2 * Partial Parity Log for closing the RAID5 write hole
3 * Copyright (c) 2017, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/kernel.h>
16 #include <linux/blkdev.h>
17 #include <linux/slab.h>
18 #include <linux/crc32c.h>
19 #include <linux/flex_array.h>
20 #include <linux/async_tx.h>
21 #include <linux/raid/md_p.h>
26 * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for
27 * partial parity data. The header contains an array of entries
28 * (struct ppl_header_entry) which describe the logged write requests.
29 * Partial parity for the entries comes after the header, written in the same
30 * sequence as the entries:
41 * An entry describes one or more consecutive stripe_heads, up to a full
42 * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the
43 * number of stripe_heads in the entry and n is the number of modified data
44 * disks. Every stripe_head in the entry must write to the same data disks.
45 * An example of a valid case described by a single entry (writes to the first
46 * stripe of a 4 disk array, 16k chunk size):
48 * sh->sector dd0 dd1 dd2 ppl
50 * 0 | --- | --- | --- | +----+
51 * 8 | -W- | -W- | --- | | pp | data_sector = 8
52 * 16 | -W- | -W- | --- | | pp | data_size = 3 * 2 * 4k
53 * 24 | -W- | -W- | --- | | pp | pp_size = 3 * 4k
54 * +-----+-----+-----+ +----+
56 * data_sector is the first raid sector of the modified data, data_size is the
57 * total size of modified data and pp_size is the size of partial parity for
58 * this entry. Entries for full stripe writes contain no partial parity
59 * (pp_size = 0), they only mark the stripes for which parity should be
60 * recalculated after an unclean shutdown. Every entry holds a checksum of its
61 * partial parity, the header also has a checksum of the header itself.
63 * A write request is always logged to the PPL instance stored on the parity
64 * disk of the corresponding stripe. For each member disk there is one ppl_log
65 * used to handle logging for this disk, independently from others. They are
66 * grouped in child_logs array in struct ppl_conf, which is assigned to
67 * r5conf->log_private.
69 * ppl_io_unit represents a full PPL write, header_page contains the ppl_header.
70 * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head
71 * can be appended to the last entry if it meets the conditions for a valid
72 * entry described above, otherwise a new entry is added. Checksums of entries
73 * are calculated incrementally as stripes containing partial parity are being
74 * added. ppl_submit_iounit() calculates the checksum of the header and submits
75 * a bio containing the header page and partial parity pages (sh->ppl_page) for
76 * all stripes of the io_unit. When the PPL write completes, the stripes
77 * associated with the io_unit are released and raid5d starts writing their data
78 * and parity. When all stripes are written, the io_unit is freed and the next
81 * An io_unit is used to gather stripes until it is submitted or becomes full
82 * (if the maximum number of entries or size of PPL is reached). Another io_unit
83 * can't be submitted until the previous has completed (PPL and stripe
84 * data+parity is written). The log->io_list tracks all io_units of a log
85 * (for a single member disk). New io_units are added to the end of the list
86 * and the first io_unit is submitted, if it is not submitted already.
87 * The current io_unit accepting new stripes is always at the end of the list.
89 * If write-back cache is enabled for any of the disks in the array, its data
90 * must be flushed before next io_unit is submitted.
93 #define PPL_SPACE_SIZE (128 * 1024)
98 /* array of child logs, one for each raid disk */
99 struct ppl_log
*child_logs
;
102 int block_size
; /* the logical block size used for data_sector
103 * in ppl_header_entry */
104 u32 signature
; /* raid array identifier */
105 atomic64_t seq
; /* current log write sequence number */
107 struct kmem_cache
*io_kc
;
110 struct bio_set flush_bs
;
112 /* used only for recovery */
113 int recovered_entries
;
116 /* stripes to retry if failed to allocate io_unit */
117 struct list_head no_mem_stripes
;
118 spinlock_t no_mem_stripes_lock
;
122 struct ppl_conf
*ppl_conf
; /* shared between all log instances */
124 struct md_rdev
*rdev
; /* array member disk associated with
125 * this log instance */
126 struct mutex io_mutex
;
127 struct ppl_io_unit
*current_io
; /* current io_unit accepting new data
128 * always at the end of io_list */
129 spinlock_t io_list_lock
;
130 struct list_head io_list
; /* all io_units of this log */
132 sector_t next_io_sector
;
133 unsigned int entry_space
;
136 unsigned long disk_flush_bitmap
;
139 #define PPL_IO_INLINE_BVECS 32
144 struct page
*header_page
; /* for ppl_header */
146 unsigned int entries_count
; /* number of entries in ppl_header */
147 unsigned int pp_size
; /* total size current of partial parity */
149 u64 seq
; /* sequence number of this log write */
150 struct list_head log_sibling
; /* log->io_list */
152 struct list_head stripe_list
; /* stripes added to the io_unit */
153 atomic_t pending_stripes
; /* how many stripes not written to raid */
154 atomic_t pending_flushes
; /* how many disk flushes are in progress */
156 bool submitted
; /* true if write to log started */
158 /* inline bio and its biovec for submitting the iounit */
160 struct bio_vec biovec
[PPL_IO_INLINE_BVECS
];
163 struct dma_async_tx_descriptor
*
164 ops_run_partial_parity(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
165 struct dma_async_tx_descriptor
*tx
)
167 int disks
= sh
->disks
;
168 struct page
**srcs
= flex_array_get(percpu
->scribble
, 0);
169 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
170 struct async_submit_ctl submit
;
172 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
175 * Partial parity is the XOR of stripe data chunks that are not changed
176 * during the write request. Depending on available data
177 * (read-modify-write vs. reconstruct-write case) we calculate it
180 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
182 * rmw: xor old data and parity from updated disks
183 * This is calculated earlier by ops_run_prexor5() so just copy
184 * the parity dev page.
186 srcs
[count
++] = sh
->dev
[pd_idx
].page
;
187 } else if (sh
->reconstruct_state
== reconstruct_state_drain_run
) {
188 /* rcw: xor data from all not updated disks */
189 for (i
= disks
; i
--;) {
190 struct r5dev
*dev
= &sh
->dev
[i
];
191 if (test_bit(R5_UPTODATE
, &dev
->flags
))
192 srcs
[count
++] = dev
->page
;
198 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, tx
,
199 NULL
, sh
, flex_array_get(percpu
->scribble
, 0)
200 + sizeof(struct page
*) * (sh
->disks
+ 2));
203 tx
= async_memcpy(sh
->ppl_page
, srcs
[0], 0, 0, PAGE_SIZE
,
206 tx
= async_xor(sh
->ppl_page
, srcs
, 0, count
, PAGE_SIZE
,
212 static void *ppl_io_pool_alloc(gfp_t gfp_mask
, void *pool_data
)
214 struct kmem_cache
*kc
= pool_data
;
215 struct ppl_io_unit
*io
;
217 io
= kmem_cache_alloc(kc
, gfp_mask
);
221 io
->header_page
= alloc_page(gfp_mask
);
222 if (!io
->header_page
) {
223 kmem_cache_free(kc
, io
);
230 static void ppl_io_pool_free(void *element
, void *pool_data
)
232 struct kmem_cache
*kc
= pool_data
;
233 struct ppl_io_unit
*io
= element
;
235 __free_page(io
->header_page
);
236 kmem_cache_free(kc
, io
);
239 static struct ppl_io_unit
*ppl_new_iounit(struct ppl_log
*log
,
240 struct stripe_head
*sh
)
242 struct ppl_conf
*ppl_conf
= log
->ppl_conf
;
243 struct ppl_io_unit
*io
;
244 struct ppl_header
*pplhdr
;
245 struct page
*header_page
;
247 io
= mempool_alloc(&ppl_conf
->io_pool
, GFP_NOWAIT
);
251 header_page
= io
->header_page
;
252 memset(io
, 0, sizeof(*io
));
253 io
->header_page
= header_page
;
256 INIT_LIST_HEAD(&io
->log_sibling
);
257 INIT_LIST_HEAD(&io
->stripe_list
);
258 atomic_set(&io
->pending_stripes
, 0);
259 atomic_set(&io
->pending_flushes
, 0);
260 bio_init(&io
->bio
, io
->biovec
, PPL_IO_INLINE_BVECS
);
262 pplhdr
= page_address(io
->header_page
);
264 memset(pplhdr
->reserved
, 0xff, PPL_HDR_RESERVED
);
265 pplhdr
->signature
= cpu_to_le32(ppl_conf
->signature
);
267 io
->seq
= atomic64_add_return(1, &ppl_conf
->seq
);
268 pplhdr
->generation
= cpu_to_le64(io
->seq
);
273 static int ppl_log_stripe(struct ppl_log
*log
, struct stripe_head
*sh
)
275 struct ppl_io_unit
*io
= log
->current_io
;
276 struct ppl_header_entry
*e
= NULL
;
277 struct ppl_header
*pplhdr
;
279 sector_t data_sector
= 0;
281 struct r5conf
*conf
= sh
->raid_conf
;
283 pr_debug("%s: stripe: %llu\n", __func__
, (unsigned long long)sh
->sector
);
285 /* check if current io_unit is full */
286 if (io
&& (io
->pp_size
== log
->entry_space
||
287 io
->entries_count
== PPL_HDR_MAX_ENTRIES
)) {
288 pr_debug("%s: add io_unit blocked by seq: %llu\n",
293 /* add a new unit if there is none or the current is full */
295 io
= ppl_new_iounit(log
, sh
);
298 spin_lock_irq(&log
->io_list_lock
);
299 list_add_tail(&io
->log_sibling
, &log
->io_list
);
300 spin_unlock_irq(&log
->io_list_lock
);
302 log
->current_io
= io
;
305 for (i
= 0; i
< sh
->disks
; i
++) {
306 struct r5dev
*dev
= &sh
->dev
[i
];
308 if (i
!= sh
->pd_idx
&& test_bit(R5_Wantwrite
, &dev
->flags
)) {
309 if (!data_disks
|| dev
->sector
< data_sector
)
310 data_sector
= dev
->sector
;
316 pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__
,
317 io
->seq
, (unsigned long long)data_sector
, data_disks
);
319 pplhdr
= page_address(io
->header_page
);
321 if (io
->entries_count
> 0) {
322 struct ppl_header_entry
*last
=
323 &pplhdr
->entries
[io
->entries_count
- 1];
324 struct stripe_head
*sh_last
= list_last_entry(
325 &io
->stripe_list
, struct stripe_head
, log_list
);
326 u64 data_sector_last
= le64_to_cpu(last
->data_sector
);
327 u32 data_size_last
= le32_to_cpu(last
->data_size
);
330 * Check if we can append the stripe to the last entry. It must
331 * be just after the last logged stripe and write to the same
332 * disks. Use bit shift and logarithm to avoid 64-bit division.
334 if ((sh
->sector
== sh_last
->sector
+ STRIPE_SECTORS
) &&
335 (data_sector
>> ilog2(conf
->chunk_sectors
) ==
336 data_sector_last
>> ilog2(conf
->chunk_sectors
)) &&
337 ((data_sector
- data_sector_last
) * data_disks
==
338 data_size_last
>> 9))
343 e
= &pplhdr
->entries
[io
->entries_count
++];
344 e
->data_sector
= cpu_to_le64(data_sector
);
345 e
->parity_disk
= cpu_to_le32(sh
->pd_idx
);
346 e
->checksum
= cpu_to_le32(~0);
349 le32_add_cpu(&e
->data_size
, data_disks
<< PAGE_SHIFT
);
351 /* don't write any PP if full stripe write */
352 if (!test_bit(STRIPE_FULL_WRITE
, &sh
->state
)) {
353 le32_add_cpu(&e
->pp_size
, PAGE_SIZE
);
354 io
->pp_size
+= PAGE_SIZE
;
355 e
->checksum
= cpu_to_le32(crc32c_le(le32_to_cpu(e
->checksum
),
356 page_address(sh
->ppl_page
),
360 list_add_tail(&sh
->log_list
, &io
->stripe_list
);
361 atomic_inc(&io
->pending_stripes
);
367 int ppl_write_stripe(struct r5conf
*conf
, struct stripe_head
*sh
)
369 struct ppl_conf
*ppl_conf
= conf
->log_private
;
370 struct ppl_io_unit
*io
= sh
->ppl_io
;
373 if (io
|| test_bit(STRIPE_SYNCING
, &sh
->state
) || !sh
->ppl_page
||
374 !test_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
) ||
375 !test_bit(R5_Insync
, &sh
->dev
[sh
->pd_idx
].flags
)) {
376 clear_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
380 log
= &ppl_conf
->child_logs
[sh
->pd_idx
];
382 mutex_lock(&log
->io_mutex
);
384 if (!log
->rdev
|| test_bit(Faulty
, &log
->rdev
->flags
)) {
385 mutex_unlock(&log
->io_mutex
);
389 set_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
390 clear_bit(STRIPE_DELAYED
, &sh
->state
);
391 atomic_inc(&sh
->count
);
393 if (ppl_log_stripe(log
, sh
)) {
394 spin_lock_irq(&ppl_conf
->no_mem_stripes_lock
);
395 list_add_tail(&sh
->log_list
, &ppl_conf
->no_mem_stripes
);
396 spin_unlock_irq(&ppl_conf
->no_mem_stripes_lock
);
399 mutex_unlock(&log
->io_mutex
);
404 static void ppl_log_endio(struct bio
*bio
)
406 struct ppl_io_unit
*io
= bio
->bi_private
;
407 struct ppl_log
*log
= io
->log
;
408 struct ppl_conf
*ppl_conf
= log
->ppl_conf
;
409 struct stripe_head
*sh
, *next
;
411 pr_debug("%s: seq: %llu\n", __func__
, io
->seq
);
414 md_error(ppl_conf
->mddev
, log
->rdev
);
416 list_for_each_entry_safe(sh
, next
, &io
->stripe_list
, log_list
) {
417 list_del_init(&sh
->log_list
);
419 set_bit(STRIPE_HANDLE
, &sh
->state
);
420 raid5_release_stripe(sh
);
424 static void ppl_submit_iounit_bio(struct ppl_io_unit
*io
, struct bio
*bio
)
426 char b
[BDEVNAME_SIZE
];
428 pr_debug("%s: seq: %llu size: %u sector: %llu dev: %s\n",
429 __func__
, io
->seq
, bio
->bi_iter
.bi_size
,
430 (unsigned long long)bio
->bi_iter
.bi_sector
,
431 bio_devname(bio
, b
));
436 static void ppl_submit_iounit(struct ppl_io_unit
*io
)
438 struct ppl_log
*log
= io
->log
;
439 struct ppl_conf
*ppl_conf
= log
->ppl_conf
;
440 struct ppl_header
*pplhdr
= page_address(io
->header_page
);
441 struct bio
*bio
= &io
->bio
;
442 struct stripe_head
*sh
;
445 bio
->bi_private
= io
;
447 if (!log
->rdev
|| test_bit(Faulty
, &log
->rdev
->flags
)) {
452 for (i
= 0; i
< io
->entries_count
; i
++) {
453 struct ppl_header_entry
*e
= &pplhdr
->entries
[i
];
455 pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n",
456 __func__
, io
->seq
, i
, le64_to_cpu(e
->data_sector
),
457 le32_to_cpu(e
->pp_size
), le32_to_cpu(e
->data_size
));
459 e
->data_sector
= cpu_to_le64(le64_to_cpu(e
->data_sector
) >>
460 ilog2(ppl_conf
->block_size
>> 9));
461 e
->checksum
= cpu_to_le32(~le32_to_cpu(e
->checksum
));
464 pplhdr
->entries_count
= cpu_to_le32(io
->entries_count
);
465 pplhdr
->checksum
= cpu_to_le32(~crc32c_le(~0, pplhdr
, PPL_HEADER_SIZE
));
467 /* Rewind the buffer if current PPL is larger then remaining space */
468 if (log
->use_multippl
&&
469 log
->rdev
->ppl
.sector
+ log
->rdev
->ppl
.size
- log
->next_io_sector
<
470 (PPL_HEADER_SIZE
+ io
->pp_size
) >> 9)
471 log
->next_io_sector
= log
->rdev
->ppl
.sector
;
474 bio
->bi_end_io
= ppl_log_endio
;
475 bio
->bi_opf
= REQ_OP_WRITE
| REQ_FUA
;
476 bio_set_dev(bio
, log
->rdev
->bdev
);
477 bio
->bi_iter
.bi_sector
= log
->next_io_sector
;
478 bio_add_page(bio
, io
->header_page
, PAGE_SIZE
, 0);
480 pr_debug("%s: log->current_io_sector: %llu\n", __func__
,
481 (unsigned long long)log
->next_io_sector
);
483 if (log
->use_multippl
)
484 log
->next_io_sector
+= (PPL_HEADER_SIZE
+ io
->pp_size
) >> 9;
486 WARN_ON(log
->disk_flush_bitmap
!= 0);
488 list_for_each_entry(sh
, &io
->stripe_list
, log_list
) {
489 for (i
= 0; i
< sh
->disks
; i
++) {
490 struct r5dev
*dev
= &sh
->dev
[i
];
492 if ((ppl_conf
->child_logs
[i
].wb_cache_on
) &&
493 (test_bit(R5_Wantwrite
, &dev
->flags
))) {
494 set_bit(i
, &log
->disk_flush_bitmap
);
498 /* entries for full stripe writes have no partial parity */
499 if (test_bit(STRIPE_FULL_WRITE
, &sh
->state
))
502 if (!bio_add_page(bio
, sh
->ppl_page
, PAGE_SIZE
, 0)) {
503 struct bio
*prev
= bio
;
505 bio
= bio_alloc_bioset(GFP_NOIO
, BIO_MAX_PAGES
,
507 bio
->bi_opf
= prev
->bi_opf
;
508 bio_copy_dev(bio
, prev
);
509 bio
->bi_iter
.bi_sector
= bio_end_sector(prev
);
510 bio_add_page(bio
, sh
->ppl_page
, PAGE_SIZE
, 0);
512 bio_chain(bio
, prev
);
513 ppl_submit_iounit_bio(io
, prev
);
517 ppl_submit_iounit_bio(io
, bio
);
520 static void ppl_submit_current_io(struct ppl_log
*log
)
522 struct ppl_io_unit
*io
;
524 spin_lock_irq(&log
->io_list_lock
);
526 io
= list_first_entry_or_null(&log
->io_list
, struct ppl_io_unit
,
528 if (io
&& io
->submitted
)
531 spin_unlock_irq(&log
->io_list_lock
);
534 io
->submitted
= true;
536 if (io
== log
->current_io
)
537 log
->current_io
= NULL
;
539 ppl_submit_iounit(io
);
543 void ppl_write_stripe_run(struct r5conf
*conf
)
545 struct ppl_conf
*ppl_conf
= conf
->log_private
;
549 for (i
= 0; i
< ppl_conf
->count
; i
++) {
550 log
= &ppl_conf
->child_logs
[i
];
552 mutex_lock(&log
->io_mutex
);
553 ppl_submit_current_io(log
);
554 mutex_unlock(&log
->io_mutex
);
558 static void ppl_io_unit_finished(struct ppl_io_unit
*io
)
560 struct ppl_log
*log
= io
->log
;
561 struct ppl_conf
*ppl_conf
= log
->ppl_conf
;
562 struct r5conf
*conf
= ppl_conf
->mddev
->private;
565 pr_debug("%s: seq: %llu\n", __func__
, io
->seq
);
567 local_irq_save(flags
);
569 spin_lock(&log
->io_list_lock
);
570 list_del(&io
->log_sibling
);
571 spin_unlock(&log
->io_list_lock
);
573 mempool_free(io
, &ppl_conf
->io_pool
);
575 spin_lock(&ppl_conf
->no_mem_stripes_lock
);
576 if (!list_empty(&ppl_conf
->no_mem_stripes
)) {
577 struct stripe_head
*sh
;
579 sh
= list_first_entry(&ppl_conf
->no_mem_stripes
,
580 struct stripe_head
, log_list
);
581 list_del_init(&sh
->log_list
);
582 set_bit(STRIPE_HANDLE
, &sh
->state
);
583 raid5_release_stripe(sh
);
585 spin_unlock(&ppl_conf
->no_mem_stripes_lock
);
587 local_irq_restore(flags
);
589 wake_up(&conf
->wait_for_quiescent
);
592 static void ppl_flush_endio(struct bio
*bio
)
594 struct ppl_io_unit
*io
= bio
->bi_private
;
595 struct ppl_log
*log
= io
->log
;
596 struct ppl_conf
*ppl_conf
= log
->ppl_conf
;
597 struct r5conf
*conf
= ppl_conf
->mddev
->private;
598 char b
[BDEVNAME_SIZE
];
600 pr_debug("%s: dev: %s\n", __func__
, bio_devname(bio
, b
));
602 if (bio
->bi_status
) {
603 struct md_rdev
*rdev
;
606 rdev
= md_find_rdev_rcu(conf
->mddev
, bio_dev(bio
));
608 md_error(rdev
->mddev
, rdev
);
614 if (atomic_dec_and_test(&io
->pending_flushes
)) {
615 ppl_io_unit_finished(io
);
616 md_wakeup_thread(conf
->mddev
->thread
);
620 static void ppl_do_flush(struct ppl_io_unit
*io
)
622 struct ppl_log
*log
= io
->log
;
623 struct ppl_conf
*ppl_conf
= log
->ppl_conf
;
624 struct r5conf
*conf
= ppl_conf
->mddev
->private;
625 int raid_disks
= conf
->raid_disks
;
626 int flushed_disks
= 0;
629 atomic_set(&io
->pending_flushes
, raid_disks
);
631 for_each_set_bit(i
, &log
->disk_flush_bitmap
, raid_disks
) {
632 struct md_rdev
*rdev
;
633 struct block_device
*bdev
= NULL
;
636 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
637 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
643 char b
[BDEVNAME_SIZE
];
645 bio
= bio_alloc_bioset(GFP_NOIO
, 0, &ppl_conf
->flush_bs
);
646 bio_set_dev(bio
, bdev
);
647 bio
->bi_private
= io
;
648 bio
->bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
;
649 bio
->bi_end_io
= ppl_flush_endio
;
651 pr_debug("%s: dev: %s\n", __func__
,
652 bio_devname(bio
, b
));
659 log
->disk_flush_bitmap
= 0;
661 for (i
= flushed_disks
; i
< raid_disks
; i
++) {
662 if (atomic_dec_and_test(&io
->pending_flushes
))
663 ppl_io_unit_finished(io
);
667 static inline bool ppl_no_io_unit_submitted(struct r5conf
*conf
,
670 struct ppl_io_unit
*io
;
672 io
= list_first_entry_or_null(&log
->io_list
, struct ppl_io_unit
,
675 return !io
|| !io
->submitted
;
678 void ppl_quiesce(struct r5conf
*conf
, int quiesce
)
680 struct ppl_conf
*ppl_conf
= conf
->log_private
;
684 for (i
= 0; i
< ppl_conf
->count
; i
++) {
685 struct ppl_log
*log
= &ppl_conf
->child_logs
[i
];
687 spin_lock_irq(&log
->io_list_lock
);
688 wait_event_lock_irq(conf
->wait_for_quiescent
,
689 ppl_no_io_unit_submitted(conf
, log
),
691 spin_unlock_irq(&log
->io_list_lock
);
696 int ppl_handle_flush_request(struct r5l_log
*log
, struct bio
*bio
)
698 if (bio
->bi_iter
.bi_size
== 0) {
702 bio
->bi_opf
&= ~REQ_PREFLUSH
;
706 void ppl_stripe_write_finished(struct stripe_head
*sh
)
708 struct ppl_io_unit
*io
;
713 if (io
&& atomic_dec_and_test(&io
->pending_stripes
)) {
714 if (io
->log
->disk_flush_bitmap
)
717 ppl_io_unit_finished(io
);
721 static void ppl_xor(int size
, struct page
*page1
, struct page
*page2
)
723 struct async_submit_ctl submit
;
724 struct dma_async_tx_descriptor
*tx
;
725 struct page
*xor_srcs
[] = { page1
, page2
};
727 init_async_submit(&submit
, ASYNC_TX_ACK
|ASYNC_TX_XOR_DROP_DST
,
728 NULL
, NULL
, NULL
, NULL
);
729 tx
= async_xor(page1
, xor_srcs
, 0, 2, size
, &submit
);
731 async_tx_quiesce(&tx
);
735 * PPL recovery strategy: xor partial parity and data from all modified data
736 * disks within a stripe and write the result as the new stripe parity. If all
737 * stripe data disks are modified (full stripe write), no partial parity is
738 * available, so just xor the data disks.
740 * Recovery of a PPL entry shall occur only if all modified data disks are
741 * available and read from all of them succeeds.
743 * A PPL entry applies to a stripe, partial parity size for an entry is at most
744 * the size of the chunk. Examples of possible cases for a single entry:
746 * case 0: single data disk write:
747 * data0 data1 data2 ppl parity
748 * +--------+--------+--------+ +--------------------+
749 * | ------ | ------ | ------ | +----+ | (no change) |
750 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp |
751 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp |
752 * | ------ | ------ | ------ | +----+ | (no change) |
753 * +--------+--------+--------+ +--------------------+
754 * pp_size = data_size
756 * case 1: more than one data disk write:
757 * data0 data1 data2 ppl parity
758 * +--------+--------+--------+ +--------------------+
759 * | ------ | ------ | ------ | +----+ | (no change) |
760 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
761 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
762 * | ------ | ------ | ------ | +----+ | (no change) |
763 * +--------+--------+--------+ +--------------------+
764 * pp_size = data_size / modified_data_disks
766 * case 2: write to all data disks (also full stripe write):
767 * data0 data1 data2 parity
768 * +--------+--------+--------+ +--------------------+
769 * | ------ | ------ | ------ | | (no change) |
770 * | -data- | -data- | -data- | --------> | xor all data |
771 * | ------ | ------ | ------ | --------> | (no change) |
772 * | ------ | ------ | ------ | | (no change) |
773 * +--------+--------+--------+ +--------------------+
776 * The following cases are possible only in other implementations. The recovery
777 * code can handle them, but they are not generated at runtime because they can
778 * be reduced to cases 0, 1 and 2:
781 * data0 data1 data2 ppl parity
782 * +--------+--------+--------+ +----+ +--------------------+
783 * | ------ | -data- | -data- | | pp | | data1 ^ data2 ^ pp |
784 * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp |
785 * | -data- | -data- | -data- | | -- | -> | xor all data |
786 * | -data- | -data- | ------ | | pp | | data0 ^ data1 ^ pp |
787 * +--------+--------+--------+ +----+ +--------------------+
788 * pp_size = chunk_size
791 * data0 data1 data2 ppl parity
792 * +--------+--------+--------+ +----+ +--------------------+
793 * | ------ | -data- | ------ | | pp | | data1 ^ pp |
794 * | ------ | ------ | ------ | | -- | -> | (no change) |
795 * | ------ | ------ | ------ | | -- | -> | (no change) |
796 * | -data- | ------ | ------ | | pp | | data0 ^ pp |
797 * +--------+--------+--------+ +----+ +--------------------+
798 * pp_size = chunk_size
800 static int ppl_recover_entry(struct ppl_log
*log
, struct ppl_header_entry
*e
,
803 struct ppl_conf
*ppl_conf
= log
->ppl_conf
;
804 struct mddev
*mddev
= ppl_conf
->mddev
;
805 struct r5conf
*conf
= mddev
->private;
806 int block_size
= ppl_conf
->block_size
;
809 sector_t r_sector_first
;
810 sector_t r_sector_last
;
815 char b
[BDEVNAME_SIZE
];
816 unsigned int pp_size
= le32_to_cpu(e
->pp_size
);
817 unsigned int data_size
= le32_to_cpu(e
->data_size
);
819 page1
= alloc_page(GFP_KERNEL
);
820 page2
= alloc_page(GFP_KERNEL
);
822 if (!page1
|| !page2
) {
827 r_sector_first
= le64_to_cpu(e
->data_sector
) * (block_size
>> 9);
829 if ((pp_size
>> 9) < conf
->chunk_sectors
) {
831 data_disks
= data_size
/ pp_size
;
832 strip_sectors
= pp_size
>> 9;
834 data_disks
= conf
->raid_disks
- conf
->max_degraded
;
835 strip_sectors
= (data_size
>> 9) / data_disks
;
837 r_sector_last
= r_sector_first
+
838 (data_disks
- 1) * conf
->chunk_sectors
+
841 data_disks
= conf
->raid_disks
- conf
->max_degraded
;
842 strip_sectors
= conf
->chunk_sectors
;
843 r_sector_last
= r_sector_first
+ (data_size
>> 9);
846 pr_debug("%s: array sector first: %llu last: %llu\n", __func__
,
847 (unsigned long long)r_sector_first
,
848 (unsigned long long)r_sector_last
);
850 /* if start and end is 4k aligned, use a 4k block */
851 if (block_size
== 512 &&
852 (r_sector_first
& (STRIPE_SECTORS
- 1)) == 0 &&
853 (r_sector_last
& (STRIPE_SECTORS
- 1)) == 0)
854 block_size
= STRIPE_SIZE
;
856 /* iterate through blocks in strip */
857 for (i
= 0; i
< strip_sectors
; i
+= (block_size
>> 9)) {
858 bool update_parity
= false;
859 sector_t parity_sector
;
860 struct md_rdev
*parity_rdev
;
861 struct stripe_head sh
;
865 pr_debug("%s:%*s iter %d start\n", __func__
, indent
, "", i
);
868 memset(page_address(page1
), 0, PAGE_SIZE
);
870 /* iterate through data member disks */
871 for (disk
= 0; disk
< data_disks
; disk
++) {
873 struct md_rdev
*rdev
;
875 sector_t r_sector
= r_sector_first
+ i
+
876 (disk
* conf
->chunk_sectors
);
878 pr_debug("%s:%*s data member disk %d start\n",
879 __func__
, indent
, "", disk
);
882 if (r_sector
>= r_sector_last
) {
883 pr_debug("%s:%*s array sector %llu doesn't need parity update\n",
884 __func__
, indent
, "",
885 (unsigned long long)r_sector
);
890 update_parity
= true;
892 /* map raid sector to member disk */
893 sector
= raid5_compute_sector(conf
, r_sector
, 0,
895 pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n",
896 __func__
, indent
, "",
897 (unsigned long long)r_sector
, dd_idx
,
898 (unsigned long long)sector
);
900 rdev
= conf
->disks
[dd_idx
].rdev
;
901 if (!rdev
|| (!test_bit(In_sync
, &rdev
->flags
) &&
902 sector
>= rdev
->recovery_offset
)) {
903 pr_debug("%s:%*s data member disk %d missing\n",
904 __func__
, indent
, "", dd_idx
);
905 update_parity
= false;
909 pr_debug("%s:%*s reading data member disk %s sector %llu\n",
910 __func__
, indent
, "", bdevname(rdev
->bdev
, b
),
911 (unsigned long long)sector
);
912 if (!sync_page_io(rdev
, sector
, block_size
, page2
,
913 REQ_OP_READ
, 0, false)) {
914 md_error(mddev
, rdev
);
915 pr_debug("%s:%*s read failed!\n", __func__
,
921 ppl_xor(block_size
, page1
, page2
);
930 pr_debug("%s:%*s reading pp disk sector %llu\n",
931 __func__
, indent
, "",
932 (unsigned long long)(ppl_sector
+ i
));
933 if (!sync_page_io(log
->rdev
,
934 ppl_sector
- log
->rdev
->data_offset
+ i
,
935 block_size
, page2
, REQ_OP_READ
, 0,
937 pr_debug("%s:%*s read failed!\n", __func__
,
939 md_error(mddev
, log
->rdev
);
944 ppl_xor(block_size
, page1
, page2
);
947 /* map raid sector to parity disk */
948 parity_sector
= raid5_compute_sector(conf
, r_sector_first
+ i
,
950 BUG_ON(sh
.pd_idx
!= le32_to_cpu(e
->parity_disk
));
951 parity_rdev
= conf
->disks
[sh
.pd_idx
].rdev
;
953 BUG_ON(parity_rdev
->bdev
->bd_dev
!= log
->rdev
->bdev
->bd_dev
);
954 pr_debug("%s:%*s write parity at sector %llu, disk %s\n",
955 __func__
, indent
, "",
956 (unsigned long long)parity_sector
,
957 bdevname(parity_rdev
->bdev
, b
));
958 if (!sync_page_io(parity_rdev
, parity_sector
, block_size
,
959 page1
, REQ_OP_WRITE
, 0, false)) {
960 pr_debug("%s:%*s parity write error!\n", __func__
,
962 md_error(mddev
, parity_rdev
);
975 static int ppl_recover(struct ppl_log
*log
, struct ppl_header
*pplhdr
,
978 struct ppl_conf
*ppl_conf
= log
->ppl_conf
;
979 struct md_rdev
*rdev
= log
->rdev
;
980 struct mddev
*mddev
= rdev
->mddev
;
981 sector_t ppl_sector
= rdev
->ppl
.sector
+ offset
+
982 (PPL_HEADER_SIZE
>> 9);
987 page
= alloc_page(GFP_KERNEL
);
991 /* iterate through all PPL entries saved */
992 for (i
= 0; i
< le32_to_cpu(pplhdr
->entries_count
); i
++) {
993 struct ppl_header_entry
*e
= &pplhdr
->entries
[i
];
994 u32 pp_size
= le32_to_cpu(e
->pp_size
);
995 sector_t sector
= ppl_sector
;
996 int ppl_entry_sectors
= pp_size
>> 9;
999 pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n",
1000 __func__
, rdev
->raid_disk
, i
,
1001 (unsigned long long)ppl_sector
, pp_size
);
1004 crc_stored
= le32_to_cpu(e
->checksum
);
1006 /* read parial parity for this entry and calculate its checksum */
1008 int s
= pp_size
> PAGE_SIZE
? PAGE_SIZE
: pp_size
;
1010 if (!sync_page_io(rdev
, sector
- rdev
->data_offset
,
1011 s
, page
, REQ_OP_READ
, 0, false)) {
1012 md_error(mddev
, rdev
);
1017 crc
= crc32c_le(crc
, page_address(page
), s
);
1025 if (crc
!= crc_stored
) {
1027 * Don't recover this entry if the checksum does not
1028 * match, but keep going and try to recover other
1031 pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n",
1032 __func__
, crc_stored
, crc
);
1033 ppl_conf
->mismatch_count
++;
1035 ret
= ppl_recover_entry(log
, e
, ppl_sector
);
1038 ppl_conf
->recovered_entries
++;
1041 ppl_sector
+= ppl_entry_sectors
;
1044 /* flush the disk cache after recovery if necessary */
1045 ret
= blkdev_issue_flush(rdev
->bdev
, GFP_KERNEL
, NULL
);
1051 static int ppl_write_empty_header(struct ppl_log
*log
)
1054 struct ppl_header
*pplhdr
;
1055 struct md_rdev
*rdev
= log
->rdev
;
1058 pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__
,
1059 rdev
->raid_disk
, (unsigned long long)rdev
->ppl
.sector
);
1061 page
= alloc_page(GFP_NOIO
| __GFP_ZERO
);
1065 pplhdr
= page_address(page
);
1066 /* zero out PPL space to avoid collision with old PPLs */
1067 blkdev_issue_zeroout(rdev
->bdev
, rdev
->ppl
.sector
,
1068 log
->rdev
->ppl
.size
, GFP_NOIO
, 0);
1069 memset(pplhdr
->reserved
, 0xff, PPL_HDR_RESERVED
);
1070 pplhdr
->signature
= cpu_to_le32(log
->ppl_conf
->signature
);
1071 pplhdr
->checksum
= cpu_to_le32(~crc32c_le(~0, pplhdr
, PAGE_SIZE
));
1073 if (!sync_page_io(rdev
, rdev
->ppl
.sector
- rdev
->data_offset
,
1074 PPL_HEADER_SIZE
, page
, REQ_OP_WRITE
| REQ_SYNC
|
1075 REQ_FUA
, 0, false)) {
1076 md_error(rdev
->mddev
, rdev
);
1084 static int ppl_load_distributed(struct ppl_log
*log
)
1086 struct ppl_conf
*ppl_conf
= log
->ppl_conf
;
1087 struct md_rdev
*rdev
= log
->rdev
;
1088 struct mddev
*mddev
= rdev
->mddev
;
1089 struct page
*page
, *page2
, *tmp
;
1090 struct ppl_header
*pplhdr
= NULL
, *prev_pplhdr
= NULL
;
1091 u32 crc
, crc_stored
;
1094 sector_t pplhdr_offset
= 0, prev_pplhdr_offset
= 0;
1096 pr_debug("%s: disk: %d\n", __func__
, rdev
->raid_disk
);
1097 /* read PPL headers, find the recent one */
1098 page
= alloc_page(GFP_KERNEL
);
1102 page2
= alloc_page(GFP_KERNEL
);
1108 /* searching ppl area for latest ppl */
1109 while (pplhdr_offset
< rdev
->ppl
.size
- (PPL_HEADER_SIZE
>> 9)) {
1110 if (!sync_page_io(rdev
,
1111 rdev
->ppl
.sector
- rdev
->data_offset
+
1112 pplhdr_offset
, PAGE_SIZE
, page
, REQ_OP_READ
,
1114 md_error(mddev
, rdev
);
1116 /* if not able to read - don't recover any PPL */
1120 pplhdr
= page_address(page
);
1122 /* check header validity */
1123 crc_stored
= le32_to_cpu(pplhdr
->checksum
);
1124 pplhdr
->checksum
= 0;
1125 crc
= ~crc32c_le(~0, pplhdr
, PAGE_SIZE
);
1127 if (crc_stored
!= crc
) {
1128 pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x (offset: %llu)\n",
1129 __func__
, crc_stored
, crc
,
1130 (unsigned long long)pplhdr_offset
);
1131 pplhdr
= prev_pplhdr
;
1132 pplhdr_offset
= prev_pplhdr_offset
;
1136 signature
= le32_to_cpu(pplhdr
->signature
);
1138 if (mddev
->external
) {
1140 * For external metadata the header signature is set and
1141 * validated in userspace.
1143 ppl_conf
->signature
= signature
;
1144 } else if (ppl_conf
->signature
!= signature
) {
1145 pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x (offset: %llu)\n",
1146 __func__
, signature
, ppl_conf
->signature
,
1147 (unsigned long long)pplhdr_offset
);
1148 pplhdr
= prev_pplhdr
;
1149 pplhdr_offset
= prev_pplhdr_offset
;
1153 if (prev_pplhdr
&& le64_to_cpu(prev_pplhdr
->generation
) >
1154 le64_to_cpu(pplhdr
->generation
)) {
1155 /* previous was newest */
1156 pplhdr
= prev_pplhdr
;
1157 pplhdr_offset
= prev_pplhdr_offset
;
1161 prev_pplhdr_offset
= pplhdr_offset
;
1162 prev_pplhdr
= pplhdr
;
1168 /* calculate next potential ppl offset */
1169 for (i
= 0; i
< le32_to_cpu(pplhdr
->entries_count
); i
++)
1171 le32_to_cpu(pplhdr
->entries
[i
].pp_size
) >> 9;
1172 pplhdr_offset
+= PPL_HEADER_SIZE
>> 9;
1175 /* no valid ppl found */
1177 ppl_conf
->mismatch_count
++;
1179 pr_debug("%s: latest PPL found at offset: %llu, with generation: %llu\n",
1180 __func__
, (unsigned long long)pplhdr_offset
,
1181 le64_to_cpu(pplhdr
->generation
));
1183 /* attempt to recover from log if we are starting a dirty array */
1184 if (pplhdr
&& !mddev
->pers
&& mddev
->recovery_cp
!= MaxSector
)
1185 ret
= ppl_recover(log
, pplhdr
, pplhdr_offset
);
1187 /* write empty header if we are starting the array */
1188 if (!ret
&& !mddev
->pers
)
1189 ret
= ppl_write_empty_header(log
);
1194 pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1195 __func__
, ret
, ppl_conf
->mismatch_count
,
1196 ppl_conf
->recovered_entries
);
1200 static int ppl_load(struct ppl_conf
*ppl_conf
)
1204 bool signature_set
= false;
1207 for (i
= 0; i
< ppl_conf
->count
; i
++) {
1208 struct ppl_log
*log
= &ppl_conf
->child_logs
[i
];
1210 /* skip missing drive */
1214 ret
= ppl_load_distributed(log
);
1219 * For external metadata we can't check if the signature is
1220 * correct on a single drive, but we can check if it is the same
1223 if (ppl_conf
->mddev
->external
) {
1224 if (!signature_set
) {
1225 signature
= ppl_conf
->signature
;
1226 signature_set
= true;
1227 } else if (signature
!= ppl_conf
->signature
) {
1228 pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n",
1229 mdname(ppl_conf
->mddev
));
1236 pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1237 __func__
, ret
, ppl_conf
->mismatch_count
,
1238 ppl_conf
->recovered_entries
);
1242 static void __ppl_exit_log(struct ppl_conf
*ppl_conf
)
1244 clear_bit(MD_HAS_PPL
, &ppl_conf
->mddev
->flags
);
1245 clear_bit(MD_HAS_MULTIPLE_PPLS
, &ppl_conf
->mddev
->flags
);
1247 kfree(ppl_conf
->child_logs
);
1249 bioset_exit(&ppl_conf
->bs
);
1250 bioset_exit(&ppl_conf
->flush_bs
);
1251 mempool_exit(&ppl_conf
->io_pool
);
1252 kmem_cache_destroy(ppl_conf
->io_kc
);
1257 void ppl_exit_log(struct r5conf
*conf
)
1259 struct ppl_conf
*ppl_conf
= conf
->log_private
;
1262 __ppl_exit_log(ppl_conf
);
1263 conf
->log_private
= NULL
;
1267 static int ppl_validate_rdev(struct md_rdev
*rdev
)
1269 char b
[BDEVNAME_SIZE
];
1270 int ppl_data_sectors
;
1274 * The configured PPL size must be enough to store
1275 * the header and (at the very least) partial parity
1276 * for one stripe. Round it down to ensure the data
1277 * space is cleanly divisible by stripe size.
1279 ppl_data_sectors
= rdev
->ppl
.size
- (PPL_HEADER_SIZE
>> 9);
1281 if (ppl_data_sectors
> 0)
1282 ppl_data_sectors
= rounddown(ppl_data_sectors
, STRIPE_SECTORS
);
1284 if (ppl_data_sectors
<= 0) {
1285 pr_warn("md/raid:%s: PPL space too small on %s\n",
1286 mdname(rdev
->mddev
), bdevname(rdev
->bdev
, b
));
1290 ppl_size_new
= ppl_data_sectors
+ (PPL_HEADER_SIZE
>> 9);
1292 if ((rdev
->ppl
.sector
< rdev
->data_offset
&&
1293 rdev
->ppl
.sector
+ ppl_size_new
> rdev
->data_offset
) ||
1294 (rdev
->ppl
.sector
>= rdev
->data_offset
&&
1295 rdev
->data_offset
+ rdev
->sectors
> rdev
->ppl
.sector
)) {
1296 pr_warn("md/raid:%s: PPL space overlaps with data on %s\n",
1297 mdname(rdev
->mddev
), bdevname(rdev
->bdev
, b
));
1301 if (!rdev
->mddev
->external
&&
1302 ((rdev
->ppl
.offset
> 0 && rdev
->ppl
.offset
< (rdev
->sb_size
>> 9)) ||
1303 (rdev
->ppl
.offset
<= 0 && rdev
->ppl
.offset
+ ppl_size_new
> 0))) {
1304 pr_warn("md/raid:%s: PPL space overlaps with superblock on %s\n",
1305 mdname(rdev
->mddev
), bdevname(rdev
->bdev
, b
));
1309 rdev
->ppl
.size
= ppl_size_new
;
1314 static void ppl_init_child_log(struct ppl_log
*log
, struct md_rdev
*rdev
)
1316 struct request_queue
*q
;
1318 if ((rdev
->ppl
.size
<< 9) >= (PPL_SPACE_SIZE
+
1319 PPL_HEADER_SIZE
) * 2) {
1320 log
->use_multippl
= true;
1321 set_bit(MD_HAS_MULTIPLE_PPLS
,
1322 &log
->ppl_conf
->mddev
->flags
);
1323 log
->entry_space
= PPL_SPACE_SIZE
;
1325 log
->use_multippl
= false;
1326 log
->entry_space
= (log
->rdev
->ppl
.size
<< 9) -
1329 log
->next_io_sector
= rdev
->ppl
.sector
;
1331 q
= bdev_get_queue(rdev
->bdev
);
1332 if (test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
))
1333 log
->wb_cache_on
= true;
1336 int ppl_init_log(struct r5conf
*conf
)
1338 struct ppl_conf
*ppl_conf
;
1339 struct mddev
*mddev
= conf
->mddev
;
1344 pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n",
1345 mdname(conf
->mddev
));
1347 if (PAGE_SIZE
!= 4096)
1350 if (mddev
->level
!= 5) {
1351 pr_warn("md/raid:%s PPL is not compatible with raid level %d\n",
1352 mdname(mddev
), mddev
->level
);
1356 if (mddev
->bitmap_info
.file
|| mddev
->bitmap_info
.offset
) {
1357 pr_warn("md/raid:%s PPL is not compatible with bitmap\n",
1362 if (test_bit(MD_HAS_JOURNAL
, &mddev
->flags
)) {
1363 pr_warn("md/raid:%s PPL is not compatible with journal\n",
1368 max_disks
= FIELD_SIZEOF(struct ppl_log
, disk_flush_bitmap
) *
1370 if (conf
->raid_disks
> max_disks
) {
1371 pr_warn("md/raid:%s PPL doesn't support over %d disks in the array\n",
1372 mdname(mddev
), max_disks
);
1376 ppl_conf
= kzalloc(sizeof(struct ppl_conf
), GFP_KERNEL
);
1380 ppl_conf
->mddev
= mddev
;
1382 ppl_conf
->io_kc
= KMEM_CACHE(ppl_io_unit
, 0);
1383 if (!ppl_conf
->io_kc
) {
1388 ret
= mempool_init(&ppl_conf
->io_pool
, conf
->raid_disks
, ppl_io_pool_alloc
,
1389 ppl_io_pool_free
, ppl_conf
->io_kc
);
1393 ret
= bioset_init(&ppl_conf
->bs
, conf
->raid_disks
, 0, BIOSET_NEED_BVECS
);
1397 ret
= bioset_init(&ppl_conf
->flush_bs
, conf
->raid_disks
, 0, 0);
1401 ppl_conf
->count
= conf
->raid_disks
;
1402 ppl_conf
->child_logs
= kcalloc(ppl_conf
->count
, sizeof(struct ppl_log
),
1404 if (!ppl_conf
->child_logs
) {
1409 atomic64_set(&ppl_conf
->seq
, 0);
1410 INIT_LIST_HEAD(&ppl_conf
->no_mem_stripes
);
1411 spin_lock_init(&ppl_conf
->no_mem_stripes_lock
);
1413 if (!mddev
->external
) {
1414 ppl_conf
->signature
= ~crc32c_le(~0, mddev
->uuid
, sizeof(mddev
->uuid
));
1415 ppl_conf
->block_size
= 512;
1417 ppl_conf
->block_size
= queue_logical_block_size(mddev
->queue
);
1420 for (i
= 0; i
< ppl_conf
->count
; i
++) {
1421 struct ppl_log
*log
= &ppl_conf
->child_logs
[i
];
1422 struct md_rdev
*rdev
= conf
->disks
[i
].rdev
;
1424 mutex_init(&log
->io_mutex
);
1425 spin_lock_init(&log
->io_list_lock
);
1426 INIT_LIST_HEAD(&log
->io_list
);
1428 log
->ppl_conf
= ppl_conf
;
1432 ret
= ppl_validate_rdev(rdev
);
1436 ppl_init_child_log(log
, rdev
);
1440 /* load and possibly recover the logs from the member disks */
1441 ret
= ppl_load(ppl_conf
);
1445 } else if (!mddev
->pers
&& mddev
->recovery_cp
== 0 &&
1446 ppl_conf
->recovered_entries
> 0 &&
1447 ppl_conf
->mismatch_count
== 0) {
1449 * If we are starting a dirty array and the recovery succeeds
1450 * without any issues, set the array as clean.
1452 mddev
->recovery_cp
= MaxSector
;
1453 set_bit(MD_SB_CHANGE_CLEAN
, &mddev
->sb_flags
);
1454 } else if (mddev
->pers
&& ppl_conf
->mismatch_count
> 0) {
1455 /* no mismatch allowed when enabling PPL for a running array */
1460 conf
->log_private
= ppl_conf
;
1461 set_bit(MD_HAS_PPL
, &ppl_conf
->mddev
->flags
);
1465 __ppl_exit_log(ppl_conf
);
1469 int ppl_modify_log(struct r5conf
*conf
, struct md_rdev
*rdev
, bool add
)
1471 struct ppl_conf
*ppl_conf
= conf
->log_private
;
1472 struct ppl_log
*log
;
1474 char b
[BDEVNAME_SIZE
];
1479 pr_debug("%s: disk: %d operation: %s dev: %s\n",
1480 __func__
, rdev
->raid_disk
, add
? "add" : "remove",
1481 bdevname(rdev
->bdev
, b
));
1483 if (rdev
->raid_disk
< 0)
1486 if (rdev
->raid_disk
>= ppl_conf
->count
)
1489 log
= &ppl_conf
->child_logs
[rdev
->raid_disk
];
1491 mutex_lock(&log
->io_mutex
);
1493 ret
= ppl_validate_rdev(rdev
);
1496 ret
= ppl_write_empty_header(log
);
1497 ppl_init_child_log(log
, rdev
);
1502 mutex_unlock(&log
->io_mutex
);