2 * Copyright (c) 2016, The Linux Foundation. All rights reserved.
4 * This software is licensed under the terms of the GNU General Public
5 * License version 2, as published by the Free Software Foundation, and
6 * may be copied, distributed, and modified under those terms.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
14 #include <linux/clk.h>
15 #include <linux/slab.h>
16 #include <linux/bitops.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/module.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/partitions.h>
23 #include <linux/of_device.h>
24 #include <linux/delay.h>
26 /* NANDc reg offsets */
27 #define NAND_FLASH_CMD 0x00
28 #define NAND_ADDR0 0x04
29 #define NAND_ADDR1 0x08
30 #define NAND_FLASH_CHIP_SELECT 0x0c
31 #define NAND_EXEC_CMD 0x10
32 #define NAND_FLASH_STATUS 0x14
33 #define NAND_BUFFER_STATUS 0x18
34 #define NAND_DEV0_CFG0 0x20
35 #define NAND_DEV0_CFG1 0x24
36 #define NAND_DEV0_ECC_CFG 0x28
37 #define NAND_DEV1_ECC_CFG 0x2c
38 #define NAND_DEV1_CFG0 0x30
39 #define NAND_DEV1_CFG1 0x34
40 #define NAND_READ_ID 0x40
41 #define NAND_READ_STATUS 0x44
42 #define NAND_DEV_CMD0 0xa0
43 #define NAND_DEV_CMD1 0xa4
44 #define NAND_DEV_CMD2 0xa8
45 #define NAND_DEV_CMD_VLD 0xac
46 #define SFLASHC_BURST_CFG 0xe0
47 #define NAND_ERASED_CW_DETECT_CFG 0xe8
48 #define NAND_ERASED_CW_DETECT_STATUS 0xec
49 #define NAND_EBI2_ECC_BUF_CFG 0xf0
50 #define FLASH_BUF_ACC 0x100
52 #define NAND_CTRL 0xf00
53 #define NAND_VERSION 0xf08
54 #define NAND_READ_LOCATION_0 0xf20
55 #define NAND_READ_LOCATION_1 0xf24
57 /* dummy register offsets, used by write_reg_dma */
58 #define NAND_DEV_CMD1_RESTORE 0xdead
59 #define NAND_DEV_CMD_VLD_RESTORE 0xbeef
61 /* NAND_FLASH_CMD bits */
62 #define PAGE_ACC BIT(4)
63 #define LAST_PAGE BIT(5)
65 /* NAND_FLASH_CHIP_SELECT bits */
66 #define NAND_DEV_SEL 0
69 /* NAND_FLASH_STATUS bits */
70 #define FS_OP_ERR BIT(4)
71 #define FS_READY_BSY_N BIT(5)
72 #define FS_MPU_ERR BIT(8)
73 #define FS_DEVICE_STS_ERR BIT(16)
74 #define FS_DEVICE_WP BIT(23)
76 /* NAND_BUFFER_STATUS bits */
77 #define BS_UNCORRECTABLE_BIT BIT(8)
78 #define BS_CORRECTABLE_ERR_MSK 0x1f
80 /* NAND_DEVn_CFG0 bits */
81 #define DISABLE_STATUS_AFTER_WRITE 4
83 #define UD_SIZE_BYTES 9
84 #define ECC_PARITY_SIZE_BYTES_RS 19
85 #define SPARE_SIZE_BYTES 23
86 #define NUM_ADDR_CYCLES 27
87 #define STATUS_BFR_READ 30
88 #define SET_RD_MODE_AFTER_STATUS 31
90 /* NAND_DEVn_CFG0 bits */
91 #define DEV0_CFG1_ECC_DISABLE 0
93 #define NAND_RECOVERY_CYCLES 2
94 #define CS_ACTIVE_BSY 5
95 #define BAD_BLOCK_BYTE_NUM 6
96 #define BAD_BLOCK_IN_SPARE_AREA 16
97 #define WR_RD_BSY_GAP 17
98 #define ENABLE_BCH_ECC 27
100 /* NAND_DEV0_ECC_CFG bits */
101 #define ECC_CFG_ECC_DISABLE 0
102 #define ECC_SW_RESET 1
104 #define ECC_PARITY_SIZE_BYTES_BCH 8
105 #define ECC_NUM_DATA_BYTES 16
106 #define ECC_FORCE_CLK_OPEN 30
108 /* NAND_DEV_CMD1 bits */
111 /* NAND_DEV_CMD_VLD bits */
112 #define READ_START_VLD BIT(0)
113 #define READ_STOP_VLD BIT(1)
114 #define WRITE_START_VLD BIT(2)
115 #define ERASE_START_VLD BIT(3)
116 #define SEQ_READ_START_VLD BIT(4)
118 /* NAND_EBI2_ECC_BUF_CFG bits */
121 /* NAND_ERASED_CW_DETECT_CFG bits */
122 #define ERASED_CW_ECC_MASK 1
123 #define AUTO_DETECT_RES 0
124 #define MASK_ECC (1 << ERASED_CW_ECC_MASK)
125 #define RESET_ERASED_DET (1 << AUTO_DETECT_RES)
126 #define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES)
127 #define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC)
128 #define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC)
130 /* NAND_ERASED_CW_DETECT_STATUS bits */
131 #define PAGE_ALL_ERASED BIT(7)
132 #define CODEWORD_ALL_ERASED BIT(6)
133 #define PAGE_ERASED BIT(5)
134 #define CODEWORD_ERASED BIT(4)
135 #define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED)
136 #define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
139 #define NAND_VERSION_MAJOR_MASK 0xf0000000
140 #define NAND_VERSION_MAJOR_SHIFT 28
141 #define NAND_VERSION_MINOR_MASK 0x0fff0000
142 #define NAND_VERSION_MINOR_SHIFT 16
145 #define PAGE_READ 0x2
146 #define PAGE_READ_WITH_ECC 0x3
147 #define PAGE_READ_WITH_ECC_SPARE 0x4
148 #define PROGRAM_PAGE 0x6
149 #define PAGE_PROGRAM_WITH_ECC 0x7
150 #define PROGRAM_PAGE_SPARE 0x9
151 #define BLOCK_ERASE 0xa
153 #define RESET_DEVICE 0xd
155 /* Default Value for NAND_DEV_CMD_VLD */
156 #define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \
157 ERASE_START_VLD | SEQ_READ_START_VLD)
160 * the NAND controller performs reads/writes with ECC in 516 byte chunks.
161 * the driver calls the chunks 'step' or 'codeword' interchangeably
163 #define NANDC_STEP_SIZE 512
166 * the largest page size we support is 8K, this will have 16 steps/codewords
169 #define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE)
171 /* we read at most 3 registers per codeword scan */
172 #define MAX_REG_RD (3 * MAX_NUM_STEPS)
174 /* ECC modes supported by the controller */
175 #define ECC_NONE BIT(0)
176 #define ECC_RS_4BIT BIT(1)
177 #define ECC_BCH_4BIT BIT(2)
178 #define ECC_BCH_8BIT BIT(3)
181 struct list_head node
;
183 enum dma_data_direction dir
;
184 struct scatterlist sgl
;
185 struct dma_async_tx_descriptor
*dma_desc
;
189 * holds the current register values that we want to write. acts as a contiguous
190 * chunk of memory which we use to write the controller registers through DMA.
203 __le32 clrflashstatus
;
204 __le32 clrreadstatus
;
216 * NAND controller data struct
218 * @controller: base controller structure
219 * @host_list: list containing all the chips attached to the
221 * @dev: parent device
223 * @base_dma: physical base address of controller registers
224 * @core_clk: controller clock
225 * @aon_clk: another controller clock
228 * @cmd_crci: ADM DMA CRCI for command flow control
229 * @data_crci: ADM DMA CRCI for data flow control
230 * @desc_list: DMA descriptor list (list of desc_infos)
232 * @data_buffer: our local DMA buffer for page read/writes,
233 * used when we can't use the buffer provided
234 * by upper layers directly
235 * @buf_size/count/start: markers for chip->read_buf/write_buf functions
236 * @reg_read_buf: local buffer for reading back registers via DMA
237 * @reg_read_pos: marker for data read in reg_read_buf
239 * @regs: a contiguous chunk of memory for DMA register
240 * writes. contains the register values to be
241 * written to controller
242 * @cmd1/vld: some fixed controller register values
243 * @ecc_modes: supported ECC modes by the current controller,
244 * initialized via DT match data
246 struct qcom_nand_controller
{
247 struct nand_hw_control controller
;
248 struct list_head host_list
;
255 struct clk
*core_clk
;
258 struct dma_chan
*chan
;
259 unsigned int cmd_crci
;
260 unsigned int data_crci
;
261 struct list_head desc_list
;
268 __le32
*reg_read_buf
;
271 struct nandc_regs
*regs
;
278 * NAND chip structure
280 * @chip: base NAND chip structure
281 * @node: list node to add itself to host_list in
282 * qcom_nand_controller
284 * @cs: chip select value for this chip
285 * @cw_size: the number of bytes in a single step/codeword
286 * of a page, consisting of all data, ecc, spare
288 * @cw_data: the number of bytes within a codeword protected
290 * @use_ecc: request the controller to use ECC for the
291 * upcoming read/write
292 * @bch_enabled: flag to tell whether BCH ECC mode is used
293 * @ecc_bytes_hw: ECC bytes used by controller hardware for this
295 * @status: value to be returned if NAND_CMD_STATUS command
297 * @last_command: keeps track of last command on this chip. used
298 * for reading correct status
300 * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for
301 * ecc/non-ecc mode for the current nand flash
304 struct qcom_nand_host
{
305 struct nand_chip chip
;
306 struct list_head node
;
320 u32 cfg0_raw
, cfg1_raw
;
327 static inline struct qcom_nand_host
*to_qcom_nand_host(struct nand_chip
*chip
)
329 return container_of(chip
, struct qcom_nand_host
, chip
);
332 static inline struct qcom_nand_controller
*
333 get_qcom_nand_controller(struct nand_chip
*chip
)
335 return container_of(chip
->controller
, struct qcom_nand_controller
,
339 static inline u32
nandc_read(struct qcom_nand_controller
*nandc
, int offset
)
341 return ioread32(nandc
->base
+ offset
);
344 static inline void nandc_write(struct qcom_nand_controller
*nandc
, int offset
,
347 iowrite32(val
, nandc
->base
+ offset
);
350 static __le32
*offset_to_nandc_reg(struct nandc_regs
*regs
, int offset
)
359 case NAND_FLASH_CHIP_SELECT
:
360 return ®s
->chip_sel
;
363 case NAND_FLASH_STATUS
:
364 return ®s
->clrflashstatus
;
369 case NAND_DEV0_ECC_CFG
:
370 return ®s
->ecc_bch_cfg
;
371 case NAND_READ_STATUS
:
372 return ®s
->clrreadstatus
;
375 case NAND_DEV_CMD1_RESTORE
:
376 return ®s
->orig_cmd1
;
377 case NAND_DEV_CMD_VLD
:
379 case NAND_DEV_CMD_VLD_RESTORE
:
380 return ®s
->orig_vld
;
381 case NAND_EBI2_ECC_BUF_CFG
:
382 return ®s
->ecc_buf_cfg
;
388 static void nandc_set_reg(struct qcom_nand_controller
*nandc
, int offset
,
391 struct nandc_regs
*regs
= nandc
->regs
;
394 reg
= offset_to_nandc_reg(regs
, offset
);
397 *reg
= cpu_to_le32(val
);
400 /* helper to configure address register values */
401 static void set_address(struct qcom_nand_host
*host
, u16 column
, int page
)
403 struct nand_chip
*chip
= &host
->chip
;
404 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
406 if (chip
->options
& NAND_BUSWIDTH_16
)
409 nandc_set_reg(nandc
, NAND_ADDR0
, page
<< 16 | column
);
410 nandc_set_reg(nandc
, NAND_ADDR1
, page
>> 16 & 0xff);
414 * update_rw_regs: set up read/write register values, these will be
415 * written to the NAND controller registers via DMA
417 * @num_cw: number of steps for the read/write operation
418 * @read: read or write operation
420 static void update_rw_regs(struct qcom_nand_host
*host
, int num_cw
, bool read
)
422 struct nand_chip
*chip
= &host
->chip
;
423 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
424 u32 cmd
, cfg0
, cfg1
, ecc_bch_cfg
;
428 cmd
= PAGE_READ_WITH_ECC
| PAGE_ACC
| LAST_PAGE
;
430 cmd
= PAGE_READ
| PAGE_ACC
| LAST_PAGE
;
432 cmd
= PROGRAM_PAGE
| PAGE_ACC
| LAST_PAGE
;
436 cfg0
= (host
->cfg0
& ~(7U << CW_PER_PAGE
)) |
437 (num_cw
- 1) << CW_PER_PAGE
;
440 ecc_bch_cfg
= host
->ecc_bch_cfg
;
442 cfg0
= (host
->cfg0_raw
& ~(7U << CW_PER_PAGE
)) |
443 (num_cw
- 1) << CW_PER_PAGE
;
445 cfg1
= host
->cfg1_raw
;
446 ecc_bch_cfg
= 1 << ECC_CFG_ECC_DISABLE
;
449 nandc_set_reg(nandc
, NAND_FLASH_CMD
, cmd
);
450 nandc_set_reg(nandc
, NAND_DEV0_CFG0
, cfg0
);
451 nandc_set_reg(nandc
, NAND_DEV0_CFG1
, cfg1
);
452 nandc_set_reg(nandc
, NAND_DEV0_ECC_CFG
, ecc_bch_cfg
);
453 nandc_set_reg(nandc
, NAND_EBI2_ECC_BUF_CFG
, host
->ecc_buf_cfg
);
454 nandc_set_reg(nandc
, NAND_FLASH_STATUS
, host
->clrflashstatus
);
455 nandc_set_reg(nandc
, NAND_READ_STATUS
, host
->clrreadstatus
);
456 nandc_set_reg(nandc
, NAND_EXEC_CMD
, 1);
459 static int prep_dma_desc(struct qcom_nand_controller
*nandc
, bool read
,
460 int reg_off
, const void *vaddr
, int size
,
463 struct desc_info
*desc
;
464 struct dma_async_tx_descriptor
*dma_desc
;
465 struct scatterlist
*sgl
;
466 struct dma_slave_config slave_conf
;
467 enum dma_transfer_direction dir_eng
;
470 desc
= kzalloc(sizeof(*desc
), GFP_KERNEL
);
476 sg_init_one(sgl
, vaddr
, size
);
479 dir_eng
= DMA_DEV_TO_MEM
;
480 desc
->dir
= DMA_FROM_DEVICE
;
482 dir_eng
= DMA_MEM_TO_DEV
;
483 desc
->dir
= DMA_TO_DEVICE
;
486 ret
= dma_map_sg(nandc
->dev
, sgl
, 1, desc
->dir
);
492 memset(&slave_conf
, 0x00, sizeof(slave_conf
));
494 slave_conf
.device_fc
= flow_control
;
496 slave_conf
.src_maxburst
= 16;
497 slave_conf
.src_addr
= nandc
->base_dma
+ reg_off
;
498 slave_conf
.slave_id
= nandc
->data_crci
;
500 slave_conf
.dst_maxburst
= 16;
501 slave_conf
.dst_addr
= nandc
->base_dma
+ reg_off
;
502 slave_conf
.slave_id
= nandc
->cmd_crci
;
505 ret
= dmaengine_slave_config(nandc
->chan
, &slave_conf
);
507 dev_err(nandc
->dev
, "failed to configure dma channel\n");
511 dma_desc
= dmaengine_prep_slave_sg(nandc
->chan
, sgl
, 1, dir_eng
, 0);
513 dev_err(nandc
->dev
, "failed to prepare desc\n");
518 desc
->dma_desc
= dma_desc
;
520 list_add_tail(&desc
->node
, &nandc
->desc_list
);
530 * read_reg_dma: prepares a descriptor to read a given number of
531 * contiguous registers to the reg_read_buf pointer
533 * @first: offset of the first register in the contiguous block
534 * @num_regs: number of registers to read
536 static int read_reg_dma(struct qcom_nand_controller
*nandc
, int first
,
539 bool flow_control
= false;
543 if (first
== NAND_READ_ID
|| first
== NAND_FLASH_STATUS
)
546 size
= num_regs
* sizeof(u32
);
547 vaddr
= nandc
->reg_read_buf
+ nandc
->reg_read_pos
;
548 nandc
->reg_read_pos
+= num_regs
;
550 return prep_dma_desc(nandc
, true, first
, vaddr
, size
, flow_control
);
554 * write_reg_dma: prepares a descriptor to write a given number of
555 * contiguous registers
557 * @first: offset of the first register in the contiguous block
558 * @num_regs: number of registers to write
560 static int write_reg_dma(struct qcom_nand_controller
*nandc
, int first
,
563 bool flow_control
= false;
564 struct nandc_regs
*regs
= nandc
->regs
;
568 vaddr
= offset_to_nandc_reg(regs
, first
);
570 if (first
== NAND_FLASH_CMD
)
573 if (first
== NAND_DEV_CMD1_RESTORE
)
574 first
= NAND_DEV_CMD1
;
576 if (first
== NAND_DEV_CMD_VLD_RESTORE
)
577 first
= NAND_DEV_CMD_VLD
;
579 size
= num_regs
* sizeof(u32
);
581 return prep_dma_desc(nandc
, false, first
, vaddr
, size
, flow_control
);
585 * read_data_dma: prepares a DMA descriptor to transfer data from the
586 * controller's internal buffer to the buffer 'vaddr'
588 * @reg_off: offset within the controller's data buffer
589 * @vaddr: virtual address of the buffer we want to write to
590 * @size: DMA transaction size in bytes
592 static int read_data_dma(struct qcom_nand_controller
*nandc
, int reg_off
,
593 const u8
*vaddr
, int size
)
595 return prep_dma_desc(nandc
, true, reg_off
, vaddr
, size
, false);
599 * write_data_dma: prepares a DMA descriptor to transfer data from
600 * 'vaddr' to the controller's internal buffer
602 * @reg_off: offset within the controller's data buffer
603 * @vaddr: virtual address of the buffer we want to read from
604 * @size: DMA transaction size in bytes
606 static int write_data_dma(struct qcom_nand_controller
*nandc
, int reg_off
,
607 const u8
*vaddr
, int size
)
609 return prep_dma_desc(nandc
, false, reg_off
, vaddr
, size
, false);
613 * helper to prepare dma descriptors to configure registers needed for reading a
614 * codeword/step in a page
616 static void config_cw_read(struct qcom_nand_controller
*nandc
)
618 write_reg_dma(nandc
, NAND_FLASH_CMD
, 3);
619 write_reg_dma(nandc
, NAND_DEV0_CFG0
, 3);
620 write_reg_dma(nandc
, NAND_EBI2_ECC_BUF_CFG
, 1);
622 write_reg_dma(nandc
, NAND_EXEC_CMD
, 1);
624 read_reg_dma(nandc
, NAND_FLASH_STATUS
, 2);
625 read_reg_dma(nandc
, NAND_ERASED_CW_DETECT_STATUS
, 1);
629 * helpers to prepare dma descriptors used to configure registers needed for
630 * writing a codeword/step in a page
632 static void config_cw_write_pre(struct qcom_nand_controller
*nandc
)
634 write_reg_dma(nandc
, NAND_FLASH_CMD
, 3);
635 write_reg_dma(nandc
, NAND_DEV0_CFG0
, 3);
636 write_reg_dma(nandc
, NAND_EBI2_ECC_BUF_CFG
, 1);
639 static void config_cw_write_post(struct qcom_nand_controller
*nandc
)
641 write_reg_dma(nandc
, NAND_EXEC_CMD
, 1);
643 read_reg_dma(nandc
, NAND_FLASH_STATUS
, 1);
645 write_reg_dma(nandc
, NAND_FLASH_STATUS
, 1);
646 write_reg_dma(nandc
, NAND_READ_STATUS
, 1);
650 * the following functions are used within chip->cmdfunc() to perform different
651 * NAND_CMD_* commands
654 /* sets up descriptors for NAND_CMD_PARAM */
655 static int nandc_param(struct qcom_nand_host
*host
)
657 struct nand_chip
*chip
= &host
->chip
;
658 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
661 * NAND_CMD_PARAM is called before we know much about the FLASH chip
662 * in use. we configure the controller to perform a raw read of 512
663 * bytes to read onfi params
665 nandc_set_reg(nandc
, NAND_FLASH_CMD
, PAGE_READ
| PAGE_ACC
| LAST_PAGE
);
666 nandc_set_reg(nandc
, NAND_ADDR0
, 0);
667 nandc_set_reg(nandc
, NAND_ADDR1
, 0);
668 nandc_set_reg(nandc
, NAND_DEV0_CFG0
, 0 << CW_PER_PAGE
669 | 512 << UD_SIZE_BYTES
670 | 5 << NUM_ADDR_CYCLES
671 | 0 << SPARE_SIZE_BYTES
);
672 nandc_set_reg(nandc
, NAND_DEV0_CFG1
, 7 << NAND_RECOVERY_CYCLES
674 | 17 << BAD_BLOCK_BYTE_NUM
675 | 1 << BAD_BLOCK_IN_SPARE_AREA
678 | 1 << DEV0_CFG1_ECC_DISABLE
);
679 nandc_set_reg(nandc
, NAND_EBI2_ECC_BUF_CFG
, 1 << ECC_CFG_ECC_DISABLE
);
681 /* configure CMD1 and VLD for ONFI param probing */
682 nandc_set_reg(nandc
, NAND_DEV_CMD_VLD
,
683 (nandc
->vld
& ~READ_START_VLD
));
684 nandc_set_reg(nandc
, NAND_DEV_CMD1
,
685 (nandc
->cmd1
& ~(0xFF << READ_ADDR
))
686 | NAND_CMD_PARAM
<< READ_ADDR
);
688 nandc_set_reg(nandc
, NAND_EXEC_CMD
, 1);
690 nandc_set_reg(nandc
, NAND_DEV_CMD1_RESTORE
, nandc
->cmd1
);
691 nandc_set_reg(nandc
, NAND_DEV_CMD_VLD_RESTORE
, nandc
->vld
);
693 write_reg_dma(nandc
, NAND_DEV_CMD_VLD
, 1);
694 write_reg_dma(nandc
, NAND_DEV_CMD1
, 1);
696 nandc
->buf_count
= 512;
697 memset(nandc
->data_buffer
, 0xff, nandc
->buf_count
);
699 config_cw_read(nandc
);
701 read_data_dma(nandc
, FLASH_BUF_ACC
, nandc
->data_buffer
,
704 /* restore CMD1 and VLD regs */
705 write_reg_dma(nandc
, NAND_DEV_CMD1_RESTORE
, 1);
706 write_reg_dma(nandc
, NAND_DEV_CMD_VLD_RESTORE
, 1);
711 /* sets up descriptors for NAND_CMD_ERASE1 */
712 static int erase_block(struct qcom_nand_host
*host
, int page_addr
)
714 struct nand_chip
*chip
= &host
->chip
;
715 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
717 nandc_set_reg(nandc
, NAND_FLASH_CMD
,
718 BLOCK_ERASE
| PAGE_ACC
| LAST_PAGE
);
719 nandc_set_reg(nandc
, NAND_ADDR0
, page_addr
);
720 nandc_set_reg(nandc
, NAND_ADDR1
, 0);
721 nandc_set_reg(nandc
, NAND_DEV0_CFG0
,
722 host
->cfg0_raw
& ~(7 << CW_PER_PAGE
));
723 nandc_set_reg(nandc
, NAND_DEV0_CFG1
, host
->cfg1_raw
);
724 nandc_set_reg(nandc
, NAND_EXEC_CMD
, 1);
725 nandc_set_reg(nandc
, NAND_FLASH_STATUS
, host
->clrflashstatus
);
726 nandc_set_reg(nandc
, NAND_READ_STATUS
, host
->clrreadstatus
);
728 write_reg_dma(nandc
, NAND_FLASH_CMD
, 3);
729 write_reg_dma(nandc
, NAND_DEV0_CFG0
, 2);
730 write_reg_dma(nandc
, NAND_EXEC_CMD
, 1);
732 read_reg_dma(nandc
, NAND_FLASH_STATUS
, 1);
734 write_reg_dma(nandc
, NAND_FLASH_STATUS
, 1);
735 write_reg_dma(nandc
, NAND_READ_STATUS
, 1);
740 /* sets up descriptors for NAND_CMD_READID */
741 static int read_id(struct qcom_nand_host
*host
, int column
)
743 struct nand_chip
*chip
= &host
->chip
;
744 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
749 nandc_set_reg(nandc
, NAND_FLASH_CMD
, FETCH_ID
);
750 nandc_set_reg(nandc
, NAND_ADDR0
, column
);
751 nandc_set_reg(nandc
, NAND_ADDR1
, 0);
752 nandc_set_reg(nandc
, NAND_FLASH_CHIP_SELECT
, DM_EN
);
753 nandc_set_reg(nandc
, NAND_EXEC_CMD
, 1);
755 write_reg_dma(nandc
, NAND_FLASH_CMD
, 4);
756 write_reg_dma(nandc
, NAND_EXEC_CMD
, 1);
758 read_reg_dma(nandc
, NAND_READ_ID
, 1);
763 /* sets up descriptors for NAND_CMD_RESET */
764 static int reset(struct qcom_nand_host
*host
)
766 struct nand_chip
*chip
= &host
->chip
;
767 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
769 nandc_set_reg(nandc
, NAND_FLASH_CMD
, RESET_DEVICE
);
770 nandc_set_reg(nandc
, NAND_EXEC_CMD
, 1);
772 write_reg_dma(nandc
, NAND_FLASH_CMD
, 1);
773 write_reg_dma(nandc
, NAND_EXEC_CMD
, 1);
775 read_reg_dma(nandc
, NAND_FLASH_STATUS
, 1);
780 /* helpers to submit/free our list of dma descriptors */
781 static int submit_descs(struct qcom_nand_controller
*nandc
)
783 struct desc_info
*desc
;
784 dma_cookie_t cookie
= 0;
786 list_for_each_entry(desc
, &nandc
->desc_list
, node
)
787 cookie
= dmaengine_submit(desc
->dma_desc
);
789 if (dma_sync_wait(nandc
->chan
, cookie
) != DMA_COMPLETE
)
795 static void free_descs(struct qcom_nand_controller
*nandc
)
797 struct desc_info
*desc
, *n
;
799 list_for_each_entry_safe(desc
, n
, &nandc
->desc_list
, node
) {
800 list_del(&desc
->node
);
801 dma_unmap_sg(nandc
->dev
, &desc
->sgl
, 1, desc
->dir
);
806 /* reset the register read buffer for next NAND operation */
807 static void clear_read_regs(struct qcom_nand_controller
*nandc
)
809 nandc
->reg_read_pos
= 0;
810 memset(nandc
->reg_read_buf
, 0,
811 MAX_REG_RD
* sizeof(*nandc
->reg_read_buf
));
814 static void pre_command(struct qcom_nand_host
*host
, int command
)
816 struct nand_chip
*chip
= &host
->chip
;
817 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
819 nandc
->buf_count
= 0;
820 nandc
->buf_start
= 0;
821 host
->use_ecc
= false;
822 host
->last_command
= command
;
824 clear_read_regs(nandc
);
828 * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
829 * privately maintained status byte, this status byte can be read after
830 * NAND_CMD_STATUS is called
832 static void parse_erase_write_errors(struct qcom_nand_host
*host
, int command
)
834 struct nand_chip
*chip
= &host
->chip
;
835 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
836 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
840 num_cw
= command
== NAND_CMD_PAGEPROG
? ecc
->steps
: 1;
842 for (i
= 0; i
< num_cw
; i
++) {
843 u32 flash_status
= le32_to_cpu(nandc
->reg_read_buf
[i
]);
845 if (flash_status
& FS_MPU_ERR
)
846 host
->status
&= ~NAND_STATUS_WP
;
848 if (flash_status
& FS_OP_ERR
|| (i
== (num_cw
- 1) &&
851 host
->status
|= NAND_STATUS_FAIL
;
855 static void post_command(struct qcom_nand_host
*host
, int command
)
857 struct nand_chip
*chip
= &host
->chip
;
858 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
861 case NAND_CMD_READID
:
862 memcpy(nandc
->data_buffer
, nandc
->reg_read_buf
,
865 case NAND_CMD_PAGEPROG
:
866 case NAND_CMD_ERASE1
:
867 parse_erase_write_errors(host
, command
);
875 * Implements chip->cmdfunc. It's only used for a limited set of commands.
876 * The rest of the commands wouldn't be called by upper layers. For example,
877 * NAND_CMD_READOOB would never be called because we have our own versions
878 * of read_oob ops for nand_ecc_ctrl.
880 static void qcom_nandc_command(struct mtd_info
*mtd
, unsigned int command
,
881 int column
, int page_addr
)
883 struct nand_chip
*chip
= mtd_to_nand(mtd
);
884 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
885 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
886 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
890 pre_command(host
, command
);
898 case NAND_CMD_READID
:
899 nandc
->buf_count
= 4;
900 ret
= read_id(host
, column
);
905 ret
= nandc_param(host
);
909 case NAND_CMD_ERASE1
:
910 ret
= erase_block(host
, page_addr
);
915 /* we read the entire page for now */
916 WARN_ON(column
!= 0);
918 host
->use_ecc
= true;
919 set_address(host
, 0, page_addr
);
920 update_rw_regs(host
, ecc
->steps
, true);
924 WARN_ON(column
!= 0);
925 set_address(host
, 0, page_addr
);
928 case NAND_CMD_PAGEPROG
:
929 case NAND_CMD_STATUS
:
936 dev_err(nandc
->dev
, "failure executing command %d\n",
943 ret
= submit_descs(nandc
);
946 "failure submitting descs for command %d\n",
952 post_command(host
, command
);
956 * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
957 * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
959 * when using RS ECC, the HW reports the same erros when reading an erased CW,
960 * but it notifies that it is an erased CW by placing special characters at
961 * certain offsets in the buffer.
963 * verify if the page is erased or not, and fix up the page for RS ECC by
964 * replacing the special characters with 0xff.
966 static bool erased_chunk_check_and_fixup(u8
*data_buf
, int data_len
)
971 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
972 * is erased by looking for 0x54s at offsets 3 and 175 from the
973 * beginning of each codeword
976 empty1
= data_buf
[3];
977 empty2
= data_buf
[175];
980 * if the erased codework markers, if they exist override them with
983 if ((empty1
== 0x54 && empty2
== 0xff) ||
984 (empty1
== 0xff && empty2
== 0x54)) {
986 data_buf
[175] = 0xff;
990 * check if the entire chunk contains 0xffs or not. if it doesn't, then
991 * restore the original values at the special offsets
993 if (memchr_inv(data_buf
, 0xff, data_len
)) {
994 data_buf
[3] = empty1
;
995 data_buf
[175] = empty2
;
1010 * reads back status registers set by the controller to notify page read
1011 * errors. this is equivalent to what 'ecc->correct()' would do.
1013 static int parse_read_errors(struct qcom_nand_host
*host
, u8
*data_buf
,
1016 struct nand_chip
*chip
= &host
->chip
;
1017 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1018 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1019 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1020 unsigned int max_bitflips
= 0;
1021 struct read_stats
*buf
;
1024 buf
= (struct read_stats
*)nandc
->reg_read_buf
;
1026 for (i
= 0; i
< ecc
->steps
; i
++, buf
++) {
1027 u32 flash
, buffer
, erased_cw
;
1028 int data_len
, oob_len
;
1030 if (i
== (ecc
->steps
- 1)) {
1031 data_len
= ecc
->size
- ((ecc
->steps
- 1) << 2);
1032 oob_len
= ecc
->steps
<< 2;
1034 data_len
= host
->cw_data
;
1038 flash
= le32_to_cpu(buf
->flash
);
1039 buffer
= le32_to_cpu(buf
->buffer
);
1040 erased_cw
= le32_to_cpu(buf
->erased_cw
);
1042 if (flash
& (FS_OP_ERR
| FS_MPU_ERR
)) {
1045 /* ignore erased codeword errors */
1046 if (host
->bch_enabled
) {
1047 erased
= (erased_cw
& ERASED_CW
) == ERASED_CW
?
1050 erased
= erased_chunk_check_and_fixup(data_buf
,
1055 data_buf
+= data_len
;
1057 oob_buf
+= oob_len
+ ecc
->bytes
;
1061 if (buffer
& BS_UNCORRECTABLE_BIT
) {
1062 int ret
, ecclen
, extraooblen
;
1065 eccbuf
= oob_buf
? oob_buf
+ oob_len
: NULL
;
1066 ecclen
= oob_buf
? host
->ecc_bytes_hw
: 0;
1067 extraooblen
= oob_buf
? oob_len
: 0;
1070 * make sure it isn't an erased page reported
1071 * as not-erased by HW because of a few bitflips
1073 ret
= nand_check_erased_ecc_chunk(data_buf
,
1074 data_len
, eccbuf
, ecclen
, oob_buf
,
1075 extraooblen
, ecc
->strength
);
1077 mtd
->ecc_stats
.failed
++;
1079 mtd
->ecc_stats
.corrected
+= ret
;
1081 max_t(unsigned int, max_bitflips
, ret
);
1087 stat
= buffer
& BS_CORRECTABLE_ERR_MSK
;
1088 mtd
->ecc_stats
.corrected
+= stat
;
1089 max_bitflips
= max(max_bitflips
, stat
);
1092 data_buf
+= data_len
;
1094 oob_buf
+= oob_len
+ ecc
->bytes
;
1097 return max_bitflips
;
1101 * helper to perform the actual page read operation, used by ecc->read_page(),
1104 static int read_page_ecc(struct qcom_nand_host
*host
, u8
*data_buf
,
1107 struct nand_chip
*chip
= &host
->chip
;
1108 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1109 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1112 /* queue cmd descs for each codeword */
1113 for (i
= 0; i
< ecc
->steps
; i
++) {
1114 int data_size
, oob_size
;
1116 if (i
== (ecc
->steps
- 1)) {
1117 data_size
= ecc
->size
- ((ecc
->steps
- 1) << 2);
1118 oob_size
= (ecc
->steps
<< 2) + host
->ecc_bytes_hw
+
1121 data_size
= host
->cw_data
;
1122 oob_size
= host
->ecc_bytes_hw
+ host
->spare_bytes
;
1125 config_cw_read(nandc
);
1128 read_data_dma(nandc
, FLASH_BUF_ACC
, data_buf
,
1132 * when ecc is enabled, the controller doesn't read the real
1133 * or dummy bad block markers in each chunk. To maintain a
1134 * consistent layout across RAW and ECC reads, we just
1135 * leave the real/dummy BBM offsets empty (i.e, filled with
1141 for (j
= 0; j
< host
->bbm_size
; j
++)
1144 read_data_dma(nandc
, FLASH_BUF_ACC
+ data_size
,
1149 data_buf
+= data_size
;
1151 oob_buf
+= oob_size
;
1154 ret
= submit_descs(nandc
);
1156 dev_err(nandc
->dev
, "failure to read page/oob\n");
1164 * a helper that copies the last step/codeword of a page (containing free oob)
1165 * into our local buffer
1167 static int copy_last_cw(struct qcom_nand_host
*host
, int page
)
1169 struct nand_chip
*chip
= &host
->chip
;
1170 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1171 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1175 clear_read_regs(nandc
);
1177 size
= host
->use_ecc
? host
->cw_data
: host
->cw_size
;
1179 /* prepare a clean read buffer */
1180 memset(nandc
->data_buffer
, 0xff, size
);
1182 set_address(host
, host
->cw_size
* (ecc
->steps
- 1), page
);
1183 update_rw_regs(host
, 1, true);
1185 config_cw_read(nandc
);
1187 read_data_dma(nandc
, FLASH_BUF_ACC
, nandc
->data_buffer
, size
);
1189 ret
= submit_descs(nandc
);
1191 dev_err(nandc
->dev
, "failed to copy last codeword\n");
1198 /* implements ecc->read_page() */
1199 static int qcom_nandc_read_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1200 uint8_t *buf
, int oob_required
, int page
)
1202 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1203 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1204 u8
*data_buf
, *oob_buf
= NULL
;
1208 oob_buf
= oob_required
? chip
->oob_poi
: NULL
;
1210 ret
= read_page_ecc(host
, data_buf
, oob_buf
);
1212 dev_err(nandc
->dev
, "failure to read page\n");
1216 return parse_read_errors(host
, data_buf
, oob_buf
);
1219 /* implements ecc->read_page_raw() */
1220 static int qcom_nandc_read_page_raw(struct mtd_info
*mtd
,
1221 struct nand_chip
*chip
, uint8_t *buf
,
1222 int oob_required
, int page
)
1224 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1225 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1226 u8
*data_buf
, *oob_buf
;
1227 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1231 oob_buf
= chip
->oob_poi
;
1233 host
->use_ecc
= false;
1234 update_rw_regs(host
, ecc
->steps
, true);
1236 for (i
= 0; i
< ecc
->steps
; i
++) {
1237 int data_size1
, data_size2
, oob_size1
, oob_size2
;
1238 int reg_off
= FLASH_BUF_ACC
;
1240 data_size1
= mtd
->writesize
- host
->cw_size
* (ecc
->steps
- 1);
1241 oob_size1
= host
->bbm_size
;
1243 if (i
== (ecc
->steps
- 1)) {
1244 data_size2
= ecc
->size
- data_size1
-
1245 ((ecc
->steps
- 1) << 2);
1246 oob_size2
= (ecc
->steps
<< 2) + host
->ecc_bytes_hw
+
1249 data_size2
= host
->cw_data
- data_size1
;
1250 oob_size2
= host
->ecc_bytes_hw
+ host
->spare_bytes
;
1253 config_cw_read(nandc
);
1255 read_data_dma(nandc
, reg_off
, data_buf
, data_size1
);
1256 reg_off
+= data_size1
;
1257 data_buf
+= data_size1
;
1259 read_data_dma(nandc
, reg_off
, oob_buf
, oob_size1
);
1260 reg_off
+= oob_size1
;
1261 oob_buf
+= oob_size1
;
1263 read_data_dma(nandc
, reg_off
, data_buf
, data_size2
);
1264 reg_off
+= data_size2
;
1265 data_buf
+= data_size2
;
1267 read_data_dma(nandc
, reg_off
, oob_buf
, oob_size2
);
1268 oob_buf
+= oob_size2
;
1271 ret
= submit_descs(nandc
);
1273 dev_err(nandc
->dev
, "failure to read raw page\n");
1280 /* implements ecc->read_oob() */
1281 static int qcom_nandc_read_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1284 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1285 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1286 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1289 clear_read_regs(nandc
);
1291 host
->use_ecc
= true;
1292 set_address(host
, 0, page
);
1293 update_rw_regs(host
, ecc
->steps
, true);
1295 ret
= read_page_ecc(host
, NULL
, chip
->oob_poi
);
1297 dev_err(nandc
->dev
, "failure to read oob\n");
1302 /* implements ecc->write_page() */
1303 static int qcom_nandc_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1304 const uint8_t *buf
, int oob_required
, int page
)
1306 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1307 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1308 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1309 u8
*data_buf
, *oob_buf
;
1312 clear_read_regs(nandc
);
1314 data_buf
= (u8
*)buf
;
1315 oob_buf
= chip
->oob_poi
;
1317 host
->use_ecc
= true;
1318 update_rw_regs(host
, ecc
->steps
, false);
1320 for (i
= 0; i
< ecc
->steps
; i
++) {
1321 int data_size
, oob_size
;
1323 if (i
== (ecc
->steps
- 1)) {
1324 data_size
= ecc
->size
- ((ecc
->steps
- 1) << 2);
1325 oob_size
= (ecc
->steps
<< 2) + host
->ecc_bytes_hw
+
1328 data_size
= host
->cw_data
;
1329 oob_size
= ecc
->bytes
;
1332 config_cw_write_pre(nandc
);
1334 write_data_dma(nandc
, FLASH_BUF_ACC
, data_buf
, data_size
);
1337 * when ECC is enabled, we don't really need to write anything
1338 * to oob for the first n - 1 codewords since these oob regions
1339 * just contain ECC bytes that's written by the controller
1340 * itself. For the last codeword, we skip the bbm positions and
1341 * write to the free oob area.
1343 if (i
== (ecc
->steps
- 1)) {
1344 oob_buf
+= host
->bbm_size
;
1346 write_data_dma(nandc
, FLASH_BUF_ACC
+ data_size
,
1350 config_cw_write_post(nandc
);
1352 data_buf
+= data_size
;
1353 oob_buf
+= oob_size
;
1356 ret
= submit_descs(nandc
);
1358 dev_err(nandc
->dev
, "failure to write page\n");
1365 /* implements ecc->write_page_raw() */
1366 static int qcom_nandc_write_page_raw(struct mtd_info
*mtd
,
1367 struct nand_chip
*chip
, const uint8_t *buf
,
1368 int oob_required
, int page
)
1370 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1371 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1372 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1373 u8
*data_buf
, *oob_buf
;
1376 clear_read_regs(nandc
);
1378 data_buf
= (u8
*)buf
;
1379 oob_buf
= chip
->oob_poi
;
1381 host
->use_ecc
= false;
1382 update_rw_regs(host
, ecc
->steps
, false);
1384 for (i
= 0; i
< ecc
->steps
; i
++) {
1385 int data_size1
, data_size2
, oob_size1
, oob_size2
;
1386 int reg_off
= FLASH_BUF_ACC
;
1388 data_size1
= mtd
->writesize
- host
->cw_size
* (ecc
->steps
- 1);
1389 oob_size1
= host
->bbm_size
;
1391 if (i
== (ecc
->steps
- 1)) {
1392 data_size2
= ecc
->size
- data_size1
-
1393 ((ecc
->steps
- 1) << 2);
1394 oob_size2
= (ecc
->steps
<< 2) + host
->ecc_bytes_hw
+
1397 data_size2
= host
->cw_data
- data_size1
;
1398 oob_size2
= host
->ecc_bytes_hw
+ host
->spare_bytes
;
1401 config_cw_write_pre(nandc
);
1403 write_data_dma(nandc
, reg_off
, data_buf
, data_size1
);
1404 reg_off
+= data_size1
;
1405 data_buf
+= data_size1
;
1407 write_data_dma(nandc
, reg_off
, oob_buf
, oob_size1
);
1408 reg_off
+= oob_size1
;
1409 oob_buf
+= oob_size1
;
1411 write_data_dma(nandc
, reg_off
, data_buf
, data_size2
);
1412 reg_off
+= data_size2
;
1413 data_buf
+= data_size2
;
1415 write_data_dma(nandc
, reg_off
, oob_buf
, oob_size2
);
1416 oob_buf
+= oob_size2
;
1418 config_cw_write_post(nandc
);
1421 ret
= submit_descs(nandc
);
1423 dev_err(nandc
->dev
, "failure to write raw page\n");
1431 * implements ecc->write_oob()
1433 * the NAND controller cannot write only data or only oob within a codeword,
1434 * since ecc is calculated for the combined codeword. we first copy the
1435 * entire contents for the last codeword(data + oob), replace the old oob
1436 * with the new one in chip->oob_poi, and then write the entire codeword.
1437 * this read-copy-write operation results in a slight performance loss.
1439 static int qcom_nandc_write_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1442 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1443 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1444 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1445 u8
*oob
= chip
->oob_poi
;
1446 int data_size
, oob_size
;
1447 int ret
, status
= 0;
1449 host
->use_ecc
= true;
1451 ret
= copy_last_cw(host
, page
);
1455 clear_read_regs(nandc
);
1457 /* calculate the data and oob size for the last codeword/step */
1458 data_size
= ecc
->size
- ((ecc
->steps
- 1) << 2);
1459 oob_size
= mtd
->oobavail
;
1461 /* override new oob content to last codeword */
1462 mtd_ooblayout_get_databytes(mtd
, nandc
->data_buffer
+ data_size
, oob
,
1465 set_address(host
, host
->cw_size
* (ecc
->steps
- 1), page
);
1466 update_rw_regs(host
, 1, false);
1468 config_cw_write_pre(nandc
);
1469 write_data_dma(nandc
, FLASH_BUF_ACC
, nandc
->data_buffer
,
1470 data_size
+ oob_size
);
1471 config_cw_write_post(nandc
);
1473 ret
= submit_descs(nandc
);
1478 dev_err(nandc
->dev
, "failure to write oob\n");
1482 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1484 status
= chip
->waitfunc(mtd
, chip
);
1486 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1489 static int qcom_nandc_block_bad(struct mtd_info
*mtd
, loff_t ofs
)
1491 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1492 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1493 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1494 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1495 int page
, ret
, bbpos
, bad
= 0;
1498 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
1501 * configure registers for a raw sub page read, the address is set to
1502 * the beginning of the last codeword, we don't care about reading ecc
1503 * portion of oob. we just want the first few bytes from this codeword
1504 * that contains the BBM
1506 host
->use_ecc
= false;
1508 ret
= copy_last_cw(host
, page
);
1512 flash_status
= le32_to_cpu(nandc
->reg_read_buf
[0]);
1514 if (flash_status
& (FS_OP_ERR
| FS_MPU_ERR
)) {
1515 dev_warn(nandc
->dev
, "error when trying to read BBM\n");
1519 bbpos
= mtd
->writesize
- host
->cw_size
* (ecc
->steps
- 1);
1521 bad
= nandc
->data_buffer
[bbpos
] != 0xff;
1523 if (chip
->options
& NAND_BUSWIDTH_16
)
1524 bad
= bad
|| (nandc
->data_buffer
[bbpos
+ 1] != 0xff);
1529 static int qcom_nandc_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
1531 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1532 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1533 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1534 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1535 int page
, ret
, status
= 0;
1537 clear_read_regs(nandc
);
1540 * to mark the BBM as bad, we flash the entire last codeword with 0s.
1541 * we don't care about the rest of the content in the codeword since
1542 * we aren't going to use this block again
1544 memset(nandc
->data_buffer
, 0x00, host
->cw_size
);
1546 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
1549 host
->use_ecc
= false;
1550 set_address(host
, host
->cw_size
* (ecc
->steps
- 1), page
);
1551 update_rw_regs(host
, 1, false);
1553 config_cw_write_pre(nandc
);
1554 write_data_dma(nandc
, FLASH_BUF_ACC
, nandc
->data_buffer
, host
->cw_size
);
1555 config_cw_write_post(nandc
);
1557 ret
= submit_descs(nandc
);
1562 dev_err(nandc
->dev
, "failure to update BBM\n");
1566 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1568 status
= chip
->waitfunc(mtd
, chip
);
1570 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1574 * the three functions below implement chip->read_byte(), chip->read_buf()
1575 * and chip->write_buf() respectively. these aren't used for
1576 * reading/writing page data, they are used for smaller data like reading
1579 static uint8_t qcom_nandc_read_byte(struct mtd_info
*mtd
)
1581 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1582 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1583 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1584 u8
*buf
= nandc
->data_buffer
;
1587 if (host
->last_command
== NAND_CMD_STATUS
) {
1590 host
->status
= NAND_STATUS_READY
| NAND_STATUS_WP
;
1595 if (nandc
->buf_start
< nandc
->buf_count
)
1596 ret
= buf
[nandc
->buf_start
++];
1601 static void qcom_nandc_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
1603 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1604 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1605 int real_len
= min_t(size_t, len
, nandc
->buf_count
- nandc
->buf_start
);
1607 memcpy(buf
, nandc
->data_buffer
+ nandc
->buf_start
, real_len
);
1608 nandc
->buf_start
+= real_len
;
1611 static void qcom_nandc_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
,
1614 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1615 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1616 int real_len
= min_t(size_t, len
, nandc
->buf_count
- nandc
->buf_start
);
1618 memcpy(nandc
->data_buffer
+ nandc
->buf_start
, buf
, real_len
);
1620 nandc
->buf_start
+= real_len
;
1623 /* we support only one external chip for now */
1624 static void qcom_nandc_select_chip(struct mtd_info
*mtd
, int chipnr
)
1626 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1627 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1632 dev_warn(nandc
->dev
, "invalid chip select\n");
1636 * NAND controller page layout info
1638 * Layout with ECC enabled:
1640 * |----------------------| |---------------------------------|
1641 * | xx.......yy| | *********xx.......yy|
1642 * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy|
1643 * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy|
1644 * | xx.......yy| | *********xx.......yy|
1645 * |----------------------| |---------------------------------|
1646 * codeword 1,2..n-1 codeword n
1647 * <---(528/532 Bytes)--> <-------(528/532 Bytes)--------->
1649 * n = Number of codewords in the page
1651 * * = Spare/free bytes
1652 * x = Unused byte(s)
1653 * y = Reserved byte(s)
1655 * 2K page: n = 4, spare = 16 bytes
1656 * 4K page: n = 8, spare = 32 bytes
1657 * 8K page: n = 16, spare = 64 bytes
1659 * the qcom nand controller operates at a sub page/codeword level. each
1660 * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
1661 * the number of ECC bytes vary based on the ECC strength and the bus width.
1663 * the first n - 1 codewords contains 516 bytes of user data, the remaining
1664 * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
1665 * both user data and spare(oobavail) bytes that sum up to 516 bytes.
1667 * When we access a page with ECC enabled, the reserved bytes(s) are not
1668 * accessible at all. When reading, we fill up these unreadable positions
1669 * with 0xffs. When writing, the controller skips writing the inaccessible
1672 * Layout with ECC disabled:
1674 * |------------------------------| |---------------------------------------|
1675 * | yy xx.......| | bb *********xx.......|
1676 * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..|
1677 * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......|
1678 * | yy xx.......| | bb *********xx.......|
1679 * |------------------------------| |---------------------------------------|
1680 * codeword 1,2..n-1 codeword n
1681 * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)----------->
1683 * n = Number of codewords in the page
1685 * * = Spare/free bytes
1686 * x = Unused byte(s)
1687 * y = Dummy Bad Bock byte(s)
1688 * b = Real Bad Block byte(s)
1689 * size1/size2 = function of codeword size and 'n'
1691 * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
1692 * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
1693 * Block Markers. In the last codeword, this position contains the real BBM
1695 * In order to have a consistent layout between RAW and ECC modes, we assume
1696 * the following OOB layout arrangement:
1698 * |-----------| |--------------------|
1699 * |yyxx.......| |bb*********xx.......|
1700 * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..|
1701 * |yyxx.......| |bb*********xx.......|
1702 * |yyxx.......| |bb*********xx.......|
1703 * |-----------| |--------------------|
1704 * first n - 1 nth OOB region
1707 * n = Number of codewords in the page
1709 * * = FREE OOB bytes
1710 * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
1711 * x = Unused byte(s)
1712 * b = Real bad block byte(s) (inaccessible when ECC enabled)
1714 * This layout is read as is when ECC is disabled. When ECC is enabled, the
1715 * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
1716 * and assumed as 0xffs when we read a page/oob. The ECC, unused and
1717 * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
1718 * the sum of the three).
1720 static int qcom_nand_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
1721 struct mtd_oob_region
*oobregion
)
1723 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1724 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1725 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1731 oobregion
->length
= (ecc
->bytes
* (ecc
->steps
- 1)) +
1733 oobregion
->offset
= 0;
1735 oobregion
->length
= host
->ecc_bytes_hw
+ host
->spare_bytes
;
1736 oobregion
->offset
= mtd
->oobsize
- oobregion
->length
;
1742 static int qcom_nand_ooblayout_free(struct mtd_info
*mtd
, int section
,
1743 struct mtd_oob_region
*oobregion
)
1745 struct nand_chip
*chip
= mtd_to_nand(mtd
);
1746 struct qcom_nand_host
*host
= to_qcom_nand_host(chip
);
1747 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1752 oobregion
->length
= ecc
->steps
* 4;
1753 oobregion
->offset
= ((ecc
->steps
- 1) * ecc
->bytes
) + host
->bbm_size
;
1758 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops
= {
1759 .ecc
= qcom_nand_ooblayout_ecc
,
1760 .free
= qcom_nand_ooblayout_free
,
1763 static int qcom_nand_host_setup(struct qcom_nand_host
*host
)
1765 struct nand_chip
*chip
= &host
->chip
;
1766 struct mtd_info
*mtd
= nand_to_mtd(chip
);
1767 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
1768 struct qcom_nand_controller
*nandc
= get_qcom_nand_controller(chip
);
1769 int cwperpage
, bad_block_byte
;
1774 * the controller requires each step consists of 512 bytes of data.
1775 * bail out if DT has populated a wrong step size.
1777 if (ecc
->size
!= NANDC_STEP_SIZE
) {
1778 dev_err(nandc
->dev
, "invalid ecc size\n");
1782 wide_bus
= chip
->options
& NAND_BUSWIDTH_16
? true : false;
1784 if (ecc
->strength
>= 8) {
1785 /* 8 bit ECC defaults to BCH ECC on all platforms */
1786 host
->bch_enabled
= true;
1790 host
->ecc_bytes_hw
= 14;
1791 host
->spare_bytes
= 0;
1794 host
->ecc_bytes_hw
= 13;
1795 host
->spare_bytes
= 2;
1800 * if the controller supports BCH for 4 bit ECC, the controller
1801 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
1804 if (nandc
->ecc_modes
& ECC_BCH_4BIT
) {
1806 host
->bch_enabled
= true;
1810 host
->ecc_bytes_hw
= 8;
1811 host
->spare_bytes
= 2;
1814 host
->ecc_bytes_hw
= 7;
1815 host
->spare_bytes
= 4;
1820 host
->ecc_bytes_hw
= 10;
1823 host
->spare_bytes
= 0;
1826 host
->spare_bytes
= 1;
1833 * we consider ecc->bytes as the sum of all the non-data content in a
1834 * step. It gives us a clean representation of the oob area (even if
1835 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
1836 * ECC and 12 bytes for 4 bit ECC
1838 ecc
->bytes
= host
->ecc_bytes_hw
+ host
->spare_bytes
+ host
->bbm_size
;
1840 ecc
->read_page
= qcom_nandc_read_page
;
1841 ecc
->read_page_raw
= qcom_nandc_read_page_raw
;
1842 ecc
->read_oob
= qcom_nandc_read_oob
;
1843 ecc
->write_page
= qcom_nandc_write_page
;
1844 ecc
->write_page_raw
= qcom_nandc_write_page_raw
;
1845 ecc
->write_oob
= qcom_nandc_write_oob
;
1847 ecc
->mode
= NAND_ECC_HW
;
1849 mtd_set_ooblayout(mtd
, &qcom_nand_ooblayout_ops
);
1851 cwperpage
= mtd
->writesize
/ ecc
->size
;
1854 * DATA_UD_BYTES varies based on whether the read/write command protects
1855 * spare data with ECC too. We protect spare data by default, so we set
1856 * it to main + spare data, which are 512 and 4 bytes respectively.
1858 host
->cw_data
= 516;
1861 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
1864 host
->cw_size
= host
->cw_data
+ ecc
->bytes
;
1866 if (ecc
->bytes
* (mtd
->writesize
/ ecc
->size
) > mtd
->oobsize
) {
1867 dev_err(nandc
->dev
, "ecc data doesn't fit in OOB area\n");
1871 bad_block_byte
= mtd
->writesize
- host
->cw_size
* (cwperpage
- 1) + 1;
1873 host
->cfg0
= (cwperpage
- 1) << CW_PER_PAGE
1874 | host
->cw_data
<< UD_SIZE_BYTES
1875 | 0 << DISABLE_STATUS_AFTER_WRITE
1876 | 5 << NUM_ADDR_CYCLES
1877 | host
->ecc_bytes_hw
<< ECC_PARITY_SIZE_BYTES_RS
1878 | 0 << STATUS_BFR_READ
1879 | 1 << SET_RD_MODE_AFTER_STATUS
1880 | host
->spare_bytes
<< SPARE_SIZE_BYTES
;
1882 host
->cfg1
= 7 << NAND_RECOVERY_CYCLES
1883 | 0 << CS_ACTIVE_BSY
1884 | bad_block_byte
<< BAD_BLOCK_BYTE_NUM
1885 | 0 << BAD_BLOCK_IN_SPARE_AREA
1886 | 2 << WR_RD_BSY_GAP
1887 | wide_bus
<< WIDE_FLASH
1888 | host
->bch_enabled
<< ENABLE_BCH_ECC
;
1890 host
->cfg0_raw
= (cwperpage
- 1) << CW_PER_PAGE
1891 | host
->cw_size
<< UD_SIZE_BYTES
1892 | 5 << NUM_ADDR_CYCLES
1893 | 0 << SPARE_SIZE_BYTES
;
1895 host
->cfg1_raw
= 7 << NAND_RECOVERY_CYCLES
1896 | 0 << CS_ACTIVE_BSY
1897 | 17 << BAD_BLOCK_BYTE_NUM
1898 | 1 << BAD_BLOCK_IN_SPARE_AREA
1899 | 2 << WR_RD_BSY_GAP
1900 | wide_bus
<< WIDE_FLASH
1901 | 1 << DEV0_CFG1_ECC_DISABLE
;
1903 host
->ecc_bch_cfg
= !host
->bch_enabled
<< ECC_CFG_ECC_DISABLE
1905 | host
->cw_data
<< ECC_NUM_DATA_BYTES
1906 | 1 << ECC_FORCE_CLK_OPEN
1907 | ecc_mode
<< ECC_MODE
1908 | host
->ecc_bytes_hw
<< ECC_PARITY_SIZE_BYTES_BCH
;
1910 host
->ecc_buf_cfg
= 0x203 << NUM_STEPS
;
1912 host
->clrflashstatus
= FS_READY_BSY_N
;
1913 host
->clrreadstatus
= 0xc0;
1916 "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
1917 host
->cfg0
, host
->cfg1
, host
->ecc_buf_cfg
, host
->ecc_bch_cfg
,
1918 host
->cw_size
, host
->cw_data
, ecc
->strength
, ecc
->bytes
,
1924 static int qcom_nandc_alloc(struct qcom_nand_controller
*nandc
)
1928 ret
= dma_set_coherent_mask(nandc
->dev
, DMA_BIT_MASK(32));
1930 dev_err(nandc
->dev
, "failed to set DMA mask\n");
1935 * we use the internal buffer for reading ONFI params, reading small
1936 * data like ID and status, and preforming read-copy-write operations
1937 * when writing to a codeword partially. 532 is the maximum possible
1938 * size of a codeword for our nand controller
1940 nandc
->buf_size
= 532;
1942 nandc
->data_buffer
= devm_kzalloc(nandc
->dev
, nandc
->buf_size
,
1944 if (!nandc
->data_buffer
)
1947 nandc
->regs
= devm_kzalloc(nandc
->dev
, sizeof(*nandc
->regs
),
1952 nandc
->reg_read_buf
= devm_kzalloc(nandc
->dev
,
1953 MAX_REG_RD
* sizeof(*nandc
->reg_read_buf
),
1955 if (!nandc
->reg_read_buf
)
1958 nandc
->chan
= dma_request_slave_channel(nandc
->dev
, "rxtx");
1960 dev_err(nandc
->dev
, "failed to request slave channel\n");
1964 INIT_LIST_HEAD(&nandc
->desc_list
);
1965 INIT_LIST_HEAD(&nandc
->host_list
);
1967 nand_hw_control_init(&nandc
->controller
);
1972 static void qcom_nandc_unalloc(struct qcom_nand_controller
*nandc
)
1974 dma_release_channel(nandc
->chan
);
1977 /* one time setup of a few nand controller registers */
1978 static int qcom_nandc_setup(struct qcom_nand_controller
*nandc
)
1981 nandc_write(nandc
, SFLASHC_BURST_CFG
, 0);
1982 nandc_write(nandc
, NAND_DEV_CMD_VLD
, NAND_DEV_CMD_VLD_VAL
);
1984 /* enable ADM DMA */
1985 nandc_write(nandc
, NAND_FLASH_CHIP_SELECT
, DM_EN
);
1987 /* save the original values of these registers */
1988 nandc
->cmd1
= nandc_read(nandc
, NAND_DEV_CMD1
);
1989 nandc
->vld
= NAND_DEV_CMD_VLD_VAL
;
1994 static int qcom_nand_host_init(struct qcom_nand_controller
*nandc
,
1995 struct qcom_nand_host
*host
,
1996 struct device_node
*dn
)
1998 struct nand_chip
*chip
= &host
->chip
;
1999 struct mtd_info
*mtd
= nand_to_mtd(chip
);
2000 struct device
*dev
= nandc
->dev
;
2003 ret
= of_property_read_u32(dn
, "reg", &host
->cs
);
2005 dev_err(dev
, "can't get chip-select\n");
2009 nand_set_flash_node(chip
, dn
);
2010 mtd
->name
= devm_kasprintf(dev
, GFP_KERNEL
, "qcom_nand.%d", host
->cs
);
2011 mtd
->owner
= THIS_MODULE
;
2012 mtd
->dev
.parent
= dev
;
2014 chip
->cmdfunc
= qcom_nandc_command
;
2015 chip
->select_chip
= qcom_nandc_select_chip
;
2016 chip
->read_byte
= qcom_nandc_read_byte
;
2017 chip
->read_buf
= qcom_nandc_read_buf
;
2018 chip
->write_buf
= qcom_nandc_write_buf
;
2021 * the bad block marker is readable only when we read the last codeword
2022 * of a page with ECC disabled. currently, the nand_base and nand_bbt
2023 * helpers don't allow us to read BB from a nand chip with ECC
2024 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2025 * and block_markbad helpers until we permanently switch to using
2026 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2028 chip
->block_bad
= qcom_nandc_block_bad
;
2029 chip
->block_markbad
= qcom_nandc_block_markbad
;
2031 chip
->controller
= &nandc
->controller
;
2032 chip
->options
|= NAND_NO_SUBPAGE_WRITE
| NAND_USE_BOUNCE_BUFFER
|
2035 /* set up initial status value */
2036 host
->status
= NAND_STATUS_READY
| NAND_STATUS_WP
;
2038 ret
= nand_scan_ident(mtd
, 1, NULL
);
2042 ret
= qcom_nand_host_setup(host
);
2046 ret
= nand_scan_tail(mtd
);
2050 return mtd_device_register(mtd
, NULL
, 0);
2053 /* parse custom DT properties here */
2054 static int qcom_nandc_parse_dt(struct platform_device
*pdev
)
2056 struct qcom_nand_controller
*nandc
= platform_get_drvdata(pdev
);
2057 struct device_node
*np
= nandc
->dev
->of_node
;
2060 ret
= of_property_read_u32(np
, "qcom,cmd-crci", &nandc
->cmd_crci
);
2062 dev_err(nandc
->dev
, "command CRCI unspecified\n");
2066 ret
= of_property_read_u32(np
, "qcom,data-crci", &nandc
->data_crci
);
2068 dev_err(nandc
->dev
, "data CRCI unspecified\n");
2075 static int qcom_nandc_probe(struct platform_device
*pdev
)
2077 struct qcom_nand_controller
*nandc
;
2078 struct qcom_nand_host
*host
;
2079 const void *dev_data
;
2080 struct device
*dev
= &pdev
->dev
;
2081 struct device_node
*dn
= dev
->of_node
, *child
;
2082 struct resource
*res
;
2085 nandc
= devm_kzalloc(&pdev
->dev
, sizeof(*nandc
), GFP_KERNEL
);
2089 platform_set_drvdata(pdev
, nandc
);
2092 dev_data
= of_device_get_match_data(dev
);
2094 dev_err(&pdev
->dev
, "failed to get device data\n");
2098 nandc
->ecc_modes
= (unsigned long)dev_data
;
2100 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2101 nandc
->base
= devm_ioremap_resource(dev
, res
);
2102 if (IS_ERR(nandc
->base
))
2103 return PTR_ERR(nandc
->base
);
2105 nandc
->base_dma
= phys_to_dma(dev
, (phys_addr_t
)res
->start
);
2107 nandc
->core_clk
= devm_clk_get(dev
, "core");
2108 if (IS_ERR(nandc
->core_clk
))
2109 return PTR_ERR(nandc
->core_clk
);
2111 nandc
->aon_clk
= devm_clk_get(dev
, "aon");
2112 if (IS_ERR(nandc
->aon_clk
))
2113 return PTR_ERR(nandc
->aon_clk
);
2115 ret
= qcom_nandc_parse_dt(pdev
);
2119 ret
= qcom_nandc_alloc(nandc
);
2123 ret
= clk_prepare_enable(nandc
->core_clk
);
2127 ret
= clk_prepare_enable(nandc
->aon_clk
);
2131 ret
= qcom_nandc_setup(nandc
);
2135 for_each_available_child_of_node(dn
, child
) {
2136 if (of_device_is_compatible(child
, "qcom,nandcs")) {
2137 host
= devm_kzalloc(dev
, sizeof(*host
), GFP_KERNEL
);
2144 ret
= qcom_nand_host_init(nandc
, host
, child
);
2146 devm_kfree(dev
, host
);
2150 list_add_tail(&host
->node
, &nandc
->host_list
);
2154 if (list_empty(&nandc
->host_list
)) {
2162 list_for_each_entry(host
, &nandc
->host_list
, node
)
2163 nand_release(nand_to_mtd(&host
->chip
));
2165 clk_disable_unprepare(nandc
->aon_clk
);
2167 clk_disable_unprepare(nandc
->core_clk
);
2169 qcom_nandc_unalloc(nandc
);
2174 static int qcom_nandc_remove(struct platform_device
*pdev
)
2176 struct qcom_nand_controller
*nandc
= platform_get_drvdata(pdev
);
2177 struct qcom_nand_host
*host
;
2179 list_for_each_entry(host
, &nandc
->host_list
, node
)
2180 nand_release(nand_to_mtd(&host
->chip
));
2182 qcom_nandc_unalloc(nandc
);
2184 clk_disable_unprepare(nandc
->aon_clk
);
2185 clk_disable_unprepare(nandc
->core_clk
);
2190 #define EBI2_NANDC_ECC_MODES (ECC_RS_4BIT | ECC_BCH_8BIT)
2193 * data will hold a struct pointer containing more differences once we support
2194 * more controller variants
2196 static const struct of_device_id qcom_nandc_of_match
[] = {
2197 { .compatible
= "qcom,ipq806x-nand",
2198 .data
= (void *)EBI2_NANDC_ECC_MODES
,
2202 MODULE_DEVICE_TABLE(of
, qcom_nandc_of_match
);
2204 static struct platform_driver qcom_nandc_driver
= {
2206 .name
= "qcom-nandc",
2207 .of_match_table
= qcom_nandc_of_match
,
2209 .probe
= qcom_nandc_probe
,
2210 .remove
= qcom_nandc_remove
,
2212 module_platform_driver(qcom_nandc_driver
);
2214 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
2215 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
2216 MODULE_LICENSE("GPL v2");