cfg80211: Fix array-bounds warning in fragment copy
[linux/fpc-iii.git] / fs / xfs / xfs_mount.c
blob450bde68bb7528d70a47e0b38275ca75c7e757a1
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_da_format.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dir2.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_log.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_sysfs.h"
45 #include "xfs_rmap_btree.h"
46 #include "xfs_refcount_btree.h"
47 #include "xfs_reflink.h"
48 #include "xfs_extent_busy.h"
51 static DEFINE_MUTEX(xfs_uuid_table_mutex);
52 static int xfs_uuid_table_size;
53 static uuid_t *xfs_uuid_table;
55 void
56 xfs_uuid_table_free(void)
58 if (xfs_uuid_table_size == 0)
59 return;
60 kmem_free(xfs_uuid_table);
61 xfs_uuid_table = NULL;
62 xfs_uuid_table_size = 0;
66 * See if the UUID is unique among mounted XFS filesystems.
67 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
69 STATIC int
70 xfs_uuid_mount(
71 struct xfs_mount *mp)
73 uuid_t *uuid = &mp->m_sb.sb_uuid;
74 int hole, i;
76 if (mp->m_flags & XFS_MOUNT_NOUUID)
77 return 0;
79 if (uuid_is_nil(uuid)) {
80 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
81 return -EINVAL;
84 mutex_lock(&xfs_uuid_table_mutex);
85 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
86 if (uuid_is_nil(&xfs_uuid_table[i])) {
87 hole = i;
88 continue;
90 if (uuid_equal(uuid, &xfs_uuid_table[i]))
91 goto out_duplicate;
94 if (hole < 0) {
95 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
96 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
97 KM_SLEEP);
98 hole = xfs_uuid_table_size++;
100 xfs_uuid_table[hole] = *uuid;
101 mutex_unlock(&xfs_uuid_table_mutex);
103 return 0;
105 out_duplicate:
106 mutex_unlock(&xfs_uuid_table_mutex);
107 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
108 return -EINVAL;
111 STATIC void
112 xfs_uuid_unmount(
113 struct xfs_mount *mp)
115 uuid_t *uuid = &mp->m_sb.sb_uuid;
116 int i;
118 if (mp->m_flags & XFS_MOUNT_NOUUID)
119 return;
121 mutex_lock(&xfs_uuid_table_mutex);
122 for (i = 0; i < xfs_uuid_table_size; i++) {
123 if (uuid_is_nil(&xfs_uuid_table[i]))
124 continue;
125 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
126 continue;
127 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
128 break;
130 ASSERT(i < xfs_uuid_table_size);
131 mutex_unlock(&xfs_uuid_table_mutex);
135 STATIC void
136 __xfs_free_perag(
137 struct rcu_head *head)
139 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
141 ASSERT(atomic_read(&pag->pag_ref) == 0);
142 kmem_free(pag);
146 * Free up the per-ag resources associated with the mount structure.
148 STATIC void
149 xfs_free_perag(
150 xfs_mount_t *mp)
152 xfs_agnumber_t agno;
153 struct xfs_perag *pag;
155 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
156 spin_lock(&mp->m_perag_lock);
157 pag = radix_tree_delete(&mp->m_perag_tree, agno);
158 spin_unlock(&mp->m_perag_lock);
159 ASSERT(pag);
160 ASSERT(atomic_read(&pag->pag_ref) == 0);
161 xfs_buf_hash_destroy(pag);
162 call_rcu(&pag->rcu_head, __xfs_free_perag);
167 * Check size of device based on the (data/realtime) block count.
168 * Note: this check is used by the growfs code as well as mount.
171 xfs_sb_validate_fsb_count(
172 xfs_sb_t *sbp,
173 __uint64_t nblocks)
175 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
176 ASSERT(sbp->sb_blocklog >= BBSHIFT);
178 /* Limited by ULONG_MAX of page cache index */
179 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
180 return -EFBIG;
181 return 0;
185 xfs_initialize_perag(
186 xfs_mount_t *mp,
187 xfs_agnumber_t agcount,
188 xfs_agnumber_t *maxagi)
190 xfs_agnumber_t index;
191 xfs_agnumber_t first_initialised = NULLAGNUMBER;
192 xfs_perag_t *pag;
193 int error = -ENOMEM;
196 * Walk the current per-ag tree so we don't try to initialise AGs
197 * that already exist (growfs case). Allocate and insert all the
198 * AGs we don't find ready for initialisation.
200 for (index = 0; index < agcount; index++) {
201 pag = xfs_perag_get(mp, index);
202 if (pag) {
203 xfs_perag_put(pag);
204 continue;
207 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
208 if (!pag)
209 goto out_unwind_new_pags;
210 pag->pag_agno = index;
211 pag->pag_mount = mp;
212 spin_lock_init(&pag->pag_ici_lock);
213 mutex_init(&pag->pag_ici_reclaim_lock);
214 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
215 if (xfs_buf_hash_init(pag))
216 goto out_free_pag;
217 init_waitqueue_head(&pag->pagb_wait);
219 if (radix_tree_preload(GFP_NOFS))
220 goto out_hash_destroy;
222 spin_lock(&mp->m_perag_lock);
223 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
224 BUG();
225 spin_unlock(&mp->m_perag_lock);
226 radix_tree_preload_end();
227 error = -EEXIST;
228 goto out_hash_destroy;
230 spin_unlock(&mp->m_perag_lock);
231 radix_tree_preload_end();
232 /* first new pag is fully initialized */
233 if (first_initialised == NULLAGNUMBER)
234 first_initialised = index;
237 index = xfs_set_inode_alloc(mp, agcount);
239 if (maxagi)
240 *maxagi = index;
242 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
243 return 0;
245 out_hash_destroy:
246 xfs_buf_hash_destroy(pag);
247 out_free_pag:
248 kmem_free(pag);
249 out_unwind_new_pags:
250 /* unwind any prior newly initialized pags */
251 for (index = first_initialised; index < agcount; index++) {
252 pag = radix_tree_delete(&mp->m_perag_tree, index);
253 if (!pag)
254 break;
255 xfs_buf_hash_destroy(pag);
256 kmem_free(pag);
258 return error;
262 * xfs_readsb
264 * Does the initial read of the superblock.
267 xfs_readsb(
268 struct xfs_mount *mp,
269 int flags)
271 unsigned int sector_size;
272 struct xfs_buf *bp;
273 struct xfs_sb *sbp = &mp->m_sb;
274 int error;
275 int loud = !(flags & XFS_MFSI_QUIET);
276 const struct xfs_buf_ops *buf_ops;
278 ASSERT(mp->m_sb_bp == NULL);
279 ASSERT(mp->m_ddev_targp != NULL);
282 * For the initial read, we must guess at the sector
283 * size based on the block device. It's enough to
284 * get the sb_sectsize out of the superblock and
285 * then reread with the proper length.
286 * We don't verify it yet, because it may not be complete.
288 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
289 buf_ops = NULL;
292 * Allocate a (locked) buffer to hold the superblock. This will be kept
293 * around at all times to optimize access to the superblock. Therefore,
294 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
295 * elevated.
297 reread:
298 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
299 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
300 buf_ops);
301 if (error) {
302 if (loud)
303 xfs_warn(mp, "SB validate failed with error %d.", error);
304 /* bad CRC means corrupted metadata */
305 if (error == -EFSBADCRC)
306 error = -EFSCORRUPTED;
307 return error;
311 * Initialize the mount structure from the superblock.
313 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
316 * If we haven't validated the superblock, do so now before we try
317 * to check the sector size and reread the superblock appropriately.
319 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
320 if (loud)
321 xfs_warn(mp, "Invalid superblock magic number");
322 error = -EINVAL;
323 goto release_buf;
327 * We must be able to do sector-sized and sector-aligned IO.
329 if (sector_size > sbp->sb_sectsize) {
330 if (loud)
331 xfs_warn(mp, "device supports %u byte sectors (not %u)",
332 sector_size, sbp->sb_sectsize);
333 error = -ENOSYS;
334 goto release_buf;
337 if (buf_ops == NULL) {
339 * Re-read the superblock so the buffer is correctly sized,
340 * and properly verified.
342 xfs_buf_relse(bp);
343 sector_size = sbp->sb_sectsize;
344 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
345 goto reread;
348 xfs_reinit_percpu_counters(mp);
350 /* no need to be quiet anymore, so reset the buf ops */
351 bp->b_ops = &xfs_sb_buf_ops;
353 mp->m_sb_bp = bp;
354 xfs_buf_unlock(bp);
355 return 0;
357 release_buf:
358 xfs_buf_relse(bp);
359 return error;
363 * Update alignment values based on mount options and sb values
365 STATIC int
366 xfs_update_alignment(xfs_mount_t *mp)
368 xfs_sb_t *sbp = &(mp->m_sb);
370 if (mp->m_dalign) {
372 * If stripe unit and stripe width are not multiples
373 * of the fs blocksize turn off alignment.
375 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
376 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
377 xfs_warn(mp,
378 "alignment check failed: sunit/swidth vs. blocksize(%d)",
379 sbp->sb_blocksize);
380 return -EINVAL;
381 } else {
383 * Convert the stripe unit and width to FSBs.
385 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
386 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
387 xfs_warn(mp,
388 "alignment check failed: sunit/swidth vs. agsize(%d)",
389 sbp->sb_agblocks);
390 return -EINVAL;
391 } else if (mp->m_dalign) {
392 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
393 } else {
394 xfs_warn(mp,
395 "alignment check failed: sunit(%d) less than bsize(%d)",
396 mp->m_dalign, sbp->sb_blocksize);
397 return -EINVAL;
402 * Update superblock with new values
403 * and log changes
405 if (xfs_sb_version_hasdalign(sbp)) {
406 if (sbp->sb_unit != mp->m_dalign) {
407 sbp->sb_unit = mp->m_dalign;
408 mp->m_update_sb = true;
410 if (sbp->sb_width != mp->m_swidth) {
411 sbp->sb_width = mp->m_swidth;
412 mp->m_update_sb = true;
414 } else {
415 xfs_warn(mp,
416 "cannot change alignment: superblock does not support data alignment");
417 return -EINVAL;
419 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
420 xfs_sb_version_hasdalign(&mp->m_sb)) {
421 mp->m_dalign = sbp->sb_unit;
422 mp->m_swidth = sbp->sb_width;
425 return 0;
429 * Set the maximum inode count for this filesystem
431 STATIC void
432 xfs_set_maxicount(xfs_mount_t *mp)
434 xfs_sb_t *sbp = &(mp->m_sb);
435 __uint64_t icount;
437 if (sbp->sb_imax_pct) {
439 * Make sure the maximum inode count is a multiple
440 * of the units we allocate inodes in.
442 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
443 do_div(icount, 100);
444 do_div(icount, mp->m_ialloc_blks);
445 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
446 sbp->sb_inopblog;
447 } else {
448 mp->m_maxicount = 0;
453 * Set the default minimum read and write sizes unless
454 * already specified in a mount option.
455 * We use smaller I/O sizes when the file system
456 * is being used for NFS service (wsync mount option).
458 STATIC void
459 xfs_set_rw_sizes(xfs_mount_t *mp)
461 xfs_sb_t *sbp = &(mp->m_sb);
462 int readio_log, writeio_log;
464 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
465 if (mp->m_flags & XFS_MOUNT_WSYNC) {
466 readio_log = XFS_WSYNC_READIO_LOG;
467 writeio_log = XFS_WSYNC_WRITEIO_LOG;
468 } else {
469 readio_log = XFS_READIO_LOG_LARGE;
470 writeio_log = XFS_WRITEIO_LOG_LARGE;
472 } else {
473 readio_log = mp->m_readio_log;
474 writeio_log = mp->m_writeio_log;
477 if (sbp->sb_blocklog > readio_log) {
478 mp->m_readio_log = sbp->sb_blocklog;
479 } else {
480 mp->m_readio_log = readio_log;
482 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
483 if (sbp->sb_blocklog > writeio_log) {
484 mp->m_writeio_log = sbp->sb_blocklog;
485 } else {
486 mp->m_writeio_log = writeio_log;
488 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
492 * precalculate the low space thresholds for dynamic speculative preallocation.
494 void
495 xfs_set_low_space_thresholds(
496 struct xfs_mount *mp)
498 int i;
500 for (i = 0; i < XFS_LOWSP_MAX; i++) {
501 __uint64_t space = mp->m_sb.sb_dblocks;
503 do_div(space, 100);
504 mp->m_low_space[i] = space * (i + 1);
510 * Set whether we're using inode alignment.
512 STATIC void
513 xfs_set_inoalignment(xfs_mount_t *mp)
515 if (xfs_sb_version_hasalign(&mp->m_sb) &&
516 mp->m_sb.sb_inoalignmt >=
517 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
518 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
519 else
520 mp->m_inoalign_mask = 0;
522 * If we are using stripe alignment, check whether
523 * the stripe unit is a multiple of the inode alignment
525 if (mp->m_dalign && mp->m_inoalign_mask &&
526 !(mp->m_dalign & mp->m_inoalign_mask))
527 mp->m_sinoalign = mp->m_dalign;
528 else
529 mp->m_sinoalign = 0;
533 * Check that the data (and log if separate) is an ok size.
535 STATIC int
536 xfs_check_sizes(
537 struct xfs_mount *mp)
539 struct xfs_buf *bp;
540 xfs_daddr_t d;
541 int error;
543 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
544 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
545 xfs_warn(mp, "filesystem size mismatch detected");
546 return -EFBIG;
548 error = xfs_buf_read_uncached(mp->m_ddev_targp,
549 d - XFS_FSS_TO_BB(mp, 1),
550 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
551 if (error) {
552 xfs_warn(mp, "last sector read failed");
553 return error;
555 xfs_buf_relse(bp);
557 if (mp->m_logdev_targp == mp->m_ddev_targp)
558 return 0;
560 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
561 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
562 xfs_warn(mp, "log size mismatch detected");
563 return -EFBIG;
565 error = xfs_buf_read_uncached(mp->m_logdev_targp,
566 d - XFS_FSB_TO_BB(mp, 1),
567 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
568 if (error) {
569 xfs_warn(mp, "log device read failed");
570 return error;
572 xfs_buf_relse(bp);
573 return 0;
577 * Clear the quotaflags in memory and in the superblock.
580 xfs_mount_reset_sbqflags(
581 struct xfs_mount *mp)
583 mp->m_qflags = 0;
585 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
586 if (mp->m_sb.sb_qflags == 0)
587 return 0;
588 spin_lock(&mp->m_sb_lock);
589 mp->m_sb.sb_qflags = 0;
590 spin_unlock(&mp->m_sb_lock);
592 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
593 return 0;
595 return xfs_sync_sb(mp, false);
598 __uint64_t
599 xfs_default_resblks(xfs_mount_t *mp)
601 __uint64_t resblks;
604 * We default to 5% or 8192 fsbs of space reserved, whichever is
605 * smaller. This is intended to cover concurrent allocation
606 * transactions when we initially hit enospc. These each require a 4
607 * block reservation. Hence by default we cover roughly 2000 concurrent
608 * allocation reservations.
610 resblks = mp->m_sb.sb_dblocks;
611 do_div(resblks, 20);
612 resblks = min_t(__uint64_t, resblks, 8192);
613 return resblks;
617 * This function does the following on an initial mount of a file system:
618 * - reads the superblock from disk and init the mount struct
619 * - if we're a 32-bit kernel, do a size check on the superblock
620 * so we don't mount terabyte filesystems
621 * - init mount struct realtime fields
622 * - allocate inode hash table for fs
623 * - init directory manager
624 * - perform recovery and init the log manager
627 xfs_mountfs(
628 struct xfs_mount *mp)
630 struct xfs_sb *sbp = &(mp->m_sb);
631 struct xfs_inode *rip;
632 __uint64_t resblks;
633 uint quotamount = 0;
634 uint quotaflags = 0;
635 int error = 0;
637 xfs_sb_mount_common(mp, sbp);
640 * Check for a mismatched features2 values. Older kernels read & wrote
641 * into the wrong sb offset for sb_features2 on some platforms due to
642 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
643 * which made older superblock reading/writing routines swap it as a
644 * 64-bit value.
646 * For backwards compatibility, we make both slots equal.
648 * If we detect a mismatched field, we OR the set bits into the existing
649 * features2 field in case it has already been modified; we don't want
650 * to lose any features. We then update the bad location with the ORed
651 * value so that older kernels will see any features2 flags. The
652 * superblock writeback code ensures the new sb_features2 is copied to
653 * sb_bad_features2 before it is logged or written to disk.
655 if (xfs_sb_has_mismatched_features2(sbp)) {
656 xfs_warn(mp, "correcting sb_features alignment problem");
657 sbp->sb_features2 |= sbp->sb_bad_features2;
658 mp->m_update_sb = true;
661 * Re-check for ATTR2 in case it was found in bad_features2
662 * slot.
664 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
665 !(mp->m_flags & XFS_MOUNT_NOATTR2))
666 mp->m_flags |= XFS_MOUNT_ATTR2;
669 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
670 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
671 xfs_sb_version_removeattr2(&mp->m_sb);
672 mp->m_update_sb = true;
674 /* update sb_versionnum for the clearing of the morebits */
675 if (!sbp->sb_features2)
676 mp->m_update_sb = true;
679 /* always use v2 inodes by default now */
680 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
681 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
682 mp->m_update_sb = true;
686 * Check if sb_agblocks is aligned at stripe boundary
687 * If sb_agblocks is NOT aligned turn off m_dalign since
688 * allocator alignment is within an ag, therefore ag has
689 * to be aligned at stripe boundary.
691 error = xfs_update_alignment(mp);
692 if (error)
693 goto out;
695 xfs_alloc_compute_maxlevels(mp);
696 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
697 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
698 xfs_ialloc_compute_maxlevels(mp);
699 xfs_rmapbt_compute_maxlevels(mp);
700 xfs_refcountbt_compute_maxlevels(mp);
702 xfs_set_maxicount(mp);
704 /* enable fail_at_unmount as default */
705 mp->m_fail_unmount = 1;
707 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
708 if (error)
709 goto out;
711 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
712 &mp->m_kobj, "stats");
713 if (error)
714 goto out_remove_sysfs;
716 error = xfs_error_sysfs_init(mp);
717 if (error)
718 goto out_del_stats;
721 error = xfs_uuid_mount(mp);
722 if (error)
723 goto out_remove_error_sysfs;
726 * Set the minimum read and write sizes
728 xfs_set_rw_sizes(mp);
730 /* set the low space thresholds for dynamic preallocation */
731 xfs_set_low_space_thresholds(mp);
734 * Set the inode cluster size.
735 * This may still be overridden by the file system
736 * block size if it is larger than the chosen cluster size.
738 * For v5 filesystems, scale the cluster size with the inode size to
739 * keep a constant ratio of inode per cluster buffer, but only if mkfs
740 * has set the inode alignment value appropriately for larger cluster
741 * sizes.
743 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
744 if (xfs_sb_version_hascrc(&mp->m_sb)) {
745 int new_size = mp->m_inode_cluster_size;
747 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
748 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
749 mp->m_inode_cluster_size = new_size;
753 * If enabled, sparse inode chunk alignment is expected to match the
754 * cluster size. Full inode chunk alignment must match the chunk size,
755 * but that is checked on sb read verification...
757 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
758 mp->m_sb.sb_spino_align !=
759 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
760 xfs_warn(mp,
761 "Sparse inode block alignment (%u) must match cluster size (%llu).",
762 mp->m_sb.sb_spino_align,
763 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
764 error = -EINVAL;
765 goto out_remove_uuid;
769 * Set inode alignment fields
771 xfs_set_inoalignment(mp);
774 * Check that the data (and log if separate) is an ok size.
776 error = xfs_check_sizes(mp);
777 if (error)
778 goto out_remove_uuid;
781 * Initialize realtime fields in the mount structure
783 error = xfs_rtmount_init(mp);
784 if (error) {
785 xfs_warn(mp, "RT mount failed");
786 goto out_remove_uuid;
790 * Copies the low order bits of the timestamp and the randomly
791 * set "sequence" number out of a UUID.
793 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
795 mp->m_dmevmask = 0; /* not persistent; set after each mount */
797 error = xfs_da_mount(mp);
798 if (error) {
799 xfs_warn(mp, "Failed dir/attr init: %d", error);
800 goto out_remove_uuid;
804 * Initialize the precomputed transaction reservations values.
806 xfs_trans_init(mp);
809 * Allocate and initialize the per-ag data.
811 spin_lock_init(&mp->m_perag_lock);
812 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
813 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
814 if (error) {
815 xfs_warn(mp, "Failed per-ag init: %d", error);
816 goto out_free_dir;
819 if (!sbp->sb_logblocks) {
820 xfs_warn(mp, "no log defined");
821 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
822 error = -EFSCORRUPTED;
823 goto out_free_perag;
827 * Log's mount-time initialization. The first part of recovery can place
828 * some items on the AIL, to be handled when recovery is finished or
829 * cancelled.
831 error = xfs_log_mount(mp, mp->m_logdev_targp,
832 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
833 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
834 if (error) {
835 xfs_warn(mp, "log mount failed");
836 goto out_fail_wait;
840 * Now the log is mounted, we know if it was an unclean shutdown or
841 * not. If it was, with the first phase of recovery has completed, we
842 * have consistent AG blocks on disk. We have not recovered EFIs yet,
843 * but they are recovered transactionally in the second recovery phase
844 * later.
846 * Hence we can safely re-initialise incore superblock counters from
847 * the per-ag data. These may not be correct if the filesystem was not
848 * cleanly unmounted, so we need to wait for recovery to finish before
849 * doing this.
851 * If the filesystem was cleanly unmounted, then we can trust the
852 * values in the superblock to be correct and we don't need to do
853 * anything here.
855 * If we are currently making the filesystem, the initialisation will
856 * fail as the perag data is in an undefined state.
858 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
859 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
860 !mp->m_sb.sb_inprogress) {
861 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
862 if (error)
863 goto out_log_dealloc;
867 * Get and sanity-check the root inode.
868 * Save the pointer to it in the mount structure.
870 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
871 if (error) {
872 xfs_warn(mp, "failed to read root inode");
873 goto out_log_dealloc;
876 ASSERT(rip != NULL);
878 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
879 xfs_warn(mp, "corrupted root inode %llu: not a directory",
880 (unsigned long long)rip->i_ino);
881 xfs_iunlock(rip, XFS_ILOCK_EXCL);
882 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
883 mp);
884 error = -EFSCORRUPTED;
885 goto out_rele_rip;
887 mp->m_rootip = rip; /* save it */
889 xfs_iunlock(rip, XFS_ILOCK_EXCL);
892 * Initialize realtime inode pointers in the mount structure
894 error = xfs_rtmount_inodes(mp);
895 if (error) {
897 * Free up the root inode.
899 xfs_warn(mp, "failed to read RT inodes");
900 goto out_rele_rip;
904 * If this is a read-only mount defer the superblock updates until
905 * the next remount into writeable mode. Otherwise we would never
906 * perform the update e.g. for the root filesystem.
908 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
909 error = xfs_sync_sb(mp, false);
910 if (error) {
911 xfs_warn(mp, "failed to write sb changes");
912 goto out_rtunmount;
917 * Initialise the XFS quota management subsystem for this mount
919 if (XFS_IS_QUOTA_RUNNING(mp)) {
920 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
921 if (error)
922 goto out_rtunmount;
923 } else {
924 ASSERT(!XFS_IS_QUOTA_ON(mp));
927 * If a file system had quotas running earlier, but decided to
928 * mount without -o uquota/pquota/gquota options, revoke the
929 * quotachecked license.
931 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
932 xfs_notice(mp, "resetting quota flags");
933 error = xfs_mount_reset_sbqflags(mp);
934 if (error)
935 goto out_rtunmount;
940 * During the second phase of log recovery, we need iget and
941 * iput to behave like they do for an active filesystem.
942 * xfs_fs_drop_inode needs to be able to prevent the deletion
943 * of inodes before we're done replaying log items on those
944 * inodes.
946 mp->m_super->s_flags |= MS_ACTIVE;
949 * Finish recovering the file system. This part needed to be delayed
950 * until after the root and real-time bitmap inodes were consistently
951 * read in.
953 error = xfs_log_mount_finish(mp);
954 if (error) {
955 xfs_warn(mp, "log mount finish failed");
956 goto out_rtunmount;
960 * Now the log is fully replayed, we can transition to full read-only
961 * mode for read-only mounts. This will sync all the metadata and clean
962 * the log so that the recovery we just performed does not have to be
963 * replayed again on the next mount.
965 * We use the same quiesce mechanism as the rw->ro remount, as they are
966 * semantically identical operations.
968 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
969 XFS_MOUNT_RDONLY) {
970 xfs_quiesce_attr(mp);
974 * Complete the quota initialisation, post-log-replay component.
976 if (quotamount) {
977 ASSERT(mp->m_qflags == 0);
978 mp->m_qflags = quotaflags;
980 xfs_qm_mount_quotas(mp);
984 * Now we are mounted, reserve a small amount of unused space for
985 * privileged transactions. This is needed so that transaction
986 * space required for critical operations can dip into this pool
987 * when at ENOSPC. This is needed for operations like create with
988 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
989 * are not allowed to use this reserved space.
991 * This may drive us straight to ENOSPC on mount, but that implies
992 * we were already there on the last unmount. Warn if this occurs.
994 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
995 resblks = xfs_default_resblks(mp);
996 error = xfs_reserve_blocks(mp, &resblks, NULL);
997 if (error)
998 xfs_warn(mp,
999 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1001 /* Recover any CoW blocks that never got remapped. */
1002 error = xfs_reflink_recover_cow(mp);
1003 if (error) {
1004 xfs_err(mp,
1005 "Error %d recovering leftover CoW allocations.", error);
1006 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1007 goto out_quota;
1010 /* Reserve AG blocks for future btree expansion. */
1011 error = xfs_fs_reserve_ag_blocks(mp);
1012 if (error && error != -ENOSPC)
1013 goto out_agresv;
1016 return 0;
1018 out_agresv:
1019 xfs_fs_unreserve_ag_blocks(mp);
1020 out_quota:
1021 xfs_qm_unmount_quotas(mp);
1022 out_rtunmount:
1023 mp->m_super->s_flags &= ~MS_ACTIVE;
1024 xfs_rtunmount_inodes(mp);
1025 out_rele_rip:
1026 IRELE(rip);
1027 cancel_delayed_work_sync(&mp->m_reclaim_work);
1028 xfs_reclaim_inodes(mp, SYNC_WAIT);
1029 out_log_dealloc:
1030 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1031 xfs_log_mount_cancel(mp);
1032 out_fail_wait:
1033 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1034 xfs_wait_buftarg(mp->m_logdev_targp);
1035 xfs_wait_buftarg(mp->m_ddev_targp);
1036 out_free_perag:
1037 xfs_free_perag(mp);
1038 out_free_dir:
1039 xfs_da_unmount(mp);
1040 out_remove_uuid:
1041 xfs_uuid_unmount(mp);
1042 out_remove_error_sysfs:
1043 xfs_error_sysfs_del(mp);
1044 out_del_stats:
1045 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1046 out_remove_sysfs:
1047 xfs_sysfs_del(&mp->m_kobj);
1048 out:
1049 return error;
1053 * This flushes out the inodes,dquots and the superblock, unmounts the
1054 * log and makes sure that incore structures are freed.
1056 void
1057 xfs_unmountfs(
1058 struct xfs_mount *mp)
1060 __uint64_t resblks;
1061 int error;
1063 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1064 cancel_delayed_work_sync(&mp->m_cowblocks_work);
1066 xfs_fs_unreserve_ag_blocks(mp);
1067 xfs_qm_unmount_quotas(mp);
1068 xfs_rtunmount_inodes(mp);
1069 IRELE(mp->m_rootip);
1072 * We can potentially deadlock here if we have an inode cluster
1073 * that has been freed has its buffer still pinned in memory because
1074 * the transaction is still sitting in a iclog. The stale inodes
1075 * on that buffer will have their flush locks held until the
1076 * transaction hits the disk and the callbacks run. the inode
1077 * flush takes the flush lock unconditionally and with nothing to
1078 * push out the iclog we will never get that unlocked. hence we
1079 * need to force the log first.
1081 xfs_log_force(mp, XFS_LOG_SYNC);
1084 * Wait for all busy extents to be freed, including completion of
1085 * any discard operation.
1087 xfs_extent_busy_wait_all(mp);
1088 flush_workqueue(xfs_discard_wq);
1091 * We now need to tell the world we are unmounting. This will allow
1092 * us to detect that the filesystem is going away and we should error
1093 * out anything that we have been retrying in the background. This will
1094 * prevent neverending retries in AIL pushing from hanging the unmount.
1096 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1099 * Flush all pending changes from the AIL.
1101 xfs_ail_push_all_sync(mp->m_ail);
1104 * And reclaim all inodes. At this point there should be no dirty
1105 * inodes and none should be pinned or locked, but use synchronous
1106 * reclaim just to be sure. We can stop background inode reclaim
1107 * here as well if it is still running.
1109 cancel_delayed_work_sync(&mp->m_reclaim_work);
1110 xfs_reclaim_inodes(mp, SYNC_WAIT);
1112 xfs_qm_unmount(mp);
1115 * Unreserve any blocks we have so that when we unmount we don't account
1116 * the reserved free space as used. This is really only necessary for
1117 * lazy superblock counting because it trusts the incore superblock
1118 * counters to be absolutely correct on clean unmount.
1120 * We don't bother correcting this elsewhere for lazy superblock
1121 * counting because on mount of an unclean filesystem we reconstruct the
1122 * correct counter value and this is irrelevant.
1124 * For non-lazy counter filesystems, this doesn't matter at all because
1125 * we only every apply deltas to the superblock and hence the incore
1126 * value does not matter....
1128 resblks = 0;
1129 error = xfs_reserve_blocks(mp, &resblks, NULL);
1130 if (error)
1131 xfs_warn(mp, "Unable to free reserved block pool. "
1132 "Freespace may not be correct on next mount.");
1134 error = xfs_log_sbcount(mp);
1135 if (error)
1136 xfs_warn(mp, "Unable to update superblock counters. "
1137 "Freespace may not be correct on next mount.");
1140 xfs_log_unmount(mp);
1141 xfs_da_unmount(mp);
1142 xfs_uuid_unmount(mp);
1144 #if defined(DEBUG)
1145 xfs_errortag_clearall(mp, 0);
1146 #endif
1147 xfs_free_perag(mp);
1149 xfs_error_sysfs_del(mp);
1150 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1151 xfs_sysfs_del(&mp->m_kobj);
1155 * Determine whether modifications can proceed. The caller specifies the minimum
1156 * freeze level for which modifications should not be allowed. This allows
1157 * certain operations to proceed while the freeze sequence is in progress, if
1158 * necessary.
1160 bool
1161 xfs_fs_writable(
1162 struct xfs_mount *mp,
1163 int level)
1165 ASSERT(level > SB_UNFROZEN);
1166 if ((mp->m_super->s_writers.frozen >= level) ||
1167 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1168 return false;
1170 return true;
1174 * xfs_log_sbcount
1176 * Sync the superblock counters to disk.
1178 * Note this code can be called during the process of freezing, so we use the
1179 * transaction allocator that does not block when the transaction subsystem is
1180 * in its frozen state.
1183 xfs_log_sbcount(xfs_mount_t *mp)
1185 /* allow this to proceed during the freeze sequence... */
1186 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1187 return 0;
1190 * we don't need to do this if we are updating the superblock
1191 * counters on every modification.
1193 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1194 return 0;
1196 return xfs_sync_sb(mp, true);
1200 * Deltas for the inode count are +/-64, hence we use a large batch size
1201 * of 128 so we don't need to take the counter lock on every update.
1203 #define XFS_ICOUNT_BATCH 128
1205 xfs_mod_icount(
1206 struct xfs_mount *mp,
1207 int64_t delta)
1209 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1210 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1211 ASSERT(0);
1212 percpu_counter_add(&mp->m_icount, -delta);
1213 return -EINVAL;
1215 return 0;
1219 xfs_mod_ifree(
1220 struct xfs_mount *mp,
1221 int64_t delta)
1223 percpu_counter_add(&mp->m_ifree, delta);
1224 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1225 ASSERT(0);
1226 percpu_counter_add(&mp->m_ifree, -delta);
1227 return -EINVAL;
1229 return 0;
1233 * Deltas for the block count can vary from 1 to very large, but lock contention
1234 * only occurs on frequent small block count updates such as in the delayed
1235 * allocation path for buffered writes (page a time updates). Hence we set
1236 * a large batch count (1024) to minimise global counter updates except when
1237 * we get near to ENOSPC and we have to be very accurate with our updates.
1239 #define XFS_FDBLOCKS_BATCH 1024
1241 xfs_mod_fdblocks(
1242 struct xfs_mount *mp,
1243 int64_t delta,
1244 bool rsvd)
1246 int64_t lcounter;
1247 long long res_used;
1248 s32 batch;
1250 if (delta > 0) {
1252 * If the reserve pool is depleted, put blocks back into it
1253 * first. Most of the time the pool is full.
1255 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1256 percpu_counter_add(&mp->m_fdblocks, delta);
1257 return 0;
1260 spin_lock(&mp->m_sb_lock);
1261 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1263 if (res_used > delta) {
1264 mp->m_resblks_avail += delta;
1265 } else {
1266 delta -= res_used;
1267 mp->m_resblks_avail = mp->m_resblks;
1268 percpu_counter_add(&mp->m_fdblocks, delta);
1270 spin_unlock(&mp->m_sb_lock);
1271 return 0;
1275 * Taking blocks away, need to be more accurate the closer we
1276 * are to zero.
1278 * If the counter has a value of less than 2 * max batch size,
1279 * then make everything serialise as we are real close to
1280 * ENOSPC.
1282 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1283 XFS_FDBLOCKS_BATCH) < 0)
1284 batch = 1;
1285 else
1286 batch = XFS_FDBLOCKS_BATCH;
1288 __percpu_counter_add(&mp->m_fdblocks, delta, batch);
1289 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1290 XFS_FDBLOCKS_BATCH) >= 0) {
1291 /* we had space! */
1292 return 0;
1296 * lock up the sb for dipping into reserves before releasing the space
1297 * that took us to ENOSPC.
1299 spin_lock(&mp->m_sb_lock);
1300 percpu_counter_add(&mp->m_fdblocks, -delta);
1301 if (!rsvd)
1302 goto fdblocks_enospc;
1304 lcounter = (long long)mp->m_resblks_avail + delta;
1305 if (lcounter >= 0) {
1306 mp->m_resblks_avail = lcounter;
1307 spin_unlock(&mp->m_sb_lock);
1308 return 0;
1310 printk_once(KERN_WARNING
1311 "Filesystem \"%s\": reserve blocks depleted! "
1312 "Consider increasing reserve pool size.",
1313 mp->m_fsname);
1314 fdblocks_enospc:
1315 spin_unlock(&mp->m_sb_lock);
1316 return -ENOSPC;
1320 xfs_mod_frextents(
1321 struct xfs_mount *mp,
1322 int64_t delta)
1324 int64_t lcounter;
1325 int ret = 0;
1327 spin_lock(&mp->m_sb_lock);
1328 lcounter = mp->m_sb.sb_frextents + delta;
1329 if (lcounter < 0)
1330 ret = -ENOSPC;
1331 else
1332 mp->m_sb.sb_frextents = lcounter;
1333 spin_unlock(&mp->m_sb_lock);
1334 return ret;
1338 * xfs_getsb() is called to obtain the buffer for the superblock.
1339 * The buffer is returned locked and read in from disk.
1340 * The buffer should be released with a call to xfs_brelse().
1342 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1343 * the superblock buffer if it can be locked without sleeping.
1344 * If it can't then we'll return NULL.
1346 struct xfs_buf *
1347 xfs_getsb(
1348 struct xfs_mount *mp,
1349 int flags)
1351 struct xfs_buf *bp = mp->m_sb_bp;
1353 if (!xfs_buf_trylock(bp)) {
1354 if (flags & XBF_TRYLOCK)
1355 return NULL;
1356 xfs_buf_lock(bp);
1359 xfs_buf_hold(bp);
1360 ASSERT(bp->b_flags & XBF_DONE);
1361 return bp;
1365 * Used to free the superblock along various error paths.
1367 void
1368 xfs_freesb(
1369 struct xfs_mount *mp)
1371 struct xfs_buf *bp = mp->m_sb_bp;
1373 xfs_buf_lock(bp);
1374 mp->m_sb_bp = NULL;
1375 xfs_buf_relse(bp);
1379 * If the underlying (data/log/rt) device is readonly, there are some
1380 * operations that cannot proceed.
1383 xfs_dev_is_read_only(
1384 struct xfs_mount *mp,
1385 char *message)
1387 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1388 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1389 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1390 xfs_notice(mp, "%s required on read-only device.", message);
1391 xfs_notice(mp, "write access unavailable, cannot proceed.");
1392 return -EROFS;
1394 return 0;