staging: rtl8188eu: rename HalSetBrateCfg() - style
[linux/fpc-iii.git] / drivers / md / dm.c
blob20f7e4ef534227c1141e0dfb6da155359ede25cd
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
29 #define DM_MSG_PREFIX "core"
32 * Cookies are numeric values sent with CHANGE and REMOVE
33 * uevents while resuming, removing or renaming the device.
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
38 static const char *_name = DM_NAME;
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
43 static DEFINE_IDR(_minor_idr);
45 static DEFINE_SPINLOCK(_minor_lock);
47 static void do_deferred_remove(struct work_struct *w);
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
51 static struct workqueue_struct *deferred_remove_workqueue;
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
56 void dm_issue_global_event(void)
58 atomic_inc(&dm_global_event_nr);
59 wake_up(&dm_global_eventq);
63 * One of these is allocated (on-stack) per original bio.
65 struct clone_info {
66 struct dm_table *map;
67 struct bio *bio;
68 struct dm_io *io;
69 sector_t sector;
70 unsigned sector_count;
74 * One of these is allocated per clone bio.
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 unsigned magic;
79 struct dm_io *io;
80 struct dm_target *ti;
81 unsigned target_bio_nr;
82 unsigned *len_ptr;
83 bool inside_dm_io;
84 struct bio clone;
88 * One of these is allocated per original bio.
89 * It contains the first clone used for that original.
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 unsigned magic;
94 struct mapped_device *md;
95 blk_status_t status;
96 atomic_t io_count;
97 struct bio *orig_bio;
98 unsigned long start_time;
99 spinlock_t endio_lock;
100 struct dm_stats_aux stats_aux;
101 /* last member of dm_target_io is 'struct bio' */
102 struct dm_target_io tio;
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 if (!tio->inside_dm_io)
109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
116 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 if (io->magic == DM_IO_MAGIC)
118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 BUG_ON(io->magic != DM_TIO_MAGIC);
120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
130 #define MINOR_ALLOCED ((void *)-1)
133 * Bits for the md->flags field.
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
148 * For mempools pre-allocation at the table loading time.
150 struct dm_md_mempools {
151 struct bio_set bs;
152 struct bio_set io_bs;
155 struct table_device {
156 struct list_head list;
157 refcount_t count;
158 struct dm_dev dm_dev;
161 static struct kmem_cache *_rq_tio_cache;
162 static struct kmem_cache *_rq_cache;
165 * Bio-based DM's mempools' reserved IOs set by the user.
167 #define RESERVED_BIO_BASED_IOS 16
168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
170 static int __dm_get_module_param_int(int *module_param, int min, int max)
172 int param = READ_ONCE(*module_param);
173 int modified_param = 0;
174 bool modified = true;
176 if (param < min)
177 modified_param = min;
178 else if (param > max)
179 modified_param = max;
180 else
181 modified = false;
183 if (modified) {
184 (void)cmpxchg(module_param, param, modified_param);
185 param = modified_param;
188 return param;
191 unsigned __dm_get_module_param(unsigned *module_param,
192 unsigned def, unsigned max)
194 unsigned param = READ_ONCE(*module_param);
195 unsigned modified_param = 0;
197 if (!param)
198 modified_param = def;
199 else if (param > max)
200 modified_param = max;
202 if (modified_param) {
203 (void)cmpxchg(module_param, param, modified_param);
204 param = modified_param;
207 return param;
210 unsigned dm_get_reserved_bio_based_ios(void)
212 return __dm_get_module_param(&reserved_bio_based_ios,
213 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
217 static unsigned dm_get_numa_node(void)
219 return __dm_get_module_param_int(&dm_numa_node,
220 DM_NUMA_NODE, num_online_nodes() - 1);
223 static int __init local_init(void)
225 int r = -ENOMEM;
227 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
228 if (!_rq_tio_cache)
229 return r;
231 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
232 __alignof__(struct request), 0, NULL);
233 if (!_rq_cache)
234 goto out_free_rq_tio_cache;
236 r = dm_uevent_init();
237 if (r)
238 goto out_free_rq_cache;
240 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
241 if (!deferred_remove_workqueue) {
242 r = -ENOMEM;
243 goto out_uevent_exit;
246 _major = major;
247 r = register_blkdev(_major, _name);
248 if (r < 0)
249 goto out_free_workqueue;
251 if (!_major)
252 _major = r;
254 return 0;
256 out_free_workqueue:
257 destroy_workqueue(deferred_remove_workqueue);
258 out_uevent_exit:
259 dm_uevent_exit();
260 out_free_rq_cache:
261 kmem_cache_destroy(_rq_cache);
262 out_free_rq_tio_cache:
263 kmem_cache_destroy(_rq_tio_cache);
265 return r;
268 static void local_exit(void)
270 flush_scheduled_work();
271 destroy_workqueue(deferred_remove_workqueue);
273 kmem_cache_destroy(_rq_cache);
274 kmem_cache_destroy(_rq_tio_cache);
275 unregister_blkdev(_major, _name);
276 dm_uevent_exit();
278 _major = 0;
280 DMINFO("cleaned up");
283 static int (*_inits[])(void) __initdata = {
284 local_init,
285 dm_target_init,
286 dm_linear_init,
287 dm_stripe_init,
288 dm_io_init,
289 dm_kcopyd_init,
290 dm_interface_init,
291 dm_statistics_init,
294 static void (*_exits[])(void) = {
295 local_exit,
296 dm_target_exit,
297 dm_linear_exit,
298 dm_stripe_exit,
299 dm_io_exit,
300 dm_kcopyd_exit,
301 dm_interface_exit,
302 dm_statistics_exit,
305 static int __init dm_init(void)
307 const int count = ARRAY_SIZE(_inits);
309 int r, i;
311 for (i = 0; i < count; i++) {
312 r = _inits[i]();
313 if (r)
314 goto bad;
317 return 0;
319 bad:
320 while (i--)
321 _exits[i]();
323 return r;
326 static void __exit dm_exit(void)
328 int i = ARRAY_SIZE(_exits);
330 while (i--)
331 _exits[i]();
334 * Should be empty by this point.
336 idr_destroy(&_minor_idr);
340 * Block device functions
342 int dm_deleting_md(struct mapped_device *md)
344 return test_bit(DMF_DELETING, &md->flags);
347 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
349 struct mapped_device *md;
351 spin_lock(&_minor_lock);
353 md = bdev->bd_disk->private_data;
354 if (!md)
355 goto out;
357 if (test_bit(DMF_FREEING, &md->flags) ||
358 dm_deleting_md(md)) {
359 md = NULL;
360 goto out;
363 dm_get(md);
364 atomic_inc(&md->open_count);
365 out:
366 spin_unlock(&_minor_lock);
368 return md ? 0 : -ENXIO;
371 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
373 struct mapped_device *md;
375 spin_lock(&_minor_lock);
377 md = disk->private_data;
378 if (WARN_ON(!md))
379 goto out;
381 if (atomic_dec_and_test(&md->open_count) &&
382 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
383 queue_work(deferred_remove_workqueue, &deferred_remove_work);
385 dm_put(md);
386 out:
387 spin_unlock(&_minor_lock);
390 int dm_open_count(struct mapped_device *md)
392 return atomic_read(&md->open_count);
396 * Guarantees nothing is using the device before it's deleted.
398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
400 int r = 0;
402 spin_lock(&_minor_lock);
404 if (dm_open_count(md)) {
405 r = -EBUSY;
406 if (mark_deferred)
407 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
408 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
409 r = -EEXIST;
410 else
411 set_bit(DMF_DELETING, &md->flags);
413 spin_unlock(&_minor_lock);
415 return r;
418 int dm_cancel_deferred_remove(struct mapped_device *md)
420 int r = 0;
422 spin_lock(&_minor_lock);
424 if (test_bit(DMF_DELETING, &md->flags))
425 r = -EBUSY;
426 else
427 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
429 spin_unlock(&_minor_lock);
431 return r;
434 static void do_deferred_remove(struct work_struct *w)
436 dm_deferred_remove();
439 sector_t dm_get_size(struct mapped_device *md)
441 return get_capacity(md->disk);
444 struct request_queue *dm_get_md_queue(struct mapped_device *md)
446 return md->queue;
449 struct dm_stats *dm_get_stats(struct mapped_device *md)
451 return &md->stats;
454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
456 struct mapped_device *md = bdev->bd_disk->private_data;
458 return dm_get_geometry(md, geo);
461 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
462 struct block_device **bdev)
463 __acquires(md->io_barrier)
465 struct dm_target *tgt;
466 struct dm_table *map;
467 int r;
469 retry:
470 r = -ENOTTY;
471 map = dm_get_live_table(md, srcu_idx);
472 if (!map || !dm_table_get_size(map))
473 return r;
475 /* We only support devices that have a single target */
476 if (dm_table_get_num_targets(map) != 1)
477 return r;
479 tgt = dm_table_get_target(map, 0);
480 if (!tgt->type->prepare_ioctl)
481 return r;
483 if (dm_suspended_md(md))
484 return -EAGAIN;
486 r = tgt->type->prepare_ioctl(tgt, bdev);
487 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
488 dm_put_live_table(md, *srcu_idx);
489 msleep(10);
490 goto retry;
493 return r;
496 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
497 __releases(md->io_barrier)
499 dm_put_live_table(md, srcu_idx);
502 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
503 unsigned int cmd, unsigned long arg)
505 struct mapped_device *md = bdev->bd_disk->private_data;
506 int r, srcu_idx;
508 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
509 if (r < 0)
510 goto out;
512 if (r > 0) {
514 * Target determined this ioctl is being issued against a
515 * subset of the parent bdev; require extra privileges.
517 if (!capable(CAP_SYS_RAWIO)) {
518 DMWARN_LIMIT(
519 "%s: sending ioctl %x to DM device without required privilege.",
520 current->comm, cmd);
521 r = -ENOIOCTLCMD;
522 goto out;
526 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
527 out:
528 dm_unprepare_ioctl(md, srcu_idx);
529 return r;
532 static void start_io_acct(struct dm_io *io);
534 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
536 struct dm_io *io;
537 struct dm_target_io *tio;
538 struct bio *clone;
540 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
541 if (!clone)
542 return NULL;
544 tio = container_of(clone, struct dm_target_io, clone);
545 tio->inside_dm_io = true;
546 tio->io = NULL;
548 io = container_of(tio, struct dm_io, tio);
549 io->magic = DM_IO_MAGIC;
550 io->status = 0;
551 atomic_set(&io->io_count, 1);
552 io->orig_bio = bio;
553 io->md = md;
554 spin_lock_init(&io->endio_lock);
556 start_io_acct(io);
558 return io;
561 static void free_io(struct mapped_device *md, struct dm_io *io)
563 bio_put(&io->tio.clone);
566 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
567 unsigned target_bio_nr, gfp_t gfp_mask)
569 struct dm_target_io *tio;
571 if (!ci->io->tio.io) {
572 /* the dm_target_io embedded in ci->io is available */
573 tio = &ci->io->tio;
574 } else {
575 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
576 if (!clone)
577 return NULL;
579 tio = container_of(clone, struct dm_target_io, clone);
580 tio->inside_dm_io = false;
583 tio->magic = DM_TIO_MAGIC;
584 tio->io = ci->io;
585 tio->ti = ti;
586 tio->target_bio_nr = target_bio_nr;
588 return tio;
591 static void free_tio(struct dm_target_io *tio)
593 if (tio->inside_dm_io)
594 return;
595 bio_put(&tio->clone);
598 int md_in_flight(struct mapped_device *md)
600 return atomic_read(&md->pending[READ]) +
601 atomic_read(&md->pending[WRITE]);
604 static void start_io_acct(struct dm_io *io)
606 struct mapped_device *md = io->md;
607 struct bio *bio = io->orig_bio;
608 int rw = bio_data_dir(bio);
610 io->start_time = jiffies;
612 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
613 &dm_disk(md)->part0);
615 atomic_set(&dm_disk(md)->part0.in_flight[rw],
616 atomic_inc_return(&md->pending[rw]));
618 if (unlikely(dm_stats_used(&md->stats)))
619 dm_stats_account_io(&md->stats, bio_data_dir(bio),
620 bio->bi_iter.bi_sector, bio_sectors(bio),
621 false, 0, &io->stats_aux);
624 static void end_io_acct(struct dm_io *io)
626 struct mapped_device *md = io->md;
627 struct bio *bio = io->orig_bio;
628 unsigned long duration = jiffies - io->start_time;
629 int pending;
630 int rw = bio_data_dir(bio);
632 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
633 io->start_time);
635 if (unlikely(dm_stats_used(&md->stats)))
636 dm_stats_account_io(&md->stats, bio_data_dir(bio),
637 bio->bi_iter.bi_sector, bio_sectors(bio),
638 true, duration, &io->stats_aux);
641 * After this is decremented the bio must not be touched if it is
642 * a flush.
644 pending = atomic_dec_return(&md->pending[rw]);
645 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
646 pending += atomic_read(&md->pending[rw^0x1]);
648 /* nudge anyone waiting on suspend queue */
649 if (!pending)
650 wake_up(&md->wait);
654 * Add the bio to the list of deferred io.
656 static void queue_io(struct mapped_device *md, struct bio *bio)
658 unsigned long flags;
660 spin_lock_irqsave(&md->deferred_lock, flags);
661 bio_list_add(&md->deferred, bio);
662 spin_unlock_irqrestore(&md->deferred_lock, flags);
663 queue_work(md->wq, &md->work);
667 * Everyone (including functions in this file), should use this
668 * function to access the md->map field, and make sure they call
669 * dm_put_live_table() when finished.
671 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
673 *srcu_idx = srcu_read_lock(&md->io_barrier);
675 return srcu_dereference(md->map, &md->io_barrier);
678 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
680 srcu_read_unlock(&md->io_barrier, srcu_idx);
683 void dm_sync_table(struct mapped_device *md)
685 synchronize_srcu(&md->io_barrier);
686 synchronize_rcu_expedited();
690 * A fast alternative to dm_get_live_table/dm_put_live_table.
691 * The caller must not block between these two functions.
693 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
695 rcu_read_lock();
696 return rcu_dereference(md->map);
699 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
701 rcu_read_unlock();
704 static char *_dm_claim_ptr = "I belong to device-mapper";
707 * Open a table device so we can use it as a map destination.
709 static int open_table_device(struct table_device *td, dev_t dev,
710 struct mapped_device *md)
712 struct block_device *bdev;
714 int r;
716 BUG_ON(td->dm_dev.bdev);
718 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
719 if (IS_ERR(bdev))
720 return PTR_ERR(bdev);
722 r = bd_link_disk_holder(bdev, dm_disk(md));
723 if (r) {
724 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
725 return r;
728 td->dm_dev.bdev = bdev;
729 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
730 return 0;
734 * Close a table device that we've been using.
736 static void close_table_device(struct table_device *td, struct mapped_device *md)
738 if (!td->dm_dev.bdev)
739 return;
741 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
742 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
743 put_dax(td->dm_dev.dax_dev);
744 td->dm_dev.bdev = NULL;
745 td->dm_dev.dax_dev = NULL;
748 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
749 fmode_t mode) {
750 struct table_device *td;
752 list_for_each_entry(td, l, list)
753 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
754 return td;
756 return NULL;
759 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
760 struct dm_dev **result) {
761 int r;
762 struct table_device *td;
764 mutex_lock(&md->table_devices_lock);
765 td = find_table_device(&md->table_devices, dev, mode);
766 if (!td) {
767 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
768 if (!td) {
769 mutex_unlock(&md->table_devices_lock);
770 return -ENOMEM;
773 td->dm_dev.mode = mode;
774 td->dm_dev.bdev = NULL;
776 if ((r = open_table_device(td, dev, md))) {
777 mutex_unlock(&md->table_devices_lock);
778 kfree(td);
779 return r;
782 format_dev_t(td->dm_dev.name, dev);
784 refcount_set(&td->count, 1);
785 list_add(&td->list, &md->table_devices);
786 } else {
787 refcount_inc(&td->count);
789 mutex_unlock(&md->table_devices_lock);
791 *result = &td->dm_dev;
792 return 0;
794 EXPORT_SYMBOL_GPL(dm_get_table_device);
796 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
798 struct table_device *td = container_of(d, struct table_device, dm_dev);
800 mutex_lock(&md->table_devices_lock);
801 if (refcount_dec_and_test(&td->count)) {
802 close_table_device(td, md);
803 list_del(&td->list);
804 kfree(td);
806 mutex_unlock(&md->table_devices_lock);
808 EXPORT_SYMBOL(dm_put_table_device);
810 static void free_table_devices(struct list_head *devices)
812 struct list_head *tmp, *next;
814 list_for_each_safe(tmp, next, devices) {
815 struct table_device *td = list_entry(tmp, struct table_device, list);
817 DMWARN("dm_destroy: %s still exists with %d references",
818 td->dm_dev.name, refcount_read(&td->count));
819 kfree(td);
824 * Get the geometry associated with a dm device
826 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
828 *geo = md->geometry;
830 return 0;
834 * Set the geometry of a device.
836 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
838 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
840 if (geo->start > sz) {
841 DMWARN("Start sector is beyond the geometry limits.");
842 return -EINVAL;
845 md->geometry = *geo;
847 return 0;
850 static int __noflush_suspending(struct mapped_device *md)
852 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
856 * Decrements the number of outstanding ios that a bio has been
857 * cloned into, completing the original io if necc.
859 static void dec_pending(struct dm_io *io, blk_status_t error)
861 unsigned long flags;
862 blk_status_t io_error;
863 struct bio *bio;
864 struct mapped_device *md = io->md;
866 /* Push-back supersedes any I/O errors */
867 if (unlikely(error)) {
868 spin_lock_irqsave(&io->endio_lock, flags);
869 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
870 io->status = error;
871 spin_unlock_irqrestore(&io->endio_lock, flags);
874 if (atomic_dec_and_test(&io->io_count)) {
875 if (io->status == BLK_STS_DM_REQUEUE) {
877 * Target requested pushing back the I/O.
879 spin_lock_irqsave(&md->deferred_lock, flags);
880 if (__noflush_suspending(md))
881 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
882 bio_list_add_head(&md->deferred, io->orig_bio);
883 else
884 /* noflush suspend was interrupted. */
885 io->status = BLK_STS_IOERR;
886 spin_unlock_irqrestore(&md->deferred_lock, flags);
889 io_error = io->status;
890 bio = io->orig_bio;
891 end_io_acct(io);
892 free_io(md, io);
894 if (io_error == BLK_STS_DM_REQUEUE)
895 return;
897 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
899 * Preflush done for flush with data, reissue
900 * without REQ_PREFLUSH.
902 bio->bi_opf &= ~REQ_PREFLUSH;
903 queue_io(md, bio);
904 } else {
905 /* done with normal IO or empty flush */
906 if (io_error)
907 bio->bi_status = io_error;
908 bio_endio(bio);
913 void disable_write_same(struct mapped_device *md)
915 struct queue_limits *limits = dm_get_queue_limits(md);
917 /* device doesn't really support WRITE SAME, disable it */
918 limits->max_write_same_sectors = 0;
921 void disable_write_zeroes(struct mapped_device *md)
923 struct queue_limits *limits = dm_get_queue_limits(md);
925 /* device doesn't really support WRITE ZEROES, disable it */
926 limits->max_write_zeroes_sectors = 0;
929 static void clone_endio(struct bio *bio)
931 blk_status_t error = bio->bi_status;
932 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
933 struct dm_io *io = tio->io;
934 struct mapped_device *md = tio->io->md;
935 dm_endio_fn endio = tio->ti->type->end_io;
937 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
938 if (bio_op(bio) == REQ_OP_WRITE_SAME &&
939 !bio->bi_disk->queue->limits.max_write_same_sectors)
940 disable_write_same(md);
941 if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
942 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
943 disable_write_zeroes(md);
946 if (endio) {
947 int r = endio(tio->ti, bio, &error);
948 switch (r) {
949 case DM_ENDIO_REQUEUE:
950 error = BLK_STS_DM_REQUEUE;
951 /*FALLTHRU*/
952 case DM_ENDIO_DONE:
953 break;
954 case DM_ENDIO_INCOMPLETE:
955 /* The target will handle the io */
956 return;
957 default:
958 DMWARN("unimplemented target endio return value: %d", r);
959 BUG();
963 free_tio(tio);
964 dec_pending(io, error);
968 * Return maximum size of I/O possible at the supplied sector up to the current
969 * target boundary.
971 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
973 sector_t target_offset = dm_target_offset(ti, sector);
975 return ti->len - target_offset;
978 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
980 sector_t len = max_io_len_target_boundary(sector, ti);
981 sector_t offset, max_len;
984 * Does the target need to split even further?
986 if (ti->max_io_len) {
987 offset = dm_target_offset(ti, sector);
988 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
989 max_len = sector_div(offset, ti->max_io_len);
990 else
991 max_len = offset & (ti->max_io_len - 1);
992 max_len = ti->max_io_len - max_len;
994 if (len > max_len)
995 len = max_len;
998 return len;
1001 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1003 if (len > UINT_MAX) {
1004 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1005 (unsigned long long)len, UINT_MAX);
1006 ti->error = "Maximum size of target IO is too large";
1007 return -EINVAL;
1011 * BIO based queue uses its own splitting. When multipage bvecs
1012 * is switched on, size of the incoming bio may be too big to
1013 * be handled in some targets, such as crypt.
1015 * When these targets are ready for the big bio, we can remove
1016 * the limit.
1018 ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1020 return 0;
1022 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1024 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1025 sector_t sector, int *srcu_idx)
1026 __acquires(md->io_barrier)
1028 struct dm_table *map;
1029 struct dm_target *ti;
1031 map = dm_get_live_table(md, srcu_idx);
1032 if (!map)
1033 return NULL;
1035 ti = dm_table_find_target(map, sector);
1036 if (!dm_target_is_valid(ti))
1037 return NULL;
1039 return ti;
1042 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1043 long nr_pages, void **kaddr, pfn_t *pfn)
1045 struct mapped_device *md = dax_get_private(dax_dev);
1046 sector_t sector = pgoff * PAGE_SECTORS;
1047 struct dm_target *ti;
1048 long len, ret = -EIO;
1049 int srcu_idx;
1051 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1053 if (!ti)
1054 goto out;
1055 if (!ti->type->direct_access)
1056 goto out;
1057 len = max_io_len(sector, ti) / PAGE_SECTORS;
1058 if (len < 1)
1059 goto out;
1060 nr_pages = min(len, nr_pages);
1061 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1063 out:
1064 dm_put_live_table(md, srcu_idx);
1066 return ret;
1069 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1070 void *addr, size_t bytes, struct iov_iter *i)
1072 struct mapped_device *md = dax_get_private(dax_dev);
1073 sector_t sector = pgoff * PAGE_SECTORS;
1074 struct dm_target *ti;
1075 long ret = 0;
1076 int srcu_idx;
1078 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1080 if (!ti)
1081 goto out;
1082 if (!ti->type->dax_copy_from_iter) {
1083 ret = copy_from_iter(addr, bytes, i);
1084 goto out;
1086 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1087 out:
1088 dm_put_live_table(md, srcu_idx);
1090 return ret;
1093 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1094 void *addr, size_t bytes, struct iov_iter *i)
1096 struct mapped_device *md = dax_get_private(dax_dev);
1097 sector_t sector = pgoff * PAGE_SECTORS;
1098 struct dm_target *ti;
1099 long ret = 0;
1100 int srcu_idx;
1102 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1104 if (!ti)
1105 goto out;
1106 if (!ti->type->dax_copy_to_iter) {
1107 ret = copy_to_iter(addr, bytes, i);
1108 goto out;
1110 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1111 out:
1112 dm_put_live_table(md, srcu_idx);
1114 return ret;
1118 * A target may call dm_accept_partial_bio only from the map routine. It is
1119 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1121 * dm_accept_partial_bio informs the dm that the target only wants to process
1122 * additional n_sectors sectors of the bio and the rest of the data should be
1123 * sent in a next bio.
1125 * A diagram that explains the arithmetics:
1126 * +--------------------+---------------+-------+
1127 * | 1 | 2 | 3 |
1128 * +--------------------+---------------+-------+
1130 * <-------------- *tio->len_ptr --------------->
1131 * <------- bi_size ------->
1132 * <-- n_sectors -->
1134 * Region 1 was already iterated over with bio_advance or similar function.
1135 * (it may be empty if the target doesn't use bio_advance)
1136 * Region 2 is the remaining bio size that the target wants to process.
1137 * (it may be empty if region 1 is non-empty, although there is no reason
1138 * to make it empty)
1139 * The target requires that region 3 is to be sent in the next bio.
1141 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1142 * the partially processed part (the sum of regions 1+2) must be the same for all
1143 * copies of the bio.
1145 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1147 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1148 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1149 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1150 BUG_ON(bi_size > *tio->len_ptr);
1151 BUG_ON(n_sectors > bi_size);
1152 *tio->len_ptr -= bi_size - n_sectors;
1153 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1155 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1158 * The zone descriptors obtained with a zone report indicate
1159 * zone positions within the target device. The zone descriptors
1160 * must be remapped to match their position within the dm device.
1161 * A target may call dm_remap_zone_report after completion of a
1162 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1163 * from the target device mapping to the dm device.
1165 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1167 #ifdef CONFIG_BLK_DEV_ZONED
1168 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1169 struct bio *report_bio = tio->io->orig_bio;
1170 struct blk_zone_report_hdr *hdr = NULL;
1171 struct blk_zone *zone;
1172 unsigned int nr_rep = 0;
1173 unsigned int ofst;
1174 struct bio_vec bvec;
1175 struct bvec_iter iter;
1176 void *addr;
1178 if (bio->bi_status)
1179 return;
1182 * Remap the start sector of the reported zones. For sequential zones,
1183 * also remap the write pointer position.
1185 bio_for_each_segment(bvec, report_bio, iter) {
1186 addr = kmap_atomic(bvec.bv_page);
1188 /* Remember the report header in the first page */
1189 if (!hdr) {
1190 hdr = addr;
1191 ofst = sizeof(struct blk_zone_report_hdr);
1192 } else
1193 ofst = 0;
1195 /* Set zones start sector */
1196 while (hdr->nr_zones && ofst < bvec.bv_len) {
1197 zone = addr + ofst;
1198 if (zone->start >= start + ti->len) {
1199 hdr->nr_zones = 0;
1200 break;
1202 zone->start = zone->start + ti->begin - start;
1203 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1204 if (zone->cond == BLK_ZONE_COND_FULL)
1205 zone->wp = zone->start + zone->len;
1206 else if (zone->cond == BLK_ZONE_COND_EMPTY)
1207 zone->wp = zone->start;
1208 else
1209 zone->wp = zone->wp + ti->begin - start;
1211 ofst += sizeof(struct blk_zone);
1212 hdr->nr_zones--;
1213 nr_rep++;
1216 if (addr != hdr)
1217 kunmap_atomic(addr);
1219 if (!hdr->nr_zones)
1220 break;
1223 if (hdr) {
1224 hdr->nr_zones = nr_rep;
1225 kunmap_atomic(hdr);
1228 bio_advance(report_bio, report_bio->bi_iter.bi_size);
1230 #else /* !CONFIG_BLK_DEV_ZONED */
1231 bio->bi_status = BLK_STS_NOTSUPP;
1232 #endif
1234 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1236 static blk_qc_t __map_bio(struct dm_target_io *tio)
1238 int r;
1239 sector_t sector;
1240 struct bio *clone = &tio->clone;
1241 struct dm_io *io = tio->io;
1242 struct mapped_device *md = io->md;
1243 struct dm_target *ti = tio->ti;
1244 blk_qc_t ret = BLK_QC_T_NONE;
1246 clone->bi_end_io = clone_endio;
1249 * Map the clone. If r == 0 we don't need to do
1250 * anything, the target has assumed ownership of
1251 * this io.
1253 atomic_inc(&io->io_count);
1254 sector = clone->bi_iter.bi_sector;
1256 r = ti->type->map(ti, clone);
1257 switch (r) {
1258 case DM_MAPIO_SUBMITTED:
1259 break;
1260 case DM_MAPIO_REMAPPED:
1261 /* the bio has been remapped so dispatch it */
1262 trace_block_bio_remap(clone->bi_disk->queue, clone,
1263 bio_dev(io->orig_bio), sector);
1264 if (md->type == DM_TYPE_NVME_BIO_BASED)
1265 ret = direct_make_request(clone);
1266 else
1267 ret = generic_make_request(clone);
1268 break;
1269 case DM_MAPIO_KILL:
1270 free_tio(tio);
1271 dec_pending(io, BLK_STS_IOERR);
1272 break;
1273 case DM_MAPIO_REQUEUE:
1274 free_tio(tio);
1275 dec_pending(io, BLK_STS_DM_REQUEUE);
1276 break;
1277 default:
1278 DMWARN("unimplemented target map return value: %d", r);
1279 BUG();
1282 return ret;
1285 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1287 bio->bi_iter.bi_sector = sector;
1288 bio->bi_iter.bi_size = to_bytes(len);
1292 * Creates a bio that consists of range of complete bvecs.
1294 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1295 sector_t sector, unsigned len)
1297 struct bio *clone = &tio->clone;
1299 __bio_clone_fast(clone, bio);
1301 if (unlikely(bio_integrity(bio) != NULL)) {
1302 int r;
1304 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1305 !dm_target_passes_integrity(tio->ti->type))) {
1306 DMWARN("%s: the target %s doesn't support integrity data.",
1307 dm_device_name(tio->io->md),
1308 tio->ti->type->name);
1309 return -EIO;
1312 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1313 if (r < 0)
1314 return r;
1317 if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1318 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1319 clone->bi_iter.bi_size = to_bytes(len);
1321 if (unlikely(bio_integrity(bio) != NULL))
1322 bio_integrity_trim(clone);
1324 return 0;
1327 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1328 struct dm_target *ti, unsigned num_bios)
1330 struct dm_target_io *tio;
1331 int try;
1333 if (!num_bios)
1334 return;
1336 if (num_bios == 1) {
1337 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1338 bio_list_add(blist, &tio->clone);
1339 return;
1342 for (try = 0; try < 2; try++) {
1343 int bio_nr;
1344 struct bio *bio;
1346 if (try)
1347 mutex_lock(&ci->io->md->table_devices_lock);
1348 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1349 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1350 if (!tio)
1351 break;
1353 bio_list_add(blist, &tio->clone);
1355 if (try)
1356 mutex_unlock(&ci->io->md->table_devices_lock);
1357 if (bio_nr == num_bios)
1358 return;
1360 while ((bio = bio_list_pop(blist))) {
1361 tio = container_of(bio, struct dm_target_io, clone);
1362 free_tio(tio);
1367 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1368 struct dm_target_io *tio, unsigned *len)
1370 struct bio *clone = &tio->clone;
1372 tio->len_ptr = len;
1374 __bio_clone_fast(clone, ci->bio);
1375 if (len)
1376 bio_setup_sector(clone, ci->sector, *len);
1378 return __map_bio(tio);
1381 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1382 unsigned num_bios, unsigned *len)
1384 struct bio_list blist = BIO_EMPTY_LIST;
1385 struct bio *bio;
1386 struct dm_target_io *tio;
1388 alloc_multiple_bios(&blist, ci, ti, num_bios);
1390 while ((bio = bio_list_pop(&blist))) {
1391 tio = container_of(bio, struct dm_target_io, clone);
1392 (void) __clone_and_map_simple_bio(ci, tio, len);
1396 static int __send_empty_flush(struct clone_info *ci)
1398 unsigned target_nr = 0;
1399 struct dm_target *ti;
1401 BUG_ON(bio_has_data(ci->bio));
1402 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1403 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1405 return 0;
1408 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1409 sector_t sector, unsigned *len)
1411 struct bio *bio = ci->bio;
1412 struct dm_target_io *tio;
1413 int r;
1415 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1416 tio->len_ptr = len;
1417 r = clone_bio(tio, bio, sector, *len);
1418 if (r < 0) {
1419 free_tio(tio);
1420 return r;
1422 (void) __map_bio(tio);
1424 return 0;
1427 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1429 static unsigned get_num_discard_bios(struct dm_target *ti)
1431 return ti->num_discard_bios;
1434 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1436 return ti->num_secure_erase_bios;
1439 static unsigned get_num_write_same_bios(struct dm_target *ti)
1441 return ti->num_write_same_bios;
1444 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1446 return ti->num_write_zeroes_bios;
1449 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1451 static bool is_split_required_for_discard(struct dm_target *ti)
1453 return ti->split_discard_bios;
1456 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1457 get_num_bios_fn get_num_bios,
1458 is_split_required_fn is_split_required)
1460 unsigned len;
1461 unsigned num_bios;
1464 * Even though the device advertised support for this type of
1465 * request, that does not mean every target supports it, and
1466 * reconfiguration might also have changed that since the
1467 * check was performed.
1469 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1470 if (!num_bios)
1471 return -EOPNOTSUPP;
1473 if (is_split_required && !is_split_required(ti))
1474 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1475 else
1476 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1478 __send_duplicate_bios(ci, ti, num_bios, &len);
1480 ci->sector += len;
1481 ci->sector_count -= len;
1483 return 0;
1486 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1488 return __send_changing_extent_only(ci, ti, get_num_discard_bios,
1489 is_split_required_for_discard);
1492 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1494 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios, NULL);
1497 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1499 return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
1502 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1504 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
1507 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1508 int *result)
1510 struct bio *bio = ci->bio;
1512 if (bio_op(bio) == REQ_OP_DISCARD)
1513 *result = __send_discard(ci, ti);
1514 else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1515 *result = __send_secure_erase(ci, ti);
1516 else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1517 *result = __send_write_same(ci, ti);
1518 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1519 *result = __send_write_zeroes(ci, ti);
1520 else
1521 return false;
1523 return true;
1527 * Select the correct strategy for processing a non-flush bio.
1529 static int __split_and_process_non_flush(struct clone_info *ci)
1531 struct bio *bio = ci->bio;
1532 struct dm_target *ti;
1533 unsigned len;
1534 int r;
1536 ti = dm_table_find_target(ci->map, ci->sector);
1537 if (!dm_target_is_valid(ti))
1538 return -EIO;
1540 if (unlikely(__process_abnormal_io(ci, ti, &r)))
1541 return r;
1543 if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1544 len = ci->sector_count;
1545 else
1546 len = min_t(sector_t, max_io_len(ci->sector, ti),
1547 ci->sector_count);
1549 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1550 if (r < 0)
1551 return r;
1553 ci->sector += len;
1554 ci->sector_count -= len;
1556 return 0;
1559 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1560 struct dm_table *map, struct bio *bio)
1562 ci->map = map;
1563 ci->io = alloc_io(md, bio);
1564 ci->sector = bio->bi_iter.bi_sector;
1568 * Entry point to split a bio into clones and submit them to the targets.
1570 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1571 struct dm_table *map, struct bio *bio)
1573 struct clone_info ci;
1574 blk_qc_t ret = BLK_QC_T_NONE;
1575 int error = 0;
1577 if (unlikely(!map)) {
1578 bio_io_error(bio);
1579 return ret;
1582 init_clone_info(&ci, md, map, bio);
1584 if (bio->bi_opf & REQ_PREFLUSH) {
1585 ci.bio = &ci.io->md->flush_bio;
1586 ci.sector_count = 0;
1587 error = __send_empty_flush(&ci);
1588 /* dec_pending submits any data associated with flush */
1589 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1590 ci.bio = bio;
1591 ci.sector_count = 0;
1592 error = __split_and_process_non_flush(&ci);
1593 } else {
1594 ci.bio = bio;
1595 ci.sector_count = bio_sectors(bio);
1596 while (ci.sector_count && !error) {
1597 error = __split_and_process_non_flush(&ci);
1598 if (current->bio_list && ci.sector_count && !error) {
1600 * Remainder must be passed to generic_make_request()
1601 * so that it gets handled *after* bios already submitted
1602 * have been completely processed.
1603 * We take a clone of the original to store in
1604 * ci.io->orig_bio to be used by end_io_acct() and
1605 * for dec_pending to use for completion handling.
1606 * As this path is not used for REQ_OP_ZONE_REPORT,
1607 * the usage of io->orig_bio in dm_remap_zone_report()
1608 * won't be affected by this reassignment.
1610 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1611 GFP_NOIO, &md->queue->bio_split);
1612 ci.io->orig_bio = b;
1613 bio_chain(b, bio);
1614 ret = generic_make_request(bio);
1615 break;
1620 /* drop the extra reference count */
1621 dec_pending(ci.io, errno_to_blk_status(error));
1622 return ret;
1626 * Optimized variant of __split_and_process_bio that leverages the
1627 * fact that targets that use it do _not_ have a need to split bios.
1629 static blk_qc_t __process_bio(struct mapped_device *md,
1630 struct dm_table *map, struct bio *bio)
1632 struct clone_info ci;
1633 blk_qc_t ret = BLK_QC_T_NONE;
1634 int error = 0;
1636 if (unlikely(!map)) {
1637 bio_io_error(bio);
1638 return ret;
1641 init_clone_info(&ci, md, map, bio);
1643 if (bio->bi_opf & REQ_PREFLUSH) {
1644 ci.bio = &ci.io->md->flush_bio;
1645 ci.sector_count = 0;
1646 error = __send_empty_flush(&ci);
1647 /* dec_pending submits any data associated with flush */
1648 } else {
1649 struct dm_target *ti = md->immutable_target;
1650 struct dm_target_io *tio;
1653 * Defend against IO still getting in during teardown
1654 * - as was seen for a time with nvme-fcloop
1656 if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) {
1657 error = -EIO;
1658 goto out;
1661 ci.bio = bio;
1662 ci.sector_count = bio_sectors(bio);
1663 if (unlikely(__process_abnormal_io(&ci, ti, &error)))
1664 goto out;
1666 tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1667 ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1669 out:
1670 /* drop the extra reference count */
1671 dec_pending(ci.io, errno_to_blk_status(error));
1672 return ret;
1675 typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *);
1677 static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio,
1678 process_bio_fn process_bio)
1680 struct mapped_device *md = q->queuedata;
1681 blk_qc_t ret = BLK_QC_T_NONE;
1682 int srcu_idx;
1683 struct dm_table *map;
1685 map = dm_get_live_table(md, &srcu_idx);
1687 /* if we're suspended, we have to queue this io for later */
1688 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1689 dm_put_live_table(md, srcu_idx);
1691 if (!(bio->bi_opf & REQ_RAHEAD))
1692 queue_io(md, bio);
1693 else
1694 bio_io_error(bio);
1695 return ret;
1698 ret = process_bio(md, map, bio);
1700 dm_put_live_table(md, srcu_idx);
1701 return ret;
1705 * The request function that remaps the bio to one target and
1706 * splits off any remainder.
1708 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1710 return __dm_make_request(q, bio, __split_and_process_bio);
1713 static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio)
1715 return __dm_make_request(q, bio, __process_bio);
1718 static int dm_any_congested(void *congested_data, int bdi_bits)
1720 int r = bdi_bits;
1721 struct mapped_device *md = congested_data;
1722 struct dm_table *map;
1724 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1725 if (dm_request_based(md)) {
1727 * With request-based DM we only need to check the
1728 * top-level queue for congestion.
1730 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1731 } else {
1732 map = dm_get_live_table_fast(md);
1733 if (map)
1734 r = dm_table_any_congested(map, bdi_bits);
1735 dm_put_live_table_fast(md);
1739 return r;
1742 /*-----------------------------------------------------------------
1743 * An IDR is used to keep track of allocated minor numbers.
1744 *---------------------------------------------------------------*/
1745 static void free_minor(int minor)
1747 spin_lock(&_minor_lock);
1748 idr_remove(&_minor_idr, minor);
1749 spin_unlock(&_minor_lock);
1753 * See if the device with a specific minor # is free.
1755 static int specific_minor(int minor)
1757 int r;
1759 if (minor >= (1 << MINORBITS))
1760 return -EINVAL;
1762 idr_preload(GFP_KERNEL);
1763 spin_lock(&_minor_lock);
1765 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1767 spin_unlock(&_minor_lock);
1768 idr_preload_end();
1769 if (r < 0)
1770 return r == -ENOSPC ? -EBUSY : r;
1771 return 0;
1774 static int next_free_minor(int *minor)
1776 int r;
1778 idr_preload(GFP_KERNEL);
1779 spin_lock(&_minor_lock);
1781 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1783 spin_unlock(&_minor_lock);
1784 idr_preload_end();
1785 if (r < 0)
1786 return r;
1787 *minor = r;
1788 return 0;
1791 static const struct block_device_operations dm_blk_dops;
1792 static const struct dax_operations dm_dax_ops;
1794 static void dm_wq_work(struct work_struct *work);
1796 static void dm_init_normal_md_queue(struct mapped_device *md)
1798 md->use_blk_mq = false;
1801 * Initialize aspects of queue that aren't relevant for blk-mq
1803 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1806 static void cleanup_mapped_device(struct mapped_device *md)
1808 if (md->wq)
1809 destroy_workqueue(md->wq);
1810 if (md->kworker_task)
1811 kthread_stop(md->kworker_task);
1812 bioset_exit(&md->bs);
1813 bioset_exit(&md->io_bs);
1815 if (md->dax_dev) {
1816 kill_dax(md->dax_dev);
1817 put_dax(md->dax_dev);
1818 md->dax_dev = NULL;
1821 if (md->disk) {
1822 spin_lock(&_minor_lock);
1823 md->disk->private_data = NULL;
1824 spin_unlock(&_minor_lock);
1825 del_gendisk(md->disk);
1826 put_disk(md->disk);
1829 if (md->queue)
1830 blk_cleanup_queue(md->queue);
1832 cleanup_srcu_struct(&md->io_barrier);
1834 if (md->bdev) {
1835 bdput(md->bdev);
1836 md->bdev = NULL;
1839 mutex_destroy(&md->suspend_lock);
1840 mutex_destroy(&md->type_lock);
1841 mutex_destroy(&md->table_devices_lock);
1843 dm_mq_cleanup_mapped_device(md);
1847 * Allocate and initialise a blank device with a given minor.
1849 static struct mapped_device *alloc_dev(int minor)
1851 int r, numa_node_id = dm_get_numa_node();
1852 struct dax_device *dax_dev = NULL;
1853 struct mapped_device *md;
1854 void *old_md;
1856 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1857 if (!md) {
1858 DMWARN("unable to allocate device, out of memory.");
1859 return NULL;
1862 if (!try_module_get(THIS_MODULE))
1863 goto bad_module_get;
1865 /* get a minor number for the dev */
1866 if (minor == DM_ANY_MINOR)
1867 r = next_free_minor(&minor);
1868 else
1869 r = specific_minor(minor);
1870 if (r < 0)
1871 goto bad_minor;
1873 r = init_srcu_struct(&md->io_barrier);
1874 if (r < 0)
1875 goto bad_io_barrier;
1877 md->numa_node_id = numa_node_id;
1878 md->use_blk_mq = dm_use_blk_mq_default();
1879 md->init_tio_pdu = false;
1880 md->type = DM_TYPE_NONE;
1881 mutex_init(&md->suspend_lock);
1882 mutex_init(&md->type_lock);
1883 mutex_init(&md->table_devices_lock);
1884 spin_lock_init(&md->deferred_lock);
1885 atomic_set(&md->holders, 1);
1886 atomic_set(&md->open_count, 0);
1887 atomic_set(&md->event_nr, 0);
1888 atomic_set(&md->uevent_seq, 0);
1889 INIT_LIST_HEAD(&md->uevent_list);
1890 INIT_LIST_HEAD(&md->table_devices);
1891 spin_lock_init(&md->uevent_lock);
1893 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id, NULL);
1894 if (!md->queue)
1895 goto bad;
1896 md->queue->queuedata = md;
1897 md->queue->backing_dev_info->congested_data = md;
1899 md->disk = alloc_disk_node(1, md->numa_node_id);
1900 if (!md->disk)
1901 goto bad;
1903 atomic_set(&md->pending[0], 0);
1904 atomic_set(&md->pending[1], 0);
1905 init_waitqueue_head(&md->wait);
1906 INIT_WORK(&md->work, dm_wq_work);
1907 init_waitqueue_head(&md->eventq);
1908 init_completion(&md->kobj_holder.completion);
1909 md->kworker_task = NULL;
1911 md->disk->major = _major;
1912 md->disk->first_minor = minor;
1913 md->disk->fops = &dm_blk_dops;
1914 md->disk->queue = md->queue;
1915 md->disk->private_data = md;
1916 sprintf(md->disk->disk_name, "dm-%d", minor);
1918 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1919 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1920 if (!dax_dev)
1921 goto bad;
1923 md->dax_dev = dax_dev;
1925 add_disk_no_queue_reg(md->disk);
1926 format_dev_t(md->name, MKDEV(_major, minor));
1928 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1929 if (!md->wq)
1930 goto bad;
1932 md->bdev = bdget_disk(md->disk, 0);
1933 if (!md->bdev)
1934 goto bad;
1936 bio_init(&md->flush_bio, NULL, 0);
1937 bio_set_dev(&md->flush_bio, md->bdev);
1938 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1940 dm_stats_init(&md->stats);
1942 /* Populate the mapping, nobody knows we exist yet */
1943 spin_lock(&_minor_lock);
1944 old_md = idr_replace(&_minor_idr, md, minor);
1945 spin_unlock(&_minor_lock);
1947 BUG_ON(old_md != MINOR_ALLOCED);
1949 return md;
1951 bad:
1952 cleanup_mapped_device(md);
1953 bad_io_barrier:
1954 free_minor(minor);
1955 bad_minor:
1956 module_put(THIS_MODULE);
1957 bad_module_get:
1958 kvfree(md);
1959 return NULL;
1962 static void unlock_fs(struct mapped_device *md);
1964 static void free_dev(struct mapped_device *md)
1966 int minor = MINOR(disk_devt(md->disk));
1968 unlock_fs(md);
1970 cleanup_mapped_device(md);
1972 free_table_devices(&md->table_devices);
1973 dm_stats_cleanup(&md->stats);
1974 free_minor(minor);
1976 module_put(THIS_MODULE);
1977 kvfree(md);
1980 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1982 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1983 int ret = 0;
1985 if (dm_table_bio_based(t)) {
1987 * The md may already have mempools that need changing.
1988 * If so, reload bioset because front_pad may have changed
1989 * because a different table was loaded.
1991 bioset_exit(&md->bs);
1992 bioset_exit(&md->io_bs);
1994 } else if (bioset_initialized(&md->bs)) {
1996 * There's no need to reload with request-based dm
1997 * because the size of front_pad doesn't change.
1998 * Note for future: If you are to reload bioset,
1999 * prep-ed requests in the queue may refer
2000 * to bio from the old bioset, so you must walk
2001 * through the queue to unprep.
2003 goto out;
2006 BUG_ON(!p ||
2007 bioset_initialized(&md->bs) ||
2008 bioset_initialized(&md->io_bs));
2010 ret = bioset_init_from_src(&md->bs, &p->bs);
2011 if (ret)
2012 goto out;
2013 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2014 if (ret)
2015 bioset_exit(&md->bs);
2016 out:
2017 /* mempool bind completed, no longer need any mempools in the table */
2018 dm_table_free_md_mempools(t);
2019 return ret;
2023 * Bind a table to the device.
2025 static void event_callback(void *context)
2027 unsigned long flags;
2028 LIST_HEAD(uevents);
2029 struct mapped_device *md = (struct mapped_device *) context;
2031 spin_lock_irqsave(&md->uevent_lock, flags);
2032 list_splice_init(&md->uevent_list, &uevents);
2033 spin_unlock_irqrestore(&md->uevent_lock, flags);
2035 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2037 atomic_inc(&md->event_nr);
2038 wake_up(&md->eventq);
2039 dm_issue_global_event();
2043 * Protected by md->suspend_lock obtained by dm_swap_table().
2045 static void __set_size(struct mapped_device *md, sector_t size)
2047 lockdep_assert_held(&md->suspend_lock);
2049 set_capacity(md->disk, size);
2051 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2055 * Returns old map, which caller must destroy.
2057 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2058 struct queue_limits *limits)
2060 struct dm_table *old_map;
2061 struct request_queue *q = md->queue;
2062 bool request_based = dm_table_request_based(t);
2063 sector_t size;
2064 int ret;
2066 lockdep_assert_held(&md->suspend_lock);
2068 size = dm_table_get_size(t);
2071 * Wipe any geometry if the size of the table changed.
2073 if (size != dm_get_size(md))
2074 memset(&md->geometry, 0, sizeof(md->geometry));
2076 __set_size(md, size);
2078 dm_table_event_callback(t, event_callback, md);
2081 * The queue hasn't been stopped yet, if the old table type wasn't
2082 * for request-based during suspension. So stop it to prevent
2083 * I/O mapping before resume.
2084 * This must be done before setting the queue restrictions,
2085 * because request-based dm may be run just after the setting.
2087 if (request_based)
2088 dm_stop_queue(q);
2090 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2092 * Leverage the fact that request-based DM targets and
2093 * NVMe bio based targets are immutable singletons
2094 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2095 * and __process_bio.
2097 md->immutable_target = dm_table_get_immutable_target(t);
2100 ret = __bind_mempools(md, t);
2101 if (ret) {
2102 old_map = ERR_PTR(ret);
2103 goto out;
2106 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2107 rcu_assign_pointer(md->map, (void *)t);
2108 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2110 dm_table_set_restrictions(t, q, limits);
2111 if (old_map)
2112 dm_sync_table(md);
2114 out:
2115 return old_map;
2119 * Returns unbound table for the caller to free.
2121 static struct dm_table *__unbind(struct mapped_device *md)
2123 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2125 if (!map)
2126 return NULL;
2128 dm_table_event_callback(map, NULL, NULL);
2129 RCU_INIT_POINTER(md->map, NULL);
2130 dm_sync_table(md);
2132 return map;
2136 * Constructor for a new device.
2138 int dm_create(int minor, struct mapped_device **result)
2140 int r;
2141 struct mapped_device *md;
2143 md = alloc_dev(minor);
2144 if (!md)
2145 return -ENXIO;
2147 r = dm_sysfs_init(md);
2148 if (r) {
2149 free_dev(md);
2150 return r;
2153 *result = md;
2154 return 0;
2158 * Functions to manage md->type.
2159 * All are required to hold md->type_lock.
2161 void dm_lock_md_type(struct mapped_device *md)
2163 mutex_lock(&md->type_lock);
2166 void dm_unlock_md_type(struct mapped_device *md)
2168 mutex_unlock(&md->type_lock);
2171 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2173 BUG_ON(!mutex_is_locked(&md->type_lock));
2174 md->type = type;
2177 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2179 return md->type;
2182 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2184 return md->immutable_target_type;
2188 * The queue_limits are only valid as long as you have a reference
2189 * count on 'md'.
2191 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2193 BUG_ON(!atomic_read(&md->holders));
2194 return &md->queue->limits;
2196 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2199 * Setup the DM device's queue based on md's type
2201 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2203 int r;
2204 struct queue_limits limits;
2205 enum dm_queue_mode type = dm_get_md_type(md);
2207 switch (type) {
2208 case DM_TYPE_REQUEST_BASED:
2209 dm_init_normal_md_queue(md);
2210 r = dm_old_init_request_queue(md, t);
2211 if (r) {
2212 DMERR("Cannot initialize queue for request-based mapped device");
2213 return r;
2215 break;
2216 case DM_TYPE_MQ_REQUEST_BASED:
2217 r = dm_mq_init_request_queue(md, t);
2218 if (r) {
2219 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2220 return r;
2222 break;
2223 case DM_TYPE_BIO_BASED:
2224 case DM_TYPE_DAX_BIO_BASED:
2225 dm_init_normal_md_queue(md);
2226 blk_queue_make_request(md->queue, dm_make_request);
2227 break;
2228 case DM_TYPE_NVME_BIO_BASED:
2229 dm_init_normal_md_queue(md);
2230 blk_queue_make_request(md->queue, dm_make_request_nvme);
2231 break;
2232 case DM_TYPE_NONE:
2233 WARN_ON_ONCE(true);
2234 break;
2237 r = dm_calculate_queue_limits(t, &limits);
2238 if (r) {
2239 DMERR("Cannot calculate initial queue limits");
2240 return r;
2242 dm_table_set_restrictions(t, md->queue, &limits);
2243 blk_register_queue(md->disk);
2245 return 0;
2248 struct mapped_device *dm_get_md(dev_t dev)
2250 struct mapped_device *md;
2251 unsigned minor = MINOR(dev);
2253 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2254 return NULL;
2256 spin_lock(&_minor_lock);
2258 md = idr_find(&_minor_idr, minor);
2259 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2260 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2261 md = NULL;
2262 goto out;
2264 dm_get(md);
2265 out:
2266 spin_unlock(&_minor_lock);
2268 return md;
2270 EXPORT_SYMBOL_GPL(dm_get_md);
2272 void *dm_get_mdptr(struct mapped_device *md)
2274 return md->interface_ptr;
2277 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2279 md->interface_ptr = ptr;
2282 void dm_get(struct mapped_device *md)
2284 atomic_inc(&md->holders);
2285 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2288 int dm_hold(struct mapped_device *md)
2290 spin_lock(&_minor_lock);
2291 if (test_bit(DMF_FREEING, &md->flags)) {
2292 spin_unlock(&_minor_lock);
2293 return -EBUSY;
2295 dm_get(md);
2296 spin_unlock(&_minor_lock);
2297 return 0;
2299 EXPORT_SYMBOL_GPL(dm_hold);
2301 const char *dm_device_name(struct mapped_device *md)
2303 return md->name;
2305 EXPORT_SYMBOL_GPL(dm_device_name);
2307 static void __dm_destroy(struct mapped_device *md, bool wait)
2309 struct dm_table *map;
2310 int srcu_idx;
2312 might_sleep();
2314 spin_lock(&_minor_lock);
2315 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2316 set_bit(DMF_FREEING, &md->flags);
2317 spin_unlock(&_minor_lock);
2319 blk_set_queue_dying(md->queue);
2321 if (dm_request_based(md) && md->kworker_task)
2322 kthread_flush_worker(&md->kworker);
2325 * Take suspend_lock so that presuspend and postsuspend methods
2326 * do not race with internal suspend.
2328 mutex_lock(&md->suspend_lock);
2329 map = dm_get_live_table(md, &srcu_idx);
2330 if (!dm_suspended_md(md)) {
2331 dm_table_presuspend_targets(map);
2332 dm_table_postsuspend_targets(map);
2334 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2335 dm_put_live_table(md, srcu_idx);
2336 mutex_unlock(&md->suspend_lock);
2339 * Rare, but there may be I/O requests still going to complete,
2340 * for example. Wait for all references to disappear.
2341 * No one should increment the reference count of the mapped_device,
2342 * after the mapped_device state becomes DMF_FREEING.
2344 if (wait)
2345 while (atomic_read(&md->holders))
2346 msleep(1);
2347 else if (atomic_read(&md->holders))
2348 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2349 dm_device_name(md), atomic_read(&md->holders));
2351 dm_sysfs_exit(md);
2352 dm_table_destroy(__unbind(md));
2353 free_dev(md);
2356 void dm_destroy(struct mapped_device *md)
2358 __dm_destroy(md, true);
2361 void dm_destroy_immediate(struct mapped_device *md)
2363 __dm_destroy(md, false);
2366 void dm_put(struct mapped_device *md)
2368 atomic_dec(&md->holders);
2370 EXPORT_SYMBOL_GPL(dm_put);
2372 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2374 int r = 0;
2375 DEFINE_WAIT(wait);
2377 while (1) {
2378 prepare_to_wait(&md->wait, &wait, task_state);
2380 if (!md_in_flight(md))
2381 break;
2383 if (signal_pending_state(task_state, current)) {
2384 r = -EINTR;
2385 break;
2388 io_schedule();
2390 finish_wait(&md->wait, &wait);
2392 return r;
2396 * Process the deferred bios
2398 static void dm_wq_work(struct work_struct *work)
2400 struct mapped_device *md = container_of(work, struct mapped_device,
2401 work);
2402 struct bio *c;
2403 int srcu_idx;
2404 struct dm_table *map;
2406 map = dm_get_live_table(md, &srcu_idx);
2408 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2409 spin_lock_irq(&md->deferred_lock);
2410 c = bio_list_pop(&md->deferred);
2411 spin_unlock_irq(&md->deferred_lock);
2413 if (!c)
2414 break;
2416 if (dm_request_based(md))
2417 generic_make_request(c);
2418 else
2419 __split_and_process_bio(md, map, c);
2422 dm_put_live_table(md, srcu_idx);
2425 static void dm_queue_flush(struct mapped_device *md)
2427 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2428 smp_mb__after_atomic();
2429 queue_work(md->wq, &md->work);
2433 * Swap in a new table, returning the old one for the caller to destroy.
2435 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2437 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2438 struct queue_limits limits;
2439 int r;
2441 mutex_lock(&md->suspend_lock);
2443 /* device must be suspended */
2444 if (!dm_suspended_md(md))
2445 goto out;
2448 * If the new table has no data devices, retain the existing limits.
2449 * This helps multipath with queue_if_no_path if all paths disappear,
2450 * then new I/O is queued based on these limits, and then some paths
2451 * reappear.
2453 if (dm_table_has_no_data_devices(table)) {
2454 live_map = dm_get_live_table_fast(md);
2455 if (live_map)
2456 limits = md->queue->limits;
2457 dm_put_live_table_fast(md);
2460 if (!live_map) {
2461 r = dm_calculate_queue_limits(table, &limits);
2462 if (r) {
2463 map = ERR_PTR(r);
2464 goto out;
2468 map = __bind(md, table, &limits);
2469 dm_issue_global_event();
2471 out:
2472 mutex_unlock(&md->suspend_lock);
2473 return map;
2477 * Functions to lock and unlock any filesystem running on the
2478 * device.
2480 static int lock_fs(struct mapped_device *md)
2482 int r;
2484 WARN_ON(md->frozen_sb);
2486 md->frozen_sb = freeze_bdev(md->bdev);
2487 if (IS_ERR(md->frozen_sb)) {
2488 r = PTR_ERR(md->frozen_sb);
2489 md->frozen_sb = NULL;
2490 return r;
2493 set_bit(DMF_FROZEN, &md->flags);
2495 return 0;
2498 static void unlock_fs(struct mapped_device *md)
2500 if (!test_bit(DMF_FROZEN, &md->flags))
2501 return;
2503 thaw_bdev(md->bdev, md->frozen_sb);
2504 md->frozen_sb = NULL;
2505 clear_bit(DMF_FROZEN, &md->flags);
2509 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2510 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2511 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2513 * If __dm_suspend returns 0, the device is completely quiescent
2514 * now. There is no request-processing activity. All new requests
2515 * are being added to md->deferred list.
2517 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2518 unsigned suspend_flags, long task_state,
2519 int dmf_suspended_flag)
2521 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2522 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2523 int r;
2525 lockdep_assert_held(&md->suspend_lock);
2528 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2529 * This flag is cleared before dm_suspend returns.
2531 if (noflush)
2532 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2533 else
2534 pr_debug("%s: suspending with flush\n", dm_device_name(md));
2537 * This gets reverted if there's an error later and the targets
2538 * provide the .presuspend_undo hook.
2540 dm_table_presuspend_targets(map);
2543 * Flush I/O to the device.
2544 * Any I/O submitted after lock_fs() may not be flushed.
2545 * noflush takes precedence over do_lockfs.
2546 * (lock_fs() flushes I/Os and waits for them to complete.)
2548 if (!noflush && do_lockfs) {
2549 r = lock_fs(md);
2550 if (r) {
2551 dm_table_presuspend_undo_targets(map);
2552 return r;
2557 * Here we must make sure that no processes are submitting requests
2558 * to target drivers i.e. no one may be executing
2559 * __split_and_process_bio. This is called from dm_request and
2560 * dm_wq_work.
2562 * To get all processes out of __split_and_process_bio in dm_request,
2563 * we take the write lock. To prevent any process from reentering
2564 * __split_and_process_bio from dm_request and quiesce the thread
2565 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2566 * flush_workqueue(md->wq).
2568 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2569 if (map)
2570 synchronize_srcu(&md->io_barrier);
2573 * Stop md->queue before flushing md->wq in case request-based
2574 * dm defers requests to md->wq from md->queue.
2576 if (dm_request_based(md)) {
2577 dm_stop_queue(md->queue);
2578 if (md->kworker_task)
2579 kthread_flush_worker(&md->kworker);
2582 flush_workqueue(md->wq);
2585 * At this point no more requests are entering target request routines.
2586 * We call dm_wait_for_completion to wait for all existing requests
2587 * to finish.
2589 r = dm_wait_for_completion(md, task_state);
2590 if (!r)
2591 set_bit(dmf_suspended_flag, &md->flags);
2593 if (noflush)
2594 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2595 if (map)
2596 synchronize_srcu(&md->io_barrier);
2598 /* were we interrupted ? */
2599 if (r < 0) {
2600 dm_queue_flush(md);
2602 if (dm_request_based(md))
2603 dm_start_queue(md->queue);
2605 unlock_fs(md);
2606 dm_table_presuspend_undo_targets(map);
2607 /* pushback list is already flushed, so skip flush */
2610 return r;
2614 * We need to be able to change a mapping table under a mounted
2615 * filesystem. For example we might want to move some data in
2616 * the background. Before the table can be swapped with
2617 * dm_bind_table, dm_suspend must be called to flush any in
2618 * flight bios and ensure that any further io gets deferred.
2621 * Suspend mechanism in request-based dm.
2623 * 1. Flush all I/Os by lock_fs() if needed.
2624 * 2. Stop dispatching any I/O by stopping the request_queue.
2625 * 3. Wait for all in-flight I/Os to be completed or requeued.
2627 * To abort suspend, start the request_queue.
2629 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2631 struct dm_table *map = NULL;
2632 int r = 0;
2634 retry:
2635 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2637 if (dm_suspended_md(md)) {
2638 r = -EINVAL;
2639 goto out_unlock;
2642 if (dm_suspended_internally_md(md)) {
2643 /* already internally suspended, wait for internal resume */
2644 mutex_unlock(&md->suspend_lock);
2645 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2646 if (r)
2647 return r;
2648 goto retry;
2651 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2653 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2654 if (r)
2655 goto out_unlock;
2657 dm_table_postsuspend_targets(map);
2659 out_unlock:
2660 mutex_unlock(&md->suspend_lock);
2661 return r;
2664 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2666 if (map) {
2667 int r = dm_table_resume_targets(map);
2668 if (r)
2669 return r;
2672 dm_queue_flush(md);
2675 * Flushing deferred I/Os must be done after targets are resumed
2676 * so that mapping of targets can work correctly.
2677 * Request-based dm is queueing the deferred I/Os in its request_queue.
2679 if (dm_request_based(md))
2680 dm_start_queue(md->queue);
2682 unlock_fs(md);
2684 return 0;
2687 int dm_resume(struct mapped_device *md)
2689 int r;
2690 struct dm_table *map = NULL;
2692 retry:
2693 r = -EINVAL;
2694 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2696 if (!dm_suspended_md(md))
2697 goto out;
2699 if (dm_suspended_internally_md(md)) {
2700 /* already internally suspended, wait for internal resume */
2701 mutex_unlock(&md->suspend_lock);
2702 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2703 if (r)
2704 return r;
2705 goto retry;
2708 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2709 if (!map || !dm_table_get_size(map))
2710 goto out;
2712 r = __dm_resume(md, map);
2713 if (r)
2714 goto out;
2716 clear_bit(DMF_SUSPENDED, &md->flags);
2717 out:
2718 mutex_unlock(&md->suspend_lock);
2720 return r;
2724 * Internal suspend/resume works like userspace-driven suspend. It waits
2725 * until all bios finish and prevents issuing new bios to the target drivers.
2726 * It may be used only from the kernel.
2729 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2731 struct dm_table *map = NULL;
2733 lockdep_assert_held(&md->suspend_lock);
2735 if (md->internal_suspend_count++)
2736 return; /* nested internal suspend */
2738 if (dm_suspended_md(md)) {
2739 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2740 return; /* nest suspend */
2743 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2746 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2747 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2748 * would require changing .presuspend to return an error -- avoid this
2749 * until there is a need for more elaborate variants of internal suspend.
2751 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2752 DMF_SUSPENDED_INTERNALLY);
2754 dm_table_postsuspend_targets(map);
2757 static void __dm_internal_resume(struct mapped_device *md)
2759 BUG_ON(!md->internal_suspend_count);
2761 if (--md->internal_suspend_count)
2762 return; /* resume from nested internal suspend */
2764 if (dm_suspended_md(md))
2765 goto done; /* resume from nested suspend */
2768 * NOTE: existing callers don't need to call dm_table_resume_targets
2769 * (which may fail -- so best to avoid it for now by passing NULL map)
2771 (void) __dm_resume(md, NULL);
2773 done:
2774 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2775 smp_mb__after_atomic();
2776 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2779 void dm_internal_suspend_noflush(struct mapped_device *md)
2781 mutex_lock(&md->suspend_lock);
2782 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2783 mutex_unlock(&md->suspend_lock);
2785 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2787 void dm_internal_resume(struct mapped_device *md)
2789 mutex_lock(&md->suspend_lock);
2790 __dm_internal_resume(md);
2791 mutex_unlock(&md->suspend_lock);
2793 EXPORT_SYMBOL_GPL(dm_internal_resume);
2796 * Fast variants of internal suspend/resume hold md->suspend_lock,
2797 * which prevents interaction with userspace-driven suspend.
2800 void dm_internal_suspend_fast(struct mapped_device *md)
2802 mutex_lock(&md->suspend_lock);
2803 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2804 return;
2806 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2807 synchronize_srcu(&md->io_barrier);
2808 flush_workqueue(md->wq);
2809 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2811 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2813 void dm_internal_resume_fast(struct mapped_device *md)
2815 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2816 goto done;
2818 dm_queue_flush(md);
2820 done:
2821 mutex_unlock(&md->suspend_lock);
2823 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2825 /*-----------------------------------------------------------------
2826 * Event notification.
2827 *---------------------------------------------------------------*/
2828 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2829 unsigned cookie)
2831 char udev_cookie[DM_COOKIE_LENGTH];
2832 char *envp[] = { udev_cookie, NULL };
2834 if (!cookie)
2835 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2836 else {
2837 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2838 DM_COOKIE_ENV_VAR_NAME, cookie);
2839 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2840 action, envp);
2844 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2846 return atomic_add_return(1, &md->uevent_seq);
2849 uint32_t dm_get_event_nr(struct mapped_device *md)
2851 return atomic_read(&md->event_nr);
2854 int dm_wait_event(struct mapped_device *md, int event_nr)
2856 return wait_event_interruptible(md->eventq,
2857 (event_nr != atomic_read(&md->event_nr)));
2860 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2862 unsigned long flags;
2864 spin_lock_irqsave(&md->uevent_lock, flags);
2865 list_add(elist, &md->uevent_list);
2866 spin_unlock_irqrestore(&md->uevent_lock, flags);
2870 * The gendisk is only valid as long as you have a reference
2871 * count on 'md'.
2873 struct gendisk *dm_disk(struct mapped_device *md)
2875 return md->disk;
2877 EXPORT_SYMBOL_GPL(dm_disk);
2879 struct kobject *dm_kobject(struct mapped_device *md)
2881 return &md->kobj_holder.kobj;
2884 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2886 struct mapped_device *md;
2888 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2890 spin_lock(&_minor_lock);
2891 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2892 md = NULL;
2893 goto out;
2895 dm_get(md);
2896 out:
2897 spin_unlock(&_minor_lock);
2899 return md;
2902 int dm_suspended_md(struct mapped_device *md)
2904 return test_bit(DMF_SUSPENDED, &md->flags);
2907 int dm_suspended_internally_md(struct mapped_device *md)
2909 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2912 int dm_test_deferred_remove_flag(struct mapped_device *md)
2914 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2917 int dm_suspended(struct dm_target *ti)
2919 return dm_suspended_md(dm_table_get_md(ti->table));
2921 EXPORT_SYMBOL_GPL(dm_suspended);
2923 int dm_noflush_suspending(struct dm_target *ti)
2925 return __noflush_suspending(dm_table_get_md(ti->table));
2927 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2929 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2930 unsigned integrity, unsigned per_io_data_size,
2931 unsigned min_pool_size)
2933 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2934 unsigned int pool_size = 0;
2935 unsigned int front_pad, io_front_pad;
2936 int ret;
2938 if (!pools)
2939 return NULL;
2941 switch (type) {
2942 case DM_TYPE_BIO_BASED:
2943 case DM_TYPE_DAX_BIO_BASED:
2944 case DM_TYPE_NVME_BIO_BASED:
2945 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2946 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2947 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2948 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2949 if (ret)
2950 goto out;
2951 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2952 goto out;
2953 break;
2954 case DM_TYPE_REQUEST_BASED:
2955 case DM_TYPE_MQ_REQUEST_BASED:
2956 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2957 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2958 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2959 break;
2960 default:
2961 BUG();
2964 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2965 if (ret)
2966 goto out;
2968 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2969 goto out;
2971 return pools;
2973 out:
2974 dm_free_md_mempools(pools);
2976 return NULL;
2979 void dm_free_md_mempools(struct dm_md_mempools *pools)
2981 if (!pools)
2982 return;
2984 bioset_exit(&pools->bs);
2985 bioset_exit(&pools->io_bs);
2987 kfree(pools);
2990 struct dm_pr {
2991 u64 old_key;
2992 u64 new_key;
2993 u32 flags;
2994 bool fail_early;
2997 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2998 void *data)
3000 struct mapped_device *md = bdev->bd_disk->private_data;
3001 struct dm_table *table;
3002 struct dm_target *ti;
3003 int ret = -ENOTTY, srcu_idx;
3005 table = dm_get_live_table(md, &srcu_idx);
3006 if (!table || !dm_table_get_size(table))
3007 goto out;
3009 /* We only support devices that have a single target */
3010 if (dm_table_get_num_targets(table) != 1)
3011 goto out;
3012 ti = dm_table_get_target(table, 0);
3014 ret = -EINVAL;
3015 if (!ti->type->iterate_devices)
3016 goto out;
3018 ret = ti->type->iterate_devices(ti, fn, data);
3019 out:
3020 dm_put_live_table(md, srcu_idx);
3021 return ret;
3025 * For register / unregister we need to manually call out to every path.
3027 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3028 sector_t start, sector_t len, void *data)
3030 struct dm_pr *pr = data;
3031 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3033 if (!ops || !ops->pr_register)
3034 return -EOPNOTSUPP;
3035 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3038 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3039 u32 flags)
3041 struct dm_pr pr = {
3042 .old_key = old_key,
3043 .new_key = new_key,
3044 .flags = flags,
3045 .fail_early = true,
3047 int ret;
3049 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3050 if (ret && new_key) {
3051 /* unregister all paths if we failed to register any path */
3052 pr.old_key = new_key;
3053 pr.new_key = 0;
3054 pr.flags = 0;
3055 pr.fail_early = false;
3056 dm_call_pr(bdev, __dm_pr_register, &pr);
3059 return ret;
3062 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3063 u32 flags)
3065 struct mapped_device *md = bdev->bd_disk->private_data;
3066 const struct pr_ops *ops;
3067 int r, srcu_idx;
3069 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3070 if (r < 0)
3071 goto out;
3073 ops = bdev->bd_disk->fops->pr_ops;
3074 if (ops && ops->pr_reserve)
3075 r = ops->pr_reserve(bdev, key, type, flags);
3076 else
3077 r = -EOPNOTSUPP;
3078 out:
3079 dm_unprepare_ioctl(md, srcu_idx);
3080 return r;
3083 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3085 struct mapped_device *md = bdev->bd_disk->private_data;
3086 const struct pr_ops *ops;
3087 int r, srcu_idx;
3089 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3090 if (r < 0)
3091 goto out;
3093 ops = bdev->bd_disk->fops->pr_ops;
3094 if (ops && ops->pr_release)
3095 r = ops->pr_release(bdev, key, type);
3096 else
3097 r = -EOPNOTSUPP;
3098 out:
3099 dm_unprepare_ioctl(md, srcu_idx);
3100 return r;
3103 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3104 enum pr_type type, bool abort)
3106 struct mapped_device *md = bdev->bd_disk->private_data;
3107 const struct pr_ops *ops;
3108 int r, srcu_idx;
3110 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3111 if (r < 0)
3112 goto out;
3114 ops = bdev->bd_disk->fops->pr_ops;
3115 if (ops && ops->pr_preempt)
3116 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3117 else
3118 r = -EOPNOTSUPP;
3119 out:
3120 dm_unprepare_ioctl(md, srcu_idx);
3121 return r;
3124 static int dm_pr_clear(struct block_device *bdev, u64 key)
3126 struct mapped_device *md = bdev->bd_disk->private_data;
3127 const struct pr_ops *ops;
3128 int r, srcu_idx;
3130 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3131 if (r < 0)
3132 goto out;
3134 ops = bdev->bd_disk->fops->pr_ops;
3135 if (ops && ops->pr_clear)
3136 r = ops->pr_clear(bdev, key);
3137 else
3138 r = -EOPNOTSUPP;
3139 out:
3140 dm_unprepare_ioctl(md, srcu_idx);
3141 return r;
3144 static const struct pr_ops dm_pr_ops = {
3145 .pr_register = dm_pr_register,
3146 .pr_reserve = dm_pr_reserve,
3147 .pr_release = dm_pr_release,
3148 .pr_preempt = dm_pr_preempt,
3149 .pr_clear = dm_pr_clear,
3152 static const struct block_device_operations dm_blk_dops = {
3153 .open = dm_blk_open,
3154 .release = dm_blk_close,
3155 .ioctl = dm_blk_ioctl,
3156 .getgeo = dm_blk_getgeo,
3157 .pr_ops = &dm_pr_ops,
3158 .owner = THIS_MODULE
3161 static const struct dax_operations dm_dax_ops = {
3162 .direct_access = dm_dax_direct_access,
3163 .copy_from_iter = dm_dax_copy_from_iter,
3164 .copy_to_iter = dm_dax_copy_to_iter,
3168 * module hooks
3170 module_init(dm_init);
3171 module_exit(dm_exit);
3173 module_param(major, uint, 0);
3174 MODULE_PARM_DESC(major, "The major number of the device mapper");
3176 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3177 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3179 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3180 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3182 MODULE_DESCRIPTION(DM_NAME " driver");
3183 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3184 MODULE_LICENSE("GPL");