)
2930 return;
2935 * Do boot-time initialization of a CPU's per-CPU RCU data.
2937 static void __init
2938 rcu_boot_init_percpu_data(int cpu)
2940 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2942 /* Set up local state, ensuring consistent view of global state. */
2943 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
2944 WARN_ON_ONCE(rdp->dynticks_nesting != 1);
2945 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
2946 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
2947 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
2948 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
2949 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
2950 rdp->cpu = cpu;
2951 rcu_boot_init_nocb_percpu_data(rdp);
2955 * Invoked early in the CPU-online process, when pretty much all services
2956 * are available. The incoming CPU is not present.
2958 * Initializes a CPU's per-CPU RCU data. Note that only one online or
2959 * offline event can be happening at a given time. Note also that we can
2960 * accept some slop in the rsp->gp_seq access due to the fact that this
2961 * CPU cannot possibly have any RCU callbacks in flight yet.
2963 int rcutree_prepare_cpu(unsigned int cpu)
2965 unsigned long flags;
2966 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2967 struct rcu_node *rnp = rcu_get_root();
2969 /* Set up local state, ensuring consistent view of global state. */
2970 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2971 rdp->qlen_last_fqs_check = 0;
2972 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2973 rdp->blimit = blimit;
2974 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
2975 !init_nocb_callback_list(rdp))
2976 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
2977 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */
2978 rcu_dynticks_eqs_online();
2979 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2982 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
2983 * propagation up the rcu_node tree will happen at the beginning
2984 * of the next grace period.
2986 rnp = rdp->mynode;
2987 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2988 rdp->beenonline = true; /* We have now been online. */
2989 rdp->gp_seq = rnp->gp_seq;
2990 rdp->gp_seq_needed = rnp->gp_seq;
2991 rdp->cpu_no_qs.b.norm = true;
2992 rdp->core_needs_qs = false;
2993 rdp->rcu_iw_pending = false;
2994 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
2995 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
2996 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2997 rcu_prepare_kthreads(cpu);
2998 rcu_spawn_cpu_nocb_kthread(cpu);
3000 return 0;
3004 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3006 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3008 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3010 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3014 * Near the end of the CPU-online process. Pretty much all services
3015 * enabled, and the CPU is now very much alive.
3017 int rcutree_online_cpu(unsigned int cpu)
3019 unsigned long flags;
3020 struct rcu_data *rdp;
3021 struct rcu_node *rnp;
3023 rdp = per_cpu_ptr(&rcu_data, cpu);
3024 rnp = rdp->mynode;
3025 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3026 rnp->ffmask |= rdp->grpmask;
3027 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3028 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3029 return 0; /* Too early in boot for scheduler work. */
3030 sync_sched_exp_online_cleanup(cpu);
3031 rcutree_affinity_setting(cpu, -1);
3032 return 0;
3036 * Near the beginning of the process. The CPU is still very much alive
3037 * with pretty much all services enabled.
3039 int rcutree_offline_cpu(unsigned int cpu)
3041 unsigned long flags;
3042 struct rcu_data *rdp;
3043 struct rcu_node *rnp;
3045 rdp = per_cpu_ptr(&rcu_data, cpu);
3046 rnp = rdp->mynode;
3047 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3048 rnp->ffmask &= ~rdp->grpmask;
3049 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3051 rcutree_affinity_setting(cpu, cpu);
3052 return 0;
3055 static DEFINE_PER_CPU(int, rcu_cpu_started);
3058 * Mark the specified CPU as being online so that subsequent grace periods
3059 * (both expedited and normal) will wait on it. Note that this means that
3060 * incoming CPUs are not allowed to use RCU read-side critical sections
3061 * until this function is called. Failing to observe this restriction
3062 * will result in lockdep splats.
3064 * Note that this function is special in that it is invoked directly
3065 * from the incoming CPU rather than from the cpuhp_step mechanism.
3066 * This is because this function must be invoked at a precise location.
3068 void rcu_cpu_starting(unsigned int cpu)
3070 unsigned long flags;
3071 unsigned long mask;
3072 int nbits;
3073 unsigned long oldmask;
3074 struct rcu_data *rdp;
3075 struct rcu_node *rnp;
3077 if (per_cpu(rcu_cpu_started, cpu))
3078 return;
3080 per_cpu(rcu_cpu_started, cpu) = 1;
3082 rdp = per_cpu_ptr(&rcu_data, cpu);
3083 rnp = rdp->mynode;
3084 mask = rdp->grpmask;
3085 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3086 rnp->qsmaskinitnext |= mask;
3087 oldmask = rnp->expmaskinitnext;
3088 rnp->expmaskinitnext |= mask;
3089 oldmask ^= rnp->expmaskinitnext;
3090 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3091 /* Allow lockless access for expedited grace periods. */
3092 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
3093 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3094 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3095 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3096 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3097 /* Report QS -after- changing ->qsmaskinitnext! */
3098 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3099 } else {
3100 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3102 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3105 #ifdef CONFIG_HOTPLUG_CPU
3107 * The outgoing function has no further need of RCU, so remove it from
3108 * the rcu_node tree's ->qsmaskinitnext bit masks.
3110 * Note that this function is special in that it is invoked directly
3111 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3112 * This is because this function must be invoked at a precise location.
3114 void rcu_report_dead(unsigned int cpu)
3116 unsigned long flags;
3117 unsigned long mask;
3118 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3119 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3121 /* QS for any half-done expedited grace period. */
3122 preempt_disable();
3123 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3124 preempt_enable();
3125 rcu_preempt_deferred_qs(current);
3127 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3128 mask = rdp->grpmask;
3129 raw_spin_lock(&rcu_state.ofl_lock);
3130 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3131 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3132 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3133 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3134 /* Report quiescent state -before- changing ->qsmaskinitnext! */
3135 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3136 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3138 rnp->qsmaskinitnext &= ~mask;
3139 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3140 raw_spin_unlock(&rcu_state.ofl_lock);
3142 per_cpu(rcu_cpu_started, cpu) = 0;
3146 * The outgoing CPU has just passed through the dying-idle state, and we
3147 * are being invoked from the CPU that was IPIed to continue the offline
3148 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
3150 void rcutree_migrate_callbacks(int cpu)
3152 unsigned long flags;
3153 struct rcu_data *my_rdp;
3154 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3155 struct rcu_node *rnp_root = rcu_get_root();
3156 bool needwake;
3158 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3159 return; /* No callbacks to migrate. */
3161 local_irq_save(flags);
3162 my_rdp = this_cpu_ptr(&rcu_data);
3163 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3164 local_irq_restore(flags);
3165 return;
3167 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3168 /* Leverage recent GPs and set GP for new callbacks. */
3169 needwake = rcu_advance_cbs(rnp_root, rdp) ||
3170 rcu_advance_cbs(rnp_root, my_rdp);
3171 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3172 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3173 !rcu_segcblist_n_cbs(&my_rdp->cblist));
3174 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3175 if (needwake)
3176 rcu_gp_kthread_wake();
3177 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3178 !rcu_segcblist_empty(&rdp->cblist),
3179 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3180 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3181 rcu_segcblist_first_cb(&rdp->cblist));
3183 #endif
3186 * On non-huge systems, use expedited RCU grace periods to make suspend
3187 * and hibernation run faster.
3189 static int rcu_pm_notify(struct notifier_block *self,
3190 unsigned long action, void *hcpu)
3192 switch (action) {
3193 case PM_HIBERNATION_PREPARE:
3194 case PM_SUSPEND_PREPARE:
3195 rcu_expedite_gp();
3196 break;
3197 case PM_POST_HIBERNATION:
3198 case PM_POST_SUSPEND:
3199 rcu_unexpedite_gp();
3200 break;
3201 default:
3202 break;
3204 return NOTIFY_OK;
3208 * Spawn the kthreads that handle RCU's grace periods.
3210 static int __init rcu_spawn_gp_kthread(void)
3212 unsigned long flags;
3213 int kthread_prio_in = kthread_prio;
3214 struct rcu_node *rnp;
3215 struct sched_param sp;
3216 struct task_struct *t;
3218 /* Force priority into range. */
3219 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3220 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3221 kthread_prio = 2;
3222 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3223 kthread_prio = 1;
3224 else if (kthread_prio < 0)
3225 kthread_prio = 0;
3226 else if (kthread_prio > 99)
3227 kthread_prio = 99;
3229 if (kthread_prio != kthread_prio_in)
3230 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3231 kthread_prio, kthread_prio_in);
3233 rcu_scheduler_fully_active = 1;
3234 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3235 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
3236 return 0;
3237 rnp = rcu_get_root();
3238 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3239 rcu_state.gp_kthread = t;
3240 if (kthread_prio) {
3241 sp.sched_priority = kthread_prio;
3242 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3244 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3245 wake_up_process(t);
3246 rcu_spawn_nocb_kthreads();
3247 rcu_spawn_boost_kthreads();
3248 return 0;
3250 early_initcall(rcu_spawn_gp_kthread);
3253 * This function is invoked towards the end of the scheduler's
3254 * initialization process. Before this is called, the idle task might
3255 * contain synchronous grace-period primitives (during which time, this idle
3256 * task is booting the system, and such primitives are no-ops). After this
3257 * function is called, any synchronous grace-period primitives are run as
3258 * expedited, with the requesting task driving the grace period forward.
3259 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3260 * runtime RCU functionality.
3262 void rcu_scheduler_starting(void)
3264 WARN_ON(num_online_cpus() != 1);
3265 WARN_ON(nr_context_switches() > 0);
3266 rcu_test_sync_prims();
3267 rcu_scheduler_active = RCU_SCHEDULER_INIT;
3268 rcu_test_sync_prims();
3272 * Helper function for rcu_init() that initializes the rcu_state structure.
3274 static void __init rcu_init_one(void)
3276 static const char * const buf[] = RCU_NODE_NAME_INIT;
3277 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3278 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3279 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3281 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
3282 int cpustride = 1;
3283 int i;
3284 int j;
3285 struct rcu_node *rnp;
3287 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3289 /* Silence gcc 4.8 false positive about array index out of range. */
3290 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3291 panic("rcu_init_one: rcu_num_lvls out of range");
3293 /* Initialize the level-tracking arrays. */
3295 for (i = 1; i < rcu_num_lvls; i++)
3296 rcu_state.level[i] =
3297 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
3298 rcu_init_levelspread(levelspread, num_rcu_lvl);
3300 /* Initialize the elements themselves, starting from the leaves. */
3302 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3303 cpustride *= levelspread[i];
3304 rnp = rcu_state.level[i];
3305 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3306 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3307 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3308 &rcu_node_class[i], buf[i]);
3309 raw_spin_lock_init(&rnp->fqslock);
3310 lockdep_set_class_and_name(&rnp->fqslock,
3311 &rcu_fqs_class[i], fqs[i]);
3312 rnp->gp_seq = rcu_state.gp_seq;
3313 rnp->gp_seq_needed = rcu_state.gp_seq;
3314 rnp->completedqs = rcu_state.gp_seq;
3315 rnp->qsmask = 0;
3316 rnp->qsmaskinit = 0;
3317 rnp->grplo = j * cpustride;
3318 rnp->grphi = (j + 1) * cpustride - 1;
3319 if (rnp->grphi >= nr_cpu_ids)
3320 rnp->grphi = nr_cpu_ids - 1;
3321 if (i == 0) {
3322 rnp->grpnum = 0;
3323 rnp->grpmask = 0;
3324 rnp->parent = NULL;
3325 } else {
3326 rnp->grpnum = j % levelspread[i - 1];
3327 rnp->grpmask = BIT(rnp->grpnum);
3328 rnp->parent = rcu_state.level[i - 1] +
3329 j / levelspread[i - 1];
3331 rnp->level = i;
3332 INIT_LIST_HEAD(&rnp->blkd_tasks);
3333 rcu_init_one_nocb(rnp);
3334 init_waitqueue_head(&rnp->exp_wq[0]);
3335 init_waitqueue_head(&rnp->exp_wq[1]);
3336 init_waitqueue_head(&rnp->exp_wq[2]);
3337 init_waitqueue_head(&rnp->exp_wq[3]);
3338 spin_lock_init(&rnp->exp_lock);
3342 init_swait_queue_head(&rcu_state.gp_wq);
3343 init_swait_queue_head(&rcu_state.expedited_wq);
3344 rnp = rcu_first_leaf_node();
3345 for_each_possible_cpu(i) {
3346 while (i > rnp->grphi)
3347 rnp++;
3348 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
3349 rcu_boot_init_percpu_data(i);
3354 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3355 * replace the definitions in tree.h because those are needed to size
3356 * the ->node array in the rcu_state structure.
3358 static void __init rcu_init_geometry(void)
3360 ulong d;
3361 int i;
3362 int rcu_capacity[RCU_NUM_LVLS];
3365 * Initialize any unspecified boot parameters.
3366 * The default values of jiffies_till_first_fqs and
3367 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3368 * value, which is a function of HZ, then adding one for each
3369 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3371 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3372 if (jiffies_till_first_fqs == ULONG_MAX)
3373 jiffies_till_first_fqs = d;
3374 if (jiffies_till_next_fqs == ULONG_MAX)
3375 jiffies_till_next_fqs = d;
3376 adjust_jiffies_till_sched_qs();
3378 /* If the compile-time values are accurate, just leave. */
3379 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
3380 nr_cpu_ids == NR_CPUS)
3381 return;
3382 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3383 rcu_fanout_leaf, nr_cpu_ids);
3386 * The boot-time rcu_fanout_leaf parameter must be at least two
3387 * and cannot exceed the number of bits in the rcu_node masks.
3388 * Complain and fall back to the compile-time values if this
3389 * limit is exceeded.
3391 if (rcu_fanout_leaf < 2 ||
3392 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
3393 rcu_fanout_leaf = RCU_FANOUT_LEAF;
3394 WARN_ON(1);
3395 return;
3399 * Compute number of nodes that can be handled an rcu_node tree
3400 * with the given number of levels.
3402 rcu_capacity[0] = rcu_fanout_leaf;
3403 for (i = 1; i < RCU_NUM_LVLS; i++)
3404 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
3407 * The tree must be able to accommodate the configured number of CPUs.
3408 * If this limit is exceeded, fall back to the compile-time values.
3410 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3411 rcu_fanout_leaf = RCU_FANOUT_LEAF;
3412 WARN_ON(1);
3413 return;
3416 /* Calculate the number of levels in the tree. */
3417 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
3419 rcu_num_lvls = i + 1;
3421 /* Calculate the number of rcu_nodes at each level of the tree. */
3422 for (i = 0; i < rcu_num_lvls; i++) {
3423 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
3424 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3427 /* Calculate the total number of rcu_node structures. */
3428 rcu_num_nodes = 0;
3429 for (i = 0; i < rcu_num_lvls; i++)
3430 rcu_num_nodes += num_rcu_lvl[i];
3434 * Dump out the structure of the rcu_node combining tree associated
3435 * with the rcu_state structure.
3437 static void __init rcu_dump_rcu_node_tree(void)
3439 int level = 0;
3440 struct rcu_node *rnp;
3442 pr_info("rcu_node tree layout dump\n");
3443 pr_info(" ");
3444 rcu_for_each_node_breadth_first(rnp) {
3445 if (rnp->level != level) {
3446 pr_cont("\n");
3447 pr_info(" ");
3448 level = rnp->level;
3450 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
3452 pr_cont("\n");
3455 struct workqueue_struct *rcu_gp_wq;
3456 struct workqueue_struct *rcu_par_gp_wq;
3458 void __init rcu_init(void)
3460 int cpu;
3462 rcu_early_boot_tests();
3464 rcu_bootup_announce();
3465 rcu_init_geometry();
3466 rcu_init_one();
3467 if (dump_tree)
3468 rcu_dump_rcu_node_tree();
3469 if (use_softirq)
3470 open_softirq(RCU_SOFTIRQ, rcu_core_si);
3473 * We don't need protection against CPU-hotplug here because
3474 * this is called early in boot, before either interrupts
3475 * or the scheduler are operational.
3477 pm_notifier(rcu_pm_notify, 0);
3478 for_each_online_cpu(cpu) {
3479 rcutree_prepare_cpu(cpu);
3480 rcu_cpu_starting(cpu);
3481 rcutree_online_cpu(cpu);
3484 /* Create workqueue for expedited GPs and for Tree SRCU. */
3485 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3486 WARN_ON(!rcu_gp_wq);
3487 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3488 WARN_ON(!rcu_par_gp_wq);
3489 srcu_init();
3492 #include "tree_stall.h"
3493 #include "tree_exp.h"
3494 #include "tree_plugin.h"