1 /* Performance event support for sparc64.
3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
5 * This code is based almost entirely upon the x86 perf event
8 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10 * Copyright (C) 2009 Jaswinder Singh Rajput
11 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/ftrace.h>
18 #include <linux/kernel.h>
19 #include <linux/kdebug.h>
20 #include <linux/mutex.h>
22 #include <asm/stacktrace.h>
23 #include <asm/cpudata.h>
24 #include <linux/uaccess.h>
25 #include <linux/atomic.h>
28 #include <asm/cacheflush.h>
33 /* Two classes of sparc64 chips currently exist. All of which have
34 * 32-bit counters which can generate overflow interrupts on the
35 * transition from 0xffffffff to 0.
37 * All chips upto and including SPARC-T3 have two performance
38 * counters. The two 32-bit counters are accessed in one go using a
39 * single 64-bit register.
41 * On these older chips both counters are controlled using a single
42 * control register. The only way to stop all sampling is to clear
43 * all of the context (user, supervisor, hypervisor) sampling enable
44 * bits. But these bits apply to both counters, thus the two counters
45 * can't be enabled/disabled individually.
47 * Furthermore, the control register on these older chips have two
48 * event fields, one for each of the two counters. It's thus nearly
49 * impossible to have one counter going while keeping the other one
50 * stopped. Therefore it is possible to get overflow interrupts for
51 * counters not currently "in use" and that condition must be checked
52 * in the overflow interrupt handler.
54 * So we use a hack, in that we program inactive counters with the
55 * "sw_count0" and "sw_count1" events. These count how many times
56 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
57 * unusual way to encode a NOP and therefore will not trigger in
60 * Starting with SPARC-T4 we have one control register per counter.
61 * And the counters are stored in individual registers. The registers
62 * for the counters are 64-bit but only a 32-bit counter is
63 * implemented. The event selections on SPARC-T4 lack any
64 * restrictions, therefore we can elide all of the complicated
65 * conflict resolution code we have for SPARC-T3 and earlier chips.
68 #define MAX_HWEVENTS 4
70 #define MAX_PERIOD ((1UL << 32) - 1)
72 #define PIC_UPPER_INDEX 0
73 #define PIC_LOWER_INDEX 1
74 #define PIC_NO_INDEX -1
76 struct cpu_hw_events
{
77 /* Number of events currently scheduled onto this cpu.
78 * This tells how many entries in the arrays below
83 /* Number of new events added since the last hw_perf_disable().
84 * This works because the perf event layer always adds new
85 * events inside of a perf_{disable,enable}() sequence.
89 /* Array of events current scheduled on this cpu. */
90 struct perf_event
*event
[MAX_HWEVENTS
];
92 /* Array of encoded longs, specifying the %pcr register
93 * encoding and the mask of PIC counters this even can
94 * be scheduled on. See perf_event_encode() et al.
96 unsigned long events
[MAX_HWEVENTS
];
98 /* The current counter index assigned to an event. When the
99 * event hasn't been programmed into the cpu yet, this will
100 * hold PIC_NO_INDEX. The event->hw.idx value tells us where
101 * we ought to schedule the event.
103 int current_idx
[MAX_HWEVENTS
];
105 /* Software copy of %pcr register(s) on this cpu. */
106 u64 pcr
[MAX_HWEVENTS
];
108 /* Enabled/disable state. */
111 unsigned int txn_flags
;
113 static DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = { .enabled
= 1, };
115 /* An event map describes the characteristics of a performance
116 * counter event. In particular it gives the encoding as well as
117 * a mask telling which counters the event can be measured on.
119 * The mask is unused on SPARC-T4 and later.
121 struct perf_event_map
{
124 #define PIC_NONE 0x00
125 #define PIC_UPPER 0x01
126 #define PIC_LOWER 0x02
129 /* Encode a perf_event_map entry into a long. */
130 static unsigned long perf_event_encode(const struct perf_event_map
*pmap
)
132 return ((unsigned long) pmap
->encoding
<< 16) | pmap
->pic_mask
;
135 static u8
perf_event_get_msk(unsigned long val
)
140 static u64
perf_event_get_enc(unsigned long val
)
145 #define C(x) PERF_COUNT_HW_CACHE_##x
147 #define CACHE_OP_UNSUPPORTED 0xfffe
148 #define CACHE_OP_NONSENSE 0xffff
150 typedef struct perf_event_map cache_map_t
151 [PERF_COUNT_HW_CACHE_MAX
]
152 [PERF_COUNT_HW_CACHE_OP_MAX
]
153 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
156 const struct perf_event_map
*(*event_map
)(int);
157 const cache_map_t
*cache_map
;
159 u32 (*read_pmc
)(int);
160 void (*write_pmc
)(int, u64
);
171 #define SPARC_PMU_ALL_EXCLUDES_SAME 0x00000001
172 #define SPARC_PMU_HAS_CONFLICTS 0x00000002
178 static u32
sparc_default_read_pmc(int idx
)
182 val
= pcr_ops
->read_pic(0);
183 if (idx
== PIC_UPPER_INDEX
)
186 return val
& 0xffffffff;
189 static void sparc_default_write_pmc(int idx
, u64 val
)
191 u64 shift
, mask
, pic
;
194 if (idx
== PIC_UPPER_INDEX
)
197 mask
= ((u64
) 0xffffffff) << shift
;
200 pic
= pcr_ops
->read_pic(0);
203 pcr_ops
->write_pic(0, pic
);
206 static const struct perf_event_map ultra3_perfmon_event_map
[] = {
207 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x0000, PIC_UPPER
| PIC_LOWER
},
208 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x0001, PIC_UPPER
| PIC_LOWER
},
209 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x0009, PIC_LOWER
},
210 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x0009, PIC_UPPER
},
213 static const struct perf_event_map
*ultra3_event_map(int event_id
)
215 return &ultra3_perfmon_event_map
[event_id
];
218 static const cache_map_t ultra3_cache_map
= {
221 [C(RESULT_ACCESS
)] = { 0x09, PIC_LOWER
, },
222 [C(RESULT_MISS
)] = { 0x09, PIC_UPPER
, },
225 [C(RESULT_ACCESS
)] = { 0x0a, PIC_LOWER
},
226 [C(RESULT_MISS
)] = { 0x0a, PIC_UPPER
},
229 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
230 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
235 [C(RESULT_ACCESS
)] = { 0x09, PIC_LOWER
, },
236 [C(RESULT_MISS
)] = { 0x09, PIC_UPPER
, },
239 [ C(RESULT_ACCESS
) ] = { CACHE_OP_NONSENSE
},
240 [ C(RESULT_MISS
) ] = { CACHE_OP_NONSENSE
},
242 [ C(OP_PREFETCH
) ] = {
243 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
244 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
249 [C(RESULT_ACCESS
)] = { 0x0c, PIC_LOWER
, },
250 [C(RESULT_MISS
)] = { 0x0c, PIC_UPPER
, },
253 [C(RESULT_ACCESS
)] = { 0x0c, PIC_LOWER
},
254 [C(RESULT_MISS
)] = { 0x0c, PIC_UPPER
},
257 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
258 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
263 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
264 [C(RESULT_MISS
)] = { 0x12, PIC_UPPER
, },
267 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
268 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
270 [ C(OP_PREFETCH
) ] = {
271 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
272 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
277 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
278 [C(RESULT_MISS
)] = { 0x11, PIC_UPPER
, },
281 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
282 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
284 [ C(OP_PREFETCH
) ] = {
285 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
286 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
291 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
292 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
295 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
296 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
298 [ C(OP_PREFETCH
) ] = {
299 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
300 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
305 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
306 [C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
309 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
310 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
312 [ C(OP_PREFETCH
) ] = {
313 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
314 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
319 static const struct sparc_pmu ultra3_pmu
= {
320 .event_map
= ultra3_event_map
,
321 .cache_map
= &ultra3_cache_map
,
322 .max_events
= ARRAY_SIZE(ultra3_perfmon_event_map
),
323 .read_pmc
= sparc_default_read_pmc
,
324 .write_pmc
= sparc_default_write_pmc
,
328 .user_bit
= PCR_UTRACE
,
329 .priv_bit
= PCR_STRACE
,
332 .flags
= (SPARC_PMU_ALL_EXCLUDES_SAME
|
333 SPARC_PMU_HAS_CONFLICTS
),
339 /* Niagara1 is very limited. The upper PIC is hard-locked to count
340 * only instructions, so it is free running which creates all kinds of
341 * problems. Some hardware designs make one wonder if the creator
342 * even looked at how this stuff gets used by software.
344 static const struct perf_event_map niagara1_perfmon_event_map
[] = {
345 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, PIC_UPPER
},
346 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x00, PIC_UPPER
},
347 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0, PIC_NONE
},
348 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x03, PIC_LOWER
},
351 static const struct perf_event_map
*niagara1_event_map(int event_id
)
353 return &niagara1_perfmon_event_map
[event_id
];
356 static const cache_map_t niagara1_cache_map
= {
359 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
360 [C(RESULT_MISS
)] = { 0x03, PIC_LOWER
, },
363 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
364 [C(RESULT_MISS
)] = { 0x03, PIC_LOWER
, },
367 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
368 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
373 [C(RESULT_ACCESS
)] = { 0x00, PIC_UPPER
},
374 [C(RESULT_MISS
)] = { 0x02, PIC_LOWER
, },
377 [ C(RESULT_ACCESS
) ] = { CACHE_OP_NONSENSE
},
378 [ C(RESULT_MISS
) ] = { CACHE_OP_NONSENSE
},
380 [ C(OP_PREFETCH
) ] = {
381 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
382 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
387 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
388 [C(RESULT_MISS
)] = { 0x07, PIC_LOWER
, },
391 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
392 [C(RESULT_MISS
)] = { 0x07, PIC_LOWER
, },
395 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
396 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
401 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
402 [C(RESULT_MISS
)] = { 0x05, PIC_LOWER
, },
405 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
406 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
408 [ C(OP_PREFETCH
) ] = {
409 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
410 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
415 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
416 [C(RESULT_MISS
)] = { 0x04, PIC_LOWER
, },
419 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
420 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
422 [ C(OP_PREFETCH
) ] = {
423 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
424 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
429 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
430 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
433 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
434 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
436 [ C(OP_PREFETCH
) ] = {
437 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
438 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
443 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
444 [C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
447 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
448 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
450 [ C(OP_PREFETCH
) ] = {
451 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
452 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
457 static const struct sparc_pmu niagara1_pmu
= {
458 .event_map
= niagara1_event_map
,
459 .cache_map
= &niagara1_cache_map
,
460 .max_events
= ARRAY_SIZE(niagara1_perfmon_event_map
),
461 .read_pmc
= sparc_default_read_pmc
,
462 .write_pmc
= sparc_default_write_pmc
,
466 .user_bit
= PCR_UTRACE
,
467 .priv_bit
= PCR_STRACE
,
470 .flags
= (SPARC_PMU_ALL_EXCLUDES_SAME
|
471 SPARC_PMU_HAS_CONFLICTS
),
477 static const struct perf_event_map niagara2_perfmon_event_map
[] = {
478 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x02ff, PIC_UPPER
| PIC_LOWER
},
479 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x02ff, PIC_UPPER
| PIC_LOWER
},
480 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x0208, PIC_UPPER
| PIC_LOWER
},
481 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x0302, PIC_UPPER
| PIC_LOWER
},
482 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x0201, PIC_UPPER
| PIC_LOWER
},
483 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x0202, PIC_UPPER
| PIC_LOWER
},
486 static const struct perf_event_map
*niagara2_event_map(int event_id
)
488 return &niagara2_perfmon_event_map
[event_id
];
491 static const cache_map_t niagara2_cache_map
= {
494 [C(RESULT_ACCESS
)] = { 0x0208, PIC_UPPER
| PIC_LOWER
, },
495 [C(RESULT_MISS
)] = { 0x0302, PIC_UPPER
| PIC_LOWER
, },
498 [C(RESULT_ACCESS
)] = { 0x0210, PIC_UPPER
| PIC_LOWER
, },
499 [C(RESULT_MISS
)] = { 0x0302, PIC_UPPER
| PIC_LOWER
, },
502 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
503 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
508 [C(RESULT_ACCESS
)] = { 0x02ff, PIC_UPPER
| PIC_LOWER
, },
509 [C(RESULT_MISS
)] = { 0x0301, PIC_UPPER
| PIC_LOWER
, },
512 [ C(RESULT_ACCESS
) ] = { CACHE_OP_NONSENSE
},
513 [ C(RESULT_MISS
) ] = { CACHE_OP_NONSENSE
},
515 [ C(OP_PREFETCH
) ] = {
516 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
517 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
522 [C(RESULT_ACCESS
)] = { 0x0208, PIC_UPPER
| PIC_LOWER
, },
523 [C(RESULT_MISS
)] = { 0x0330, PIC_UPPER
| PIC_LOWER
, },
526 [C(RESULT_ACCESS
)] = { 0x0210, PIC_UPPER
| PIC_LOWER
, },
527 [C(RESULT_MISS
)] = { 0x0320, PIC_UPPER
| PIC_LOWER
, },
530 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
531 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
536 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
537 [C(RESULT_MISS
)] = { 0x0b08, PIC_UPPER
| PIC_LOWER
, },
540 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
541 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
543 [ C(OP_PREFETCH
) ] = {
544 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
545 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
550 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
551 [C(RESULT_MISS
)] = { 0xb04, PIC_UPPER
| PIC_LOWER
, },
554 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
555 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
557 [ C(OP_PREFETCH
) ] = {
558 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
559 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
564 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
565 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
568 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
569 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
571 [ C(OP_PREFETCH
) ] = {
572 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
573 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
578 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
579 [C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
582 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
583 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
585 [ C(OP_PREFETCH
) ] = {
586 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
587 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
592 static const struct sparc_pmu niagara2_pmu
= {
593 .event_map
= niagara2_event_map
,
594 .cache_map
= &niagara2_cache_map
,
595 .max_events
= ARRAY_SIZE(niagara2_perfmon_event_map
),
596 .read_pmc
= sparc_default_read_pmc
,
597 .write_pmc
= sparc_default_write_pmc
,
601 .user_bit
= PCR_UTRACE
,
602 .priv_bit
= PCR_STRACE
,
603 .hv_bit
= PCR_N2_HTRACE
,
607 .flags
= (SPARC_PMU_ALL_EXCLUDES_SAME
|
608 SPARC_PMU_HAS_CONFLICTS
),
614 static const struct perf_event_map niagara4_perfmon_event_map
[] = {
615 [PERF_COUNT_HW_CPU_CYCLES
] = { (26 << 6) },
616 [PERF_COUNT_HW_INSTRUCTIONS
] = { (3 << 6) | 0x3f },
617 [PERF_COUNT_HW_CACHE_REFERENCES
] = { (3 << 6) | 0x04 },
618 [PERF_COUNT_HW_CACHE_MISSES
] = { (16 << 6) | 0x07 },
619 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { (4 << 6) | 0x01 },
620 [PERF_COUNT_HW_BRANCH_MISSES
] = { (25 << 6) | 0x0f },
623 static const struct perf_event_map
*niagara4_event_map(int event_id
)
625 return &niagara4_perfmon_event_map
[event_id
];
628 static const cache_map_t niagara4_cache_map
= {
631 [C(RESULT_ACCESS
)] = { (3 << 6) | 0x04 },
632 [C(RESULT_MISS
)] = { (16 << 6) | 0x07 },
635 [C(RESULT_ACCESS
)] = { (3 << 6) | 0x08 },
636 [C(RESULT_MISS
)] = { (16 << 6) | 0x07 },
639 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
640 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
645 [C(RESULT_ACCESS
)] = { (3 << 6) | 0x3f },
646 [C(RESULT_MISS
)] = { (11 << 6) | 0x03 },
649 [ C(RESULT_ACCESS
) ] = { CACHE_OP_NONSENSE
},
650 [ C(RESULT_MISS
) ] = { CACHE_OP_NONSENSE
},
652 [ C(OP_PREFETCH
) ] = {
653 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
654 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
659 [C(RESULT_ACCESS
)] = { (3 << 6) | 0x04 },
660 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
663 [C(RESULT_ACCESS
)] = { (3 << 6) | 0x08 },
664 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
667 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
668 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
673 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
674 [C(RESULT_MISS
)] = { (17 << 6) | 0x3f },
677 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
678 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
680 [ C(OP_PREFETCH
) ] = {
681 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
682 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
687 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
688 [C(RESULT_MISS
)] = { (6 << 6) | 0x3f },
691 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
692 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
694 [ C(OP_PREFETCH
) ] = {
695 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
696 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
701 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
702 [C(RESULT_MISS
)] = { CACHE_OP_UNSUPPORTED
},
705 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
706 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
708 [ C(OP_PREFETCH
) ] = {
709 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
710 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
715 [C(RESULT_ACCESS
)] = { CACHE_OP_UNSUPPORTED
},
716 [C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
719 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
720 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
722 [ C(OP_PREFETCH
) ] = {
723 [ C(RESULT_ACCESS
) ] = { CACHE_OP_UNSUPPORTED
},
724 [ C(RESULT_MISS
) ] = { CACHE_OP_UNSUPPORTED
},
729 static u32
sparc_vt_read_pmc(int idx
)
731 u64 val
= pcr_ops
->read_pic(idx
);
733 return val
& 0xffffffff;
736 static void sparc_vt_write_pmc(int idx
, u64 val
)
740 pcr
= pcr_ops
->read_pcr(idx
);
741 /* ensure ov and ntc are reset */
742 pcr
&= ~(PCR_N4_OV
| PCR_N4_NTC
);
744 pcr_ops
->write_pic(idx
, val
& 0xffffffff);
746 pcr_ops
->write_pcr(idx
, pcr
);
749 static const struct sparc_pmu niagara4_pmu
= {
750 .event_map
= niagara4_event_map
,
751 .cache_map
= &niagara4_cache_map
,
752 .max_events
= ARRAY_SIZE(niagara4_perfmon_event_map
),
753 .read_pmc
= sparc_vt_read_pmc
,
754 .write_pmc
= sparc_vt_write_pmc
,
758 .user_bit
= PCR_N4_UTRACE
,
759 .priv_bit
= PCR_N4_STRACE
,
761 /* We explicitly don't support hypervisor tracing. The T4
762 * generates the overflow event for precise events via a trap
763 * which will not be generated (ie. it's completely lost) if
764 * we happen to be in the hypervisor when the event triggers.
765 * Essentially, the overflow event reporting is completely
766 * unusable when you have hypervisor mode tracing enabled.
770 .irq_bit
= PCR_N4_TOE
,
779 static const struct sparc_pmu sparc_m7_pmu
= {
780 .event_map
= niagara4_event_map
,
781 .cache_map
= &niagara4_cache_map
,
782 .max_events
= ARRAY_SIZE(niagara4_perfmon_event_map
),
783 .read_pmc
= sparc_vt_read_pmc
,
784 .write_pmc
= sparc_vt_write_pmc
,
788 .user_bit
= PCR_N4_UTRACE
,
789 .priv_bit
= PCR_N4_STRACE
,
791 /* We explicitly don't support hypervisor tracing. */
794 .irq_bit
= PCR_N4_TOE
,
802 static const struct sparc_pmu
*sparc_pmu __read_mostly
;
804 static u64
event_encoding(u64 event_id
, int idx
)
806 if (idx
== PIC_UPPER_INDEX
)
807 event_id
<<= sparc_pmu
->upper_shift
;
809 event_id
<<= sparc_pmu
->lower_shift
;
813 static u64
mask_for_index(int idx
)
815 return event_encoding(sparc_pmu
->event_mask
, idx
);
818 static u64
nop_for_index(int idx
)
820 return event_encoding(idx
== PIC_UPPER_INDEX
?
821 sparc_pmu
->upper_nop
:
822 sparc_pmu
->lower_nop
, idx
);
825 static inline void sparc_pmu_enable_event(struct cpu_hw_events
*cpuc
, struct hw_perf_event
*hwc
, int idx
)
827 u64 enc
, val
, mask
= mask_for_index(idx
);
830 if (sparc_pmu
->num_pcrs
> 1)
833 enc
= perf_event_get_enc(cpuc
->events
[idx
]);
835 val
= cpuc
->pcr
[pcr_index
];
837 val
|= event_encoding(enc
, idx
);
838 cpuc
->pcr
[pcr_index
] = val
;
840 pcr_ops
->write_pcr(pcr_index
, cpuc
->pcr
[pcr_index
]);
843 static inline void sparc_pmu_disable_event(struct cpu_hw_events
*cpuc
, struct hw_perf_event
*hwc
, int idx
)
845 u64 mask
= mask_for_index(idx
);
846 u64 nop
= nop_for_index(idx
);
850 if (sparc_pmu
->num_pcrs
> 1)
853 val
= cpuc
->pcr
[pcr_index
];
856 cpuc
->pcr
[pcr_index
] = val
;
858 pcr_ops
->write_pcr(pcr_index
, cpuc
->pcr
[pcr_index
]);
861 static u64
sparc_perf_event_update(struct perf_event
*event
,
862 struct hw_perf_event
*hwc
, int idx
)
865 u64 prev_raw_count
, new_raw_count
;
869 prev_raw_count
= local64_read(&hwc
->prev_count
);
870 new_raw_count
= sparc_pmu
->read_pmc(idx
);
872 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
873 new_raw_count
) != prev_raw_count
)
876 delta
= (new_raw_count
<< shift
) - (prev_raw_count
<< shift
);
879 local64_add(delta
, &event
->count
);
880 local64_sub(delta
, &hwc
->period_left
);
882 return new_raw_count
;
885 static int sparc_perf_event_set_period(struct perf_event
*event
,
886 struct hw_perf_event
*hwc
, int idx
)
888 s64 left
= local64_read(&hwc
->period_left
);
889 s64 period
= hwc
->sample_period
;
892 if (unlikely(left
<= -period
)) {
894 local64_set(&hwc
->period_left
, left
);
895 hwc
->last_period
= period
;
899 if (unlikely(left
<= 0)) {
901 local64_set(&hwc
->period_left
, left
);
902 hwc
->last_period
= period
;
905 if (left
> MAX_PERIOD
)
908 local64_set(&hwc
->prev_count
, (u64
)-left
);
910 sparc_pmu
->write_pmc(idx
, (u64
)(-left
) & 0xffffffff);
912 perf_event_update_userpage(event
);
917 static void read_in_all_counters(struct cpu_hw_events
*cpuc
)
921 for (i
= 0; i
< cpuc
->n_events
; i
++) {
922 struct perf_event
*cp
= cpuc
->event
[i
];
924 if (cpuc
->current_idx
[i
] != PIC_NO_INDEX
&&
925 cpuc
->current_idx
[i
] != cp
->hw
.idx
) {
926 sparc_perf_event_update(cp
, &cp
->hw
,
927 cpuc
->current_idx
[i
]);
928 cpuc
->current_idx
[i
] = PIC_NO_INDEX
;
933 /* On this PMU all PICs are programmed using a single PCR. Calculate
934 * the combined control register value.
936 * For such chips we require that all of the events have the same
937 * configuration, so just fetch the settings from the first entry.
939 static void calculate_single_pcr(struct cpu_hw_events
*cpuc
)
946 /* Assign to counters all unassigned events. */
947 for (i
= 0; i
< cpuc
->n_events
; i
++) {
948 struct perf_event
*cp
= cpuc
->event
[i
];
949 struct hw_perf_event
*hwc
= &cp
->hw
;
953 if (cpuc
->current_idx
[i
] != PIC_NO_INDEX
)
956 sparc_perf_event_set_period(cp
, hwc
, idx
);
957 cpuc
->current_idx
[i
] = idx
;
959 enc
= perf_event_get_enc(cpuc
->events
[i
]);
960 cpuc
->pcr
[0] &= ~mask_for_index(idx
);
961 if (hwc
->state
& PERF_HES_STOPPED
)
962 cpuc
->pcr
[0] |= nop_for_index(idx
);
964 cpuc
->pcr
[0] |= event_encoding(enc
, idx
);
967 cpuc
->pcr
[0] |= cpuc
->event
[0]->hw
.config_base
;
970 static void sparc_pmu_start(struct perf_event
*event
, int flags
);
972 /* On this PMU each PIC has it's own PCR control register. */
973 static void calculate_multiple_pcrs(struct cpu_hw_events
*cpuc
)
980 for (i
= 0; i
< cpuc
->n_events
; i
++) {
981 struct perf_event
*cp
= cpuc
->event
[i
];
982 struct hw_perf_event
*hwc
= &cp
->hw
;
985 if (cpuc
->current_idx
[i
] != PIC_NO_INDEX
)
988 cpuc
->current_idx
[i
] = idx
;
990 sparc_pmu_start(cp
, PERF_EF_RELOAD
);
993 for (i
= 0; i
< cpuc
->n_events
; i
++) {
994 struct perf_event
*cp
= cpuc
->event
[i
];
995 int idx
= cp
->hw
.idx
;
997 cpuc
->pcr
[idx
] |= cp
->hw
.config_base
;
1001 /* If performance event entries have been added, move existing events
1002 * around (if necessary) and then assign new entries to counters.
1004 static void update_pcrs_for_enable(struct cpu_hw_events
*cpuc
)
1007 read_in_all_counters(cpuc
);
1009 if (sparc_pmu
->num_pcrs
== 1) {
1010 calculate_single_pcr(cpuc
);
1012 calculate_multiple_pcrs(cpuc
);
1016 static void sparc_pmu_enable(struct pmu
*pmu
)
1018 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1028 update_pcrs_for_enable(cpuc
);
1030 for (i
= 0; i
< sparc_pmu
->num_pcrs
; i
++)
1031 pcr_ops
->write_pcr(i
, cpuc
->pcr
[i
]);
1034 static void sparc_pmu_disable(struct pmu
*pmu
)
1036 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1045 for (i
= 0; i
< sparc_pmu
->num_pcrs
; i
++) {
1046 u64 val
= cpuc
->pcr
[i
];
1048 val
&= ~(sparc_pmu
->user_bit
| sparc_pmu
->priv_bit
|
1049 sparc_pmu
->hv_bit
| sparc_pmu
->irq_bit
);
1051 pcr_ops
->write_pcr(i
, cpuc
->pcr
[i
]);
1055 static int active_event_index(struct cpu_hw_events
*cpuc
,
1056 struct perf_event
*event
)
1060 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1061 if (cpuc
->event
[i
] == event
)
1064 BUG_ON(i
== cpuc
->n_events
);
1065 return cpuc
->current_idx
[i
];
1068 static void sparc_pmu_start(struct perf_event
*event
, int flags
)
1070 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1071 int idx
= active_event_index(cpuc
, event
);
1073 if (flags
& PERF_EF_RELOAD
) {
1074 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
1075 sparc_perf_event_set_period(event
, &event
->hw
, idx
);
1078 event
->hw
.state
= 0;
1080 sparc_pmu_enable_event(cpuc
, &event
->hw
, idx
);
1083 static void sparc_pmu_stop(struct perf_event
*event
, int flags
)
1085 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1086 int idx
= active_event_index(cpuc
, event
);
1088 if (!(event
->hw
.state
& PERF_HES_STOPPED
)) {
1089 sparc_pmu_disable_event(cpuc
, &event
->hw
, idx
);
1090 event
->hw
.state
|= PERF_HES_STOPPED
;
1093 if (!(event
->hw
.state
& PERF_HES_UPTODATE
) && (flags
& PERF_EF_UPDATE
)) {
1094 sparc_perf_event_update(event
, &event
->hw
, idx
);
1095 event
->hw
.state
|= PERF_HES_UPTODATE
;
1099 static void sparc_pmu_del(struct perf_event
*event
, int _flags
)
1101 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1102 unsigned long flags
;
1105 local_irq_save(flags
);
1107 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1108 if (event
== cpuc
->event
[i
]) {
1109 /* Absorb the final count and turn off the
1112 sparc_pmu_stop(event
, PERF_EF_UPDATE
);
1114 /* Shift remaining entries down into
1115 * the existing slot.
1117 while (++i
< cpuc
->n_events
) {
1118 cpuc
->event
[i
- 1] = cpuc
->event
[i
];
1119 cpuc
->events
[i
- 1] = cpuc
->events
[i
];
1120 cpuc
->current_idx
[i
- 1] =
1121 cpuc
->current_idx
[i
];
1124 perf_event_update_userpage(event
);
1131 local_irq_restore(flags
);
1134 static void sparc_pmu_read(struct perf_event
*event
)
1136 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1137 int idx
= active_event_index(cpuc
, event
);
1138 struct hw_perf_event
*hwc
= &event
->hw
;
1140 sparc_perf_event_update(event
, hwc
, idx
);
1143 static atomic_t active_events
= ATOMIC_INIT(0);
1144 static DEFINE_MUTEX(pmc_grab_mutex
);
1146 static void perf_stop_nmi_watchdog(void *unused
)
1148 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1151 stop_nmi_watchdog(NULL
);
1152 for (i
= 0; i
< sparc_pmu
->num_pcrs
; i
++)
1153 cpuc
->pcr
[i
] = pcr_ops
->read_pcr(i
);
1156 static void perf_event_grab_pmc(void)
1158 if (atomic_inc_not_zero(&active_events
))
1161 mutex_lock(&pmc_grab_mutex
);
1162 if (atomic_read(&active_events
) == 0) {
1163 if (atomic_read(&nmi_active
) > 0) {
1164 on_each_cpu(perf_stop_nmi_watchdog
, NULL
, 1);
1165 BUG_ON(atomic_read(&nmi_active
) != 0);
1167 atomic_inc(&active_events
);
1169 mutex_unlock(&pmc_grab_mutex
);
1172 static void perf_event_release_pmc(void)
1174 if (atomic_dec_and_mutex_lock(&active_events
, &pmc_grab_mutex
)) {
1175 if (atomic_read(&nmi_active
) == 0)
1176 on_each_cpu(start_nmi_watchdog
, NULL
, 1);
1177 mutex_unlock(&pmc_grab_mutex
);
1181 static const struct perf_event_map
*sparc_map_cache_event(u64 config
)
1183 unsigned int cache_type
, cache_op
, cache_result
;
1184 const struct perf_event_map
*pmap
;
1186 if (!sparc_pmu
->cache_map
)
1187 return ERR_PTR(-ENOENT
);
1189 cache_type
= (config
>> 0) & 0xff;
1190 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
1191 return ERR_PTR(-EINVAL
);
1193 cache_op
= (config
>> 8) & 0xff;
1194 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
1195 return ERR_PTR(-EINVAL
);
1197 cache_result
= (config
>> 16) & 0xff;
1198 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
1199 return ERR_PTR(-EINVAL
);
1201 pmap
= &((*sparc_pmu
->cache_map
)[cache_type
][cache_op
][cache_result
]);
1203 if (pmap
->encoding
== CACHE_OP_UNSUPPORTED
)
1204 return ERR_PTR(-ENOENT
);
1206 if (pmap
->encoding
== CACHE_OP_NONSENSE
)
1207 return ERR_PTR(-EINVAL
);
1212 static void hw_perf_event_destroy(struct perf_event
*event
)
1214 perf_event_release_pmc();
1217 /* Make sure all events can be scheduled into the hardware at
1218 * the same time. This is simplified by the fact that we only
1219 * need to support 2 simultaneous HW events.
1221 * As a side effect, the evts[]->hw.idx values will be assigned
1222 * on success. These are pending indexes. When the events are
1223 * actually programmed into the chip, these values will propagate
1224 * to the per-cpu cpuc->current_idx[] slots, see the code in
1225 * maybe_change_configuration() for details.
1227 static int sparc_check_constraints(struct perf_event
**evts
,
1228 unsigned long *events
, int n_ev
)
1230 u8 msk0
= 0, msk1
= 0;
1233 /* This case is possible when we are invoked from
1234 * hw_perf_group_sched_in().
1239 if (n_ev
> sparc_pmu
->max_hw_events
)
1242 if (!(sparc_pmu
->flags
& SPARC_PMU_HAS_CONFLICTS
)) {
1245 for (i
= 0; i
< n_ev
; i
++)
1246 evts
[i
]->hw
.idx
= i
;
1250 msk0
= perf_event_get_msk(events
[0]);
1252 if (msk0
& PIC_LOWER
)
1257 msk1
= perf_event_get_msk(events
[1]);
1259 /* If both events can go on any counter, OK. */
1260 if (msk0
== (PIC_UPPER
| PIC_LOWER
) &&
1261 msk1
== (PIC_UPPER
| PIC_LOWER
))
1264 /* If one event is limited to a specific counter,
1265 * and the other can go on both, OK.
1267 if ((msk0
== PIC_UPPER
|| msk0
== PIC_LOWER
) &&
1268 msk1
== (PIC_UPPER
| PIC_LOWER
)) {
1269 if (msk0
& PIC_LOWER
)
1274 if ((msk1
== PIC_UPPER
|| msk1
== PIC_LOWER
) &&
1275 msk0
== (PIC_UPPER
| PIC_LOWER
)) {
1276 if (msk1
& PIC_UPPER
)
1281 /* If the events are fixed to different counters, OK. */
1282 if ((msk0
== PIC_UPPER
&& msk1
== PIC_LOWER
) ||
1283 (msk0
== PIC_LOWER
&& msk1
== PIC_UPPER
)) {
1284 if (msk0
& PIC_LOWER
)
1289 /* Otherwise, there is a conflict. */
1293 evts
[0]->hw
.idx
= idx0
;
1295 evts
[1]->hw
.idx
= idx0
^ 1;
1299 static int check_excludes(struct perf_event
**evts
, int n_prev
, int n_new
)
1301 int eu
= 0, ek
= 0, eh
= 0;
1302 struct perf_event
*event
;
1305 if (!(sparc_pmu
->flags
& SPARC_PMU_ALL_EXCLUDES_SAME
))
1313 for (i
= 0; i
< n
; i
++) {
1316 eu
= event
->attr
.exclude_user
;
1317 ek
= event
->attr
.exclude_kernel
;
1318 eh
= event
->attr
.exclude_hv
;
1320 } else if (event
->attr
.exclude_user
!= eu
||
1321 event
->attr
.exclude_kernel
!= ek
||
1322 event
->attr
.exclude_hv
!= eh
) {
1330 static int collect_events(struct perf_event
*group
, int max_count
,
1331 struct perf_event
*evts
[], unsigned long *events
,
1334 struct perf_event
*event
;
1337 if (!is_software_event(group
)) {
1341 events
[n
] = group
->hw
.event_base
;
1342 current_idx
[n
++] = PIC_NO_INDEX
;
1344 list_for_each_entry(event
, &group
->sibling_list
, group_entry
) {
1345 if (!is_software_event(event
) &&
1346 event
->state
!= PERF_EVENT_STATE_OFF
) {
1350 events
[n
] = event
->hw
.event_base
;
1351 current_idx
[n
++] = PIC_NO_INDEX
;
1357 static int sparc_pmu_add(struct perf_event
*event
, int ef_flags
)
1359 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1360 int n0
, ret
= -EAGAIN
;
1361 unsigned long flags
;
1363 local_irq_save(flags
);
1365 n0
= cpuc
->n_events
;
1366 if (n0
>= sparc_pmu
->max_hw_events
)
1369 cpuc
->event
[n0
] = event
;
1370 cpuc
->events
[n0
] = event
->hw
.event_base
;
1371 cpuc
->current_idx
[n0
] = PIC_NO_INDEX
;
1373 event
->hw
.state
= PERF_HES_UPTODATE
;
1374 if (!(ef_flags
& PERF_EF_START
))
1375 event
->hw
.state
|= PERF_HES_STOPPED
;
1378 * If group events scheduling transaction was started,
1379 * skip the schedulability test here, it will be performed
1380 * at commit time(->commit_txn) as a whole
1382 if (cpuc
->txn_flags
& PERF_PMU_TXN_ADD
)
1385 if (check_excludes(cpuc
->event
, n0
, 1))
1387 if (sparc_check_constraints(cpuc
->event
, cpuc
->events
, n0
+ 1))
1396 local_irq_restore(flags
);
1400 static int sparc_pmu_event_init(struct perf_event
*event
)
1402 struct perf_event_attr
*attr
= &event
->attr
;
1403 struct perf_event
*evts
[MAX_HWEVENTS
];
1404 struct hw_perf_event
*hwc
= &event
->hw
;
1405 unsigned long events
[MAX_HWEVENTS
];
1406 int current_idx_dmy
[MAX_HWEVENTS
];
1407 const struct perf_event_map
*pmap
;
1410 if (atomic_read(&nmi_active
) < 0)
1413 /* does not support taken branch sampling */
1414 if (has_branch_stack(event
))
1417 switch (attr
->type
) {
1418 case PERF_TYPE_HARDWARE
:
1419 if (attr
->config
>= sparc_pmu
->max_events
)
1421 pmap
= sparc_pmu
->event_map(attr
->config
);
1424 case PERF_TYPE_HW_CACHE
:
1425 pmap
= sparc_map_cache_event(attr
->config
);
1427 return PTR_ERR(pmap
);
1440 hwc
->event_base
= perf_event_encode(pmap
);
1443 * User gives us "(encoding << 16) | pic_mask" for
1444 * PERF_TYPE_RAW events.
1446 hwc
->event_base
= attr
->config
;
1449 /* We save the enable bits in the config_base. */
1450 hwc
->config_base
= sparc_pmu
->irq_bit
;
1451 if (!attr
->exclude_user
)
1452 hwc
->config_base
|= sparc_pmu
->user_bit
;
1453 if (!attr
->exclude_kernel
)
1454 hwc
->config_base
|= sparc_pmu
->priv_bit
;
1455 if (!attr
->exclude_hv
)
1456 hwc
->config_base
|= sparc_pmu
->hv_bit
;
1459 if (event
->group_leader
!= event
) {
1460 n
= collect_events(event
->group_leader
,
1461 sparc_pmu
->max_hw_events
- 1,
1462 evts
, events
, current_idx_dmy
);
1466 events
[n
] = hwc
->event_base
;
1469 if (check_excludes(evts
, n
, 1))
1472 if (sparc_check_constraints(evts
, events
, n
+ 1))
1475 hwc
->idx
= PIC_NO_INDEX
;
1477 /* Try to do all error checking before this point, as unwinding
1478 * state after grabbing the PMC is difficult.
1480 perf_event_grab_pmc();
1481 event
->destroy
= hw_perf_event_destroy
;
1483 if (!hwc
->sample_period
) {
1484 hwc
->sample_period
= MAX_PERIOD
;
1485 hwc
->last_period
= hwc
->sample_period
;
1486 local64_set(&hwc
->period_left
, hwc
->sample_period
);
1493 * Start group events scheduling transaction
1494 * Set the flag to make pmu::enable() not perform the
1495 * schedulability test, it will be performed at commit time
1497 static void sparc_pmu_start_txn(struct pmu
*pmu
, unsigned int txn_flags
)
1499 struct cpu_hw_events
*cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1501 WARN_ON_ONCE(cpuhw
->txn_flags
); /* txn already in flight */
1503 cpuhw
->txn_flags
= txn_flags
;
1504 if (txn_flags
& ~PERF_PMU_TXN_ADD
)
1507 perf_pmu_disable(pmu
);
1511 * Stop group events scheduling transaction
1512 * Clear the flag and pmu::enable() will perform the
1513 * schedulability test.
1515 static void sparc_pmu_cancel_txn(struct pmu
*pmu
)
1517 struct cpu_hw_events
*cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1518 unsigned int txn_flags
;
1520 WARN_ON_ONCE(!cpuhw
->txn_flags
); /* no txn in flight */
1522 txn_flags
= cpuhw
->txn_flags
;
1523 cpuhw
->txn_flags
= 0;
1524 if (txn_flags
& ~PERF_PMU_TXN_ADD
)
1527 perf_pmu_enable(pmu
);
1531 * Commit group events scheduling transaction
1532 * Perform the group schedulability test as a whole
1533 * Return 0 if success
1535 static int sparc_pmu_commit_txn(struct pmu
*pmu
)
1537 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1543 WARN_ON_ONCE(!cpuc
->txn_flags
); /* no txn in flight */
1545 if (cpuc
->txn_flags
& ~PERF_PMU_TXN_ADD
) {
1546 cpuc
->txn_flags
= 0;
1551 if (check_excludes(cpuc
->event
, 0, n
))
1553 if (sparc_check_constraints(cpuc
->event
, cpuc
->events
, n
))
1556 cpuc
->txn_flags
= 0;
1557 perf_pmu_enable(pmu
);
1561 static struct pmu pmu
= {
1562 .pmu_enable
= sparc_pmu_enable
,
1563 .pmu_disable
= sparc_pmu_disable
,
1564 .event_init
= sparc_pmu_event_init
,
1565 .add
= sparc_pmu_add
,
1566 .del
= sparc_pmu_del
,
1567 .start
= sparc_pmu_start
,
1568 .stop
= sparc_pmu_stop
,
1569 .read
= sparc_pmu_read
,
1570 .start_txn
= sparc_pmu_start_txn
,
1571 .cancel_txn
= sparc_pmu_cancel_txn
,
1572 .commit_txn
= sparc_pmu_commit_txn
,
1575 void perf_event_print_debug(void)
1577 unsigned long flags
;
1583 local_irq_save(flags
);
1585 cpu
= smp_processor_id();
1588 for (i
= 0; i
< sparc_pmu
->num_pcrs
; i
++)
1589 pr_info("CPU#%d: PCR%d[%016llx]\n",
1590 cpu
, i
, pcr_ops
->read_pcr(i
));
1591 for (i
= 0; i
< sparc_pmu
->num_pic_regs
; i
++)
1592 pr_info("CPU#%d: PIC%d[%016llx]\n",
1593 cpu
, i
, pcr_ops
->read_pic(i
));
1595 local_irq_restore(flags
);
1598 static int __kprobes
perf_event_nmi_handler(struct notifier_block
*self
,
1599 unsigned long cmd
, void *__args
)
1601 struct die_args
*args
= __args
;
1602 struct perf_sample_data data
;
1603 struct cpu_hw_events
*cpuc
;
1604 struct pt_regs
*regs
;
1607 if (!atomic_read(&active_events
))
1620 cpuc
= this_cpu_ptr(&cpu_hw_events
);
1622 /* If the PMU has the TOE IRQ enable bits, we need to do a
1623 * dummy write to the %pcr to clear the overflow bits and thus
1626 * Do this before we peek at the counters to determine
1627 * overflow so we don't lose any events.
1629 if (sparc_pmu
->irq_bit
&&
1630 sparc_pmu
->num_pcrs
== 1)
1631 pcr_ops
->write_pcr(0, cpuc
->pcr
[0]);
1633 for (i
= 0; i
< cpuc
->n_events
; i
++) {
1634 struct perf_event
*event
= cpuc
->event
[i
];
1635 int idx
= cpuc
->current_idx
[i
];
1636 struct hw_perf_event
*hwc
;
1639 if (sparc_pmu
->irq_bit
&&
1640 sparc_pmu
->num_pcrs
> 1)
1641 pcr_ops
->write_pcr(idx
, cpuc
->pcr
[idx
]);
1644 val
= sparc_perf_event_update(event
, hwc
, idx
);
1645 if (val
& (1ULL << 31))
1648 perf_sample_data_init(&data
, 0, hwc
->last_period
);
1649 if (!sparc_perf_event_set_period(event
, hwc
, idx
))
1652 if (perf_event_overflow(event
, &data
, regs
))
1653 sparc_pmu_stop(event
, 0);
1659 static __read_mostly
struct notifier_block perf_event_nmi_notifier
= {
1660 .notifier_call
= perf_event_nmi_handler
,
1663 static bool __init
supported_pmu(void)
1665 if (!strcmp(sparc_pmu_type
, "ultra3") ||
1666 !strcmp(sparc_pmu_type
, "ultra3+") ||
1667 !strcmp(sparc_pmu_type
, "ultra3i") ||
1668 !strcmp(sparc_pmu_type
, "ultra4+")) {
1669 sparc_pmu
= &ultra3_pmu
;
1672 if (!strcmp(sparc_pmu_type
, "niagara")) {
1673 sparc_pmu
= &niagara1_pmu
;
1676 if (!strcmp(sparc_pmu_type
, "niagara2") ||
1677 !strcmp(sparc_pmu_type
, "niagara3")) {
1678 sparc_pmu
= &niagara2_pmu
;
1681 if (!strcmp(sparc_pmu_type
, "niagara4") ||
1682 !strcmp(sparc_pmu_type
, "niagara5")) {
1683 sparc_pmu
= &niagara4_pmu
;
1686 if (!strcmp(sparc_pmu_type
, "sparc-m7")) {
1687 sparc_pmu
= &sparc_m7_pmu
;
1693 static int __init
init_hw_perf_events(void)
1697 pr_info("Performance events: ");
1699 err
= pcr_arch_init();
1700 if (err
|| !supported_pmu()) {
1701 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type
);
1705 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type
);
1707 perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
1708 register_die_notifier(&perf_event_nmi_notifier
);
1712 pure_initcall(init_hw_perf_events
);
1714 void perf_callchain_kernel(struct perf_callchain_entry
*entry
,
1715 struct pt_regs
*regs
)
1717 unsigned long ksp
, fp
;
1718 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1722 stack_trace_flush();
1724 perf_callchain_store(entry
, regs
->tpc
);
1726 ksp
= regs
->u_regs
[UREG_I6
];
1727 fp
= ksp
+ STACK_BIAS
;
1729 struct sparc_stackf
*sf
;
1730 struct pt_regs
*regs
;
1733 if (!kstack_valid(current_thread_info(), fp
))
1736 sf
= (struct sparc_stackf
*) fp
;
1737 regs
= (struct pt_regs
*) (sf
+ 1);
1739 if (kstack_is_trap_frame(current_thread_info(), regs
)) {
1740 if (user_mode(regs
))
1743 fp
= regs
->u_regs
[UREG_I6
] + STACK_BIAS
;
1745 pc
= sf
->callers_pc
;
1746 fp
= (unsigned long)sf
->fp
+ STACK_BIAS
;
1748 perf_callchain_store(entry
, pc
);
1749 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1750 if ((pc
+ 8UL) == (unsigned long) &return_to_handler
) {
1751 int index
= current
->curr_ret_stack
;
1752 if (current
->ret_stack
&& index
>= graph
) {
1753 pc
= current
->ret_stack
[index
- graph
].ret
;
1754 perf_callchain_store(entry
, pc
);
1759 } while (entry
->nr
< PERF_MAX_STACK_DEPTH
);
1763 valid_user_frame(const void __user
*fp
, unsigned long size
)
1765 /* addresses should be at least 4-byte aligned */
1766 if (((unsigned long) fp
) & 3)
1769 return (__range_not_ok(fp
, size
, TASK_SIZE
) == 0);
1772 static void perf_callchain_user_64(struct perf_callchain_entry
*entry
,
1773 struct pt_regs
*regs
)
1777 ufp
= regs
->u_regs
[UREG_FP
] + STACK_BIAS
;
1779 struct sparc_stackf __user
*usf
;
1780 struct sparc_stackf sf
;
1783 usf
= (struct sparc_stackf __user
*)ufp
;
1784 if (!valid_user_frame(usf
, sizeof(sf
)))
1787 if (__copy_from_user_inatomic(&sf
, usf
, sizeof(sf
)))
1791 ufp
= (unsigned long)sf
.fp
+ STACK_BIAS
;
1792 perf_callchain_store(entry
, pc
);
1793 } while (entry
->nr
< PERF_MAX_STACK_DEPTH
);
1796 static void perf_callchain_user_32(struct perf_callchain_entry
*entry
,
1797 struct pt_regs
*regs
)
1801 ufp
= regs
->u_regs
[UREG_FP
] & 0xffffffffUL
;
1805 if (thread32_stack_is_64bit(ufp
)) {
1806 struct sparc_stackf __user
*usf
;
1807 struct sparc_stackf sf
;
1810 usf
= (struct sparc_stackf __user
*)ufp
;
1811 if (__copy_from_user_inatomic(&sf
, usf
, sizeof(sf
)))
1813 pc
= sf
.callers_pc
& 0xffffffff;
1814 ufp
= ((unsigned long) sf
.fp
) & 0xffffffff;
1816 struct sparc_stackf32 __user
*usf
;
1817 struct sparc_stackf32 sf
;
1818 usf
= (struct sparc_stackf32 __user
*)ufp
;
1819 if (__copy_from_user_inatomic(&sf
, usf
, sizeof(sf
)))
1822 ufp
= (unsigned long)sf
.fp
;
1824 perf_callchain_store(entry
, pc
);
1825 } while (entry
->nr
< PERF_MAX_STACK_DEPTH
);
1829 perf_callchain_user(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
1831 perf_callchain_store(entry
, regs
->tpc
);
1838 pagefault_disable();
1840 if (test_thread_flag(TIF_32BIT
))
1841 perf_callchain_user_32(entry
, regs
);
1843 perf_callchain_user_64(entry
, regs
);