1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
51 #include <linux/namei.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/tty.h>
67 #include <linux/binfmts.h>
68 #include <linux/highmem.h>
69 #include <linux/syscalls.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
77 /* flags stating the success for a syscall */
78 #define AUDITSC_INVALID 0
79 #define AUDITSC_SUCCESS 1
80 #define AUDITSC_FAILURE 2
82 /* no execve audit message should be longer than this (userspace limits) */
83 #define MAX_EXECVE_AUDIT_LEN 7500
85 /* max length to print of cmdline/proctitle value during audit */
86 #define MAX_PROCTITLE_AUDIT_LEN 128
88 /* number of audit rules */
91 /* determines whether we collect data for signals sent */
94 struct audit_aux_data
{
95 struct audit_aux_data
*next
;
99 #define AUDIT_AUX_IPCPERM 0
101 /* Number of target pids per aux struct. */
102 #define AUDIT_AUX_PIDS 16
104 struct audit_aux_data_pids
{
105 struct audit_aux_data d
;
106 pid_t target_pid
[AUDIT_AUX_PIDS
];
107 kuid_t target_auid
[AUDIT_AUX_PIDS
];
108 kuid_t target_uid
[AUDIT_AUX_PIDS
];
109 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
110 u32 target_sid
[AUDIT_AUX_PIDS
];
111 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
115 struct audit_aux_data_bprm_fcaps
{
116 struct audit_aux_data d
;
117 struct audit_cap_data fcap
;
118 unsigned int fcap_ver
;
119 struct audit_cap_data old_pcap
;
120 struct audit_cap_data new_pcap
;
123 struct audit_tree_refs
{
124 struct audit_tree_refs
*next
;
125 struct audit_chunk
*c
[31];
128 static inline int open_arg(int flags
, int mask
)
130 int n
= ACC_MODE(flags
);
131 if (flags
& (O_TRUNC
| O_CREAT
))
132 n
|= AUDIT_PERM_WRITE
;
136 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
143 switch (audit_classify_syscall(ctx
->arch
, n
)) {
145 if ((mask
& AUDIT_PERM_WRITE
) &&
146 audit_match_class(AUDIT_CLASS_WRITE
, n
))
148 if ((mask
& AUDIT_PERM_READ
) &&
149 audit_match_class(AUDIT_CLASS_READ
, n
))
151 if ((mask
& AUDIT_PERM_ATTR
) &&
152 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
155 case 1: /* 32bit on biarch */
156 if ((mask
& AUDIT_PERM_WRITE
) &&
157 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
159 if ((mask
& AUDIT_PERM_READ
) &&
160 audit_match_class(AUDIT_CLASS_READ_32
, n
))
162 if ((mask
& AUDIT_PERM_ATTR
) &&
163 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
167 return mask
& ACC_MODE(ctx
->argv
[1]);
169 return mask
& ACC_MODE(ctx
->argv
[2]);
170 case 4: /* socketcall */
171 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
173 return mask
& AUDIT_PERM_EXEC
;
179 static int audit_match_filetype(struct audit_context
*ctx
, int val
)
181 struct audit_names
*n
;
182 umode_t mode
= (umode_t
)val
;
187 list_for_each_entry(n
, &ctx
->names_list
, list
) {
188 if ((n
->ino
!= -1) &&
189 ((n
->mode
& S_IFMT
) == mode
))
197 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
198 * ->first_trees points to its beginning, ->trees - to the current end of data.
199 * ->tree_count is the number of free entries in array pointed to by ->trees.
200 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
201 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
202 * it's going to remain 1-element for almost any setup) until we free context itself.
203 * References in it _are_ dropped - at the same time we free/drop aux stuff.
206 #ifdef CONFIG_AUDIT_TREE
207 static void audit_set_auditable(struct audit_context
*ctx
)
211 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
215 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
217 struct audit_tree_refs
*p
= ctx
->trees
;
218 int left
= ctx
->tree_count
;
220 p
->c
[--left
] = chunk
;
221 ctx
->tree_count
= left
;
230 ctx
->tree_count
= 30;
236 static int grow_tree_refs(struct audit_context
*ctx
)
238 struct audit_tree_refs
*p
= ctx
->trees
;
239 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
245 p
->next
= ctx
->trees
;
247 ctx
->first_trees
= ctx
->trees
;
248 ctx
->tree_count
= 31;
253 static void unroll_tree_refs(struct audit_context
*ctx
,
254 struct audit_tree_refs
*p
, int count
)
256 #ifdef CONFIG_AUDIT_TREE
257 struct audit_tree_refs
*q
;
260 /* we started with empty chain */
261 p
= ctx
->first_trees
;
263 /* if the very first allocation has failed, nothing to do */
268 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
270 audit_put_chunk(q
->c
[n
]);
274 while (n
-- > ctx
->tree_count
) {
275 audit_put_chunk(q
->c
[n
]);
279 ctx
->tree_count
= count
;
283 static void free_tree_refs(struct audit_context
*ctx
)
285 struct audit_tree_refs
*p
, *q
;
286 for (p
= ctx
->first_trees
; p
; p
= q
) {
292 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
294 #ifdef CONFIG_AUDIT_TREE
295 struct audit_tree_refs
*p
;
300 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
301 for (n
= 0; n
< 31; n
++)
302 if (audit_tree_match(p
->c
[n
], tree
))
307 for (n
= ctx
->tree_count
; n
< 31; n
++)
308 if (audit_tree_match(p
->c
[n
], tree
))
315 static int audit_compare_uid(kuid_t uid
,
316 struct audit_names
*name
,
317 struct audit_field
*f
,
318 struct audit_context
*ctx
)
320 struct audit_names
*n
;
324 rc
= audit_uid_comparator(uid
, f
->op
, name
->uid
);
330 list_for_each_entry(n
, &ctx
->names_list
, list
) {
331 rc
= audit_uid_comparator(uid
, f
->op
, n
->uid
);
339 static int audit_compare_gid(kgid_t gid
,
340 struct audit_names
*name
,
341 struct audit_field
*f
,
342 struct audit_context
*ctx
)
344 struct audit_names
*n
;
348 rc
= audit_gid_comparator(gid
, f
->op
, name
->gid
);
354 list_for_each_entry(n
, &ctx
->names_list
, list
) {
355 rc
= audit_gid_comparator(gid
, f
->op
, n
->gid
);
363 static int audit_field_compare(struct task_struct
*tsk
,
364 const struct cred
*cred
,
365 struct audit_field
*f
,
366 struct audit_context
*ctx
,
367 struct audit_names
*name
)
370 /* process to file object comparisons */
371 case AUDIT_COMPARE_UID_TO_OBJ_UID
:
372 return audit_compare_uid(cred
->uid
, name
, f
, ctx
);
373 case AUDIT_COMPARE_GID_TO_OBJ_GID
:
374 return audit_compare_gid(cred
->gid
, name
, f
, ctx
);
375 case AUDIT_COMPARE_EUID_TO_OBJ_UID
:
376 return audit_compare_uid(cred
->euid
, name
, f
, ctx
);
377 case AUDIT_COMPARE_EGID_TO_OBJ_GID
:
378 return audit_compare_gid(cred
->egid
, name
, f
, ctx
);
379 case AUDIT_COMPARE_AUID_TO_OBJ_UID
:
380 return audit_compare_uid(tsk
->loginuid
, name
, f
, ctx
);
381 case AUDIT_COMPARE_SUID_TO_OBJ_UID
:
382 return audit_compare_uid(cred
->suid
, name
, f
, ctx
);
383 case AUDIT_COMPARE_SGID_TO_OBJ_GID
:
384 return audit_compare_gid(cred
->sgid
, name
, f
, ctx
);
385 case AUDIT_COMPARE_FSUID_TO_OBJ_UID
:
386 return audit_compare_uid(cred
->fsuid
, name
, f
, ctx
);
387 case AUDIT_COMPARE_FSGID_TO_OBJ_GID
:
388 return audit_compare_gid(cred
->fsgid
, name
, f
, ctx
);
389 /* uid comparisons */
390 case AUDIT_COMPARE_UID_TO_AUID
:
391 return audit_uid_comparator(cred
->uid
, f
->op
, tsk
->loginuid
);
392 case AUDIT_COMPARE_UID_TO_EUID
:
393 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->euid
);
394 case AUDIT_COMPARE_UID_TO_SUID
:
395 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->suid
);
396 case AUDIT_COMPARE_UID_TO_FSUID
:
397 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->fsuid
);
398 /* auid comparisons */
399 case AUDIT_COMPARE_AUID_TO_EUID
:
400 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->euid
);
401 case AUDIT_COMPARE_AUID_TO_SUID
:
402 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->suid
);
403 case AUDIT_COMPARE_AUID_TO_FSUID
:
404 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->fsuid
);
405 /* euid comparisons */
406 case AUDIT_COMPARE_EUID_TO_SUID
:
407 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->suid
);
408 case AUDIT_COMPARE_EUID_TO_FSUID
:
409 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->fsuid
);
410 /* suid comparisons */
411 case AUDIT_COMPARE_SUID_TO_FSUID
:
412 return audit_uid_comparator(cred
->suid
, f
->op
, cred
->fsuid
);
413 /* gid comparisons */
414 case AUDIT_COMPARE_GID_TO_EGID
:
415 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->egid
);
416 case AUDIT_COMPARE_GID_TO_SGID
:
417 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->sgid
);
418 case AUDIT_COMPARE_GID_TO_FSGID
:
419 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->fsgid
);
420 /* egid comparisons */
421 case AUDIT_COMPARE_EGID_TO_SGID
:
422 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->sgid
);
423 case AUDIT_COMPARE_EGID_TO_FSGID
:
424 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->fsgid
);
425 /* sgid comparison */
426 case AUDIT_COMPARE_SGID_TO_FSGID
:
427 return audit_gid_comparator(cred
->sgid
, f
->op
, cred
->fsgid
);
429 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
435 /* Determine if any context name data matches a rule's watch data */
436 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
439 * If task_creation is true, this is an explicit indication that we are
440 * filtering a task rule at task creation time. This and tsk == current are
441 * the only situations where tsk->cred may be accessed without an rcu read lock.
443 static int audit_filter_rules(struct task_struct
*tsk
,
444 struct audit_krule
*rule
,
445 struct audit_context
*ctx
,
446 struct audit_names
*name
,
447 enum audit_state
*state
,
450 const struct cred
*cred
;
454 cred
= rcu_dereference_check(tsk
->cred
, tsk
== current
|| task_creation
);
456 for (i
= 0; i
< rule
->field_count
; i
++) {
457 struct audit_field
*f
= &rule
->fields
[i
];
458 struct audit_names
*n
;
464 pid
= task_pid_nr(tsk
);
465 result
= audit_comparator(pid
, f
->op
, f
->val
);
470 ctx
->ppid
= task_ppid_nr(tsk
);
471 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
475 result
= audit_uid_comparator(cred
->uid
, f
->op
, f
->uid
);
478 result
= audit_uid_comparator(cred
->euid
, f
->op
, f
->uid
);
481 result
= audit_uid_comparator(cred
->suid
, f
->op
, f
->uid
);
484 result
= audit_uid_comparator(cred
->fsuid
, f
->op
, f
->uid
);
487 result
= audit_gid_comparator(cred
->gid
, f
->op
, f
->gid
);
488 if (f
->op
== Audit_equal
) {
490 result
= in_group_p(f
->gid
);
491 } else if (f
->op
== Audit_not_equal
) {
493 result
= !in_group_p(f
->gid
);
497 result
= audit_gid_comparator(cred
->egid
, f
->op
, f
->gid
);
498 if (f
->op
== Audit_equal
) {
500 result
= in_egroup_p(f
->gid
);
501 } else if (f
->op
== Audit_not_equal
) {
503 result
= !in_egroup_p(f
->gid
);
507 result
= audit_gid_comparator(cred
->sgid
, f
->op
, f
->gid
);
510 result
= audit_gid_comparator(cred
->fsgid
, f
->op
, f
->gid
);
513 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
517 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
521 if (ctx
&& ctx
->return_valid
)
522 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
525 if (ctx
&& ctx
->return_valid
) {
527 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
529 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
534 if (audit_comparator(MAJOR(name
->dev
), f
->op
, f
->val
) ||
535 audit_comparator(MAJOR(name
->rdev
), f
->op
, f
->val
))
538 list_for_each_entry(n
, &ctx
->names_list
, list
) {
539 if (audit_comparator(MAJOR(n
->dev
), f
->op
, f
->val
) ||
540 audit_comparator(MAJOR(n
->rdev
), f
->op
, f
->val
)) {
549 if (audit_comparator(MINOR(name
->dev
), f
->op
, f
->val
) ||
550 audit_comparator(MINOR(name
->rdev
), f
->op
, f
->val
))
553 list_for_each_entry(n
, &ctx
->names_list
, list
) {
554 if (audit_comparator(MINOR(n
->dev
), f
->op
, f
->val
) ||
555 audit_comparator(MINOR(n
->rdev
), f
->op
, f
->val
)) {
564 result
= audit_comparator(name
->ino
, f
->op
, f
->val
);
566 list_for_each_entry(n
, &ctx
->names_list
, list
) {
567 if (audit_comparator(n
->ino
, f
->op
, f
->val
)) {
576 result
= audit_uid_comparator(name
->uid
, f
->op
, f
->uid
);
578 list_for_each_entry(n
, &ctx
->names_list
, list
) {
579 if (audit_uid_comparator(n
->uid
, f
->op
, f
->uid
)) {
588 result
= audit_gid_comparator(name
->gid
, f
->op
, f
->gid
);
590 list_for_each_entry(n
, &ctx
->names_list
, list
) {
591 if (audit_gid_comparator(n
->gid
, f
->op
, f
->gid
)) {
600 result
= audit_watch_compare(rule
->watch
, name
->ino
, name
->dev
);
604 result
= match_tree_refs(ctx
, rule
->tree
);
609 result
= audit_uid_comparator(tsk
->loginuid
, f
->op
, f
->uid
);
611 case AUDIT_LOGINUID_SET
:
612 result
= audit_comparator(audit_loginuid_set(tsk
), f
->op
, f
->val
);
614 case AUDIT_SUBJ_USER
:
615 case AUDIT_SUBJ_ROLE
:
616 case AUDIT_SUBJ_TYPE
:
619 /* NOTE: this may return negative values indicating
620 a temporary error. We simply treat this as a
621 match for now to avoid losing information that
622 may be wanted. An error message will also be
626 security_task_getsecid(tsk
, &sid
);
629 result
= security_audit_rule_match(sid
, f
->type
,
638 case AUDIT_OBJ_LEV_LOW
:
639 case AUDIT_OBJ_LEV_HIGH
:
640 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
643 /* Find files that match */
645 result
= security_audit_rule_match(
646 name
->osid
, f
->type
, f
->op
,
649 list_for_each_entry(n
, &ctx
->names_list
, list
) {
650 if (security_audit_rule_match(n
->osid
, f
->type
,
658 /* Find ipc objects that match */
659 if (!ctx
|| ctx
->type
!= AUDIT_IPC
)
661 if (security_audit_rule_match(ctx
->ipc
.osid
,
672 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
674 case AUDIT_FILTERKEY
:
675 /* ignore this field for filtering */
679 result
= audit_match_perm(ctx
, f
->val
);
682 result
= audit_match_filetype(ctx
, f
->val
);
684 case AUDIT_FIELD_COMPARE
:
685 result
= audit_field_compare(tsk
, cred
, f
, ctx
, name
);
693 if (rule
->prio
<= ctx
->prio
)
695 if (rule
->filterkey
) {
696 kfree(ctx
->filterkey
);
697 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
699 ctx
->prio
= rule
->prio
;
701 switch (rule
->action
) {
702 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
703 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
708 /* At process creation time, we can determine if system-call auditing is
709 * completely disabled for this task. Since we only have the task
710 * structure at this point, we can only check uid and gid.
712 static enum audit_state
audit_filter_task(struct task_struct
*tsk
, char **key
)
714 struct audit_entry
*e
;
715 enum audit_state state
;
718 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
719 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
,
721 if (state
== AUDIT_RECORD_CONTEXT
)
722 *key
= kstrdup(e
->rule
.filterkey
, GFP_ATOMIC
);
728 return AUDIT_BUILD_CONTEXT
;
731 static int audit_in_mask(const struct audit_krule
*rule
, unsigned long val
)
735 if (val
> 0xffffffff)
738 word
= AUDIT_WORD(val
);
739 if (word
>= AUDIT_BITMASK_SIZE
)
742 bit
= AUDIT_BIT(val
);
744 return rule
->mask
[word
] & bit
;
747 /* At syscall entry and exit time, this filter is called if the
748 * audit_state is not low enough that auditing cannot take place, but is
749 * also not high enough that we already know we have to write an audit
750 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
752 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
753 struct audit_context
*ctx
,
754 struct list_head
*list
)
756 struct audit_entry
*e
;
757 enum audit_state state
;
759 if (audit_pid
&& tsk
->tgid
== audit_pid
)
760 return AUDIT_DISABLED
;
763 if (!list_empty(list
)) {
764 list_for_each_entry_rcu(e
, list
, list
) {
765 if (audit_in_mask(&e
->rule
, ctx
->major
) &&
766 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
769 ctx
->current_state
= state
;
775 return AUDIT_BUILD_CONTEXT
;
779 * Given an audit_name check the inode hash table to see if they match.
780 * Called holding the rcu read lock to protect the use of audit_inode_hash
782 static int audit_filter_inode_name(struct task_struct
*tsk
,
783 struct audit_names
*n
,
784 struct audit_context
*ctx
) {
785 int h
= audit_hash_ino((u32
)n
->ino
);
786 struct list_head
*list
= &audit_inode_hash
[h
];
787 struct audit_entry
*e
;
788 enum audit_state state
;
790 if (list_empty(list
))
793 list_for_each_entry_rcu(e
, list
, list
) {
794 if (audit_in_mask(&e
->rule
, ctx
->major
) &&
795 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
, false)) {
796 ctx
->current_state
= state
;
804 /* At syscall exit time, this filter is called if any audit_names have been
805 * collected during syscall processing. We only check rules in sublists at hash
806 * buckets applicable to the inode numbers in audit_names.
807 * Regarding audit_state, same rules apply as for audit_filter_syscall().
809 void audit_filter_inodes(struct task_struct
*tsk
, struct audit_context
*ctx
)
811 struct audit_names
*n
;
813 if (audit_pid
&& tsk
->tgid
== audit_pid
)
818 list_for_each_entry(n
, &ctx
->names_list
, list
) {
819 if (audit_filter_inode_name(tsk
, n
, ctx
))
825 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
826 static inline struct audit_context
*audit_take_context(struct task_struct
*tsk
,
830 struct audit_context
*context
= tsk
->audit_context
;
834 context
->return_valid
= return_valid
;
837 * we need to fix up the return code in the audit logs if the actual
838 * return codes are later going to be fixed up by the arch specific
841 * This is actually a test for:
842 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
843 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
845 * but is faster than a bunch of ||
847 if (unlikely(return_code
<= -ERESTARTSYS
) &&
848 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
849 (return_code
!= -ENOIOCTLCMD
))
850 context
->return_code
= -EINTR
;
852 context
->return_code
= return_code
;
854 if (context
->in_syscall
&& !context
->dummy
) {
855 audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
856 audit_filter_inodes(tsk
, context
);
859 tsk
->audit_context
= NULL
;
863 static inline void audit_proctitle_free(struct audit_context
*context
)
865 kfree(context
->proctitle
.value
);
866 context
->proctitle
.value
= NULL
;
867 context
->proctitle
.len
= 0;
870 static inline void audit_free_names(struct audit_context
*context
)
872 struct audit_names
*n
, *next
;
875 if (context
->put_count
+ context
->ino_count
!= context
->name_count
) {
878 pr_err("%s:%d(:%d): major=%d in_syscall=%d"
879 " name_count=%d put_count=%d ino_count=%d"
880 " [NOT freeing]\n", __FILE__
, __LINE__
,
881 context
->serial
, context
->major
, context
->in_syscall
,
882 context
->name_count
, context
->put_count
,
884 list_for_each_entry(n
, &context
->names_list
, list
) {
885 pr_err("names[%d] = %p = %s\n", i
++, n
->name
,
886 n
->name
->name
?: "(null)");
893 context
->put_count
= 0;
894 context
->ino_count
= 0;
897 list_for_each_entry_safe(n
, next
, &context
->names_list
, list
) {
899 if (n
->name
&& n
->name_put
)
900 final_putname(n
->name
);
904 context
->name_count
= 0;
905 path_put(&context
->pwd
);
906 context
->pwd
.dentry
= NULL
;
907 context
->pwd
.mnt
= NULL
;
910 static inline void audit_free_aux(struct audit_context
*context
)
912 struct audit_aux_data
*aux
;
914 while ((aux
= context
->aux
)) {
915 context
->aux
= aux
->next
;
918 while ((aux
= context
->aux_pids
)) {
919 context
->aux_pids
= aux
->next
;
924 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
926 struct audit_context
*context
;
928 context
= kzalloc(sizeof(*context
), GFP_KERNEL
);
931 context
->state
= state
;
932 context
->prio
= state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
933 INIT_LIST_HEAD(&context
->killed_trees
);
934 INIT_LIST_HEAD(&context
->names_list
);
939 * audit_alloc - allocate an audit context block for a task
942 * Filter on the task information and allocate a per-task audit context
943 * if necessary. Doing so turns on system call auditing for the
944 * specified task. This is called from copy_process, so no lock is
947 int audit_alloc(struct task_struct
*tsk
)
949 struct audit_context
*context
;
950 enum audit_state state
;
953 if (likely(!audit_ever_enabled
))
954 return 0; /* Return if not auditing. */
956 state
= audit_filter_task(tsk
, &key
);
957 if (state
== AUDIT_DISABLED
) {
958 clear_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
962 if (!(context
= audit_alloc_context(state
))) {
964 audit_log_lost("out of memory in audit_alloc");
967 context
->filterkey
= key
;
969 tsk
->audit_context
= context
;
970 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
974 static inline void audit_free_context(struct audit_context
*context
)
976 audit_free_names(context
);
977 unroll_tree_refs(context
, NULL
, 0);
978 free_tree_refs(context
);
979 audit_free_aux(context
);
980 kfree(context
->filterkey
);
981 kfree(context
->sockaddr
);
982 audit_proctitle_free(context
);
986 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
987 kuid_t auid
, kuid_t uid
, unsigned int sessionid
,
990 struct audit_buffer
*ab
;
995 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
999 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
,
1000 from_kuid(&init_user_ns
, auid
),
1001 from_kuid(&init_user_ns
, uid
), sessionid
);
1003 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
1004 audit_log_format(ab
, " obj=(none)");
1007 audit_log_format(ab
, " obj=%s", ctx
);
1008 security_release_secctx(ctx
, len
);
1011 audit_log_format(ab
, " ocomm=");
1012 audit_log_untrustedstring(ab
, comm
);
1019 * to_send and len_sent accounting are very loose estimates. We aren't
1020 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1021 * within about 500 bytes (next page boundary)
1023 * why snprintf? an int is up to 12 digits long. if we just assumed when
1024 * logging that a[%d]= was going to be 16 characters long we would be wasting
1025 * space in every audit message. In one 7500 byte message we can log up to
1026 * about 1000 min size arguments. That comes down to about 50% waste of space
1027 * if we didn't do the snprintf to find out how long arg_num_len was.
1029 static int audit_log_single_execve_arg(struct audit_context
*context
,
1030 struct audit_buffer
**ab
,
1033 const char __user
*p
,
1036 char arg_num_len_buf
[12];
1037 const char __user
*tmp_p
= p
;
1038 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1039 size_t arg_num_len
= snprintf(arg_num_len_buf
, 12, "%d", arg_num
) + 5;
1040 size_t len
, len_left
, to_send
;
1041 size_t max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
;
1042 unsigned int i
, has_cntl
= 0, too_long
= 0;
1045 /* strnlen_user includes the null we don't want to send */
1046 len_left
= len
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1049 * We just created this mm, if we can't find the strings
1050 * we just copied into it something is _very_ wrong. Similar
1051 * for strings that are too long, we should not have created
1054 if (unlikely((len
== -1) || len
> MAX_ARG_STRLEN
- 1)) {
1056 send_sig(SIGKILL
, current
, 0);
1060 /* walk the whole argument looking for non-ascii chars */
1062 if (len_left
> MAX_EXECVE_AUDIT_LEN
)
1063 to_send
= MAX_EXECVE_AUDIT_LEN
;
1066 ret
= copy_from_user(buf
, tmp_p
, to_send
);
1068 * There is no reason for this copy to be short. We just
1069 * copied them here, and the mm hasn't been exposed to user-
1074 send_sig(SIGKILL
, current
, 0);
1077 buf
[to_send
] = '\0';
1078 has_cntl
= audit_string_contains_control(buf
, to_send
);
1081 * hex messages get logged as 2 bytes, so we can only
1082 * send half as much in each message
1084 max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
/ 2;
1087 len_left
-= to_send
;
1089 } while (len_left
> 0);
1093 if (len
> max_execve_audit_len
)
1096 /* rewalk the argument actually logging the message */
1097 for (i
= 0; len_left
> 0; i
++) {
1100 if (len_left
> max_execve_audit_len
)
1101 to_send
= max_execve_audit_len
;
1105 /* do we have space left to send this argument in this ab? */
1106 room_left
= MAX_EXECVE_AUDIT_LEN
- arg_num_len
- *len_sent
;
1108 room_left
-= (to_send
* 2);
1110 room_left
-= to_send
;
1111 if (room_left
< 0) {
1114 *ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EXECVE
);
1120 * first record needs to say how long the original string was
1121 * so we can be sure nothing was lost.
1123 if ((i
== 0) && (too_long
))
1124 audit_log_format(*ab
, " a%d_len=%zu", arg_num
,
1125 has_cntl
? 2*len
: len
);
1128 * normally arguments are small enough to fit and we already
1129 * filled buf above when we checked for control characters
1130 * so don't bother with another copy_from_user
1132 if (len
>= max_execve_audit_len
)
1133 ret
= copy_from_user(buf
, p
, to_send
);
1138 send_sig(SIGKILL
, current
, 0);
1141 buf
[to_send
] = '\0';
1143 /* actually log it */
1144 audit_log_format(*ab
, " a%d", arg_num
);
1146 audit_log_format(*ab
, "[%d]", i
);
1147 audit_log_format(*ab
, "=");
1149 audit_log_n_hex(*ab
, buf
, to_send
);
1151 audit_log_string(*ab
, buf
);
1154 len_left
-= to_send
;
1155 *len_sent
+= arg_num_len
;
1157 *len_sent
+= to_send
* 2;
1159 *len_sent
+= to_send
;
1161 /* include the null we didn't log */
1165 static void audit_log_execve_info(struct audit_context
*context
,
1166 struct audit_buffer
**ab
)
1169 size_t len_sent
= 0;
1170 const char __user
*p
;
1173 p
= (const char __user
*)current
->mm
->arg_start
;
1175 audit_log_format(*ab
, "argc=%d", context
->execve
.argc
);
1178 * we need some kernel buffer to hold the userspace args. Just
1179 * allocate one big one rather than allocating one of the right size
1180 * for every single argument inside audit_log_single_execve_arg()
1181 * should be <8k allocation so should be pretty safe.
1183 buf
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1185 audit_panic("out of memory for argv string");
1189 for (i
= 0; i
< context
->execve
.argc
; i
++) {
1190 len
= audit_log_single_execve_arg(context
, ab
, i
,
1199 static void show_special(struct audit_context
*context
, int *call_panic
)
1201 struct audit_buffer
*ab
;
1204 ab
= audit_log_start(context
, GFP_KERNEL
, context
->type
);
1208 switch (context
->type
) {
1209 case AUDIT_SOCKETCALL
: {
1210 int nargs
= context
->socketcall
.nargs
;
1211 audit_log_format(ab
, "nargs=%d", nargs
);
1212 for (i
= 0; i
< nargs
; i
++)
1213 audit_log_format(ab
, " a%d=%lx", i
,
1214 context
->socketcall
.args
[i
]);
1217 u32 osid
= context
->ipc
.osid
;
1219 audit_log_format(ab
, "ouid=%u ogid=%u mode=%#ho",
1220 from_kuid(&init_user_ns
, context
->ipc
.uid
),
1221 from_kgid(&init_user_ns
, context
->ipc
.gid
),
1226 if (security_secid_to_secctx(osid
, &ctx
, &len
)) {
1227 audit_log_format(ab
, " osid=%u", osid
);
1230 audit_log_format(ab
, " obj=%s", ctx
);
1231 security_release_secctx(ctx
, len
);
1234 if (context
->ipc
.has_perm
) {
1236 ab
= audit_log_start(context
, GFP_KERNEL
,
1237 AUDIT_IPC_SET_PERM
);
1240 audit_log_format(ab
,
1241 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1242 context
->ipc
.qbytes
,
1243 context
->ipc
.perm_uid
,
1244 context
->ipc
.perm_gid
,
1245 context
->ipc
.perm_mode
);
1248 case AUDIT_MQ_OPEN
: {
1249 audit_log_format(ab
,
1250 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1251 "mq_msgsize=%ld mq_curmsgs=%ld",
1252 context
->mq_open
.oflag
, context
->mq_open
.mode
,
1253 context
->mq_open
.attr
.mq_flags
,
1254 context
->mq_open
.attr
.mq_maxmsg
,
1255 context
->mq_open
.attr
.mq_msgsize
,
1256 context
->mq_open
.attr
.mq_curmsgs
);
1258 case AUDIT_MQ_SENDRECV
: {
1259 audit_log_format(ab
,
1260 "mqdes=%d msg_len=%zd msg_prio=%u "
1261 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1262 context
->mq_sendrecv
.mqdes
,
1263 context
->mq_sendrecv
.msg_len
,
1264 context
->mq_sendrecv
.msg_prio
,
1265 context
->mq_sendrecv
.abs_timeout
.tv_sec
,
1266 context
->mq_sendrecv
.abs_timeout
.tv_nsec
);
1268 case AUDIT_MQ_NOTIFY
: {
1269 audit_log_format(ab
, "mqdes=%d sigev_signo=%d",
1270 context
->mq_notify
.mqdes
,
1271 context
->mq_notify
.sigev_signo
);
1273 case AUDIT_MQ_GETSETATTR
: {
1274 struct mq_attr
*attr
= &context
->mq_getsetattr
.mqstat
;
1275 audit_log_format(ab
,
1276 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1278 context
->mq_getsetattr
.mqdes
,
1279 attr
->mq_flags
, attr
->mq_maxmsg
,
1280 attr
->mq_msgsize
, attr
->mq_curmsgs
);
1282 case AUDIT_CAPSET
: {
1283 audit_log_format(ab
, "pid=%d", context
->capset
.pid
);
1284 audit_log_cap(ab
, "cap_pi", &context
->capset
.cap
.inheritable
);
1285 audit_log_cap(ab
, "cap_pp", &context
->capset
.cap
.permitted
);
1286 audit_log_cap(ab
, "cap_pe", &context
->capset
.cap
.effective
);
1289 audit_log_format(ab
, "fd=%d flags=0x%x", context
->mmap
.fd
,
1290 context
->mmap
.flags
);
1292 case AUDIT_EXECVE
: {
1293 audit_log_execve_info(context
, &ab
);
1299 static inline int audit_proctitle_rtrim(char *proctitle
, int len
)
1301 char *end
= proctitle
+ len
- 1;
1302 while (end
> proctitle
&& !isprint(*end
))
1305 /* catch the case where proctitle is only 1 non-print character */
1306 len
= end
- proctitle
+ 1;
1307 len
-= isprint(proctitle
[len
-1]) == 0;
1311 static void audit_log_proctitle(struct task_struct
*tsk
,
1312 struct audit_context
*context
)
1316 char *msg
= "(null)";
1317 int len
= strlen(msg
);
1318 struct audit_buffer
*ab
;
1320 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PROCTITLE
);
1322 return; /* audit_panic or being filtered */
1324 audit_log_format(ab
, "proctitle=");
1327 if (!context
->proctitle
.value
) {
1328 buf
= kmalloc(MAX_PROCTITLE_AUDIT_LEN
, GFP_KERNEL
);
1331 /* Historically called this from procfs naming */
1332 res
= get_cmdline(tsk
, buf
, MAX_PROCTITLE_AUDIT_LEN
);
1337 res
= audit_proctitle_rtrim(buf
, res
);
1342 context
->proctitle
.value
= buf
;
1343 context
->proctitle
.len
= res
;
1345 msg
= context
->proctitle
.value
;
1346 len
= context
->proctitle
.len
;
1348 audit_log_n_untrustedstring(ab
, msg
, len
);
1352 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
1354 int i
, call_panic
= 0;
1355 struct audit_buffer
*ab
;
1356 struct audit_aux_data
*aux
;
1357 struct audit_names
*n
;
1359 /* tsk == current */
1360 context
->personality
= tsk
->personality
;
1362 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1364 return; /* audit_panic has been called */
1365 audit_log_format(ab
, "arch=%x syscall=%d",
1366 context
->arch
, context
->major
);
1367 if (context
->personality
!= PER_LINUX
)
1368 audit_log_format(ab
, " per=%lx", context
->personality
);
1369 if (context
->return_valid
)
1370 audit_log_format(ab
, " success=%s exit=%ld",
1371 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1372 context
->return_code
);
1374 audit_log_format(ab
,
1375 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1380 context
->name_count
);
1382 audit_log_task_info(ab
, tsk
);
1383 audit_log_key(ab
, context
->filterkey
);
1386 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1388 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1390 continue; /* audit_panic has been called */
1392 switch (aux
->type
) {
1394 case AUDIT_BPRM_FCAPS
: {
1395 struct audit_aux_data_bprm_fcaps
*axs
= (void *)aux
;
1396 audit_log_format(ab
, "fver=%x", axs
->fcap_ver
);
1397 audit_log_cap(ab
, "fp", &axs
->fcap
.permitted
);
1398 audit_log_cap(ab
, "fi", &axs
->fcap
.inheritable
);
1399 audit_log_format(ab
, " fe=%d", axs
->fcap
.fE
);
1400 audit_log_cap(ab
, "old_pp", &axs
->old_pcap
.permitted
);
1401 audit_log_cap(ab
, "old_pi", &axs
->old_pcap
.inheritable
);
1402 audit_log_cap(ab
, "old_pe", &axs
->old_pcap
.effective
);
1403 audit_log_cap(ab
, "new_pp", &axs
->new_pcap
.permitted
);
1404 audit_log_cap(ab
, "new_pi", &axs
->new_pcap
.inheritable
);
1405 audit_log_cap(ab
, "new_pe", &axs
->new_pcap
.effective
);
1413 show_special(context
, &call_panic
);
1415 if (context
->fds
[0] >= 0) {
1416 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_FD_PAIR
);
1418 audit_log_format(ab
, "fd0=%d fd1=%d",
1419 context
->fds
[0], context
->fds
[1]);
1424 if (context
->sockaddr_len
) {
1425 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SOCKADDR
);
1427 audit_log_format(ab
, "saddr=");
1428 audit_log_n_hex(ab
, (void *)context
->sockaddr
,
1429 context
->sockaddr_len
);
1434 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1435 struct audit_aux_data_pids
*axs
= (void *)aux
;
1437 for (i
= 0; i
< axs
->pid_count
; i
++)
1438 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1439 axs
->target_auid
[i
],
1441 axs
->target_sessionid
[i
],
1443 axs
->target_comm
[i
]))
1447 if (context
->target_pid
&&
1448 audit_log_pid_context(context
, context
->target_pid
,
1449 context
->target_auid
, context
->target_uid
,
1450 context
->target_sessionid
,
1451 context
->target_sid
, context
->target_comm
))
1454 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1455 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1457 audit_log_d_path(ab
, " cwd=", &context
->pwd
);
1463 list_for_each_entry(n
, &context
->names_list
, list
) {
1466 audit_log_name(context
, n
, NULL
, i
++, &call_panic
);
1469 audit_log_proctitle(tsk
, context
);
1471 /* Send end of event record to help user space know we are finished */
1472 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1476 audit_panic("error converting sid to string");
1480 * audit_free - free a per-task audit context
1481 * @tsk: task whose audit context block to free
1483 * Called from copy_process and do_exit
1485 void __audit_free(struct task_struct
*tsk
)
1487 struct audit_context
*context
;
1489 context
= audit_take_context(tsk
, 0, 0);
1493 /* Check for system calls that do not go through the exit
1494 * function (e.g., exit_group), then free context block.
1495 * We use GFP_ATOMIC here because we might be doing this
1496 * in the context of the idle thread */
1497 /* that can happen only if we are called from do_exit() */
1498 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1499 audit_log_exit(context
, tsk
);
1500 if (!list_empty(&context
->killed_trees
))
1501 audit_kill_trees(&context
->killed_trees
);
1503 audit_free_context(context
);
1507 * audit_syscall_entry - fill in an audit record at syscall entry
1508 * @arch: architecture type
1509 * @major: major syscall type (function)
1510 * @a1: additional syscall register 1
1511 * @a2: additional syscall register 2
1512 * @a3: additional syscall register 3
1513 * @a4: additional syscall register 4
1515 * Fill in audit context at syscall entry. This only happens if the
1516 * audit context was created when the task was created and the state or
1517 * filters demand the audit context be built. If the state from the
1518 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1519 * then the record will be written at syscall exit time (otherwise, it
1520 * will only be written if another part of the kernel requests that it
1523 void __audit_syscall_entry(int arch
, int major
,
1524 unsigned long a1
, unsigned long a2
,
1525 unsigned long a3
, unsigned long a4
)
1527 struct task_struct
*tsk
= current
;
1528 struct audit_context
*context
= tsk
->audit_context
;
1529 enum audit_state state
;
1534 BUG_ON(context
->in_syscall
|| context
->name_count
);
1539 context
->arch
= arch
;
1540 context
->major
= major
;
1541 context
->argv
[0] = a1
;
1542 context
->argv
[1] = a2
;
1543 context
->argv
[2] = a3
;
1544 context
->argv
[3] = a4
;
1546 state
= context
->state
;
1547 context
->dummy
= !audit_n_rules
;
1548 if (!context
->dummy
&& state
== AUDIT_BUILD_CONTEXT
) {
1550 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1552 if (state
== AUDIT_DISABLED
)
1555 context
->serial
= 0;
1556 context
->ctime
= CURRENT_TIME
;
1557 context
->in_syscall
= 1;
1558 context
->current_state
= state
;
1563 * audit_syscall_exit - deallocate audit context after a system call
1564 * @success: success value of the syscall
1565 * @return_code: return value of the syscall
1567 * Tear down after system call. If the audit context has been marked as
1568 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1569 * filtering, or because some other part of the kernel wrote an audit
1570 * message), then write out the syscall information. In call cases,
1571 * free the names stored from getname().
1573 void __audit_syscall_exit(int success
, long return_code
)
1575 struct task_struct
*tsk
= current
;
1576 struct audit_context
*context
;
1579 success
= AUDITSC_SUCCESS
;
1581 success
= AUDITSC_FAILURE
;
1583 context
= audit_take_context(tsk
, success
, return_code
);
1587 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1588 audit_log_exit(context
, tsk
);
1590 context
->in_syscall
= 0;
1591 context
->prio
= context
->state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
1593 if (!list_empty(&context
->killed_trees
))
1594 audit_kill_trees(&context
->killed_trees
);
1596 audit_free_names(context
);
1597 unroll_tree_refs(context
, NULL
, 0);
1598 audit_free_aux(context
);
1599 context
->aux
= NULL
;
1600 context
->aux_pids
= NULL
;
1601 context
->target_pid
= 0;
1602 context
->target_sid
= 0;
1603 context
->sockaddr_len
= 0;
1605 context
->fds
[0] = -1;
1606 if (context
->state
!= AUDIT_RECORD_CONTEXT
) {
1607 kfree(context
->filterkey
);
1608 context
->filterkey
= NULL
;
1610 tsk
->audit_context
= context
;
1613 static inline void handle_one(const struct inode
*inode
)
1615 #ifdef CONFIG_AUDIT_TREE
1616 struct audit_context
*context
;
1617 struct audit_tree_refs
*p
;
1618 struct audit_chunk
*chunk
;
1620 if (likely(hlist_empty(&inode
->i_fsnotify_marks
)))
1622 context
= current
->audit_context
;
1624 count
= context
->tree_count
;
1626 chunk
= audit_tree_lookup(inode
);
1630 if (likely(put_tree_ref(context
, chunk
)))
1632 if (unlikely(!grow_tree_refs(context
))) {
1633 pr_warn("out of memory, audit has lost a tree reference\n");
1634 audit_set_auditable(context
);
1635 audit_put_chunk(chunk
);
1636 unroll_tree_refs(context
, p
, count
);
1639 put_tree_ref(context
, chunk
);
1643 static void handle_path(const struct dentry
*dentry
)
1645 #ifdef CONFIG_AUDIT_TREE
1646 struct audit_context
*context
;
1647 struct audit_tree_refs
*p
;
1648 const struct dentry
*d
, *parent
;
1649 struct audit_chunk
*drop
;
1653 context
= current
->audit_context
;
1655 count
= context
->tree_count
;
1660 seq
= read_seqbegin(&rename_lock
);
1662 struct inode
*inode
= d
->d_inode
;
1663 if (inode
&& unlikely(!hlist_empty(&inode
->i_fsnotify_marks
))) {
1664 struct audit_chunk
*chunk
;
1665 chunk
= audit_tree_lookup(inode
);
1667 if (unlikely(!put_tree_ref(context
, chunk
))) {
1673 parent
= d
->d_parent
;
1678 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1681 /* just a race with rename */
1682 unroll_tree_refs(context
, p
, count
);
1685 audit_put_chunk(drop
);
1686 if (grow_tree_refs(context
)) {
1687 /* OK, got more space */
1688 unroll_tree_refs(context
, p
, count
);
1692 pr_warn("out of memory, audit has lost a tree reference\n");
1693 unroll_tree_refs(context
, p
, count
);
1694 audit_set_auditable(context
);
1701 static struct audit_names
*audit_alloc_name(struct audit_context
*context
,
1704 struct audit_names
*aname
;
1706 if (context
->name_count
< AUDIT_NAMES
) {
1707 aname
= &context
->preallocated_names
[context
->name_count
];
1708 memset(aname
, 0, sizeof(*aname
));
1710 aname
= kzalloc(sizeof(*aname
), GFP_NOFS
);
1713 aname
->should_free
= true;
1716 aname
->ino
= (unsigned long)-1;
1718 list_add_tail(&aname
->list
, &context
->names_list
);
1720 context
->name_count
++;
1722 context
->ino_count
++;
1728 * audit_reusename - fill out filename with info from existing entry
1729 * @uptr: userland ptr to pathname
1731 * Search the audit_names list for the current audit context. If there is an
1732 * existing entry with a matching "uptr" then return the filename
1733 * associated with that audit_name. If not, return NULL.
1736 __audit_reusename(const __user
char *uptr
)
1738 struct audit_context
*context
= current
->audit_context
;
1739 struct audit_names
*n
;
1741 list_for_each_entry(n
, &context
->names_list
, list
) {
1744 if (n
->name
->uptr
== uptr
)
1751 * audit_getname - add a name to the list
1752 * @name: name to add
1754 * Add a name to the list of audit names for this context.
1755 * Called from fs/namei.c:getname().
1757 void __audit_getname(struct filename
*name
)
1759 struct audit_context
*context
= current
->audit_context
;
1760 struct audit_names
*n
;
1762 if (!context
->in_syscall
) {
1763 #if AUDIT_DEBUG == 2
1764 pr_err("%s:%d(:%d): ignoring getname(%p)\n",
1765 __FILE__
, __LINE__
, context
->serial
, name
);
1772 /* The filename _must_ have a populated ->name */
1773 BUG_ON(!name
->name
);
1776 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
1781 n
->name_len
= AUDIT_NAME_FULL
;
1785 if (!context
->pwd
.dentry
)
1786 get_fs_pwd(current
->fs
, &context
->pwd
);
1789 /* audit_putname - intercept a putname request
1790 * @name: name to intercept and delay for putname
1792 * If we have stored the name from getname in the audit context,
1793 * then we delay the putname until syscall exit.
1794 * Called from include/linux/fs.h:putname().
1796 void audit_putname(struct filename
*name
)
1798 struct audit_context
*context
= current
->audit_context
;
1801 if (!name
->aname
|| !context
->in_syscall
) {
1802 #if AUDIT_DEBUG == 2
1803 pr_err("%s:%d(:%d): final_putname(%p)\n",
1804 __FILE__
, __LINE__
, context
->serial
, name
);
1805 if (context
->name_count
) {
1806 struct audit_names
*n
;
1809 list_for_each_entry(n
, &context
->names_list
, list
)
1810 pr_err("name[%d] = %p = %s\n", i
++, n
->name
,
1811 n
->name
->name
?: "(null)");
1814 final_putname(name
);
1818 ++context
->put_count
;
1819 if (context
->put_count
> context
->name_count
) {
1820 pr_err("%s:%d(:%d): major=%d in_syscall=%d putname(%p)"
1821 " name_count=%d put_count=%d\n",
1823 context
->serial
, context
->major
,
1824 context
->in_syscall
, name
->name
,
1825 context
->name_count
, context
->put_count
);
1833 * __audit_inode - store the inode and device from a lookup
1834 * @name: name being audited
1835 * @dentry: dentry being audited
1836 * @flags: attributes for this particular entry
1838 void __audit_inode(struct filename
*name
, const struct dentry
*dentry
,
1841 struct audit_context
*context
= current
->audit_context
;
1842 const struct inode
*inode
= dentry
->d_inode
;
1843 struct audit_names
*n
;
1844 bool parent
= flags
& AUDIT_INODE_PARENT
;
1846 if (!context
->in_syscall
)
1853 /* The struct filename _must_ have a populated ->name */
1854 BUG_ON(!name
->name
);
1857 * If we have a pointer to an audit_names entry already, then we can
1858 * just use it directly if the type is correct.
1863 if (n
->type
== AUDIT_TYPE_PARENT
||
1864 n
->type
== AUDIT_TYPE_UNKNOWN
)
1867 if (n
->type
!= AUDIT_TYPE_PARENT
)
1872 list_for_each_entry_reverse(n
, &context
->names_list
, list
) {
1873 /* does the name pointer match? */
1874 if (!n
->name
|| n
->name
->name
!= name
->name
)
1877 /* match the correct record type */
1879 if (n
->type
== AUDIT_TYPE_PARENT
||
1880 n
->type
== AUDIT_TYPE_UNKNOWN
)
1883 if (n
->type
!= AUDIT_TYPE_PARENT
)
1889 /* unable to find the name from a previous getname(). Allocate a new
1892 n
= audit_alloc_name(context
, AUDIT_TYPE_NORMAL
);
1897 n
->name_len
= n
->name
? parent_len(n
->name
->name
) : AUDIT_NAME_FULL
;
1898 n
->type
= AUDIT_TYPE_PARENT
;
1899 if (flags
& AUDIT_INODE_HIDDEN
)
1902 n
->name_len
= AUDIT_NAME_FULL
;
1903 n
->type
= AUDIT_TYPE_NORMAL
;
1905 handle_path(dentry
);
1906 audit_copy_inode(n
, dentry
, inode
);
1910 * __audit_inode_child - collect inode info for created/removed objects
1911 * @parent: inode of dentry parent
1912 * @dentry: dentry being audited
1913 * @type: AUDIT_TYPE_* value that we're looking for
1915 * For syscalls that create or remove filesystem objects, audit_inode
1916 * can only collect information for the filesystem object's parent.
1917 * This call updates the audit context with the child's information.
1918 * Syscalls that create a new filesystem object must be hooked after
1919 * the object is created. Syscalls that remove a filesystem object
1920 * must be hooked prior, in order to capture the target inode during
1921 * unsuccessful attempts.
1923 void __audit_inode_child(const struct inode
*parent
,
1924 const struct dentry
*dentry
,
1925 const unsigned char type
)
1927 struct audit_context
*context
= current
->audit_context
;
1928 const struct inode
*inode
= dentry
->d_inode
;
1929 const char *dname
= dentry
->d_name
.name
;
1930 struct audit_names
*n
, *found_parent
= NULL
, *found_child
= NULL
;
1932 if (!context
->in_syscall
)
1938 /* look for a parent entry first */
1939 list_for_each_entry(n
, &context
->names_list
, list
) {
1940 if (!n
->name
|| n
->type
!= AUDIT_TYPE_PARENT
)
1943 if (n
->ino
== parent
->i_ino
&&
1944 !audit_compare_dname_path(dname
, n
->name
->name
, n
->name_len
)) {
1950 /* is there a matching child entry? */
1951 list_for_each_entry(n
, &context
->names_list
, list
) {
1952 /* can only match entries that have a name */
1953 if (!n
->name
|| n
->type
!= type
)
1956 /* if we found a parent, make sure this one is a child of it */
1957 if (found_parent
&& (n
->name
!= found_parent
->name
))
1960 if (!strcmp(dname
, n
->name
->name
) ||
1961 !audit_compare_dname_path(dname
, n
->name
->name
,
1963 found_parent
->name_len
:
1970 if (!found_parent
) {
1971 /* create a new, "anonymous" parent record */
1972 n
= audit_alloc_name(context
, AUDIT_TYPE_PARENT
);
1975 audit_copy_inode(n
, NULL
, parent
);
1979 found_child
= audit_alloc_name(context
, type
);
1983 /* Re-use the name belonging to the slot for a matching parent
1984 * directory. All names for this context are relinquished in
1985 * audit_free_names() */
1987 found_child
->name
= found_parent
->name
;
1988 found_child
->name_len
= AUDIT_NAME_FULL
;
1989 /* don't call __putname() */
1990 found_child
->name_put
= false;
1994 audit_copy_inode(found_child
, dentry
, inode
);
1996 found_child
->ino
= (unsigned long)-1;
1998 EXPORT_SYMBOL_GPL(__audit_inode_child
);
2001 * auditsc_get_stamp - get local copies of audit_context values
2002 * @ctx: audit_context for the task
2003 * @t: timespec to store time recorded in the audit_context
2004 * @serial: serial value that is recorded in the audit_context
2006 * Also sets the context as auditable.
2008 int auditsc_get_stamp(struct audit_context
*ctx
,
2009 struct timespec
*t
, unsigned int *serial
)
2011 if (!ctx
->in_syscall
)
2014 ctx
->serial
= audit_serial();
2015 t
->tv_sec
= ctx
->ctime
.tv_sec
;
2016 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
2017 *serial
= ctx
->serial
;
2020 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
2025 /* global counter which is incremented every time something logs in */
2026 static atomic_t session_id
= ATOMIC_INIT(0);
2028 static int audit_set_loginuid_perm(kuid_t loginuid
)
2030 /* if we are unset, we don't need privs */
2031 if (!audit_loginuid_set(current
))
2033 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2034 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE
))
2036 /* it is set, you need permission */
2037 if (!capable(CAP_AUDIT_CONTROL
))
2039 /* reject if this is not an unset and we don't allow that */
2040 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID
) && uid_valid(loginuid
))
2045 static void audit_log_set_loginuid(kuid_t koldloginuid
, kuid_t kloginuid
,
2046 unsigned int oldsessionid
, unsigned int sessionid
,
2049 struct audit_buffer
*ab
;
2050 uid_t uid
, oldloginuid
, loginuid
;
2055 uid
= from_kuid(&init_user_ns
, task_uid(current
));
2056 oldloginuid
= from_kuid(&init_user_ns
, koldloginuid
);
2057 loginuid
= from_kuid(&init_user_ns
, kloginuid
),
2059 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
2062 audit_log_format(ab
, "pid=%d uid=%u", task_pid_nr(current
), uid
);
2063 audit_log_task_context(ab
);
2064 audit_log_format(ab
, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
2065 oldloginuid
, loginuid
, oldsessionid
, sessionid
, !rc
);
2070 * audit_set_loginuid - set current task's audit_context loginuid
2071 * @loginuid: loginuid value
2075 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2077 int audit_set_loginuid(kuid_t loginuid
)
2079 struct task_struct
*task
= current
;
2080 unsigned int oldsessionid
, sessionid
= (unsigned int)-1;
2084 oldloginuid
= audit_get_loginuid(current
);
2085 oldsessionid
= audit_get_sessionid(current
);
2087 rc
= audit_set_loginuid_perm(loginuid
);
2091 /* are we setting or clearing? */
2092 if (uid_valid(loginuid
))
2093 sessionid
= (unsigned int)atomic_inc_return(&session_id
);
2095 task
->sessionid
= sessionid
;
2096 task
->loginuid
= loginuid
;
2098 audit_log_set_loginuid(oldloginuid
, loginuid
, oldsessionid
, sessionid
, rc
);
2103 * __audit_mq_open - record audit data for a POSIX MQ open
2106 * @attr: queue attributes
2109 void __audit_mq_open(int oflag
, umode_t mode
, struct mq_attr
*attr
)
2111 struct audit_context
*context
= current
->audit_context
;
2114 memcpy(&context
->mq_open
.attr
, attr
, sizeof(struct mq_attr
));
2116 memset(&context
->mq_open
.attr
, 0, sizeof(struct mq_attr
));
2118 context
->mq_open
.oflag
= oflag
;
2119 context
->mq_open
.mode
= mode
;
2121 context
->type
= AUDIT_MQ_OPEN
;
2125 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2126 * @mqdes: MQ descriptor
2127 * @msg_len: Message length
2128 * @msg_prio: Message priority
2129 * @abs_timeout: Message timeout in absolute time
2132 void __audit_mq_sendrecv(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2133 const struct timespec
*abs_timeout
)
2135 struct audit_context
*context
= current
->audit_context
;
2136 struct timespec
*p
= &context
->mq_sendrecv
.abs_timeout
;
2139 memcpy(p
, abs_timeout
, sizeof(struct timespec
));
2141 memset(p
, 0, sizeof(struct timespec
));
2143 context
->mq_sendrecv
.mqdes
= mqdes
;
2144 context
->mq_sendrecv
.msg_len
= msg_len
;
2145 context
->mq_sendrecv
.msg_prio
= msg_prio
;
2147 context
->type
= AUDIT_MQ_SENDRECV
;
2151 * __audit_mq_notify - record audit data for a POSIX MQ notify
2152 * @mqdes: MQ descriptor
2153 * @notification: Notification event
2157 void __audit_mq_notify(mqd_t mqdes
, const struct sigevent
*notification
)
2159 struct audit_context
*context
= current
->audit_context
;
2162 context
->mq_notify
.sigev_signo
= notification
->sigev_signo
;
2164 context
->mq_notify
.sigev_signo
= 0;
2166 context
->mq_notify
.mqdes
= mqdes
;
2167 context
->type
= AUDIT_MQ_NOTIFY
;
2171 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2172 * @mqdes: MQ descriptor
2176 void __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2178 struct audit_context
*context
= current
->audit_context
;
2179 context
->mq_getsetattr
.mqdes
= mqdes
;
2180 context
->mq_getsetattr
.mqstat
= *mqstat
;
2181 context
->type
= AUDIT_MQ_GETSETATTR
;
2185 * audit_ipc_obj - record audit data for ipc object
2186 * @ipcp: ipc permissions
2189 void __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2191 struct audit_context
*context
= current
->audit_context
;
2192 context
->ipc
.uid
= ipcp
->uid
;
2193 context
->ipc
.gid
= ipcp
->gid
;
2194 context
->ipc
.mode
= ipcp
->mode
;
2195 context
->ipc
.has_perm
= 0;
2196 security_ipc_getsecid(ipcp
, &context
->ipc
.osid
);
2197 context
->type
= AUDIT_IPC
;
2201 * audit_ipc_set_perm - record audit data for new ipc permissions
2202 * @qbytes: msgq bytes
2203 * @uid: msgq user id
2204 * @gid: msgq group id
2205 * @mode: msgq mode (permissions)
2207 * Called only after audit_ipc_obj().
2209 void __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, umode_t mode
)
2211 struct audit_context
*context
= current
->audit_context
;
2213 context
->ipc
.qbytes
= qbytes
;
2214 context
->ipc
.perm_uid
= uid
;
2215 context
->ipc
.perm_gid
= gid
;
2216 context
->ipc
.perm_mode
= mode
;
2217 context
->ipc
.has_perm
= 1;
2220 void __audit_bprm(struct linux_binprm
*bprm
)
2222 struct audit_context
*context
= current
->audit_context
;
2224 context
->type
= AUDIT_EXECVE
;
2225 context
->execve
.argc
= bprm
->argc
;
2230 * audit_socketcall - record audit data for sys_socketcall
2231 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2235 int __audit_socketcall(int nargs
, unsigned long *args
)
2237 struct audit_context
*context
= current
->audit_context
;
2239 if (nargs
<= 0 || nargs
> AUDITSC_ARGS
|| !args
)
2241 context
->type
= AUDIT_SOCKETCALL
;
2242 context
->socketcall
.nargs
= nargs
;
2243 memcpy(context
->socketcall
.args
, args
, nargs
* sizeof(unsigned long));
2248 * __audit_fd_pair - record audit data for pipe and socketpair
2249 * @fd1: the first file descriptor
2250 * @fd2: the second file descriptor
2253 void __audit_fd_pair(int fd1
, int fd2
)
2255 struct audit_context
*context
= current
->audit_context
;
2256 context
->fds
[0] = fd1
;
2257 context
->fds
[1] = fd2
;
2261 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2262 * @len: data length in user space
2263 * @a: data address in kernel space
2265 * Returns 0 for success or NULL context or < 0 on error.
2267 int __audit_sockaddr(int len
, void *a
)
2269 struct audit_context
*context
= current
->audit_context
;
2271 if (!context
->sockaddr
) {
2272 void *p
= kmalloc(sizeof(struct sockaddr_storage
), GFP_KERNEL
);
2275 context
->sockaddr
= p
;
2278 context
->sockaddr_len
= len
;
2279 memcpy(context
->sockaddr
, a
, len
);
2283 void __audit_ptrace(struct task_struct
*t
)
2285 struct audit_context
*context
= current
->audit_context
;
2287 context
->target_pid
= task_pid_nr(t
);
2288 context
->target_auid
= audit_get_loginuid(t
);
2289 context
->target_uid
= task_uid(t
);
2290 context
->target_sessionid
= audit_get_sessionid(t
);
2291 security_task_getsecid(t
, &context
->target_sid
);
2292 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2296 * audit_signal_info - record signal info for shutting down audit subsystem
2297 * @sig: signal value
2298 * @t: task being signaled
2300 * If the audit subsystem is being terminated, record the task (pid)
2301 * and uid that is doing that.
2303 int __audit_signal_info(int sig
, struct task_struct
*t
)
2305 struct audit_aux_data_pids
*axp
;
2306 struct task_struct
*tsk
= current
;
2307 struct audit_context
*ctx
= tsk
->audit_context
;
2308 kuid_t uid
= current_uid(), t_uid
= task_uid(t
);
2310 if (audit_pid
&& t
->tgid
== audit_pid
) {
2311 if (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
|| sig
== SIGUSR2
) {
2312 audit_sig_pid
= task_pid_nr(tsk
);
2313 if (uid_valid(tsk
->loginuid
))
2314 audit_sig_uid
= tsk
->loginuid
;
2316 audit_sig_uid
= uid
;
2317 security_task_getsecid(tsk
, &audit_sig_sid
);
2319 if (!audit_signals
|| audit_dummy_context())
2323 /* optimize the common case by putting first signal recipient directly
2324 * in audit_context */
2325 if (!ctx
->target_pid
) {
2326 ctx
->target_pid
= task_tgid_nr(t
);
2327 ctx
->target_auid
= audit_get_loginuid(t
);
2328 ctx
->target_uid
= t_uid
;
2329 ctx
->target_sessionid
= audit_get_sessionid(t
);
2330 security_task_getsecid(t
, &ctx
->target_sid
);
2331 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2335 axp
= (void *)ctx
->aux_pids
;
2336 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2337 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2341 axp
->d
.type
= AUDIT_OBJ_PID
;
2342 axp
->d
.next
= ctx
->aux_pids
;
2343 ctx
->aux_pids
= (void *)axp
;
2345 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2347 axp
->target_pid
[axp
->pid_count
] = task_tgid_nr(t
);
2348 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2349 axp
->target_uid
[axp
->pid_count
] = t_uid
;
2350 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2351 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2352 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2359 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2360 * @bprm: pointer to the bprm being processed
2361 * @new: the proposed new credentials
2362 * @old: the old credentials
2364 * Simply check if the proc already has the caps given by the file and if not
2365 * store the priv escalation info for later auditing at the end of the syscall
2369 int __audit_log_bprm_fcaps(struct linux_binprm
*bprm
,
2370 const struct cred
*new, const struct cred
*old
)
2372 struct audit_aux_data_bprm_fcaps
*ax
;
2373 struct audit_context
*context
= current
->audit_context
;
2374 struct cpu_vfs_cap_data vcaps
;
2375 struct dentry
*dentry
;
2377 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2381 ax
->d
.type
= AUDIT_BPRM_FCAPS
;
2382 ax
->d
.next
= context
->aux
;
2383 context
->aux
= (void *)ax
;
2385 dentry
= dget(bprm
->file
->f_dentry
);
2386 get_vfs_caps_from_disk(dentry
, &vcaps
);
2389 ax
->fcap
.permitted
= vcaps
.permitted
;
2390 ax
->fcap
.inheritable
= vcaps
.inheritable
;
2391 ax
->fcap
.fE
= !!(vcaps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2392 ax
->fcap_ver
= (vcaps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2394 ax
->old_pcap
.permitted
= old
->cap_permitted
;
2395 ax
->old_pcap
.inheritable
= old
->cap_inheritable
;
2396 ax
->old_pcap
.effective
= old
->cap_effective
;
2398 ax
->new_pcap
.permitted
= new->cap_permitted
;
2399 ax
->new_pcap
.inheritable
= new->cap_inheritable
;
2400 ax
->new_pcap
.effective
= new->cap_effective
;
2405 * __audit_log_capset - store information about the arguments to the capset syscall
2406 * @new: the new credentials
2407 * @old: the old (current) credentials
2409 * Record the aguments userspace sent to sys_capset for later printing by the
2410 * audit system if applicable
2412 void __audit_log_capset(const struct cred
*new, const struct cred
*old
)
2414 struct audit_context
*context
= current
->audit_context
;
2415 context
->capset
.pid
= task_pid_nr(current
);
2416 context
->capset
.cap
.effective
= new->cap_effective
;
2417 context
->capset
.cap
.inheritable
= new->cap_effective
;
2418 context
->capset
.cap
.permitted
= new->cap_permitted
;
2419 context
->type
= AUDIT_CAPSET
;
2422 void __audit_mmap_fd(int fd
, int flags
)
2424 struct audit_context
*context
= current
->audit_context
;
2425 context
->mmap
.fd
= fd
;
2426 context
->mmap
.flags
= flags
;
2427 context
->type
= AUDIT_MMAP
;
2430 static void audit_log_task(struct audit_buffer
*ab
)
2434 unsigned int sessionid
;
2435 struct mm_struct
*mm
= current
->mm
;
2437 auid
= audit_get_loginuid(current
);
2438 sessionid
= audit_get_sessionid(current
);
2439 current_uid_gid(&uid
, &gid
);
2441 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2442 from_kuid(&init_user_ns
, auid
),
2443 from_kuid(&init_user_ns
, uid
),
2444 from_kgid(&init_user_ns
, gid
),
2446 audit_log_task_context(ab
);
2447 audit_log_format(ab
, " pid=%d comm=", task_pid_nr(current
));
2448 audit_log_untrustedstring(ab
, current
->comm
);
2450 down_read(&mm
->mmap_sem
);
2452 audit_log_d_path(ab
, " exe=", &mm
->exe_file
->f_path
);
2453 up_read(&mm
->mmap_sem
);
2455 audit_log_format(ab
, " exe=(null)");
2459 * audit_core_dumps - record information about processes that end abnormally
2460 * @signr: signal value
2462 * If a process ends with a core dump, something fishy is going on and we
2463 * should record the event for investigation.
2465 void audit_core_dumps(long signr
)
2467 struct audit_buffer
*ab
;
2472 if (signr
== SIGQUIT
) /* don't care for those */
2475 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2479 audit_log_format(ab
, " sig=%ld", signr
);
2483 void __audit_seccomp(unsigned long syscall
, long signr
, int code
)
2485 struct audit_buffer
*ab
;
2487 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_SECCOMP
);
2491 audit_log_format(ab
, " sig=%ld", signr
);
2492 audit_log_format(ab
, " syscall=%ld", syscall
);
2493 audit_log_format(ab
, " compat=%d", is_compat_task());
2494 audit_log_format(ab
, " ip=0x%lx", KSTK_EIP(current
));
2495 audit_log_format(ab
, " code=0x%x", code
);
2499 struct list_head
*audit_killed_trees(void)
2501 struct audit_context
*ctx
= current
->audit_context
;
2502 if (likely(!ctx
|| !ctx
->in_syscall
))
2504 return &ctx
->killed_trees
;