2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
27 #include <linux/refcount.h>
29 #define DM_MSG_PREFIX "core"
32 * Cookies are numeric values sent with CHANGE and REMOVE
33 * uevents while resuming, removing or renaming the device.
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
38 static const char *_name
= DM_NAME
;
40 static unsigned int major
= 0;
41 static unsigned int _major
= 0;
43 static DEFINE_IDR(_minor_idr
);
45 static DEFINE_SPINLOCK(_minor_lock
);
47 static void do_deferred_remove(struct work_struct
*w
);
49 static DECLARE_WORK(deferred_remove_work
, do_deferred_remove
);
51 static struct workqueue_struct
*deferred_remove_workqueue
;
53 atomic_t dm_global_event_nr
= ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq
);
56 void dm_issue_global_event(void)
58 atomic_inc(&dm_global_event_nr
);
59 wake_up(&dm_global_eventq
);
63 * One of these is allocated (on-stack) per original bio.
70 unsigned sector_count
;
74 * One of these is allocated per clone bio.
76 #define DM_TIO_MAGIC 7282014
81 unsigned target_bio_nr
;
88 * One of these is allocated per original bio.
89 * It contains the first clone used for that original.
91 #define DM_IO_MAGIC 5191977
94 struct mapped_device
*md
;
98 unsigned long start_time
;
99 spinlock_t endio_lock
;
100 struct dm_stats_aux stats_aux
;
101 /* last member of dm_target_io is 'struct bio' */
102 struct dm_target_io tio
;
105 void *dm_per_bio_data(struct bio
*bio
, size_t data_size
)
107 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
108 if (!tio
->inside_dm_io
)
109 return (char *)bio
- offsetof(struct dm_target_io
, clone
) - data_size
;
110 return (char *)bio
- offsetof(struct dm_target_io
, clone
) - offsetof(struct dm_io
, tio
) - data_size
;
112 EXPORT_SYMBOL_GPL(dm_per_bio_data
);
114 struct bio
*dm_bio_from_per_bio_data(void *data
, size_t data_size
)
116 struct dm_io
*io
= (struct dm_io
*)((char *)data
+ data_size
);
117 if (io
->magic
== DM_IO_MAGIC
)
118 return (struct bio
*)((char *)io
+ offsetof(struct dm_io
, tio
) + offsetof(struct dm_target_io
, clone
));
119 BUG_ON(io
->magic
!= DM_TIO_MAGIC
);
120 return (struct bio
*)((char *)io
+ offsetof(struct dm_target_io
, clone
));
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data
);
124 unsigned dm_bio_get_target_bio_nr(const struct bio
*bio
)
126 return container_of(bio
, struct dm_target_io
, clone
)->target_bio_nr
;
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr
);
130 #define MINOR_ALLOCED ((void *)-1)
133 * Bits for the md->flags field.
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node
= DM_NUMA_NODE
;
148 * For mempools pre-allocation at the table loading time.
150 struct dm_md_mempools
{
152 struct bio_set io_bs
;
155 struct table_device
{
156 struct list_head list
;
158 struct dm_dev dm_dev
;
161 static struct kmem_cache
*_rq_tio_cache
;
162 static struct kmem_cache
*_rq_cache
;
165 * Bio-based DM's mempools' reserved IOs set by the user.
167 #define RESERVED_BIO_BASED_IOS 16
168 static unsigned reserved_bio_based_ios
= RESERVED_BIO_BASED_IOS
;
170 static int __dm_get_module_param_int(int *module_param
, int min
, int max
)
172 int param
= READ_ONCE(*module_param
);
173 int modified_param
= 0;
174 bool modified
= true;
177 modified_param
= min
;
178 else if (param
> max
)
179 modified_param
= max
;
184 (void)cmpxchg(module_param
, param
, modified_param
);
185 param
= modified_param
;
191 unsigned __dm_get_module_param(unsigned *module_param
,
192 unsigned def
, unsigned max
)
194 unsigned param
= READ_ONCE(*module_param
);
195 unsigned modified_param
= 0;
198 modified_param
= def
;
199 else if (param
> max
)
200 modified_param
= max
;
202 if (modified_param
) {
203 (void)cmpxchg(module_param
, param
, modified_param
);
204 param
= modified_param
;
210 unsigned dm_get_reserved_bio_based_ios(void)
212 return __dm_get_module_param(&reserved_bio_based_ios
,
213 RESERVED_BIO_BASED_IOS
, DM_RESERVED_MAX_IOS
);
215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios
);
217 static unsigned dm_get_numa_node(void)
219 return __dm_get_module_param_int(&dm_numa_node
,
220 DM_NUMA_NODE
, num_online_nodes() - 1);
223 static int __init
local_init(void)
227 _rq_tio_cache
= KMEM_CACHE(dm_rq_target_io
, 0);
231 _rq_cache
= kmem_cache_create("dm_old_clone_request", sizeof(struct request
),
232 __alignof__(struct request
), 0, NULL
);
234 goto out_free_rq_tio_cache
;
236 r
= dm_uevent_init();
238 goto out_free_rq_cache
;
240 deferred_remove_workqueue
= alloc_workqueue("kdmremove", WQ_UNBOUND
, 1);
241 if (!deferred_remove_workqueue
) {
243 goto out_uevent_exit
;
247 r
= register_blkdev(_major
, _name
);
249 goto out_free_workqueue
;
257 destroy_workqueue(deferred_remove_workqueue
);
261 kmem_cache_destroy(_rq_cache
);
262 out_free_rq_tio_cache
:
263 kmem_cache_destroy(_rq_tio_cache
);
268 static void local_exit(void)
270 flush_scheduled_work();
271 destroy_workqueue(deferred_remove_workqueue
);
273 kmem_cache_destroy(_rq_cache
);
274 kmem_cache_destroy(_rq_tio_cache
);
275 unregister_blkdev(_major
, _name
);
280 DMINFO("cleaned up");
283 static int (*_inits
[])(void) __initdata
= {
294 static void (*_exits
[])(void) = {
305 static int __init
dm_init(void)
307 const int count
= ARRAY_SIZE(_inits
);
311 for (i
= 0; i
< count
; i
++) {
326 static void __exit
dm_exit(void)
328 int i
= ARRAY_SIZE(_exits
);
334 * Should be empty by this point.
336 idr_destroy(&_minor_idr
);
340 * Block device functions
342 int dm_deleting_md(struct mapped_device
*md
)
344 return test_bit(DMF_DELETING
, &md
->flags
);
347 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
349 struct mapped_device
*md
;
351 spin_lock(&_minor_lock
);
353 md
= bdev
->bd_disk
->private_data
;
357 if (test_bit(DMF_FREEING
, &md
->flags
) ||
358 dm_deleting_md(md
)) {
364 atomic_inc(&md
->open_count
);
366 spin_unlock(&_minor_lock
);
368 return md
? 0 : -ENXIO
;
371 static void dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
373 struct mapped_device
*md
;
375 spin_lock(&_minor_lock
);
377 md
= disk
->private_data
;
381 if (atomic_dec_and_test(&md
->open_count
) &&
382 (test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
)))
383 queue_work(deferred_remove_workqueue
, &deferred_remove_work
);
387 spin_unlock(&_minor_lock
);
390 int dm_open_count(struct mapped_device
*md
)
392 return atomic_read(&md
->open_count
);
396 * Guarantees nothing is using the device before it's deleted.
398 int dm_lock_for_deletion(struct mapped_device
*md
, bool mark_deferred
, bool only_deferred
)
402 spin_lock(&_minor_lock
);
404 if (dm_open_count(md
)) {
407 set_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
408 } else if (only_deferred
&& !test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
))
411 set_bit(DMF_DELETING
, &md
->flags
);
413 spin_unlock(&_minor_lock
);
418 int dm_cancel_deferred_remove(struct mapped_device
*md
)
422 spin_lock(&_minor_lock
);
424 if (test_bit(DMF_DELETING
, &md
->flags
))
427 clear_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
429 spin_unlock(&_minor_lock
);
434 static void do_deferred_remove(struct work_struct
*w
)
436 dm_deferred_remove();
439 sector_t
dm_get_size(struct mapped_device
*md
)
441 return get_capacity(md
->disk
);
444 struct request_queue
*dm_get_md_queue(struct mapped_device
*md
)
449 struct dm_stats
*dm_get_stats(struct mapped_device
*md
)
454 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
456 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
458 return dm_get_geometry(md
, geo
);
461 static int dm_prepare_ioctl(struct mapped_device
*md
, int *srcu_idx
,
462 struct block_device
**bdev
)
463 __acquires(md
->io_barrier
)
465 struct dm_target
*tgt
;
466 struct dm_table
*map
;
471 map
= dm_get_live_table(md
, srcu_idx
);
472 if (!map
|| !dm_table_get_size(map
))
475 /* We only support devices that have a single target */
476 if (dm_table_get_num_targets(map
) != 1)
479 tgt
= dm_table_get_target(map
, 0);
480 if (!tgt
->type
->prepare_ioctl
)
483 if (dm_suspended_md(md
))
486 r
= tgt
->type
->prepare_ioctl(tgt
, bdev
);
487 if (r
== -ENOTCONN
&& !fatal_signal_pending(current
)) {
488 dm_put_live_table(md
, *srcu_idx
);
496 static void dm_unprepare_ioctl(struct mapped_device
*md
, int srcu_idx
)
497 __releases(md
->io_barrier
)
499 dm_put_live_table(md
, srcu_idx
);
502 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
503 unsigned int cmd
, unsigned long arg
)
505 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
508 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
514 * Target determined this ioctl is being issued against a
515 * subset of the parent bdev; require extra privileges.
517 if (!capable(CAP_SYS_RAWIO
)) {
519 "%s: sending ioctl %x to DM device without required privilege.",
526 r
= __blkdev_driver_ioctl(bdev
, mode
, cmd
, arg
);
528 dm_unprepare_ioctl(md
, srcu_idx
);
532 static void start_io_acct(struct dm_io
*io
);
534 static struct dm_io
*alloc_io(struct mapped_device
*md
, struct bio
*bio
)
537 struct dm_target_io
*tio
;
540 clone
= bio_alloc_bioset(GFP_NOIO
, 0, &md
->io_bs
);
544 tio
= container_of(clone
, struct dm_target_io
, clone
);
545 tio
->inside_dm_io
= true;
548 io
= container_of(tio
, struct dm_io
, tio
);
549 io
->magic
= DM_IO_MAGIC
;
551 atomic_set(&io
->io_count
, 1);
554 spin_lock_init(&io
->endio_lock
);
561 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
563 bio_put(&io
->tio
.clone
);
566 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
, struct dm_target
*ti
,
567 unsigned target_bio_nr
, gfp_t gfp_mask
)
569 struct dm_target_io
*tio
;
571 if (!ci
->io
->tio
.io
) {
572 /* the dm_target_io embedded in ci->io is available */
575 struct bio
*clone
= bio_alloc_bioset(gfp_mask
, 0, &ci
->io
->md
->bs
);
579 tio
= container_of(clone
, struct dm_target_io
, clone
);
580 tio
->inside_dm_io
= false;
583 tio
->magic
= DM_TIO_MAGIC
;
586 tio
->target_bio_nr
= target_bio_nr
;
591 static void free_tio(struct dm_target_io
*tio
)
593 if (tio
->inside_dm_io
)
595 bio_put(&tio
->clone
);
598 int md_in_flight(struct mapped_device
*md
)
600 return atomic_read(&md
->pending
[READ
]) +
601 atomic_read(&md
->pending
[WRITE
]);
604 static void start_io_acct(struct dm_io
*io
)
606 struct mapped_device
*md
= io
->md
;
607 struct bio
*bio
= io
->orig_bio
;
608 int rw
= bio_data_dir(bio
);
610 io
->start_time
= jiffies
;
612 generic_start_io_acct(md
->queue
, bio_op(bio
), bio_sectors(bio
),
613 &dm_disk(md
)->part0
);
615 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
],
616 atomic_inc_return(&md
->pending
[rw
]));
618 if (unlikely(dm_stats_used(&md
->stats
)))
619 dm_stats_account_io(&md
->stats
, bio_data_dir(bio
),
620 bio
->bi_iter
.bi_sector
, bio_sectors(bio
),
621 false, 0, &io
->stats_aux
);
624 static void end_io_acct(struct dm_io
*io
)
626 struct mapped_device
*md
= io
->md
;
627 struct bio
*bio
= io
->orig_bio
;
628 unsigned long duration
= jiffies
- io
->start_time
;
630 int rw
= bio_data_dir(bio
);
632 generic_end_io_acct(md
->queue
, bio_op(bio
), &dm_disk(md
)->part0
,
635 if (unlikely(dm_stats_used(&md
->stats
)))
636 dm_stats_account_io(&md
->stats
, bio_data_dir(bio
),
637 bio
->bi_iter
.bi_sector
, bio_sectors(bio
),
638 true, duration
, &io
->stats_aux
);
641 * After this is decremented the bio must not be touched if it is
644 pending
= atomic_dec_return(&md
->pending
[rw
]);
645 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
], pending
);
646 pending
+= atomic_read(&md
->pending
[rw
^0x1]);
648 /* nudge anyone waiting on suspend queue */
654 * Add the bio to the list of deferred io.
656 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
660 spin_lock_irqsave(&md
->deferred_lock
, flags
);
661 bio_list_add(&md
->deferred
, bio
);
662 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
663 queue_work(md
->wq
, &md
->work
);
667 * Everyone (including functions in this file), should use this
668 * function to access the md->map field, and make sure they call
669 * dm_put_live_table() when finished.
671 struct dm_table
*dm_get_live_table(struct mapped_device
*md
, int *srcu_idx
) __acquires(md
->io_barrier
)
673 *srcu_idx
= srcu_read_lock(&md
->io_barrier
);
675 return srcu_dereference(md
->map
, &md
->io_barrier
);
678 void dm_put_live_table(struct mapped_device
*md
, int srcu_idx
) __releases(md
->io_barrier
)
680 srcu_read_unlock(&md
->io_barrier
, srcu_idx
);
683 void dm_sync_table(struct mapped_device
*md
)
685 synchronize_srcu(&md
->io_barrier
);
686 synchronize_rcu_expedited();
690 * A fast alternative to dm_get_live_table/dm_put_live_table.
691 * The caller must not block between these two functions.
693 static struct dm_table
*dm_get_live_table_fast(struct mapped_device
*md
) __acquires(RCU
)
696 return rcu_dereference(md
->map
);
699 static void dm_put_live_table_fast(struct mapped_device
*md
) __releases(RCU
)
704 static char *_dm_claim_ptr
= "I belong to device-mapper";
707 * Open a table device so we can use it as a map destination.
709 static int open_table_device(struct table_device
*td
, dev_t dev
,
710 struct mapped_device
*md
)
712 struct block_device
*bdev
;
716 BUG_ON(td
->dm_dev
.bdev
);
718 bdev
= blkdev_get_by_dev(dev
, td
->dm_dev
.mode
| FMODE_EXCL
, _dm_claim_ptr
);
720 return PTR_ERR(bdev
);
722 r
= bd_link_disk_holder(bdev
, dm_disk(md
));
724 blkdev_put(bdev
, td
->dm_dev
.mode
| FMODE_EXCL
);
728 td
->dm_dev
.bdev
= bdev
;
729 td
->dm_dev
.dax_dev
= dax_get_by_host(bdev
->bd_disk
->disk_name
);
734 * Close a table device that we've been using.
736 static void close_table_device(struct table_device
*td
, struct mapped_device
*md
)
738 if (!td
->dm_dev
.bdev
)
741 bd_unlink_disk_holder(td
->dm_dev
.bdev
, dm_disk(md
));
742 blkdev_put(td
->dm_dev
.bdev
, td
->dm_dev
.mode
| FMODE_EXCL
);
743 put_dax(td
->dm_dev
.dax_dev
);
744 td
->dm_dev
.bdev
= NULL
;
745 td
->dm_dev
.dax_dev
= NULL
;
748 static struct table_device
*find_table_device(struct list_head
*l
, dev_t dev
,
750 struct table_device
*td
;
752 list_for_each_entry(td
, l
, list
)
753 if (td
->dm_dev
.bdev
->bd_dev
== dev
&& td
->dm_dev
.mode
== mode
)
759 int dm_get_table_device(struct mapped_device
*md
, dev_t dev
, fmode_t mode
,
760 struct dm_dev
**result
) {
762 struct table_device
*td
;
764 mutex_lock(&md
->table_devices_lock
);
765 td
= find_table_device(&md
->table_devices
, dev
, mode
);
767 td
= kmalloc_node(sizeof(*td
), GFP_KERNEL
, md
->numa_node_id
);
769 mutex_unlock(&md
->table_devices_lock
);
773 td
->dm_dev
.mode
= mode
;
774 td
->dm_dev
.bdev
= NULL
;
776 if ((r
= open_table_device(td
, dev
, md
))) {
777 mutex_unlock(&md
->table_devices_lock
);
782 format_dev_t(td
->dm_dev
.name
, dev
);
784 refcount_set(&td
->count
, 1);
785 list_add(&td
->list
, &md
->table_devices
);
787 refcount_inc(&td
->count
);
789 mutex_unlock(&md
->table_devices_lock
);
791 *result
= &td
->dm_dev
;
794 EXPORT_SYMBOL_GPL(dm_get_table_device
);
796 void dm_put_table_device(struct mapped_device
*md
, struct dm_dev
*d
)
798 struct table_device
*td
= container_of(d
, struct table_device
, dm_dev
);
800 mutex_lock(&md
->table_devices_lock
);
801 if (refcount_dec_and_test(&td
->count
)) {
802 close_table_device(td
, md
);
806 mutex_unlock(&md
->table_devices_lock
);
808 EXPORT_SYMBOL(dm_put_table_device
);
810 static void free_table_devices(struct list_head
*devices
)
812 struct list_head
*tmp
, *next
;
814 list_for_each_safe(tmp
, next
, devices
) {
815 struct table_device
*td
= list_entry(tmp
, struct table_device
, list
);
817 DMWARN("dm_destroy: %s still exists with %d references",
818 td
->dm_dev
.name
, refcount_read(&td
->count
));
824 * Get the geometry associated with a dm device
826 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
834 * Set the geometry of a device.
836 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
838 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
840 if (geo
->start
> sz
) {
841 DMWARN("Start sector is beyond the geometry limits.");
850 static int __noflush_suspending(struct mapped_device
*md
)
852 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
856 * Decrements the number of outstanding ios that a bio has been
857 * cloned into, completing the original io if necc.
859 static void dec_pending(struct dm_io
*io
, blk_status_t error
)
862 blk_status_t io_error
;
864 struct mapped_device
*md
= io
->md
;
866 /* Push-back supersedes any I/O errors */
867 if (unlikely(error
)) {
868 spin_lock_irqsave(&io
->endio_lock
, flags
);
869 if (!(io
->status
== BLK_STS_DM_REQUEUE
&& __noflush_suspending(md
)))
871 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
874 if (atomic_dec_and_test(&io
->io_count
)) {
875 if (io
->status
== BLK_STS_DM_REQUEUE
) {
877 * Target requested pushing back the I/O.
879 spin_lock_irqsave(&md
->deferred_lock
, flags
);
880 if (__noflush_suspending(md
))
881 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
882 bio_list_add_head(&md
->deferred
, io
->orig_bio
);
884 /* noflush suspend was interrupted. */
885 io
->status
= BLK_STS_IOERR
;
886 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
889 io_error
= io
->status
;
894 if (io_error
== BLK_STS_DM_REQUEUE
)
897 if ((bio
->bi_opf
& REQ_PREFLUSH
) && bio
->bi_iter
.bi_size
) {
899 * Preflush done for flush with data, reissue
900 * without REQ_PREFLUSH.
902 bio
->bi_opf
&= ~REQ_PREFLUSH
;
905 /* done with normal IO or empty flush */
907 bio
->bi_status
= io_error
;
913 void disable_write_same(struct mapped_device
*md
)
915 struct queue_limits
*limits
= dm_get_queue_limits(md
);
917 /* device doesn't really support WRITE SAME, disable it */
918 limits
->max_write_same_sectors
= 0;
921 void disable_write_zeroes(struct mapped_device
*md
)
923 struct queue_limits
*limits
= dm_get_queue_limits(md
);
925 /* device doesn't really support WRITE ZEROES, disable it */
926 limits
->max_write_zeroes_sectors
= 0;
929 static void clone_endio(struct bio
*bio
)
931 blk_status_t error
= bio
->bi_status
;
932 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
933 struct dm_io
*io
= tio
->io
;
934 struct mapped_device
*md
= tio
->io
->md
;
935 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
937 if (unlikely(error
== BLK_STS_TARGET
) && md
->type
!= DM_TYPE_NVME_BIO_BASED
) {
938 if (bio_op(bio
) == REQ_OP_WRITE_SAME
&&
939 !bio
->bi_disk
->queue
->limits
.max_write_same_sectors
)
940 disable_write_same(md
);
941 if (bio_op(bio
) == REQ_OP_WRITE_ZEROES
&&
942 !bio
->bi_disk
->queue
->limits
.max_write_zeroes_sectors
)
943 disable_write_zeroes(md
);
947 int r
= endio(tio
->ti
, bio
, &error
);
949 case DM_ENDIO_REQUEUE
:
950 error
= BLK_STS_DM_REQUEUE
;
954 case DM_ENDIO_INCOMPLETE
:
955 /* The target will handle the io */
958 DMWARN("unimplemented target endio return value: %d", r
);
964 dec_pending(io
, error
);
968 * Return maximum size of I/O possible at the supplied sector up to the current
971 static sector_t
max_io_len_target_boundary(sector_t sector
, struct dm_target
*ti
)
973 sector_t target_offset
= dm_target_offset(ti
, sector
);
975 return ti
->len
- target_offset
;
978 static sector_t
max_io_len(sector_t sector
, struct dm_target
*ti
)
980 sector_t len
= max_io_len_target_boundary(sector
, ti
);
981 sector_t offset
, max_len
;
984 * Does the target need to split even further?
986 if (ti
->max_io_len
) {
987 offset
= dm_target_offset(ti
, sector
);
988 if (unlikely(ti
->max_io_len
& (ti
->max_io_len
- 1)))
989 max_len
= sector_div(offset
, ti
->max_io_len
);
991 max_len
= offset
& (ti
->max_io_len
- 1);
992 max_len
= ti
->max_io_len
- max_len
;
1001 int dm_set_target_max_io_len(struct dm_target
*ti
, sector_t len
)
1003 if (len
> UINT_MAX
) {
1004 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1005 (unsigned long long)len
, UINT_MAX
);
1006 ti
->error
= "Maximum size of target IO is too large";
1011 * BIO based queue uses its own splitting. When multipage bvecs
1012 * is switched on, size of the incoming bio may be too big to
1013 * be handled in some targets, such as crypt.
1015 * When these targets are ready for the big bio, we can remove
1018 ti
->max_io_len
= min_t(uint32_t, len
, BIO_MAX_PAGES
* PAGE_SIZE
);
1022 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len
);
1024 static struct dm_target
*dm_dax_get_live_target(struct mapped_device
*md
,
1025 sector_t sector
, int *srcu_idx
)
1026 __acquires(md
->io_barrier
)
1028 struct dm_table
*map
;
1029 struct dm_target
*ti
;
1031 map
= dm_get_live_table(md
, srcu_idx
);
1035 ti
= dm_table_find_target(map
, sector
);
1036 if (!dm_target_is_valid(ti
))
1042 static long dm_dax_direct_access(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1043 long nr_pages
, void **kaddr
, pfn_t
*pfn
)
1045 struct mapped_device
*md
= dax_get_private(dax_dev
);
1046 sector_t sector
= pgoff
* PAGE_SECTORS
;
1047 struct dm_target
*ti
;
1048 long len
, ret
= -EIO
;
1051 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1055 if (!ti
->type
->direct_access
)
1057 len
= max_io_len(sector
, ti
) / PAGE_SECTORS
;
1060 nr_pages
= min(len
, nr_pages
);
1061 ret
= ti
->type
->direct_access(ti
, pgoff
, nr_pages
, kaddr
, pfn
);
1064 dm_put_live_table(md
, srcu_idx
);
1069 static size_t dm_dax_copy_from_iter(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1070 void *addr
, size_t bytes
, struct iov_iter
*i
)
1072 struct mapped_device
*md
= dax_get_private(dax_dev
);
1073 sector_t sector
= pgoff
* PAGE_SECTORS
;
1074 struct dm_target
*ti
;
1078 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1082 if (!ti
->type
->dax_copy_from_iter
) {
1083 ret
= copy_from_iter(addr
, bytes
, i
);
1086 ret
= ti
->type
->dax_copy_from_iter(ti
, pgoff
, addr
, bytes
, i
);
1088 dm_put_live_table(md
, srcu_idx
);
1093 static size_t dm_dax_copy_to_iter(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1094 void *addr
, size_t bytes
, struct iov_iter
*i
)
1096 struct mapped_device
*md
= dax_get_private(dax_dev
);
1097 sector_t sector
= pgoff
* PAGE_SECTORS
;
1098 struct dm_target
*ti
;
1102 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1106 if (!ti
->type
->dax_copy_to_iter
) {
1107 ret
= copy_to_iter(addr
, bytes
, i
);
1110 ret
= ti
->type
->dax_copy_to_iter(ti
, pgoff
, addr
, bytes
, i
);
1112 dm_put_live_table(md
, srcu_idx
);
1118 * A target may call dm_accept_partial_bio only from the map routine. It is
1119 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1121 * dm_accept_partial_bio informs the dm that the target only wants to process
1122 * additional n_sectors sectors of the bio and the rest of the data should be
1123 * sent in a next bio.
1125 * A diagram that explains the arithmetics:
1126 * +--------------------+---------------+-------+
1128 * +--------------------+---------------+-------+
1130 * <-------------- *tio->len_ptr --------------->
1131 * <------- bi_size ------->
1134 * Region 1 was already iterated over with bio_advance or similar function.
1135 * (it may be empty if the target doesn't use bio_advance)
1136 * Region 2 is the remaining bio size that the target wants to process.
1137 * (it may be empty if region 1 is non-empty, although there is no reason
1139 * The target requires that region 3 is to be sent in the next bio.
1141 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1142 * the partially processed part (the sum of regions 1+2) must be the same for all
1143 * copies of the bio.
1145 void dm_accept_partial_bio(struct bio
*bio
, unsigned n_sectors
)
1147 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
1148 unsigned bi_size
= bio
->bi_iter
.bi_size
>> SECTOR_SHIFT
;
1149 BUG_ON(bio
->bi_opf
& REQ_PREFLUSH
);
1150 BUG_ON(bi_size
> *tio
->len_ptr
);
1151 BUG_ON(n_sectors
> bi_size
);
1152 *tio
->len_ptr
-= bi_size
- n_sectors
;
1153 bio
->bi_iter
.bi_size
= n_sectors
<< SECTOR_SHIFT
;
1155 EXPORT_SYMBOL_GPL(dm_accept_partial_bio
);
1158 * The zone descriptors obtained with a zone report indicate
1159 * zone positions within the target device. The zone descriptors
1160 * must be remapped to match their position within the dm device.
1161 * A target may call dm_remap_zone_report after completion of a
1162 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1163 * from the target device mapping to the dm device.
1165 void dm_remap_zone_report(struct dm_target
*ti
, struct bio
*bio
, sector_t start
)
1167 #ifdef CONFIG_BLK_DEV_ZONED
1168 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
1169 struct bio
*report_bio
= tio
->io
->orig_bio
;
1170 struct blk_zone_report_hdr
*hdr
= NULL
;
1171 struct blk_zone
*zone
;
1172 unsigned int nr_rep
= 0;
1174 struct bio_vec bvec
;
1175 struct bvec_iter iter
;
1182 * Remap the start sector of the reported zones. For sequential zones,
1183 * also remap the write pointer position.
1185 bio_for_each_segment(bvec
, report_bio
, iter
) {
1186 addr
= kmap_atomic(bvec
.bv_page
);
1188 /* Remember the report header in the first page */
1191 ofst
= sizeof(struct blk_zone_report_hdr
);
1195 /* Set zones start sector */
1196 while (hdr
->nr_zones
&& ofst
< bvec
.bv_len
) {
1198 if (zone
->start
>= start
+ ti
->len
) {
1202 zone
->start
= zone
->start
+ ti
->begin
- start
;
1203 if (zone
->type
!= BLK_ZONE_TYPE_CONVENTIONAL
) {
1204 if (zone
->cond
== BLK_ZONE_COND_FULL
)
1205 zone
->wp
= zone
->start
+ zone
->len
;
1206 else if (zone
->cond
== BLK_ZONE_COND_EMPTY
)
1207 zone
->wp
= zone
->start
;
1209 zone
->wp
= zone
->wp
+ ti
->begin
- start
;
1211 ofst
+= sizeof(struct blk_zone
);
1217 kunmap_atomic(addr
);
1224 hdr
->nr_zones
= nr_rep
;
1228 bio_advance(report_bio
, report_bio
->bi_iter
.bi_size
);
1230 #else /* !CONFIG_BLK_DEV_ZONED */
1231 bio
->bi_status
= BLK_STS_NOTSUPP
;
1234 EXPORT_SYMBOL_GPL(dm_remap_zone_report
);
1236 static blk_qc_t
__map_bio(struct dm_target_io
*tio
)
1240 struct bio
*clone
= &tio
->clone
;
1241 struct dm_io
*io
= tio
->io
;
1242 struct mapped_device
*md
= io
->md
;
1243 struct dm_target
*ti
= tio
->ti
;
1244 blk_qc_t ret
= BLK_QC_T_NONE
;
1246 clone
->bi_end_io
= clone_endio
;
1249 * Map the clone. If r == 0 we don't need to do
1250 * anything, the target has assumed ownership of
1253 atomic_inc(&io
->io_count
);
1254 sector
= clone
->bi_iter
.bi_sector
;
1256 r
= ti
->type
->map(ti
, clone
);
1258 case DM_MAPIO_SUBMITTED
:
1260 case DM_MAPIO_REMAPPED
:
1261 /* the bio has been remapped so dispatch it */
1262 trace_block_bio_remap(clone
->bi_disk
->queue
, clone
,
1263 bio_dev(io
->orig_bio
), sector
);
1264 if (md
->type
== DM_TYPE_NVME_BIO_BASED
)
1265 ret
= direct_make_request(clone
);
1267 ret
= generic_make_request(clone
);
1271 dec_pending(io
, BLK_STS_IOERR
);
1273 case DM_MAPIO_REQUEUE
:
1275 dec_pending(io
, BLK_STS_DM_REQUEUE
);
1278 DMWARN("unimplemented target map return value: %d", r
);
1285 static void bio_setup_sector(struct bio
*bio
, sector_t sector
, unsigned len
)
1287 bio
->bi_iter
.bi_sector
= sector
;
1288 bio
->bi_iter
.bi_size
= to_bytes(len
);
1292 * Creates a bio that consists of range of complete bvecs.
1294 static int clone_bio(struct dm_target_io
*tio
, struct bio
*bio
,
1295 sector_t sector
, unsigned len
)
1297 struct bio
*clone
= &tio
->clone
;
1299 __bio_clone_fast(clone
, bio
);
1301 if (unlikely(bio_integrity(bio
) != NULL
)) {
1304 if (unlikely(!dm_target_has_integrity(tio
->ti
->type
) &&
1305 !dm_target_passes_integrity(tio
->ti
->type
))) {
1306 DMWARN("%s: the target %s doesn't support integrity data.",
1307 dm_device_name(tio
->io
->md
),
1308 tio
->ti
->type
->name
);
1312 r
= bio_integrity_clone(clone
, bio
, GFP_NOIO
);
1317 if (bio_op(bio
) != REQ_OP_ZONE_REPORT
)
1318 bio_advance(clone
, to_bytes(sector
- clone
->bi_iter
.bi_sector
));
1319 clone
->bi_iter
.bi_size
= to_bytes(len
);
1321 if (unlikely(bio_integrity(bio
) != NULL
))
1322 bio_integrity_trim(clone
);
1327 static void alloc_multiple_bios(struct bio_list
*blist
, struct clone_info
*ci
,
1328 struct dm_target
*ti
, unsigned num_bios
)
1330 struct dm_target_io
*tio
;
1336 if (num_bios
== 1) {
1337 tio
= alloc_tio(ci
, ti
, 0, GFP_NOIO
);
1338 bio_list_add(blist
, &tio
->clone
);
1342 for (try = 0; try < 2; try++) {
1347 mutex_lock(&ci
->io
->md
->table_devices_lock
);
1348 for (bio_nr
= 0; bio_nr
< num_bios
; bio_nr
++) {
1349 tio
= alloc_tio(ci
, ti
, bio_nr
, try ? GFP_NOIO
: GFP_NOWAIT
);
1353 bio_list_add(blist
, &tio
->clone
);
1356 mutex_unlock(&ci
->io
->md
->table_devices_lock
);
1357 if (bio_nr
== num_bios
)
1360 while ((bio
= bio_list_pop(blist
))) {
1361 tio
= container_of(bio
, struct dm_target_io
, clone
);
1367 static blk_qc_t
__clone_and_map_simple_bio(struct clone_info
*ci
,
1368 struct dm_target_io
*tio
, unsigned *len
)
1370 struct bio
*clone
= &tio
->clone
;
1374 __bio_clone_fast(clone
, ci
->bio
);
1376 bio_setup_sector(clone
, ci
->sector
, *len
);
1378 return __map_bio(tio
);
1381 static void __send_duplicate_bios(struct clone_info
*ci
, struct dm_target
*ti
,
1382 unsigned num_bios
, unsigned *len
)
1384 struct bio_list blist
= BIO_EMPTY_LIST
;
1386 struct dm_target_io
*tio
;
1388 alloc_multiple_bios(&blist
, ci
, ti
, num_bios
);
1390 while ((bio
= bio_list_pop(&blist
))) {
1391 tio
= container_of(bio
, struct dm_target_io
, clone
);
1392 (void) __clone_and_map_simple_bio(ci
, tio
, len
);
1396 static int __send_empty_flush(struct clone_info
*ci
)
1398 unsigned target_nr
= 0;
1399 struct dm_target
*ti
;
1401 BUG_ON(bio_has_data(ci
->bio
));
1402 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1403 __send_duplicate_bios(ci
, ti
, ti
->num_flush_bios
, NULL
);
1408 static int __clone_and_map_data_bio(struct clone_info
*ci
, struct dm_target
*ti
,
1409 sector_t sector
, unsigned *len
)
1411 struct bio
*bio
= ci
->bio
;
1412 struct dm_target_io
*tio
;
1415 tio
= alloc_tio(ci
, ti
, 0, GFP_NOIO
);
1417 r
= clone_bio(tio
, bio
, sector
, *len
);
1422 (void) __map_bio(tio
);
1427 typedef unsigned (*get_num_bios_fn
)(struct dm_target
*ti
);
1429 static unsigned get_num_discard_bios(struct dm_target
*ti
)
1431 return ti
->num_discard_bios
;
1434 static unsigned get_num_secure_erase_bios(struct dm_target
*ti
)
1436 return ti
->num_secure_erase_bios
;
1439 static unsigned get_num_write_same_bios(struct dm_target
*ti
)
1441 return ti
->num_write_same_bios
;
1444 static unsigned get_num_write_zeroes_bios(struct dm_target
*ti
)
1446 return ti
->num_write_zeroes_bios
;
1449 typedef bool (*is_split_required_fn
)(struct dm_target
*ti
);
1451 static bool is_split_required_for_discard(struct dm_target
*ti
)
1453 return ti
->split_discard_bios
;
1456 static int __send_changing_extent_only(struct clone_info
*ci
, struct dm_target
*ti
,
1457 get_num_bios_fn get_num_bios
,
1458 is_split_required_fn is_split_required
)
1464 * Even though the device advertised support for this type of
1465 * request, that does not mean every target supports it, and
1466 * reconfiguration might also have changed that since the
1467 * check was performed.
1469 num_bios
= get_num_bios
? get_num_bios(ti
) : 0;
1473 if (is_split_required
&& !is_split_required(ti
))
1474 len
= min((sector_t
)ci
->sector_count
, max_io_len_target_boundary(ci
->sector
, ti
));
1476 len
= min((sector_t
)ci
->sector_count
, max_io_len(ci
->sector
, ti
));
1478 __send_duplicate_bios(ci
, ti
, num_bios
, &len
);
1481 ci
->sector_count
-= len
;
1486 static int __send_discard(struct clone_info
*ci
, struct dm_target
*ti
)
1488 return __send_changing_extent_only(ci
, ti
, get_num_discard_bios
,
1489 is_split_required_for_discard
);
1492 static int __send_secure_erase(struct clone_info
*ci
, struct dm_target
*ti
)
1494 return __send_changing_extent_only(ci
, ti
, get_num_secure_erase_bios
, NULL
);
1497 static int __send_write_same(struct clone_info
*ci
, struct dm_target
*ti
)
1499 return __send_changing_extent_only(ci
, ti
, get_num_write_same_bios
, NULL
);
1502 static int __send_write_zeroes(struct clone_info
*ci
, struct dm_target
*ti
)
1504 return __send_changing_extent_only(ci
, ti
, get_num_write_zeroes_bios
, NULL
);
1507 static bool __process_abnormal_io(struct clone_info
*ci
, struct dm_target
*ti
,
1510 struct bio
*bio
= ci
->bio
;
1512 if (bio_op(bio
) == REQ_OP_DISCARD
)
1513 *result
= __send_discard(ci
, ti
);
1514 else if (bio_op(bio
) == REQ_OP_SECURE_ERASE
)
1515 *result
= __send_secure_erase(ci
, ti
);
1516 else if (bio_op(bio
) == REQ_OP_WRITE_SAME
)
1517 *result
= __send_write_same(ci
, ti
);
1518 else if (bio_op(bio
) == REQ_OP_WRITE_ZEROES
)
1519 *result
= __send_write_zeroes(ci
, ti
);
1527 * Select the correct strategy for processing a non-flush bio.
1529 static int __split_and_process_non_flush(struct clone_info
*ci
)
1531 struct bio
*bio
= ci
->bio
;
1532 struct dm_target
*ti
;
1536 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1537 if (!dm_target_is_valid(ti
))
1540 if (unlikely(__process_abnormal_io(ci
, ti
, &r
)))
1543 if (bio_op(bio
) == REQ_OP_ZONE_REPORT
)
1544 len
= ci
->sector_count
;
1546 len
= min_t(sector_t
, max_io_len(ci
->sector
, ti
),
1549 r
= __clone_and_map_data_bio(ci
, ti
, ci
->sector
, &len
);
1554 ci
->sector_count
-= len
;
1559 static void init_clone_info(struct clone_info
*ci
, struct mapped_device
*md
,
1560 struct dm_table
*map
, struct bio
*bio
)
1563 ci
->io
= alloc_io(md
, bio
);
1564 ci
->sector
= bio
->bi_iter
.bi_sector
;
1568 * Entry point to split a bio into clones and submit them to the targets.
1570 static blk_qc_t
__split_and_process_bio(struct mapped_device
*md
,
1571 struct dm_table
*map
, struct bio
*bio
)
1573 struct clone_info ci
;
1574 blk_qc_t ret
= BLK_QC_T_NONE
;
1577 if (unlikely(!map
)) {
1582 init_clone_info(&ci
, md
, map
, bio
);
1584 if (bio
->bi_opf
& REQ_PREFLUSH
) {
1585 ci
.bio
= &ci
.io
->md
->flush_bio
;
1586 ci
.sector_count
= 0;
1587 error
= __send_empty_flush(&ci
);
1588 /* dec_pending submits any data associated with flush */
1589 } else if (bio_op(bio
) == REQ_OP_ZONE_RESET
) {
1591 ci
.sector_count
= 0;
1592 error
= __split_and_process_non_flush(&ci
);
1595 ci
.sector_count
= bio_sectors(bio
);
1596 while (ci
.sector_count
&& !error
) {
1597 error
= __split_and_process_non_flush(&ci
);
1598 if (current
->bio_list
&& ci
.sector_count
&& !error
) {
1600 * Remainder must be passed to generic_make_request()
1601 * so that it gets handled *after* bios already submitted
1602 * have been completely processed.
1603 * We take a clone of the original to store in
1604 * ci.io->orig_bio to be used by end_io_acct() and
1605 * for dec_pending to use for completion handling.
1606 * As this path is not used for REQ_OP_ZONE_REPORT,
1607 * the usage of io->orig_bio in dm_remap_zone_report()
1608 * won't be affected by this reassignment.
1610 struct bio
*b
= bio_split(bio
, bio_sectors(bio
) - ci
.sector_count
,
1611 GFP_NOIO
, &md
->queue
->bio_split
);
1612 ci
.io
->orig_bio
= b
;
1614 ret
= generic_make_request(bio
);
1620 /* drop the extra reference count */
1621 dec_pending(ci
.io
, errno_to_blk_status(error
));
1626 * Optimized variant of __split_and_process_bio that leverages the
1627 * fact that targets that use it do _not_ have a need to split bios.
1629 static blk_qc_t
__process_bio(struct mapped_device
*md
,
1630 struct dm_table
*map
, struct bio
*bio
)
1632 struct clone_info ci
;
1633 blk_qc_t ret
= BLK_QC_T_NONE
;
1636 if (unlikely(!map
)) {
1641 init_clone_info(&ci
, md
, map
, bio
);
1643 if (bio
->bi_opf
& REQ_PREFLUSH
) {
1644 ci
.bio
= &ci
.io
->md
->flush_bio
;
1645 ci
.sector_count
= 0;
1646 error
= __send_empty_flush(&ci
);
1647 /* dec_pending submits any data associated with flush */
1649 struct dm_target
*ti
= md
->immutable_target
;
1650 struct dm_target_io
*tio
;
1653 * Defend against IO still getting in during teardown
1654 * - as was seen for a time with nvme-fcloop
1656 if (unlikely(WARN_ON_ONCE(!ti
|| !dm_target_is_valid(ti
)))) {
1662 ci
.sector_count
= bio_sectors(bio
);
1663 if (unlikely(__process_abnormal_io(&ci
, ti
, &error
)))
1666 tio
= alloc_tio(&ci
, ti
, 0, GFP_NOIO
);
1667 ret
= __clone_and_map_simple_bio(&ci
, tio
, NULL
);
1670 /* drop the extra reference count */
1671 dec_pending(ci
.io
, errno_to_blk_status(error
));
1675 typedef blk_qc_t (process_bio_fn
)(struct mapped_device
*, struct dm_table
*, struct bio
*);
1677 static blk_qc_t
__dm_make_request(struct request_queue
*q
, struct bio
*bio
,
1678 process_bio_fn process_bio
)
1680 struct mapped_device
*md
= q
->queuedata
;
1681 blk_qc_t ret
= BLK_QC_T_NONE
;
1683 struct dm_table
*map
;
1685 map
= dm_get_live_table(md
, &srcu_idx
);
1687 /* if we're suspended, we have to queue this io for later */
1688 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))) {
1689 dm_put_live_table(md
, srcu_idx
);
1691 if (!(bio
->bi_opf
& REQ_RAHEAD
))
1698 ret
= process_bio(md
, map
, bio
);
1700 dm_put_live_table(md
, srcu_idx
);
1705 * The request function that remaps the bio to one target and
1706 * splits off any remainder.
1708 static blk_qc_t
dm_make_request(struct request_queue
*q
, struct bio
*bio
)
1710 return __dm_make_request(q
, bio
, __split_and_process_bio
);
1713 static blk_qc_t
dm_make_request_nvme(struct request_queue
*q
, struct bio
*bio
)
1715 return __dm_make_request(q
, bio
, __process_bio
);
1718 static int dm_any_congested(void *congested_data
, int bdi_bits
)
1721 struct mapped_device
*md
= congested_data
;
1722 struct dm_table
*map
;
1724 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1725 if (dm_request_based(md
)) {
1727 * With request-based DM we only need to check the
1728 * top-level queue for congestion.
1730 r
= md
->queue
->backing_dev_info
->wb
.state
& bdi_bits
;
1732 map
= dm_get_live_table_fast(md
);
1734 r
= dm_table_any_congested(map
, bdi_bits
);
1735 dm_put_live_table_fast(md
);
1742 /*-----------------------------------------------------------------
1743 * An IDR is used to keep track of allocated minor numbers.
1744 *---------------------------------------------------------------*/
1745 static void free_minor(int minor
)
1747 spin_lock(&_minor_lock
);
1748 idr_remove(&_minor_idr
, minor
);
1749 spin_unlock(&_minor_lock
);
1753 * See if the device with a specific minor # is free.
1755 static int specific_minor(int minor
)
1759 if (minor
>= (1 << MINORBITS
))
1762 idr_preload(GFP_KERNEL
);
1763 spin_lock(&_minor_lock
);
1765 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, minor
, minor
+ 1, GFP_NOWAIT
);
1767 spin_unlock(&_minor_lock
);
1770 return r
== -ENOSPC
? -EBUSY
: r
;
1774 static int next_free_minor(int *minor
)
1778 idr_preload(GFP_KERNEL
);
1779 spin_lock(&_minor_lock
);
1781 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, 0, 1 << MINORBITS
, GFP_NOWAIT
);
1783 spin_unlock(&_minor_lock
);
1791 static const struct block_device_operations dm_blk_dops
;
1792 static const struct dax_operations dm_dax_ops
;
1794 static void dm_wq_work(struct work_struct
*work
);
1796 static void dm_init_normal_md_queue(struct mapped_device
*md
)
1798 md
->use_blk_mq
= false;
1801 * Initialize aspects of queue that aren't relevant for blk-mq
1803 md
->queue
->backing_dev_info
->congested_fn
= dm_any_congested
;
1806 static void cleanup_mapped_device(struct mapped_device
*md
)
1809 destroy_workqueue(md
->wq
);
1810 if (md
->kworker_task
)
1811 kthread_stop(md
->kworker_task
);
1812 bioset_exit(&md
->bs
);
1813 bioset_exit(&md
->io_bs
);
1816 kill_dax(md
->dax_dev
);
1817 put_dax(md
->dax_dev
);
1822 spin_lock(&_minor_lock
);
1823 md
->disk
->private_data
= NULL
;
1824 spin_unlock(&_minor_lock
);
1825 del_gendisk(md
->disk
);
1830 blk_cleanup_queue(md
->queue
);
1832 cleanup_srcu_struct(&md
->io_barrier
);
1839 mutex_destroy(&md
->suspend_lock
);
1840 mutex_destroy(&md
->type_lock
);
1841 mutex_destroy(&md
->table_devices_lock
);
1843 dm_mq_cleanup_mapped_device(md
);
1847 * Allocate and initialise a blank device with a given minor.
1849 static struct mapped_device
*alloc_dev(int minor
)
1851 int r
, numa_node_id
= dm_get_numa_node();
1852 struct dax_device
*dax_dev
= NULL
;
1853 struct mapped_device
*md
;
1856 md
= kvzalloc_node(sizeof(*md
), GFP_KERNEL
, numa_node_id
);
1858 DMWARN("unable to allocate device, out of memory.");
1862 if (!try_module_get(THIS_MODULE
))
1863 goto bad_module_get
;
1865 /* get a minor number for the dev */
1866 if (minor
== DM_ANY_MINOR
)
1867 r
= next_free_minor(&minor
);
1869 r
= specific_minor(minor
);
1873 r
= init_srcu_struct(&md
->io_barrier
);
1875 goto bad_io_barrier
;
1877 md
->numa_node_id
= numa_node_id
;
1878 md
->use_blk_mq
= dm_use_blk_mq_default();
1879 md
->init_tio_pdu
= false;
1880 md
->type
= DM_TYPE_NONE
;
1881 mutex_init(&md
->suspend_lock
);
1882 mutex_init(&md
->type_lock
);
1883 mutex_init(&md
->table_devices_lock
);
1884 spin_lock_init(&md
->deferred_lock
);
1885 atomic_set(&md
->holders
, 1);
1886 atomic_set(&md
->open_count
, 0);
1887 atomic_set(&md
->event_nr
, 0);
1888 atomic_set(&md
->uevent_seq
, 0);
1889 INIT_LIST_HEAD(&md
->uevent_list
);
1890 INIT_LIST_HEAD(&md
->table_devices
);
1891 spin_lock_init(&md
->uevent_lock
);
1893 md
->queue
= blk_alloc_queue_node(GFP_KERNEL
, numa_node_id
, NULL
);
1896 md
->queue
->queuedata
= md
;
1897 md
->queue
->backing_dev_info
->congested_data
= md
;
1899 md
->disk
= alloc_disk_node(1, md
->numa_node_id
);
1903 atomic_set(&md
->pending
[0], 0);
1904 atomic_set(&md
->pending
[1], 0);
1905 init_waitqueue_head(&md
->wait
);
1906 INIT_WORK(&md
->work
, dm_wq_work
);
1907 init_waitqueue_head(&md
->eventq
);
1908 init_completion(&md
->kobj_holder
.completion
);
1909 md
->kworker_task
= NULL
;
1911 md
->disk
->major
= _major
;
1912 md
->disk
->first_minor
= minor
;
1913 md
->disk
->fops
= &dm_blk_dops
;
1914 md
->disk
->queue
= md
->queue
;
1915 md
->disk
->private_data
= md
;
1916 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1918 if (IS_ENABLED(CONFIG_DAX_DRIVER
)) {
1919 dax_dev
= alloc_dax(md
, md
->disk
->disk_name
, &dm_dax_ops
);
1923 md
->dax_dev
= dax_dev
;
1925 add_disk_no_queue_reg(md
->disk
);
1926 format_dev_t(md
->name
, MKDEV(_major
, minor
));
1928 md
->wq
= alloc_workqueue("kdmflush", WQ_MEM_RECLAIM
, 0);
1932 md
->bdev
= bdget_disk(md
->disk
, 0);
1936 bio_init(&md
->flush_bio
, NULL
, 0);
1937 bio_set_dev(&md
->flush_bio
, md
->bdev
);
1938 md
->flush_bio
.bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
| REQ_SYNC
;
1940 dm_stats_init(&md
->stats
);
1942 /* Populate the mapping, nobody knows we exist yet */
1943 spin_lock(&_minor_lock
);
1944 old_md
= idr_replace(&_minor_idr
, md
, minor
);
1945 spin_unlock(&_minor_lock
);
1947 BUG_ON(old_md
!= MINOR_ALLOCED
);
1952 cleanup_mapped_device(md
);
1956 module_put(THIS_MODULE
);
1962 static void unlock_fs(struct mapped_device
*md
);
1964 static void free_dev(struct mapped_device
*md
)
1966 int minor
= MINOR(disk_devt(md
->disk
));
1970 cleanup_mapped_device(md
);
1972 free_table_devices(&md
->table_devices
);
1973 dm_stats_cleanup(&md
->stats
);
1976 module_put(THIS_MODULE
);
1980 static int __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
1982 struct dm_md_mempools
*p
= dm_table_get_md_mempools(t
);
1985 if (dm_table_bio_based(t
)) {
1987 * The md may already have mempools that need changing.
1988 * If so, reload bioset because front_pad may have changed
1989 * because a different table was loaded.
1991 bioset_exit(&md
->bs
);
1992 bioset_exit(&md
->io_bs
);
1994 } else if (bioset_initialized(&md
->bs
)) {
1996 * There's no need to reload with request-based dm
1997 * because the size of front_pad doesn't change.
1998 * Note for future: If you are to reload bioset,
1999 * prep-ed requests in the queue may refer
2000 * to bio from the old bioset, so you must walk
2001 * through the queue to unprep.
2007 bioset_initialized(&md
->bs
) ||
2008 bioset_initialized(&md
->io_bs
));
2010 ret
= bioset_init_from_src(&md
->bs
, &p
->bs
);
2013 ret
= bioset_init_from_src(&md
->io_bs
, &p
->io_bs
);
2015 bioset_exit(&md
->bs
);
2017 /* mempool bind completed, no longer need any mempools in the table */
2018 dm_table_free_md_mempools(t
);
2023 * Bind a table to the device.
2025 static void event_callback(void *context
)
2027 unsigned long flags
;
2029 struct mapped_device
*md
= (struct mapped_device
*) context
;
2031 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2032 list_splice_init(&md
->uevent_list
, &uevents
);
2033 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2035 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
2037 atomic_inc(&md
->event_nr
);
2038 wake_up(&md
->eventq
);
2039 dm_issue_global_event();
2043 * Protected by md->suspend_lock obtained by dm_swap_table().
2045 static void __set_size(struct mapped_device
*md
, sector_t size
)
2047 lockdep_assert_held(&md
->suspend_lock
);
2049 set_capacity(md
->disk
, size
);
2051 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
2055 * Returns old map, which caller must destroy.
2057 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
2058 struct queue_limits
*limits
)
2060 struct dm_table
*old_map
;
2061 struct request_queue
*q
= md
->queue
;
2062 bool request_based
= dm_table_request_based(t
);
2066 lockdep_assert_held(&md
->suspend_lock
);
2068 size
= dm_table_get_size(t
);
2071 * Wipe any geometry if the size of the table changed.
2073 if (size
!= dm_get_size(md
))
2074 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
2076 __set_size(md
, size
);
2078 dm_table_event_callback(t
, event_callback
, md
);
2081 * The queue hasn't been stopped yet, if the old table type wasn't
2082 * for request-based during suspension. So stop it to prevent
2083 * I/O mapping before resume.
2084 * This must be done before setting the queue restrictions,
2085 * because request-based dm may be run just after the setting.
2090 if (request_based
|| md
->type
== DM_TYPE_NVME_BIO_BASED
) {
2092 * Leverage the fact that request-based DM targets and
2093 * NVMe bio based targets are immutable singletons
2094 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2095 * and __process_bio.
2097 md
->immutable_target
= dm_table_get_immutable_target(t
);
2100 ret
= __bind_mempools(md
, t
);
2102 old_map
= ERR_PTR(ret
);
2106 old_map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2107 rcu_assign_pointer(md
->map
, (void *)t
);
2108 md
->immutable_target_type
= dm_table_get_immutable_target_type(t
);
2110 dm_table_set_restrictions(t
, q
, limits
);
2119 * Returns unbound table for the caller to free.
2121 static struct dm_table
*__unbind(struct mapped_device
*md
)
2123 struct dm_table
*map
= rcu_dereference_protected(md
->map
, 1);
2128 dm_table_event_callback(map
, NULL
, NULL
);
2129 RCU_INIT_POINTER(md
->map
, NULL
);
2136 * Constructor for a new device.
2138 int dm_create(int minor
, struct mapped_device
**result
)
2141 struct mapped_device
*md
;
2143 md
= alloc_dev(minor
);
2147 r
= dm_sysfs_init(md
);
2158 * Functions to manage md->type.
2159 * All are required to hold md->type_lock.
2161 void dm_lock_md_type(struct mapped_device
*md
)
2163 mutex_lock(&md
->type_lock
);
2166 void dm_unlock_md_type(struct mapped_device
*md
)
2168 mutex_unlock(&md
->type_lock
);
2171 void dm_set_md_type(struct mapped_device
*md
, enum dm_queue_mode type
)
2173 BUG_ON(!mutex_is_locked(&md
->type_lock
));
2177 enum dm_queue_mode
dm_get_md_type(struct mapped_device
*md
)
2182 struct target_type
*dm_get_immutable_target_type(struct mapped_device
*md
)
2184 return md
->immutable_target_type
;
2188 * The queue_limits are only valid as long as you have a reference
2191 struct queue_limits
*dm_get_queue_limits(struct mapped_device
*md
)
2193 BUG_ON(!atomic_read(&md
->holders
));
2194 return &md
->queue
->limits
;
2196 EXPORT_SYMBOL_GPL(dm_get_queue_limits
);
2199 * Setup the DM device's queue based on md's type
2201 int dm_setup_md_queue(struct mapped_device
*md
, struct dm_table
*t
)
2204 struct queue_limits limits
;
2205 enum dm_queue_mode type
= dm_get_md_type(md
);
2208 case DM_TYPE_REQUEST_BASED
:
2209 dm_init_normal_md_queue(md
);
2210 r
= dm_old_init_request_queue(md
, t
);
2212 DMERR("Cannot initialize queue for request-based mapped device");
2216 case DM_TYPE_MQ_REQUEST_BASED
:
2217 r
= dm_mq_init_request_queue(md
, t
);
2219 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2223 case DM_TYPE_BIO_BASED
:
2224 case DM_TYPE_DAX_BIO_BASED
:
2225 dm_init_normal_md_queue(md
);
2226 blk_queue_make_request(md
->queue
, dm_make_request
);
2228 case DM_TYPE_NVME_BIO_BASED
:
2229 dm_init_normal_md_queue(md
);
2230 blk_queue_make_request(md
->queue
, dm_make_request_nvme
);
2237 r
= dm_calculate_queue_limits(t
, &limits
);
2239 DMERR("Cannot calculate initial queue limits");
2242 dm_table_set_restrictions(t
, md
->queue
, &limits
);
2243 blk_register_queue(md
->disk
);
2248 struct mapped_device
*dm_get_md(dev_t dev
)
2250 struct mapped_device
*md
;
2251 unsigned minor
= MINOR(dev
);
2253 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2256 spin_lock(&_minor_lock
);
2258 md
= idr_find(&_minor_idr
, minor
);
2259 if (!md
|| md
== MINOR_ALLOCED
|| (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2260 test_bit(DMF_FREEING
, &md
->flags
) || dm_deleting_md(md
)) {
2266 spin_unlock(&_minor_lock
);
2270 EXPORT_SYMBOL_GPL(dm_get_md
);
2272 void *dm_get_mdptr(struct mapped_device
*md
)
2274 return md
->interface_ptr
;
2277 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2279 md
->interface_ptr
= ptr
;
2282 void dm_get(struct mapped_device
*md
)
2284 atomic_inc(&md
->holders
);
2285 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2288 int dm_hold(struct mapped_device
*md
)
2290 spin_lock(&_minor_lock
);
2291 if (test_bit(DMF_FREEING
, &md
->flags
)) {
2292 spin_unlock(&_minor_lock
);
2296 spin_unlock(&_minor_lock
);
2299 EXPORT_SYMBOL_GPL(dm_hold
);
2301 const char *dm_device_name(struct mapped_device
*md
)
2305 EXPORT_SYMBOL_GPL(dm_device_name
);
2307 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
2309 struct dm_table
*map
;
2314 spin_lock(&_minor_lock
);
2315 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
2316 set_bit(DMF_FREEING
, &md
->flags
);
2317 spin_unlock(&_minor_lock
);
2319 blk_set_queue_dying(md
->queue
);
2321 if (dm_request_based(md
) && md
->kworker_task
)
2322 kthread_flush_worker(&md
->kworker
);
2325 * Take suspend_lock so that presuspend and postsuspend methods
2326 * do not race with internal suspend.
2328 mutex_lock(&md
->suspend_lock
);
2329 map
= dm_get_live_table(md
, &srcu_idx
);
2330 if (!dm_suspended_md(md
)) {
2331 dm_table_presuspend_targets(map
);
2332 dm_table_postsuspend_targets(map
);
2334 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2335 dm_put_live_table(md
, srcu_idx
);
2336 mutex_unlock(&md
->suspend_lock
);
2339 * Rare, but there may be I/O requests still going to complete,
2340 * for example. Wait for all references to disappear.
2341 * No one should increment the reference count of the mapped_device,
2342 * after the mapped_device state becomes DMF_FREEING.
2345 while (atomic_read(&md
->holders
))
2347 else if (atomic_read(&md
->holders
))
2348 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2349 dm_device_name(md
), atomic_read(&md
->holders
));
2352 dm_table_destroy(__unbind(md
));
2356 void dm_destroy(struct mapped_device
*md
)
2358 __dm_destroy(md
, true);
2361 void dm_destroy_immediate(struct mapped_device
*md
)
2363 __dm_destroy(md
, false);
2366 void dm_put(struct mapped_device
*md
)
2368 atomic_dec(&md
->holders
);
2370 EXPORT_SYMBOL_GPL(dm_put
);
2372 static int dm_wait_for_completion(struct mapped_device
*md
, long task_state
)
2378 prepare_to_wait(&md
->wait
, &wait
, task_state
);
2380 if (!md_in_flight(md
))
2383 if (signal_pending_state(task_state
, current
)) {
2390 finish_wait(&md
->wait
, &wait
);
2396 * Process the deferred bios
2398 static void dm_wq_work(struct work_struct
*work
)
2400 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2404 struct dm_table
*map
;
2406 map
= dm_get_live_table(md
, &srcu_idx
);
2408 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2409 spin_lock_irq(&md
->deferred_lock
);
2410 c
= bio_list_pop(&md
->deferred
);
2411 spin_unlock_irq(&md
->deferred_lock
);
2416 if (dm_request_based(md
))
2417 generic_make_request(c
);
2419 __split_and_process_bio(md
, map
, c
);
2422 dm_put_live_table(md
, srcu_idx
);
2425 static void dm_queue_flush(struct mapped_device
*md
)
2427 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2428 smp_mb__after_atomic();
2429 queue_work(md
->wq
, &md
->work
);
2433 * Swap in a new table, returning the old one for the caller to destroy.
2435 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2437 struct dm_table
*live_map
= NULL
, *map
= ERR_PTR(-EINVAL
);
2438 struct queue_limits limits
;
2441 mutex_lock(&md
->suspend_lock
);
2443 /* device must be suspended */
2444 if (!dm_suspended_md(md
))
2448 * If the new table has no data devices, retain the existing limits.
2449 * This helps multipath with queue_if_no_path if all paths disappear,
2450 * then new I/O is queued based on these limits, and then some paths
2453 if (dm_table_has_no_data_devices(table
)) {
2454 live_map
= dm_get_live_table_fast(md
);
2456 limits
= md
->queue
->limits
;
2457 dm_put_live_table_fast(md
);
2461 r
= dm_calculate_queue_limits(table
, &limits
);
2468 map
= __bind(md
, table
, &limits
);
2469 dm_issue_global_event();
2472 mutex_unlock(&md
->suspend_lock
);
2477 * Functions to lock and unlock any filesystem running on the
2480 static int lock_fs(struct mapped_device
*md
)
2484 WARN_ON(md
->frozen_sb
);
2486 md
->frozen_sb
= freeze_bdev(md
->bdev
);
2487 if (IS_ERR(md
->frozen_sb
)) {
2488 r
= PTR_ERR(md
->frozen_sb
);
2489 md
->frozen_sb
= NULL
;
2493 set_bit(DMF_FROZEN
, &md
->flags
);
2498 static void unlock_fs(struct mapped_device
*md
)
2500 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2503 thaw_bdev(md
->bdev
, md
->frozen_sb
);
2504 md
->frozen_sb
= NULL
;
2505 clear_bit(DMF_FROZEN
, &md
->flags
);
2509 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2510 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2511 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2513 * If __dm_suspend returns 0, the device is completely quiescent
2514 * now. There is no request-processing activity. All new requests
2515 * are being added to md->deferred list.
2517 static int __dm_suspend(struct mapped_device
*md
, struct dm_table
*map
,
2518 unsigned suspend_flags
, long task_state
,
2519 int dmf_suspended_flag
)
2521 bool do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
;
2522 bool noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
;
2525 lockdep_assert_held(&md
->suspend_lock
);
2528 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2529 * This flag is cleared before dm_suspend returns.
2532 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2534 pr_debug("%s: suspending with flush\n", dm_device_name(md
));
2537 * This gets reverted if there's an error later and the targets
2538 * provide the .presuspend_undo hook.
2540 dm_table_presuspend_targets(map
);
2543 * Flush I/O to the device.
2544 * Any I/O submitted after lock_fs() may not be flushed.
2545 * noflush takes precedence over do_lockfs.
2546 * (lock_fs() flushes I/Os and waits for them to complete.)
2548 if (!noflush
&& do_lockfs
) {
2551 dm_table_presuspend_undo_targets(map
);
2557 * Here we must make sure that no processes are submitting requests
2558 * to target drivers i.e. no one may be executing
2559 * __split_and_process_bio. This is called from dm_request and
2562 * To get all processes out of __split_and_process_bio in dm_request,
2563 * we take the write lock. To prevent any process from reentering
2564 * __split_and_process_bio from dm_request and quiesce the thread
2565 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2566 * flush_workqueue(md->wq).
2568 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2570 synchronize_srcu(&md
->io_barrier
);
2573 * Stop md->queue before flushing md->wq in case request-based
2574 * dm defers requests to md->wq from md->queue.
2576 if (dm_request_based(md
)) {
2577 dm_stop_queue(md
->queue
);
2578 if (md
->kworker_task
)
2579 kthread_flush_worker(&md
->kworker
);
2582 flush_workqueue(md
->wq
);
2585 * At this point no more requests are entering target request routines.
2586 * We call dm_wait_for_completion to wait for all existing requests
2589 r
= dm_wait_for_completion(md
, task_state
);
2591 set_bit(dmf_suspended_flag
, &md
->flags
);
2594 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2596 synchronize_srcu(&md
->io_barrier
);
2598 /* were we interrupted ? */
2602 if (dm_request_based(md
))
2603 dm_start_queue(md
->queue
);
2606 dm_table_presuspend_undo_targets(map
);
2607 /* pushback list is already flushed, so skip flush */
2614 * We need to be able to change a mapping table under a mounted
2615 * filesystem. For example we might want to move some data in
2616 * the background. Before the table can be swapped with
2617 * dm_bind_table, dm_suspend must be called to flush any in
2618 * flight bios and ensure that any further io gets deferred.
2621 * Suspend mechanism in request-based dm.
2623 * 1. Flush all I/Os by lock_fs() if needed.
2624 * 2. Stop dispatching any I/O by stopping the request_queue.
2625 * 3. Wait for all in-flight I/Os to be completed or requeued.
2627 * To abort suspend, start the request_queue.
2629 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2631 struct dm_table
*map
= NULL
;
2635 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
2637 if (dm_suspended_md(md
)) {
2642 if (dm_suspended_internally_md(md
)) {
2643 /* already internally suspended, wait for internal resume */
2644 mutex_unlock(&md
->suspend_lock
);
2645 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
2651 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2653 r
= __dm_suspend(md
, map
, suspend_flags
, TASK_INTERRUPTIBLE
, DMF_SUSPENDED
);
2657 dm_table_postsuspend_targets(map
);
2660 mutex_unlock(&md
->suspend_lock
);
2664 static int __dm_resume(struct mapped_device
*md
, struct dm_table
*map
)
2667 int r
= dm_table_resume_targets(map
);
2675 * Flushing deferred I/Os must be done after targets are resumed
2676 * so that mapping of targets can work correctly.
2677 * Request-based dm is queueing the deferred I/Os in its request_queue.
2679 if (dm_request_based(md
))
2680 dm_start_queue(md
->queue
);
2687 int dm_resume(struct mapped_device
*md
)
2690 struct dm_table
*map
= NULL
;
2694 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
2696 if (!dm_suspended_md(md
))
2699 if (dm_suspended_internally_md(md
)) {
2700 /* already internally suspended, wait for internal resume */
2701 mutex_unlock(&md
->suspend_lock
);
2702 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
2708 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2709 if (!map
|| !dm_table_get_size(map
))
2712 r
= __dm_resume(md
, map
);
2716 clear_bit(DMF_SUSPENDED
, &md
->flags
);
2718 mutex_unlock(&md
->suspend_lock
);
2724 * Internal suspend/resume works like userspace-driven suspend. It waits
2725 * until all bios finish and prevents issuing new bios to the target drivers.
2726 * It may be used only from the kernel.
2729 static void __dm_internal_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2731 struct dm_table
*map
= NULL
;
2733 lockdep_assert_held(&md
->suspend_lock
);
2735 if (md
->internal_suspend_count
++)
2736 return; /* nested internal suspend */
2738 if (dm_suspended_md(md
)) {
2739 set_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2740 return; /* nest suspend */
2743 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2746 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2747 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2748 * would require changing .presuspend to return an error -- avoid this
2749 * until there is a need for more elaborate variants of internal suspend.
2751 (void) __dm_suspend(md
, map
, suspend_flags
, TASK_UNINTERRUPTIBLE
,
2752 DMF_SUSPENDED_INTERNALLY
);
2754 dm_table_postsuspend_targets(map
);
2757 static void __dm_internal_resume(struct mapped_device
*md
)
2759 BUG_ON(!md
->internal_suspend_count
);
2761 if (--md
->internal_suspend_count
)
2762 return; /* resume from nested internal suspend */
2764 if (dm_suspended_md(md
))
2765 goto done
; /* resume from nested suspend */
2768 * NOTE: existing callers don't need to call dm_table_resume_targets
2769 * (which may fail -- so best to avoid it for now by passing NULL map)
2771 (void) __dm_resume(md
, NULL
);
2774 clear_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2775 smp_mb__after_atomic();
2776 wake_up_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
);
2779 void dm_internal_suspend_noflush(struct mapped_device
*md
)
2781 mutex_lock(&md
->suspend_lock
);
2782 __dm_internal_suspend(md
, DM_SUSPEND_NOFLUSH_FLAG
);
2783 mutex_unlock(&md
->suspend_lock
);
2785 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush
);
2787 void dm_internal_resume(struct mapped_device
*md
)
2789 mutex_lock(&md
->suspend_lock
);
2790 __dm_internal_resume(md
);
2791 mutex_unlock(&md
->suspend_lock
);
2793 EXPORT_SYMBOL_GPL(dm_internal_resume
);
2796 * Fast variants of internal suspend/resume hold md->suspend_lock,
2797 * which prevents interaction with userspace-driven suspend.
2800 void dm_internal_suspend_fast(struct mapped_device
*md
)
2802 mutex_lock(&md
->suspend_lock
);
2803 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
2806 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2807 synchronize_srcu(&md
->io_barrier
);
2808 flush_workqueue(md
->wq
);
2809 dm_wait_for_completion(md
, TASK_UNINTERRUPTIBLE
);
2811 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast
);
2813 void dm_internal_resume_fast(struct mapped_device
*md
)
2815 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
2821 mutex_unlock(&md
->suspend_lock
);
2823 EXPORT_SYMBOL_GPL(dm_internal_resume_fast
);
2825 /*-----------------------------------------------------------------
2826 * Event notification.
2827 *---------------------------------------------------------------*/
2828 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
2831 char udev_cookie
[DM_COOKIE_LENGTH
];
2832 char *envp
[] = { udev_cookie
, NULL
};
2835 return kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
2837 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
2838 DM_COOKIE_ENV_VAR_NAME
, cookie
);
2839 return kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
,
2844 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
2846 return atomic_add_return(1, &md
->uevent_seq
);
2849 uint32_t dm_get_event_nr(struct mapped_device
*md
)
2851 return atomic_read(&md
->event_nr
);
2854 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
2856 return wait_event_interruptible(md
->eventq
,
2857 (event_nr
!= atomic_read(&md
->event_nr
)));
2860 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
2862 unsigned long flags
;
2864 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2865 list_add(elist
, &md
->uevent_list
);
2866 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2870 * The gendisk is only valid as long as you have a reference
2873 struct gendisk
*dm_disk(struct mapped_device
*md
)
2877 EXPORT_SYMBOL_GPL(dm_disk
);
2879 struct kobject
*dm_kobject(struct mapped_device
*md
)
2881 return &md
->kobj_holder
.kobj
;
2884 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
2886 struct mapped_device
*md
;
2888 md
= container_of(kobj
, struct mapped_device
, kobj_holder
.kobj
);
2890 spin_lock(&_minor_lock
);
2891 if (test_bit(DMF_FREEING
, &md
->flags
) || dm_deleting_md(md
)) {
2897 spin_unlock(&_minor_lock
);
2902 int dm_suspended_md(struct mapped_device
*md
)
2904 return test_bit(DMF_SUSPENDED
, &md
->flags
);
2907 int dm_suspended_internally_md(struct mapped_device
*md
)
2909 return test_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2912 int dm_test_deferred_remove_flag(struct mapped_device
*md
)
2914 return test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
2917 int dm_suspended(struct dm_target
*ti
)
2919 return dm_suspended_md(dm_table_get_md(ti
->table
));
2921 EXPORT_SYMBOL_GPL(dm_suspended
);
2923 int dm_noflush_suspending(struct dm_target
*ti
)
2925 return __noflush_suspending(dm_table_get_md(ti
->table
));
2927 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
2929 struct dm_md_mempools
*dm_alloc_md_mempools(struct mapped_device
*md
, enum dm_queue_mode type
,
2930 unsigned integrity
, unsigned per_io_data_size
,
2931 unsigned min_pool_size
)
2933 struct dm_md_mempools
*pools
= kzalloc_node(sizeof(*pools
), GFP_KERNEL
, md
->numa_node_id
);
2934 unsigned int pool_size
= 0;
2935 unsigned int front_pad
, io_front_pad
;
2942 case DM_TYPE_BIO_BASED
:
2943 case DM_TYPE_DAX_BIO_BASED
:
2944 case DM_TYPE_NVME_BIO_BASED
:
2945 pool_size
= max(dm_get_reserved_bio_based_ios(), min_pool_size
);
2946 front_pad
= roundup(per_io_data_size
, __alignof__(struct dm_target_io
)) + offsetof(struct dm_target_io
, clone
);
2947 io_front_pad
= roundup(front_pad
, __alignof__(struct dm_io
)) + offsetof(struct dm_io
, tio
);
2948 ret
= bioset_init(&pools
->io_bs
, pool_size
, io_front_pad
, 0);
2951 if (integrity
&& bioset_integrity_create(&pools
->io_bs
, pool_size
))
2954 case DM_TYPE_REQUEST_BASED
:
2955 case DM_TYPE_MQ_REQUEST_BASED
:
2956 pool_size
= max(dm_get_reserved_rq_based_ios(), min_pool_size
);
2957 front_pad
= offsetof(struct dm_rq_clone_bio_info
, clone
);
2958 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2964 ret
= bioset_init(&pools
->bs
, pool_size
, front_pad
, 0);
2968 if (integrity
&& bioset_integrity_create(&pools
->bs
, pool_size
))
2974 dm_free_md_mempools(pools
);
2979 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
2984 bioset_exit(&pools
->bs
);
2985 bioset_exit(&pools
->io_bs
);
2997 static int dm_call_pr(struct block_device
*bdev
, iterate_devices_callout_fn fn
,
3000 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3001 struct dm_table
*table
;
3002 struct dm_target
*ti
;
3003 int ret
= -ENOTTY
, srcu_idx
;
3005 table
= dm_get_live_table(md
, &srcu_idx
);
3006 if (!table
|| !dm_table_get_size(table
))
3009 /* We only support devices that have a single target */
3010 if (dm_table_get_num_targets(table
) != 1)
3012 ti
= dm_table_get_target(table
, 0);
3015 if (!ti
->type
->iterate_devices
)
3018 ret
= ti
->type
->iterate_devices(ti
, fn
, data
);
3020 dm_put_live_table(md
, srcu_idx
);
3025 * For register / unregister we need to manually call out to every path.
3027 static int __dm_pr_register(struct dm_target
*ti
, struct dm_dev
*dev
,
3028 sector_t start
, sector_t len
, void *data
)
3030 struct dm_pr
*pr
= data
;
3031 const struct pr_ops
*ops
= dev
->bdev
->bd_disk
->fops
->pr_ops
;
3033 if (!ops
|| !ops
->pr_register
)
3035 return ops
->pr_register(dev
->bdev
, pr
->old_key
, pr
->new_key
, pr
->flags
);
3038 static int dm_pr_register(struct block_device
*bdev
, u64 old_key
, u64 new_key
,
3049 ret
= dm_call_pr(bdev
, __dm_pr_register
, &pr
);
3050 if (ret
&& new_key
) {
3051 /* unregister all paths if we failed to register any path */
3052 pr
.old_key
= new_key
;
3055 pr
.fail_early
= false;
3056 dm_call_pr(bdev
, __dm_pr_register
, &pr
);
3062 static int dm_pr_reserve(struct block_device
*bdev
, u64 key
, enum pr_type type
,
3065 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3066 const struct pr_ops
*ops
;
3069 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3073 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3074 if (ops
&& ops
->pr_reserve
)
3075 r
= ops
->pr_reserve(bdev
, key
, type
, flags
);
3079 dm_unprepare_ioctl(md
, srcu_idx
);
3083 static int dm_pr_release(struct block_device
*bdev
, u64 key
, enum pr_type type
)
3085 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3086 const struct pr_ops
*ops
;
3089 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3093 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3094 if (ops
&& ops
->pr_release
)
3095 r
= ops
->pr_release(bdev
, key
, type
);
3099 dm_unprepare_ioctl(md
, srcu_idx
);
3103 static int dm_pr_preempt(struct block_device
*bdev
, u64 old_key
, u64 new_key
,
3104 enum pr_type type
, bool abort
)
3106 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3107 const struct pr_ops
*ops
;
3110 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3114 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3115 if (ops
&& ops
->pr_preempt
)
3116 r
= ops
->pr_preempt(bdev
, old_key
, new_key
, type
, abort
);
3120 dm_unprepare_ioctl(md
, srcu_idx
);
3124 static int dm_pr_clear(struct block_device
*bdev
, u64 key
)
3126 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3127 const struct pr_ops
*ops
;
3130 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3134 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3135 if (ops
&& ops
->pr_clear
)
3136 r
= ops
->pr_clear(bdev
, key
);
3140 dm_unprepare_ioctl(md
, srcu_idx
);
3144 static const struct pr_ops dm_pr_ops
= {
3145 .pr_register
= dm_pr_register
,
3146 .pr_reserve
= dm_pr_reserve
,
3147 .pr_release
= dm_pr_release
,
3148 .pr_preempt
= dm_pr_preempt
,
3149 .pr_clear
= dm_pr_clear
,
3152 static const struct block_device_operations dm_blk_dops
= {
3153 .open
= dm_blk_open
,
3154 .release
= dm_blk_close
,
3155 .ioctl
= dm_blk_ioctl
,
3156 .getgeo
= dm_blk_getgeo
,
3157 .pr_ops
= &dm_pr_ops
,
3158 .owner
= THIS_MODULE
3161 static const struct dax_operations dm_dax_ops
= {
3162 .direct_access
= dm_dax_direct_access
,
3163 .copy_from_iter
= dm_dax_copy_from_iter
,
3164 .copy_to_iter
= dm_dax_copy_to_iter
,
3170 module_init(dm_init
);
3171 module_exit(dm_exit
);
3173 module_param(major
, uint
, 0);
3174 MODULE_PARM_DESC(major
, "The major number of the device mapper");
3176 module_param(reserved_bio_based_ios
, uint
, S_IRUGO
| S_IWUSR
);
3177 MODULE_PARM_DESC(reserved_bio_based_ios
, "Reserved IOs in bio-based mempools");
3179 module_param(dm_numa_node
, int, S_IRUGO
| S_IWUSR
);
3180 MODULE_PARM_DESC(dm_numa_node
, "NUMA node for DM device memory allocations");
3182 MODULE_DESCRIPTION(DM_NAME
" driver");
3183 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3184 MODULE_LICENSE("GPL");