2 * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3
5 * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org>
7 * Detailed datasheet of the chip is available here:
9 * http://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf
11 * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c).
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/rtc.h>
27 #include <linux/i2c.h>
28 #include <linux/bcd.h>
30 #include <linux/regmap.h>
31 #include <linux/interrupt.h>
33 #define DRV_NAME "rtc-ab-b5ze-s3"
36 #define ABB5ZES3_REG_CTRL1 0x00 /* Control 1 register */
37 #define ABB5ZES3_REG_CTRL1_CIE BIT(0) /* Pulse interrupt enable */
38 #define ABB5ZES3_REG_CTRL1_AIE BIT(1) /* Alarm interrupt enable */
39 #define ABB5ZES3_REG_CTRL1_SIE BIT(2) /* Second interrupt enable */
40 #define ABB5ZES3_REG_CTRL1_PM BIT(3) /* 24h/12h mode */
41 #define ABB5ZES3_REG_CTRL1_SR BIT(4) /* Software reset */
42 #define ABB5ZES3_REG_CTRL1_STOP BIT(5) /* RTC circuit enable */
43 #define ABB5ZES3_REG_CTRL1_CAP BIT(7)
45 #define ABB5ZES3_REG_CTRL2 0x01 /* Control 2 register */
46 #define ABB5ZES3_REG_CTRL2_CTBIE BIT(0) /* Countdown timer B int. enable */
47 #define ABB5ZES3_REG_CTRL2_CTAIE BIT(1) /* Countdown timer A int. enable */
48 #define ABB5ZES3_REG_CTRL2_WTAIE BIT(2) /* Watchdog timer A int. enable */
49 #define ABB5ZES3_REG_CTRL2_AF BIT(3) /* Alarm interrupt status */
50 #define ABB5ZES3_REG_CTRL2_SF BIT(4) /* Second interrupt status */
51 #define ABB5ZES3_REG_CTRL2_CTBF BIT(5) /* Countdown timer B int. status */
52 #define ABB5ZES3_REG_CTRL2_CTAF BIT(6) /* Countdown timer A int. status */
53 #define ABB5ZES3_REG_CTRL2_WTAF BIT(7) /* Watchdog timer A int. status */
55 #define ABB5ZES3_REG_CTRL3 0x02 /* Control 3 register */
56 #define ABB5ZES3_REG_CTRL3_PM2 BIT(7) /* Power Management bit 2 */
57 #define ABB5ZES3_REG_CTRL3_PM1 BIT(6) /* Power Management bit 1 */
58 #define ABB5ZES3_REG_CTRL3_PM0 BIT(5) /* Power Management bit 0 */
59 #define ABB5ZES3_REG_CTRL3_BSF BIT(3) /* Battery switchover int. status */
60 #define ABB5ZES3_REG_CTRL3_BLF BIT(2) /* Battery low int. status */
61 #define ABB5ZES3_REG_CTRL3_BSIE BIT(1) /* Battery switchover int. enable */
62 #define ABB5ZES3_REG_CTRL3_BLIE BIT(0) /* Battery low int. enable */
64 #define ABB5ZES3_CTRL_SEC_LEN 3
67 #define ABB5ZES3_REG_RTC_SC 0x03 /* RTC Seconds register */
68 #define ABB5ZES3_REG_RTC_SC_OSC BIT(7) /* Clock integrity status */
69 #define ABB5ZES3_REG_RTC_MN 0x04 /* RTC Minutes register */
70 #define ABB5ZES3_REG_RTC_HR 0x05 /* RTC Hours register */
71 #define ABB5ZES3_REG_RTC_HR_PM BIT(5) /* RTC Hours PM bit */
72 #define ABB5ZES3_REG_RTC_DT 0x06 /* RTC Date register */
73 #define ABB5ZES3_REG_RTC_DW 0x07 /* RTC Day of the week register */
74 #define ABB5ZES3_REG_RTC_MO 0x08 /* RTC Month register */
75 #define ABB5ZES3_REG_RTC_YR 0x09 /* RTC Year register */
77 #define ABB5ZES3_RTC_SEC_LEN 7
79 /* Alarm section (enable bits are all active low) */
80 #define ABB5ZES3_REG_ALRM_MN 0x0A /* Alarm - minute register */
81 #define ABB5ZES3_REG_ALRM_MN_AE BIT(7) /* Minute enable */
82 #define ABB5ZES3_REG_ALRM_HR 0x0B /* Alarm - hours register */
83 #define ABB5ZES3_REG_ALRM_HR_AE BIT(7) /* Hour enable */
84 #define ABB5ZES3_REG_ALRM_DT 0x0C /* Alarm - date register */
85 #define ABB5ZES3_REG_ALRM_DT_AE BIT(7) /* Date (day of the month) enable */
86 #define ABB5ZES3_REG_ALRM_DW 0x0D /* Alarm - day of the week reg. */
87 #define ABB5ZES3_REG_ALRM_DW_AE BIT(7) /* Day of the week enable */
89 #define ABB5ZES3_ALRM_SEC_LEN 4
91 /* Frequency offset section */
92 #define ABB5ZES3_REG_FREQ_OF 0x0E /* Frequency offset register */
93 #define ABB5ZES3_REG_FREQ_OF_MODE 0x0E /* Offset mode: 2 hours / minute */
95 /* CLOCKOUT section */
96 #define ABB5ZES3_REG_TIM_CLK 0x0F /* Timer & Clockout register */
97 #define ABB5ZES3_REG_TIM_CLK_TAM BIT(7) /* Permanent/pulsed timer A/int. 2 */
98 #define ABB5ZES3_REG_TIM_CLK_TBM BIT(6) /* Permanent/pulsed timer B */
99 #define ABB5ZES3_REG_TIM_CLK_COF2 BIT(5) /* Clkout Freq bit 2 */
100 #define ABB5ZES3_REG_TIM_CLK_COF1 BIT(4) /* Clkout Freq bit 1 */
101 #define ABB5ZES3_REG_TIM_CLK_COF0 BIT(3) /* Clkout Freq bit 0 */
102 #define ABB5ZES3_REG_TIM_CLK_TAC1 BIT(2) /* Timer A: - 01 : countdown */
103 #define ABB5ZES3_REG_TIM_CLK_TAC0 BIT(1) /* - 10 : timer */
104 #define ABB5ZES3_REG_TIM_CLK_TBC BIT(0) /* Timer B enable */
106 /* Timer A Section */
107 #define ABB5ZES3_REG_TIMA_CLK 0x10 /* Timer A clock register */
108 #define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2) /* Freq bit 2 */
109 #define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1) /* Freq bit 1 */
110 #define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0) /* Freq bit 0 */
111 #define ABB5ZES3_REG_TIMA 0x11 /* Timer A register */
113 #define ABB5ZES3_TIMA_SEC_LEN 2
115 /* Timer B Section */
116 #define ABB5ZES3_REG_TIMB_CLK 0x12 /* Timer B clock register */
117 #define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6)
118 #define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5)
119 #define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4)
120 #define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2)
121 #define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1)
122 #define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0)
123 #define ABB5ZES3_REG_TIMB 0x13 /* Timer B register */
124 #define ABB5ZES3_TIMB_SEC_LEN 2
126 #define ABB5ZES3_MEM_MAP_LEN 0x14
128 struct abb5zes3_rtc_data
{
129 struct rtc_device
*rtc
;
130 struct regmap
*regmap
;
136 bool timer_alarm
; /* current alarm is via timer A */
140 * Try and match register bits w/ fixed null values to see whether we
141 * are dealing with an ABB5ZES3. Note: this function is called early
142 * during init and hence does need mutex protection.
144 static int abb5zes3_i2c_validate_chip(struct regmap
*regmap
)
146 u8 regs
[ABB5ZES3_MEM_MAP_LEN
];
147 static const u8 mask
[ABB5ZES3_MEM_MAP_LEN
] = { 0x00, 0x00, 0x10, 0x00,
148 0x80, 0xc0, 0xc0, 0xf8,
149 0xe0, 0x00, 0x00, 0x40,
150 0x40, 0x78, 0x00, 0x00,
151 0xf8, 0x00, 0x88, 0x00 };
154 ret
= regmap_bulk_read(regmap
, 0, regs
, ABB5ZES3_MEM_MAP_LEN
);
158 for (i
= 0; i
< ABB5ZES3_MEM_MAP_LEN
; ++i
) {
159 if (regs
[i
] & mask
[i
]) /* check if bits are cleared */
166 /* Clear alarm status bit. */
167 static int _abb5zes3_rtc_clear_alarm(struct device
*dev
)
169 struct abb5zes3_rtc_data
*data
= dev_get_drvdata(dev
);
172 ret
= regmap_update_bits(data
->regmap
, ABB5ZES3_REG_CTRL2
,
173 ABB5ZES3_REG_CTRL2_AF
, 0);
175 dev_err(dev
, "%s: clearing alarm failed (%d)\n", __func__
, ret
);
180 /* Enable or disable alarm (i.e. alarm interrupt generation) */
181 static int _abb5zes3_rtc_update_alarm(struct device
*dev
, bool enable
)
183 struct abb5zes3_rtc_data
*data
= dev_get_drvdata(dev
);
186 ret
= regmap_update_bits(data
->regmap
, ABB5ZES3_REG_CTRL1
,
187 ABB5ZES3_REG_CTRL1_AIE
,
188 enable
? ABB5ZES3_REG_CTRL1_AIE
: 0);
190 dev_err(dev
, "%s: writing alarm INT failed (%d)\n",
196 /* Enable or disable timer (watchdog timer A interrupt generation) */
197 static int _abb5zes3_rtc_update_timer(struct device
*dev
, bool enable
)
199 struct abb5zes3_rtc_data
*data
= dev_get_drvdata(dev
);
202 ret
= regmap_update_bits(data
->regmap
, ABB5ZES3_REG_CTRL2
,
203 ABB5ZES3_REG_CTRL2_WTAIE
,
204 enable
? ABB5ZES3_REG_CTRL2_WTAIE
: 0);
206 dev_err(dev
, "%s: writing timer INT failed (%d)\n",
213 * Note: we only read, so regmap inner lock protection is sufficient, i.e.
214 * we do not need driver's main lock protection.
216 static int _abb5zes3_rtc_read_time(struct device
*dev
, struct rtc_time
*tm
)
218 struct abb5zes3_rtc_data
*data
= dev_get_drvdata(dev
);
219 u8 regs
[ABB5ZES3_REG_RTC_SC
+ ABB5ZES3_RTC_SEC_LEN
];
223 * As we need to read CTRL1 register anyway to access 24/12h
224 * mode bit, we do a single bulk read of both control and RTC
225 * sections (they are consecutive). This also ease indexing
226 * of register values after bulk read.
228 ret
= regmap_bulk_read(data
->regmap
, ABB5ZES3_REG_CTRL1
, regs
,
231 dev_err(dev
, "%s: reading RTC time failed (%d)\n",
236 /* If clock integrity is not guaranteed, do not return a time value */
237 if (regs
[ABB5ZES3_REG_RTC_SC
] & ABB5ZES3_REG_RTC_SC_OSC
) {
242 tm
->tm_sec
= bcd2bin(regs
[ABB5ZES3_REG_RTC_SC
] & 0x7F);
243 tm
->tm_min
= bcd2bin(regs
[ABB5ZES3_REG_RTC_MN
]);
245 if (regs
[ABB5ZES3_REG_CTRL1
] & ABB5ZES3_REG_CTRL1_PM
) { /* 12hr mode */
246 tm
->tm_hour
= bcd2bin(regs
[ABB5ZES3_REG_RTC_HR
] & 0x1f);
247 if (regs
[ABB5ZES3_REG_RTC_HR
] & ABB5ZES3_REG_RTC_HR_PM
) /* PM */
249 } else { /* 24hr mode */
250 tm
->tm_hour
= bcd2bin(regs
[ABB5ZES3_REG_RTC_HR
]);
253 tm
->tm_mday
= bcd2bin(regs
[ABB5ZES3_REG_RTC_DT
]);
254 tm
->tm_wday
= bcd2bin(regs
[ABB5ZES3_REG_RTC_DW
]);
255 tm
->tm_mon
= bcd2bin(regs
[ABB5ZES3_REG_RTC_MO
]) - 1; /* starts at 1 */
256 tm
->tm_year
= bcd2bin(regs
[ABB5ZES3_REG_RTC_YR
]) + 100;
262 static int abb5zes3_rtc_set_time(struct device
*dev
, struct rtc_time
*tm
)
264 struct abb5zes3_rtc_data
*data
= dev_get_drvdata(dev
);
265 u8 regs
[ABB5ZES3_REG_RTC_SC
+ ABB5ZES3_RTC_SEC_LEN
];
268 regs
[ABB5ZES3_REG_RTC_SC
] = bin2bcd(tm
->tm_sec
); /* MSB=0 clears OSC */
269 regs
[ABB5ZES3_REG_RTC_MN
] = bin2bcd(tm
->tm_min
);
270 regs
[ABB5ZES3_REG_RTC_HR
] = bin2bcd(tm
->tm_hour
); /* 24-hour format */
271 regs
[ABB5ZES3_REG_RTC_DT
] = bin2bcd(tm
->tm_mday
);
272 regs
[ABB5ZES3_REG_RTC_DW
] = bin2bcd(tm
->tm_wday
);
273 regs
[ABB5ZES3_REG_RTC_MO
] = bin2bcd(tm
->tm_mon
+ 1);
274 regs
[ABB5ZES3_REG_RTC_YR
] = bin2bcd(tm
->tm_year
- 100);
276 mutex_lock(&data
->lock
);
277 ret
= regmap_bulk_write(data
->regmap
, ABB5ZES3_REG_RTC_SC
,
278 regs
+ ABB5ZES3_REG_RTC_SC
,
279 ABB5ZES3_RTC_SEC_LEN
);
280 mutex_unlock(&data
->lock
);
287 * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on
288 * given number of seconds.
290 static inline void sec_to_timer_a(u8 secs
, u8
*taq
, u8
*timer_a
)
292 *taq
= ABB5ZES3_REG_TIMA_CLK_TAQ1
; /* 1Hz */
297 * Return current number of seconds in Timer A. As we only use
298 * timer A with a 1Hz freq, this is what we expect to have.
300 static inline int sec_from_timer_a(u8
*secs
, u8 taq
, u8 timer_a
)
302 if (taq
!= ABB5ZES3_REG_TIMA_CLK_TAQ1
) /* 1Hz */
311 * Read alarm currently configured via a watchdog timer using timer A. This
312 * is done by reading current RTC time and adding remaining timer time.
314 static int _abb5zes3_rtc_read_timer(struct device
*dev
,
315 struct rtc_wkalrm
*alarm
)
317 struct abb5zes3_rtc_data
*data
= dev_get_drvdata(dev
);
318 struct rtc_time rtc_tm
, *alarm_tm
= &alarm
->time
;
319 u8 regs
[ABB5ZES3_TIMA_SEC_LEN
+ 1];
320 unsigned long rtc_secs
;
326 * Instead of doing two separate calls, because they are consecutive,
327 * we grab both clockout register and Timer A section. The latter is
328 * used to decide if timer A is enabled (as a watchdog timer).
330 ret
= regmap_bulk_read(data
->regmap
, ABB5ZES3_REG_TIM_CLK
, regs
,
331 ABB5ZES3_TIMA_SEC_LEN
+ 1);
333 dev_err(dev
, "%s: reading Timer A section failed (%d)\n",
338 /* get current time ... */
339 ret
= _abb5zes3_rtc_read_time(dev
, &rtc_tm
);
343 /* ... convert to seconds ... */
344 ret
= rtc_tm_to_time(&rtc_tm
, &rtc_secs
);
348 /* ... add remaining timer A time ... */
349 ret
= sec_from_timer_a(&timer_secs
, regs
[1], regs
[2]);
353 /* ... and convert back. */
354 rtc_time_to_tm(rtc_secs
+ timer_secs
, alarm_tm
);
356 ret
= regmap_read(data
->regmap
, ABB5ZES3_REG_CTRL2
, ®
);
358 dev_err(dev
, "%s: reading ctrl reg failed (%d)\n",
363 alarm
->enabled
= !!(reg
& ABB5ZES3_REG_CTRL2_WTAIE
);
369 /* Read alarm currently configured via a RTC alarm registers. */
370 static int _abb5zes3_rtc_read_alarm(struct device
*dev
,
371 struct rtc_wkalrm
*alarm
)
373 struct abb5zes3_rtc_data
*data
= dev_get_drvdata(dev
);
374 struct rtc_time rtc_tm
, *alarm_tm
= &alarm
->time
;
375 unsigned long rtc_secs
, alarm_secs
;
376 u8 regs
[ABB5ZES3_ALRM_SEC_LEN
];
380 ret
= regmap_bulk_read(data
->regmap
, ABB5ZES3_REG_ALRM_MN
, regs
,
381 ABB5ZES3_ALRM_SEC_LEN
);
383 dev_err(dev
, "%s: reading alarm section failed (%d)\n",
388 alarm_tm
->tm_sec
= 0;
389 alarm_tm
->tm_min
= bcd2bin(regs
[0] & 0x7f);
390 alarm_tm
->tm_hour
= bcd2bin(regs
[1] & 0x3f);
391 alarm_tm
->tm_mday
= bcd2bin(regs
[2] & 0x3f);
392 alarm_tm
->tm_wday
= -1;
395 * The alarm section does not store year/month. We use the ones in rtc
396 * section as a basis and increment month and then year if needed to get
397 * alarm after current time.
399 ret
= _abb5zes3_rtc_read_time(dev
, &rtc_tm
);
403 alarm_tm
->tm_year
= rtc_tm
.tm_year
;
404 alarm_tm
->tm_mon
= rtc_tm
.tm_mon
;
406 ret
= rtc_tm_to_time(&rtc_tm
, &rtc_secs
);
410 ret
= rtc_tm_to_time(alarm_tm
, &alarm_secs
);
414 if (alarm_secs
< rtc_secs
) {
415 if (alarm_tm
->tm_mon
== 11) {
416 alarm_tm
->tm_mon
= 0;
417 alarm_tm
->tm_year
+= 1;
419 alarm_tm
->tm_mon
+= 1;
423 ret
= regmap_read(data
->regmap
, ABB5ZES3_REG_CTRL1
, ®
);
425 dev_err(dev
, "%s: reading ctrl reg failed (%d)\n",
430 alarm
->enabled
= !!(reg
& ABB5ZES3_REG_CTRL1_AIE
);
437 * As the Alarm mechanism supported by the chip is only accurate to the
438 * minute, we use the watchdog timer mechanism provided by timer A
439 * (up to 256 seconds w/ a second accuracy) for low alarm values (below
440 * 4 minutes). Otherwise, we use the common alarm mechanism provided
441 * by the chip. In order for that to work, we keep track of currently
442 * configured timer type via 'timer_alarm' flag in our private data
445 static int abb5zes3_rtc_read_alarm(struct device
*dev
, struct rtc_wkalrm
*alarm
)
447 struct abb5zes3_rtc_data
*data
= dev_get_drvdata(dev
);
450 mutex_lock(&data
->lock
);
451 if (data
->timer_alarm
)
452 ret
= _abb5zes3_rtc_read_timer(dev
, alarm
);
454 ret
= _abb5zes3_rtc_read_alarm(dev
, alarm
);
455 mutex_unlock(&data
->lock
);
461 * Set alarm using chip alarm mechanism. It is only accurate to the
462 * minute (not the second). The function expects alarm interrupt to
465 static int _abb5zes3_rtc_set_alarm(struct device
*dev
, struct rtc_wkalrm
*alarm
)
467 struct abb5zes3_rtc_data
*data
= dev_get_drvdata(dev
);
468 struct rtc_time
*alarm_tm
= &alarm
->time
;
469 unsigned long rtc_secs
, alarm_secs
;
470 u8 regs
[ABB5ZES3_ALRM_SEC_LEN
];
471 struct rtc_time rtc_tm
;
474 ret
= _abb5zes3_rtc_read_time(dev
, &rtc_tm
);
478 ret
= rtc_tm_to_time(&rtc_tm
, &rtc_secs
);
482 ret
= rtc_tm_to_time(alarm_tm
, &alarm_secs
);
486 /* If alarm time is before current time, disable the alarm */
487 if (!alarm
->enabled
|| alarm_secs
<= rtc_secs
) {
491 * Chip only support alarms up to one month in the future. Let's
492 * return an error if we get something after that limit.
493 * Comparison is done by incrementing rtc_tm month field by one
494 * and checking alarm value is still below.
496 if (rtc_tm
.tm_mon
== 11) { /* handle year wrapping */
503 ret
= rtc_tm_to_time(&rtc_tm
, &rtc_secs
);
507 if (alarm_secs
> rtc_secs
) {
508 dev_err(dev
, "%s: alarm maximum is one month in the "
509 "future (%d)\n", __func__
, ret
);
516 * Program all alarm registers but DW one. For each register, setting
517 * MSB to 0 enables associated alarm.
519 regs
[0] = bin2bcd(alarm_tm
->tm_min
) & 0x7f;
520 regs
[1] = bin2bcd(alarm_tm
->tm_hour
) & 0x3f;
521 regs
[2] = bin2bcd(alarm_tm
->tm_mday
) & 0x3f;
522 regs
[3] = ABB5ZES3_REG_ALRM_DW_AE
; /* do not match day of the week */
524 ret
= regmap_bulk_write(data
->regmap
, ABB5ZES3_REG_ALRM_MN
, regs
,
525 ABB5ZES3_ALRM_SEC_LEN
);
527 dev_err(dev
, "%s: writing ALARM section failed (%d)\n",
532 /* Record currently configured alarm is not a timer */
533 data
->timer_alarm
= 0;
535 /* Enable or disable alarm interrupt generation */
536 ret
= _abb5zes3_rtc_update_alarm(dev
, enable
);
543 * Set alarm using timer watchdog (via timer A) mechanism. The function expects
544 * timer A interrupt to be disabled.
546 static int _abb5zes3_rtc_set_timer(struct device
*dev
, struct rtc_wkalrm
*alarm
,
549 struct abb5zes3_rtc_data
*data
= dev_get_drvdata(dev
);
550 u8 regs
[ABB5ZES3_TIMA_SEC_LEN
];
551 u8 mask
= ABB5ZES3_REG_TIM_CLK_TAC0
| ABB5ZES3_REG_TIM_CLK_TAC1
;
554 /* Program given number of seconds to Timer A registers */
555 sec_to_timer_a(secs
, ®s
[0], ®s
[1]);
556 ret
= regmap_bulk_write(data
->regmap
, ABB5ZES3_REG_TIMA_CLK
, regs
,
557 ABB5ZES3_TIMA_SEC_LEN
);
559 dev_err(dev
, "%s: writing timer section failed\n", __func__
);
563 /* Configure Timer A as a watchdog timer */
564 ret
= regmap_update_bits(data
->regmap
, ABB5ZES3_REG_TIM_CLK
,
565 mask
, ABB5ZES3_REG_TIM_CLK_TAC1
);
567 dev_err(dev
, "%s: failed to update timer\n", __func__
);
569 /* Record currently configured alarm is a timer */
570 data
->timer_alarm
= 1;
572 /* Enable or disable timer interrupt generation */
573 ret
= _abb5zes3_rtc_update_timer(dev
, alarm
->enabled
);
580 * The chip has an alarm which is only accurate to the minute. In order to
581 * handle alarms below that limit, we use the watchdog timer function of
582 * timer A. More precisely, the timer method is used for alarms below 240
585 static int abb5zes3_rtc_set_alarm(struct device
*dev
, struct rtc_wkalrm
*alarm
)
587 struct abb5zes3_rtc_data
*data
= dev_get_drvdata(dev
);
588 struct rtc_time
*alarm_tm
= &alarm
->time
;
589 unsigned long rtc_secs
, alarm_secs
;
590 struct rtc_time rtc_tm
;
593 mutex_lock(&data
->lock
);
594 ret
= _abb5zes3_rtc_read_time(dev
, &rtc_tm
);
598 ret
= rtc_tm_to_time(&rtc_tm
, &rtc_secs
);
602 ret
= rtc_tm_to_time(alarm_tm
, &alarm_secs
);
606 /* Let's first disable both the alarm and the timer interrupts */
607 ret
= _abb5zes3_rtc_update_alarm(dev
, false);
609 dev_err(dev
, "%s: unable to disable alarm (%d)\n", __func__
,
613 ret
= _abb5zes3_rtc_update_timer(dev
, false);
615 dev_err(dev
, "%s: unable to disable timer (%d)\n", __func__
,
620 data
->timer_alarm
= 0;
623 * Let's now configure the alarm; if we are expected to ring in
624 * more than 240s, then we setup an alarm. Otherwise, a timer.
626 if ((alarm_secs
> rtc_secs
) && ((alarm_secs
- rtc_secs
) <= 240))
627 ret
= _abb5zes3_rtc_set_timer(dev
, alarm
,
628 alarm_secs
- rtc_secs
);
630 ret
= _abb5zes3_rtc_set_alarm(dev
, alarm
);
633 mutex_unlock(&data
->lock
);
636 dev_err(dev
, "%s: unable to configure alarm (%d)\n", __func__
,
642 /* Enable or disable battery low irq generation */
643 static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap
*regmap
,
646 return regmap_update_bits(regmap
, ABB5ZES3_REG_CTRL3
,
647 ABB5ZES3_REG_CTRL3_BLIE
,
648 enable
? ABB5ZES3_REG_CTRL3_BLIE
: 0);
652 * Check current RTC status and enable/disable what needs to be. Return 0 if
653 * everything went ok and a negative value upon error. Note: this function
654 * is called early during init and hence does need mutex protection.
656 static int abb5zes3_rtc_check_setup(struct device
*dev
)
658 struct abb5zes3_rtc_data
*data
= dev_get_drvdata(dev
);
659 struct regmap
*regmap
= data
->regmap
;
665 * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It
666 * is disabled here to prevent polluting the interrupt line and
667 * uselessly triggering the IRQ handler we install for alarm and battery
668 * low events. Note: this is done before clearing int. status below
670 * We also disable all timers and set timer interrupt to permanent (not
673 mask
= (ABB5ZES3_REG_TIM_CLK_TBC
| ABB5ZES3_REG_TIM_CLK_TAC0
|
674 ABB5ZES3_REG_TIM_CLK_TAC1
| ABB5ZES3_REG_TIM_CLK_COF0
|
675 ABB5ZES3_REG_TIM_CLK_COF1
| ABB5ZES3_REG_TIM_CLK_COF2
|
676 ABB5ZES3_REG_TIM_CLK_TBM
| ABB5ZES3_REG_TIM_CLK_TAM
);
677 ret
= regmap_update_bits(regmap
, ABB5ZES3_REG_TIM_CLK
, mask
,
678 ABB5ZES3_REG_TIM_CLK_COF0
| ABB5ZES3_REG_TIM_CLK_COF1
|
679 ABB5ZES3_REG_TIM_CLK_COF2
);
681 dev_err(dev
, "%s: unable to initialize clkout register (%d)\n",
687 * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled
688 * individually by clearing/setting MSB of each associated register. So,
689 * we set all alarm enable bits to disable current alarm setting.
691 mask
= (ABB5ZES3_REG_ALRM_MN_AE
| ABB5ZES3_REG_ALRM_HR_AE
|
692 ABB5ZES3_REG_ALRM_DT_AE
| ABB5ZES3_REG_ALRM_DW_AE
);
693 ret
= regmap_update_bits(regmap
, ABB5ZES3_REG_CTRL2
, mask
, mask
);
695 dev_err(dev
, "%s: unable to disable alarm setting (%d)\n",
700 /* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */
701 mask
= (ABB5ZES3_REG_CTRL1_CIE
| ABB5ZES3_REG_CTRL1_AIE
|
702 ABB5ZES3_REG_CTRL1_SIE
| ABB5ZES3_REG_CTRL1_PM
|
703 ABB5ZES3_REG_CTRL1_CAP
| ABB5ZES3_REG_CTRL1_STOP
);
704 ret
= regmap_update_bits(regmap
, ABB5ZES3_REG_CTRL1
, mask
, 0);
706 dev_err(dev
, "%s: unable to initialize CTRL1 register (%d)\n",
712 * Set Control 2 register (timer int. disabled, alarm status cleared).
713 * WTAF is read-only and cleared automatically by reading the register.
715 mask
= (ABB5ZES3_REG_CTRL2_CTBIE
| ABB5ZES3_REG_CTRL2_CTAIE
|
716 ABB5ZES3_REG_CTRL2_WTAIE
| ABB5ZES3_REG_CTRL2_AF
|
717 ABB5ZES3_REG_CTRL2_SF
| ABB5ZES3_REG_CTRL2_CTBF
|
718 ABB5ZES3_REG_CTRL2_CTAF
);
719 ret
= regmap_update_bits(regmap
, ABB5ZES3_REG_CTRL2
, mask
, 0);
721 dev_err(dev
, "%s: unable to initialize CTRL2 register (%d)\n",
727 * Enable battery low detection function and battery switchover function
728 * (standard mode). Disable associated interrupts. Clear battery
729 * switchover flag but not battery low flag. The latter is checked
732 mask
= (ABB5ZES3_REG_CTRL3_PM0
| ABB5ZES3_REG_CTRL3_PM1
|
733 ABB5ZES3_REG_CTRL3_PM2
| ABB5ZES3_REG_CTRL3_BLIE
|
734 ABB5ZES3_REG_CTRL3_BSIE
| ABB5ZES3_REG_CTRL3_BSF
);
735 ret
= regmap_update_bits(regmap
, ABB5ZES3_REG_CTRL3
, mask
, 0);
737 dev_err(dev
, "%s: unable to initialize CTRL3 register (%d)\n",
742 /* Check oscillator integrity flag */
743 ret
= regmap_read(regmap
, ABB5ZES3_REG_RTC_SC
, ®
);
745 dev_err(dev
, "%s: unable to read osc. integrity flag (%d)\n",
750 if (reg
& ABB5ZES3_REG_RTC_SC_OSC
) {
751 dev_err(dev
, "clock integrity not guaranteed. Osc. has stopped "
752 "or has been interrupted.\n");
753 dev_err(dev
, "change battery (if not already done) and "
754 "then set time to reset osc. failure flag.\n");
758 * Check battery low flag at startup: this allows reporting battery
759 * is low at startup when IRQ line is not connected. Note: we record
760 * current status to avoid reenabling this interrupt later in probe
761 * function if battery is low.
763 ret
= regmap_read(regmap
, ABB5ZES3_REG_CTRL3
, ®
);
765 dev_err(dev
, "%s: unable to read battery low flag (%d)\n",
770 data
->battery_low
= reg
& ABB5ZES3_REG_CTRL3_BLF
;
771 if (data
->battery_low
) {
772 dev_err(dev
, "RTC battery is low; please, consider "
775 ret
= _abb5zes3_rtc_battery_low_irq_enable(regmap
, false);
777 dev_err(dev
, "%s: disabling battery low interrupt "
778 "generation failed (%d)\n", __func__
, ret
);
784 static int abb5zes3_rtc_alarm_irq_enable(struct device
*dev
,
787 struct abb5zes3_rtc_data
*rtc_data
= dev_get_drvdata(dev
);
791 mutex_lock(&rtc_data
->lock
);
792 if (rtc_data
->timer_alarm
)
793 ret
= _abb5zes3_rtc_update_timer(dev
, enable
);
795 ret
= _abb5zes3_rtc_update_alarm(dev
, enable
);
796 mutex_unlock(&rtc_data
->lock
);
802 static irqreturn_t
_abb5zes3_rtc_interrupt(int irq
, void *data
)
804 struct i2c_client
*client
= data
;
805 struct device
*dev
= &client
->dev
;
806 struct abb5zes3_rtc_data
*rtc_data
= dev_get_drvdata(dev
);
807 struct rtc_device
*rtc
= rtc_data
->rtc
;
808 u8 regs
[ABB5ZES3_CTRL_SEC_LEN
];
809 int ret
, handled
= IRQ_NONE
;
811 ret
= regmap_bulk_read(rtc_data
->regmap
, 0, regs
,
812 ABB5ZES3_CTRL_SEC_LEN
);
814 dev_err(dev
, "%s: unable to read control section (%d)!\n",
820 * Check battery low detection flag and disable battery low interrupt
821 * generation if flag is set (interrupt can only be cleared when
822 * battery is replaced).
824 if (regs
[ABB5ZES3_REG_CTRL3
] & ABB5ZES3_REG_CTRL3_BLF
) {
825 dev_err(dev
, "RTC battery is low; please change it!\n");
827 _abb5zes3_rtc_battery_low_irq_enable(rtc_data
->regmap
, false);
829 handled
= IRQ_HANDLED
;
832 /* Check alarm flag */
833 if (regs
[ABB5ZES3_REG_CTRL2
] & ABB5ZES3_REG_CTRL2_AF
) {
834 dev_dbg(dev
, "RTC alarm!\n");
836 rtc_update_irq(rtc
, 1, RTC_IRQF
| RTC_AF
);
838 /* Acknowledge and disable the alarm */
839 _abb5zes3_rtc_clear_alarm(dev
);
840 _abb5zes3_rtc_update_alarm(dev
, 0);
842 handled
= IRQ_HANDLED
;
845 /* Check watchdog Timer A flag */
846 if (regs
[ABB5ZES3_REG_CTRL2
] & ABB5ZES3_REG_CTRL2_WTAF
) {
847 dev_dbg(dev
, "RTC timer!\n");
849 rtc_update_irq(rtc
, 1, RTC_IRQF
| RTC_AF
);
852 * Acknowledge and disable the alarm. Note: WTAF
853 * flag had been cleared when reading CTRL2
855 _abb5zes3_rtc_update_timer(dev
, 0);
857 rtc_data
->timer_alarm
= 0;
859 handled
= IRQ_HANDLED
;
865 static const struct rtc_class_ops rtc_ops
= {
866 .read_time
= _abb5zes3_rtc_read_time
,
867 .set_time
= abb5zes3_rtc_set_time
,
868 .read_alarm
= abb5zes3_rtc_read_alarm
,
869 .set_alarm
= abb5zes3_rtc_set_alarm
,
870 .alarm_irq_enable
= abb5zes3_rtc_alarm_irq_enable
,
873 static const struct regmap_config abb5zes3_rtc_regmap_config
= {
878 static int abb5zes3_probe(struct i2c_client
*client
,
879 const struct i2c_device_id
*id
)
881 struct abb5zes3_rtc_data
*data
= NULL
;
882 struct device
*dev
= &client
->dev
;
883 struct regmap
*regmap
;
886 if (!i2c_check_functionality(client
->adapter
, I2C_FUNC_I2C
|
887 I2C_FUNC_SMBUS_BYTE_DATA
|
888 I2C_FUNC_SMBUS_I2C_BLOCK
)) {
893 regmap
= devm_regmap_init_i2c(client
, &abb5zes3_rtc_regmap_config
);
894 if (IS_ERR(regmap
)) {
895 ret
= PTR_ERR(regmap
);
896 dev_err(dev
, "%s: regmap allocation failed: %d\n",
901 ret
= abb5zes3_i2c_validate_chip(regmap
);
905 data
= devm_kzalloc(dev
, sizeof(*data
), GFP_KERNEL
);
911 mutex_init(&data
->lock
);
912 data
->regmap
= regmap
;
913 dev_set_drvdata(dev
, data
);
915 ret
= abb5zes3_rtc_check_setup(dev
);
919 data
->rtc
= devm_rtc_allocate_device(dev
);
920 ret
= PTR_ERR_OR_ZERO(data
->rtc
);
922 dev_err(dev
, "%s: unable to allocate RTC device (%d)\n",
927 if (client
->irq
> 0) {
928 ret
= devm_request_threaded_irq(dev
, client
->irq
, NULL
,
929 _abb5zes3_rtc_interrupt
,
930 IRQF_SHARED
|IRQF_ONESHOT
,
933 device_init_wakeup(dev
, true);
934 data
->irq
= client
->irq
;
935 dev_dbg(dev
, "%s: irq %d used by RTC\n", __func__
,
938 dev_err(dev
, "%s: irq %d unavailable (%d)\n",
939 __func__
, client
->irq
, ret
);
944 data
->rtc
->ops
= &rtc_ops
;
945 data
->rtc
->range_min
= RTC_TIMESTAMP_BEGIN_2000
;
946 data
->rtc
->range_max
= RTC_TIMESTAMP_END_2099
;
948 /* Enable battery low detection interrupt if battery not already low */
949 if (!data
->battery_low
&& data
->irq
) {
950 ret
= _abb5zes3_rtc_battery_low_irq_enable(regmap
, true);
952 dev_err(dev
, "%s: enabling battery low interrupt "
953 "generation failed (%d)\n", __func__
, ret
);
958 ret
= rtc_register_device(data
->rtc
);
961 if (ret
&& data
&& data
->irq
)
962 device_init_wakeup(dev
, false);
966 static int abb5zes3_remove(struct i2c_client
*client
)
968 struct abb5zes3_rtc_data
*rtc_data
= dev_get_drvdata(&client
->dev
);
970 if (rtc_data
->irq
> 0)
971 device_init_wakeup(&client
->dev
, false);
976 #ifdef CONFIG_PM_SLEEP
977 static int abb5zes3_rtc_suspend(struct device
*dev
)
979 struct abb5zes3_rtc_data
*rtc_data
= dev_get_drvdata(dev
);
981 if (device_may_wakeup(dev
))
982 return enable_irq_wake(rtc_data
->irq
);
987 static int abb5zes3_rtc_resume(struct device
*dev
)
989 struct abb5zes3_rtc_data
*rtc_data
= dev_get_drvdata(dev
);
991 if (device_may_wakeup(dev
))
992 return disable_irq_wake(rtc_data
->irq
);
998 static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops
, abb5zes3_rtc_suspend
,
999 abb5zes3_rtc_resume
);
1002 static const struct of_device_id abb5zes3_dt_match
[] = {
1003 { .compatible
= "abracon,abb5zes3" },
1006 MODULE_DEVICE_TABLE(of
, abb5zes3_dt_match
);
1009 static const struct i2c_device_id abb5zes3_id
[] = {
1013 MODULE_DEVICE_TABLE(i2c
, abb5zes3_id
);
1015 static struct i2c_driver abb5zes3_driver
= {
1018 .pm
= &abb5zes3_rtc_pm_ops
,
1019 .of_match_table
= of_match_ptr(abb5zes3_dt_match
),
1021 .probe
= abb5zes3_probe
,
1022 .remove
= abb5zes3_remove
,
1023 .id_table
= abb5zes3_id
,
1025 module_i2c_driver(abb5zes3_driver
);
1027 MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
1028 MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver");
1029 MODULE_LICENSE("GPL");