2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include <linux/blk-cgroup.h>
23 /* max queue in one round of service */
24 static const int cfq_quantum
= 8;
25 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max
= 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty
= 2;
30 static const int cfq_slice_sync
= HZ
/ 10;
31 static int cfq_slice_async
= HZ
/ 25;
32 static const int cfq_slice_async_rq
= 2;
33 static int cfq_slice_idle
= HZ
/ 125;
34 static int cfq_group_idle
= HZ
/ 125;
35 static const int cfq_target_latency
= HZ
* 3/10; /* 300 ms */
36 static const int cfq_hist_divisor
= 4;
39 * offset from end of service tree
41 #define CFQ_IDLE_DELAY (HZ / 5)
44 * below this threshold, we consider thinktime immediate
46 #define CFQ_MIN_TT (2)
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
61 static struct kmem_cache
*cfq_pool
;
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
70 /* blkio-related constants */
71 #define CFQ_WEIGHT_LEGACY_MIN 10
72 #define CFQ_WEIGHT_LEGACY_DFL 500
73 #define CFQ_WEIGHT_LEGACY_MAX 1000
76 unsigned long last_end_request
;
78 unsigned long ttime_total
;
79 unsigned long ttime_samples
;
80 unsigned long ttime_mean
;
84 * Most of our rbtree usage is for sorting with min extraction, so
85 * if we cache the leftmost node we don't have to walk down the tree
86 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
87 * move this into the elevator for the rq sorting as well.
94 struct cfq_ttime ttime
;
96 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
97 .ttime = {.last_end_request = jiffies,},}
100 * Per process-grouping structure
103 /* reference count */
105 /* various state flags, see below */
107 /* parent cfq_data */
108 struct cfq_data
*cfqd
;
109 /* service_tree member */
110 struct rb_node rb_node
;
111 /* service_tree key */
112 unsigned long rb_key
;
113 /* prio tree member */
114 struct rb_node p_node
;
115 /* prio tree root we belong to, if any */
116 struct rb_root
*p_root
;
117 /* sorted list of pending requests */
118 struct rb_root sort_list
;
119 /* if fifo isn't expired, next request to serve */
120 struct request
*next_rq
;
121 /* requests queued in sort_list */
123 /* currently allocated requests */
125 /* fifo list of requests in sort_list */
126 struct list_head fifo
;
128 /* time when queue got scheduled in to dispatch first request. */
129 unsigned long dispatch_start
;
130 unsigned int allocated_slice
;
131 unsigned int slice_dispatch
;
132 /* time when first request from queue completed and slice started. */
133 unsigned long slice_start
;
134 unsigned long slice_end
;
137 /* pending priority requests */
139 /* number of requests that are on the dispatch list or inside driver */
142 /* io prio of this group */
143 unsigned short ioprio
, org_ioprio
;
144 unsigned short ioprio_class
;
149 sector_t last_request_pos
;
151 struct cfq_rb_root
*service_tree
;
152 struct cfq_queue
*new_cfqq
;
153 struct cfq_group
*cfqg
;
154 /* Number of sectors dispatched from queue in single dispatch round */
155 unsigned long nr_sectors
;
159 * First index in the service_trees.
160 * IDLE is handled separately, so it has negative index
170 * Second index in the service_trees.
174 SYNC_NOIDLE_WORKLOAD
= 1,
179 #ifdef CONFIG_CFQ_GROUP_IOSCHED
180 /* number of ios merged */
181 struct blkg_rwstat merged
;
182 /* total time spent on device in ns, may not be accurate w/ queueing */
183 struct blkg_rwstat service_time
;
184 /* total time spent waiting in scheduler queue in ns */
185 struct blkg_rwstat wait_time
;
186 /* number of IOs queued up */
187 struct blkg_rwstat queued
;
188 /* total disk time and nr sectors dispatched by this group */
189 struct blkg_stat time
;
190 #ifdef CONFIG_DEBUG_BLK_CGROUP
191 /* time not charged to this cgroup */
192 struct blkg_stat unaccounted_time
;
193 /* sum of number of ios queued across all samples */
194 struct blkg_stat avg_queue_size_sum
;
195 /* count of samples taken for average */
196 struct blkg_stat avg_queue_size_samples
;
197 /* how many times this group has been removed from service tree */
198 struct blkg_stat dequeue
;
199 /* total time spent waiting for it to be assigned a timeslice. */
200 struct blkg_stat group_wait_time
;
201 /* time spent idling for this blkcg_gq */
202 struct blkg_stat idle_time
;
203 /* total time with empty current active q with other requests queued */
204 struct blkg_stat empty_time
;
205 /* fields after this shouldn't be cleared on stat reset */
206 uint64_t start_group_wait_time
;
207 uint64_t start_idle_time
;
208 uint64_t start_empty_time
;
210 #endif /* CONFIG_DEBUG_BLK_CGROUP */
211 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
214 /* Per-cgroup data */
215 struct cfq_group_data
{
216 /* must be the first member */
217 struct blkcg_policy_data cpd
;
220 unsigned int leaf_weight
;
223 /* This is per cgroup per device grouping structure */
225 /* must be the first member */
226 struct blkg_policy_data pd
;
228 /* group service_tree member */
229 struct rb_node rb_node
;
231 /* group service_tree key */
235 * The number of active cfqgs and sum of their weights under this
236 * cfqg. This covers this cfqg's leaf_weight and all children's
237 * weights, but does not cover weights of further descendants.
239 * If a cfqg is on the service tree, it's active. An active cfqg
240 * also activates its parent and contributes to the children_weight
244 unsigned int children_weight
;
247 * vfraction is the fraction of vdisktime that the tasks in this
248 * cfqg are entitled to. This is determined by compounding the
249 * ratios walking up from this cfqg to the root.
251 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
252 * vfractions on a service tree is approximately 1. The sum may
253 * deviate a bit due to rounding errors and fluctuations caused by
254 * cfqgs entering and leaving the service tree.
256 unsigned int vfraction
;
259 * There are two weights - (internal) weight is the weight of this
260 * cfqg against the sibling cfqgs. leaf_weight is the wight of
261 * this cfqg against the child cfqgs. For the root cfqg, both
262 * weights are kept in sync for backward compatibility.
265 unsigned int new_weight
;
266 unsigned int dev_weight
;
268 unsigned int leaf_weight
;
269 unsigned int new_leaf_weight
;
270 unsigned int dev_leaf_weight
;
272 /* number of cfqq currently on this group */
276 * Per group busy queues average. Useful for workload slice calc. We
277 * create the array for each prio class but at run time it is used
278 * only for RT and BE class and slot for IDLE class remains unused.
279 * This is primarily done to avoid confusion and a gcc warning.
281 unsigned int busy_queues_avg
[CFQ_PRIO_NR
];
283 * rr lists of queues with requests. We maintain service trees for
284 * RT and BE classes. These trees are subdivided in subclasses
285 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
286 * class there is no subclassification and all the cfq queues go on
287 * a single tree service_tree_idle.
288 * Counts are embedded in the cfq_rb_root
290 struct cfq_rb_root service_trees
[2][3];
291 struct cfq_rb_root service_tree_idle
;
293 unsigned long saved_wl_slice
;
294 enum wl_type_t saved_wl_type
;
295 enum wl_class_t saved_wl_class
;
297 /* number of requests that are on the dispatch list or inside driver */
299 struct cfq_ttime ttime
;
300 struct cfqg_stats stats
; /* stats for this cfqg */
302 /* async queue for each priority case */
303 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
304 struct cfq_queue
*async_idle_cfqq
;
309 struct io_cq icq
; /* must be the first member */
310 struct cfq_queue
*cfqq
[2];
311 struct cfq_ttime ttime
;
312 int ioprio
; /* the current ioprio */
313 #ifdef CONFIG_CFQ_GROUP_IOSCHED
314 uint64_t blkcg_serial_nr
; /* the current blkcg serial */
319 * Per block device queue structure
322 struct request_queue
*queue
;
323 /* Root service tree for cfq_groups */
324 struct cfq_rb_root grp_service_tree
;
325 struct cfq_group
*root_group
;
328 * The priority currently being served
330 enum wl_class_t serving_wl_class
;
331 enum wl_type_t serving_wl_type
;
332 unsigned long workload_expires
;
333 struct cfq_group
*serving_group
;
336 * Each priority tree is sorted by next_request position. These
337 * trees are used when determining if two or more queues are
338 * interleaving requests (see cfq_close_cooperator).
340 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
342 unsigned int busy_queues
;
343 unsigned int busy_sync_queues
;
349 * queue-depth detection
355 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
356 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
359 int hw_tag_est_depth
;
360 unsigned int hw_tag_samples
;
363 * idle window management
365 struct timer_list idle_slice_timer
;
366 struct work_struct unplug_work
;
368 struct cfq_queue
*active_queue
;
369 struct cfq_io_cq
*active_cic
;
371 sector_t last_position
;
374 * tunables, see top of file
376 unsigned int cfq_quantum
;
377 unsigned int cfq_fifo_expire
[2];
378 unsigned int cfq_back_penalty
;
379 unsigned int cfq_back_max
;
380 unsigned int cfq_slice
[2];
381 unsigned int cfq_slice_async_rq
;
382 unsigned int cfq_slice_idle
;
383 unsigned int cfq_group_idle
;
384 unsigned int cfq_latency
;
385 unsigned int cfq_target_latency
;
388 * Fallback dummy cfqq for extreme OOM conditions
390 struct cfq_queue oom_cfqq
;
392 unsigned long last_delayed_sync
;
395 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
396 static void cfq_put_queue(struct cfq_queue
*cfqq
);
398 static struct cfq_rb_root
*st_for(struct cfq_group
*cfqg
,
399 enum wl_class_t
class,
405 if (class == IDLE_WORKLOAD
)
406 return &cfqg
->service_tree_idle
;
408 return &cfqg
->service_trees
[class][type
];
411 enum cfqq_state_flags
{
412 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
413 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
414 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
415 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
416 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
417 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
418 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
419 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
420 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
421 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
422 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
423 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
424 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
427 #define CFQ_CFQQ_FNS(name) \
428 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
430 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
432 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
434 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
436 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
438 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
442 CFQ_CFQQ_FNS(wait_request
);
443 CFQ_CFQQ_FNS(must_dispatch
);
444 CFQ_CFQQ_FNS(must_alloc_slice
);
445 CFQ_CFQQ_FNS(fifo_expire
);
446 CFQ_CFQQ_FNS(idle_window
);
447 CFQ_CFQQ_FNS(prio_changed
);
448 CFQ_CFQQ_FNS(slice_new
);
451 CFQ_CFQQ_FNS(split_coop
);
453 CFQ_CFQQ_FNS(wait_busy
);
456 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
458 /* cfqg stats flags */
459 enum cfqg_stats_flags
{
460 CFQG_stats_waiting
= 0,
465 #define CFQG_FLAG_FNS(name) \
466 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
468 stats->flags |= (1 << CFQG_stats_##name); \
470 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
472 stats->flags &= ~(1 << CFQG_stats_##name); \
474 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
476 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
479 CFQG_FLAG_FNS(waiting)
480 CFQG_FLAG_FNS(idling
)
484 /* This should be called with the queue_lock held. */
485 static void cfqg_stats_update_group_wait_time(struct cfqg_stats
*stats
)
487 unsigned long long now
;
489 if (!cfqg_stats_waiting(stats
))
493 if (time_after64(now
, stats
->start_group_wait_time
))
494 blkg_stat_add(&stats
->group_wait_time
,
495 now
- stats
->start_group_wait_time
);
496 cfqg_stats_clear_waiting(stats
);
499 /* This should be called with the queue_lock held. */
500 static void cfqg_stats_set_start_group_wait_time(struct cfq_group
*cfqg
,
501 struct cfq_group
*curr_cfqg
)
503 struct cfqg_stats
*stats
= &cfqg
->stats
;
505 if (cfqg_stats_waiting(stats
))
507 if (cfqg
== curr_cfqg
)
509 stats
->start_group_wait_time
= sched_clock();
510 cfqg_stats_mark_waiting(stats
);
513 /* This should be called with the queue_lock held. */
514 static void cfqg_stats_end_empty_time(struct cfqg_stats
*stats
)
516 unsigned long long now
;
518 if (!cfqg_stats_empty(stats
))
522 if (time_after64(now
, stats
->start_empty_time
))
523 blkg_stat_add(&stats
->empty_time
,
524 now
- stats
->start_empty_time
);
525 cfqg_stats_clear_empty(stats
);
528 static void cfqg_stats_update_dequeue(struct cfq_group
*cfqg
)
530 blkg_stat_add(&cfqg
->stats
.dequeue
, 1);
533 static void cfqg_stats_set_start_empty_time(struct cfq_group
*cfqg
)
535 struct cfqg_stats
*stats
= &cfqg
->stats
;
537 if (blkg_rwstat_total(&stats
->queued
))
541 * group is already marked empty. This can happen if cfqq got new
542 * request in parent group and moved to this group while being added
543 * to service tree. Just ignore the event and move on.
545 if (cfqg_stats_empty(stats
))
548 stats
->start_empty_time
= sched_clock();
549 cfqg_stats_mark_empty(stats
);
552 static void cfqg_stats_update_idle_time(struct cfq_group
*cfqg
)
554 struct cfqg_stats
*stats
= &cfqg
->stats
;
556 if (cfqg_stats_idling(stats
)) {
557 unsigned long long now
= sched_clock();
559 if (time_after64(now
, stats
->start_idle_time
))
560 blkg_stat_add(&stats
->idle_time
,
561 now
- stats
->start_idle_time
);
562 cfqg_stats_clear_idling(stats
);
566 static void cfqg_stats_set_start_idle_time(struct cfq_group
*cfqg
)
568 struct cfqg_stats
*stats
= &cfqg
->stats
;
570 BUG_ON(cfqg_stats_idling(stats
));
572 stats
->start_idle_time
= sched_clock();
573 cfqg_stats_mark_idling(stats
);
576 static void cfqg_stats_update_avg_queue_size(struct cfq_group
*cfqg
)
578 struct cfqg_stats
*stats
= &cfqg
->stats
;
580 blkg_stat_add(&stats
->avg_queue_size_sum
,
581 blkg_rwstat_total(&stats
->queued
));
582 blkg_stat_add(&stats
->avg_queue_size_samples
, 1);
583 cfqg_stats_update_group_wait_time(stats
);
586 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
588 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group
*cfqg
, struct cfq_group
*curr_cfqg
) { }
589 static inline void cfqg_stats_end_empty_time(struct cfqg_stats
*stats
) { }
590 static inline void cfqg_stats_update_dequeue(struct cfq_group
*cfqg
) { }
591 static inline void cfqg_stats_set_start_empty_time(struct cfq_group
*cfqg
) { }
592 static inline void cfqg_stats_update_idle_time(struct cfq_group
*cfqg
) { }
593 static inline void cfqg_stats_set_start_idle_time(struct cfq_group
*cfqg
) { }
594 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group
*cfqg
) { }
596 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
598 #ifdef CONFIG_CFQ_GROUP_IOSCHED
600 static inline struct cfq_group
*pd_to_cfqg(struct blkg_policy_data
*pd
)
602 return pd
? container_of(pd
, struct cfq_group
, pd
) : NULL
;
605 static struct cfq_group_data
606 *cpd_to_cfqgd(struct blkcg_policy_data
*cpd
)
608 return cpd
? container_of(cpd
, struct cfq_group_data
, cpd
) : NULL
;
611 static inline struct blkcg_gq
*cfqg_to_blkg(struct cfq_group
*cfqg
)
613 return pd_to_blkg(&cfqg
->pd
);
616 static struct blkcg_policy blkcg_policy_cfq
;
618 static inline struct cfq_group
*blkg_to_cfqg(struct blkcg_gq
*blkg
)
620 return pd_to_cfqg(blkg_to_pd(blkg
, &blkcg_policy_cfq
));
623 static struct cfq_group_data
*blkcg_to_cfqgd(struct blkcg
*blkcg
)
625 return cpd_to_cfqgd(blkcg_to_cpd(blkcg
, &blkcg_policy_cfq
));
628 static inline struct cfq_group
*cfqg_parent(struct cfq_group
*cfqg
)
630 struct blkcg_gq
*pblkg
= cfqg_to_blkg(cfqg
)->parent
;
632 return pblkg
? blkg_to_cfqg(pblkg
) : NULL
;
635 static inline void cfqg_get(struct cfq_group
*cfqg
)
637 return blkg_get(cfqg_to_blkg(cfqg
));
640 static inline void cfqg_put(struct cfq_group
*cfqg
)
642 return blkg_put(cfqg_to_blkg(cfqg
));
645 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
648 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
649 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
650 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
651 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
655 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
658 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
659 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
662 static inline void cfqg_stats_update_io_add(struct cfq_group
*cfqg
,
663 struct cfq_group
*curr_cfqg
, int rw
)
665 blkg_rwstat_add(&cfqg
->stats
.queued
, rw
, 1);
666 cfqg_stats_end_empty_time(&cfqg
->stats
);
667 cfqg_stats_set_start_group_wait_time(cfqg
, curr_cfqg
);
670 static inline void cfqg_stats_update_timeslice_used(struct cfq_group
*cfqg
,
671 unsigned long time
, unsigned long unaccounted_time
)
673 blkg_stat_add(&cfqg
->stats
.time
, time
);
674 #ifdef CONFIG_DEBUG_BLK_CGROUP
675 blkg_stat_add(&cfqg
->stats
.unaccounted_time
, unaccounted_time
);
679 static inline void cfqg_stats_update_io_remove(struct cfq_group
*cfqg
, int rw
)
681 blkg_rwstat_add(&cfqg
->stats
.queued
, rw
, -1);
684 static inline void cfqg_stats_update_io_merged(struct cfq_group
*cfqg
, int rw
)
686 blkg_rwstat_add(&cfqg
->stats
.merged
, rw
, 1);
689 static inline void cfqg_stats_update_completion(struct cfq_group
*cfqg
,
690 uint64_t start_time
, uint64_t io_start_time
, int rw
)
692 struct cfqg_stats
*stats
= &cfqg
->stats
;
693 unsigned long long now
= sched_clock();
695 if (time_after64(now
, io_start_time
))
696 blkg_rwstat_add(&stats
->service_time
, rw
, now
- io_start_time
);
697 if (time_after64(io_start_time
, start_time
))
698 blkg_rwstat_add(&stats
->wait_time
, rw
,
699 io_start_time
- start_time
);
703 static void cfqg_stats_reset(struct cfqg_stats
*stats
)
705 /* queued stats shouldn't be cleared */
706 blkg_rwstat_reset(&stats
->merged
);
707 blkg_rwstat_reset(&stats
->service_time
);
708 blkg_rwstat_reset(&stats
->wait_time
);
709 blkg_stat_reset(&stats
->time
);
710 #ifdef CONFIG_DEBUG_BLK_CGROUP
711 blkg_stat_reset(&stats
->unaccounted_time
);
712 blkg_stat_reset(&stats
->avg_queue_size_sum
);
713 blkg_stat_reset(&stats
->avg_queue_size_samples
);
714 blkg_stat_reset(&stats
->dequeue
);
715 blkg_stat_reset(&stats
->group_wait_time
);
716 blkg_stat_reset(&stats
->idle_time
);
717 blkg_stat_reset(&stats
->empty_time
);
722 static void cfqg_stats_add_aux(struct cfqg_stats
*to
, struct cfqg_stats
*from
)
724 /* queued stats shouldn't be cleared */
725 blkg_rwstat_add_aux(&to
->merged
, &from
->merged
);
726 blkg_rwstat_add_aux(&to
->service_time
, &from
->service_time
);
727 blkg_rwstat_add_aux(&to
->wait_time
, &from
->wait_time
);
728 blkg_stat_add_aux(&from
->time
, &from
->time
);
729 #ifdef CONFIG_DEBUG_BLK_CGROUP
730 blkg_stat_add_aux(&to
->unaccounted_time
, &from
->unaccounted_time
);
731 blkg_stat_add_aux(&to
->avg_queue_size_sum
, &from
->avg_queue_size_sum
);
732 blkg_stat_add_aux(&to
->avg_queue_size_samples
, &from
->avg_queue_size_samples
);
733 blkg_stat_add_aux(&to
->dequeue
, &from
->dequeue
);
734 blkg_stat_add_aux(&to
->group_wait_time
, &from
->group_wait_time
);
735 blkg_stat_add_aux(&to
->idle_time
, &from
->idle_time
);
736 blkg_stat_add_aux(&to
->empty_time
, &from
->empty_time
);
741 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
742 * recursive stats can still account for the amount used by this cfqg after
745 static void cfqg_stats_xfer_dead(struct cfq_group
*cfqg
)
747 struct cfq_group
*parent
= cfqg_parent(cfqg
);
749 lockdep_assert_held(cfqg_to_blkg(cfqg
)->q
->queue_lock
);
751 if (unlikely(!parent
))
754 cfqg_stats_add_aux(&parent
->stats
, &cfqg
->stats
);
755 cfqg_stats_reset(&cfqg
->stats
);
758 #else /* CONFIG_CFQ_GROUP_IOSCHED */
760 static inline struct cfq_group
*cfqg_parent(struct cfq_group
*cfqg
) { return NULL
; }
761 static inline void cfqg_get(struct cfq_group
*cfqg
) { }
762 static inline void cfqg_put(struct cfq_group
*cfqg
) { }
764 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
765 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
766 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
767 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
769 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
771 static inline void cfqg_stats_update_io_add(struct cfq_group
*cfqg
,
772 struct cfq_group
*curr_cfqg
, int rw
) { }
773 static inline void cfqg_stats_update_timeslice_used(struct cfq_group
*cfqg
,
774 unsigned long time
, unsigned long unaccounted_time
) { }
775 static inline void cfqg_stats_update_io_remove(struct cfq_group
*cfqg
, int rw
) { }
776 static inline void cfqg_stats_update_io_merged(struct cfq_group
*cfqg
, int rw
) { }
777 static inline void cfqg_stats_update_completion(struct cfq_group
*cfqg
,
778 uint64_t start_time
, uint64_t io_start_time
, int rw
) { }
780 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
782 #define cfq_log(cfqd, fmt, args...) \
783 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
785 /* Traverses through cfq group service trees */
786 #define for_each_cfqg_st(cfqg, i, j, st) \
787 for (i = 0; i <= IDLE_WORKLOAD; i++) \
788 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
789 : &cfqg->service_tree_idle; \
790 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
791 (i == IDLE_WORKLOAD && j == 0); \
792 j++, st = i < IDLE_WORKLOAD ? \
793 &cfqg->service_trees[i][j]: NULL) \
795 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
796 struct cfq_ttime
*ttime
, bool group_idle
)
799 if (!sample_valid(ttime
->ttime_samples
))
802 slice
= cfqd
->cfq_group_idle
;
804 slice
= cfqd
->cfq_slice_idle
;
805 return ttime
->ttime_mean
> slice
;
808 static inline bool iops_mode(struct cfq_data
*cfqd
)
811 * If we are not idling on queues and it is a NCQ drive, parallel
812 * execution of requests is on and measuring time is not possible
813 * in most of the cases until and unless we drive shallower queue
814 * depths and that becomes a performance bottleneck. In such cases
815 * switch to start providing fairness in terms of number of IOs.
817 if (!cfqd
->cfq_slice_idle
&& cfqd
->hw_tag
)
823 static inline enum wl_class_t
cfqq_class(struct cfq_queue
*cfqq
)
825 if (cfq_class_idle(cfqq
))
826 return IDLE_WORKLOAD
;
827 if (cfq_class_rt(cfqq
))
833 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
835 if (!cfq_cfqq_sync(cfqq
))
836 return ASYNC_WORKLOAD
;
837 if (!cfq_cfqq_idle_window(cfqq
))
838 return SYNC_NOIDLE_WORKLOAD
;
839 return SYNC_WORKLOAD
;
842 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class
,
843 struct cfq_data
*cfqd
,
844 struct cfq_group
*cfqg
)
846 if (wl_class
== IDLE_WORKLOAD
)
847 return cfqg
->service_tree_idle
.count
;
849 return cfqg
->service_trees
[wl_class
][ASYNC_WORKLOAD
].count
+
850 cfqg
->service_trees
[wl_class
][SYNC_NOIDLE_WORKLOAD
].count
+
851 cfqg
->service_trees
[wl_class
][SYNC_WORKLOAD
].count
;
854 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
855 struct cfq_group
*cfqg
)
857 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
+
858 cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
861 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
862 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
,
863 struct cfq_io_cq
*cic
, struct bio
*bio
);
865 static inline struct cfq_io_cq
*icq_to_cic(struct io_cq
*icq
)
867 /* cic->icq is the first member, %NULL will convert to %NULL */
868 return container_of(icq
, struct cfq_io_cq
, icq
);
871 static inline struct cfq_io_cq
*cfq_cic_lookup(struct cfq_data
*cfqd
,
872 struct io_context
*ioc
)
875 return icq_to_cic(ioc_lookup_icq(ioc
, cfqd
->queue
));
879 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_cq
*cic
, bool is_sync
)
881 return cic
->cfqq
[is_sync
];
884 static inline void cic_set_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
,
887 cic
->cfqq
[is_sync
] = cfqq
;
890 static inline struct cfq_data
*cic_to_cfqd(struct cfq_io_cq
*cic
)
892 return cic
->icq
.q
->elevator
->elevator_data
;
896 * We regard a request as SYNC, if it's either a read or has the SYNC bit
897 * set (in which case it could also be direct WRITE).
899 static inline bool cfq_bio_sync(struct bio
*bio
)
901 return bio_data_dir(bio
) == READ
|| (bio
->bi_rw
& REQ_SYNC
);
905 * scheduler run of queue, if there are requests pending and no one in the
906 * driver that will restart queueing
908 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
910 if (cfqd
->busy_queues
) {
911 cfq_log(cfqd
, "schedule dispatch");
912 kblockd_schedule_work(&cfqd
->unplug_work
);
917 * Scale schedule slice based on io priority. Use the sync time slice only
918 * if a queue is marked sync and has sync io queued. A sync queue with async
919 * io only, should not get full sync slice length.
921 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
924 const int base_slice
= cfqd
->cfq_slice
[sync
];
926 WARN_ON(prio
>= IOPRIO_BE_NR
);
928 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
932 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
934 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
938 * cfqg_scale_charge - scale disk time charge according to cfqg weight
939 * @charge: disk time being charged
940 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
942 * Scale @charge according to @vfraction, which is in range (0, 1]. The
943 * scaling is inversely proportional.
945 * scaled = charge / vfraction
947 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
949 static inline u64
cfqg_scale_charge(unsigned long charge
,
950 unsigned int vfraction
)
952 u64 c
= charge
<< CFQ_SERVICE_SHIFT
; /* make it fixed point */
954 /* charge / vfraction */
955 c
<<= CFQ_SERVICE_SHIFT
;
956 do_div(c
, vfraction
);
960 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
962 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
964 min_vdisktime
= vdisktime
;
966 return min_vdisktime
;
969 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
971 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
973 min_vdisktime
= vdisktime
;
975 return min_vdisktime
;
978 static void update_min_vdisktime(struct cfq_rb_root
*st
)
980 struct cfq_group
*cfqg
;
983 cfqg
= rb_entry_cfqg(st
->left
);
984 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
,
990 * get averaged number of queues of RT/BE priority.
991 * average is updated, with a formula that gives more weight to higher numbers,
992 * to quickly follows sudden increases and decrease slowly
995 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
996 struct cfq_group
*cfqg
, bool rt
)
998 unsigned min_q
, max_q
;
999 unsigned mult
= cfq_hist_divisor
- 1;
1000 unsigned round
= cfq_hist_divisor
/ 2;
1001 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
1003 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
1004 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
1005 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
1007 return cfqg
->busy_queues_avg
[rt
];
1010 static inline unsigned
1011 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1013 return cfqd
->cfq_target_latency
* cfqg
->vfraction
>> CFQ_SERVICE_SHIFT
;
1016 static inline unsigned
1017 cfq_scaled_cfqq_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1019 unsigned slice
= cfq_prio_to_slice(cfqd
, cfqq
);
1020 if (cfqd
->cfq_latency
) {
1022 * interested queues (we consider only the ones with the same
1023 * priority class in the cfq group)
1025 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
1026 cfq_class_rt(cfqq
));
1027 unsigned sync_slice
= cfqd
->cfq_slice
[1];
1028 unsigned expect_latency
= sync_slice
* iq
;
1029 unsigned group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
1031 if (expect_latency
> group_slice
) {
1032 unsigned base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
1033 /* scale low_slice according to IO priority
1034 * and sync vs async */
1035 unsigned low_slice
=
1036 min(slice
, base_low_slice
* slice
/ sync_slice
);
1037 /* the adapted slice value is scaled to fit all iqs
1038 * into the target latency */
1039 slice
= max(slice
* group_slice
/ expect_latency
,
1047 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1049 unsigned slice
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
1051 cfqq
->slice_start
= jiffies
;
1052 cfqq
->slice_end
= jiffies
+ slice
;
1053 cfqq
->allocated_slice
= slice
;
1054 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
1058 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1059 * isn't valid until the first request from the dispatch is activated
1060 * and the slice time set.
1062 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
1064 if (cfq_cfqq_slice_new(cfqq
))
1066 if (time_before(jiffies
, cfqq
->slice_end
))
1073 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1074 * We choose the request that is closest to the head right now. Distance
1075 * behind the head is penalized and only allowed to a certain extent.
1077 static struct request
*
1078 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
1080 sector_t s1
, s2
, d1
= 0, d2
= 0;
1081 unsigned long back_max
;
1082 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1083 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1084 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
1086 if (rq1
== NULL
|| rq1
== rq2
)
1091 if (rq_is_sync(rq1
) != rq_is_sync(rq2
))
1092 return rq_is_sync(rq1
) ? rq1
: rq2
;
1094 if ((rq1
->cmd_flags
^ rq2
->cmd_flags
) & REQ_PRIO
)
1095 return rq1
->cmd_flags
& REQ_PRIO
? rq1
: rq2
;
1097 s1
= blk_rq_pos(rq1
);
1098 s2
= blk_rq_pos(rq2
);
1101 * by definition, 1KiB is 2 sectors
1103 back_max
= cfqd
->cfq_back_max
* 2;
1106 * Strict one way elevator _except_ in the case where we allow
1107 * short backward seeks which are biased as twice the cost of a
1108 * similar forward seek.
1112 else if (s1
+ back_max
>= last
)
1113 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
1115 wrap
|= CFQ_RQ1_WRAP
;
1119 else if (s2
+ back_max
>= last
)
1120 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
1122 wrap
|= CFQ_RQ2_WRAP
;
1124 /* Found required data */
1127 * By doing switch() on the bit mask "wrap" we avoid having to
1128 * check two variables for all permutations: --> faster!
1131 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1147 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
1150 * Since both rqs are wrapped,
1151 * start with the one that's further behind head
1152 * (--> only *one* back seek required),
1153 * since back seek takes more time than forward.
1163 * The below is leftmost cache rbtree addon
1165 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
1167 /* Service tree is empty */
1172 root
->left
= rb_first(&root
->rb
);
1175 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
1180 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
1183 root
->left
= rb_first(&root
->rb
);
1186 return rb_entry_cfqg(root
->left
);
1191 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
1197 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
1199 if (root
->left
== n
)
1201 rb_erase_init(n
, &root
->rb
);
1206 * would be nice to take fifo expire time into account as well
1208 static struct request
*
1209 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1210 struct request
*last
)
1212 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
1213 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
1214 struct request
*next
= NULL
, *prev
= NULL
;
1216 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
1219 prev
= rb_entry_rq(rbprev
);
1222 next
= rb_entry_rq(rbnext
);
1224 rbnext
= rb_first(&cfqq
->sort_list
);
1225 if (rbnext
&& rbnext
!= &last
->rb_node
)
1226 next
= rb_entry_rq(rbnext
);
1229 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
1232 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
1233 struct cfq_queue
*cfqq
)
1236 * just an approximation, should be ok.
1238 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
1239 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
1243 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1245 return cfqg
->vdisktime
- st
->min_vdisktime
;
1249 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1251 struct rb_node
**node
= &st
->rb
.rb_node
;
1252 struct rb_node
*parent
= NULL
;
1253 struct cfq_group
*__cfqg
;
1254 s64 key
= cfqg_key(st
, cfqg
);
1257 while (*node
!= NULL
) {
1259 __cfqg
= rb_entry_cfqg(parent
);
1261 if (key
< cfqg_key(st
, __cfqg
))
1262 node
= &parent
->rb_left
;
1264 node
= &parent
->rb_right
;
1270 st
->left
= &cfqg
->rb_node
;
1272 rb_link_node(&cfqg
->rb_node
, parent
, node
);
1273 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
1277 * This has to be called only on activation of cfqg
1280 cfq_update_group_weight(struct cfq_group
*cfqg
)
1282 if (cfqg
->new_weight
) {
1283 cfqg
->weight
= cfqg
->new_weight
;
1284 cfqg
->new_weight
= 0;
1289 cfq_update_group_leaf_weight(struct cfq_group
*cfqg
)
1291 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
1293 if (cfqg
->new_leaf_weight
) {
1294 cfqg
->leaf_weight
= cfqg
->new_leaf_weight
;
1295 cfqg
->new_leaf_weight
= 0;
1300 cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1302 unsigned int vfr
= 1 << CFQ_SERVICE_SHIFT
; /* start with 1 */
1303 struct cfq_group
*pos
= cfqg
;
1304 struct cfq_group
*parent
;
1307 /* add to the service tree */
1308 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
1311 * Update leaf_weight. We cannot update weight at this point
1312 * because cfqg might already have been activated and is
1313 * contributing its current weight to the parent's child_weight.
1315 cfq_update_group_leaf_weight(cfqg
);
1316 __cfq_group_service_tree_add(st
, cfqg
);
1319 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1320 * entitled to. vfraction is calculated by walking the tree
1321 * towards the root calculating the fraction it has at each level.
1322 * The compounded ratio is how much vfraction @cfqg owns.
1324 * Start with the proportion tasks in this cfqg has against active
1325 * children cfqgs - its leaf_weight against children_weight.
1327 propagate
= !pos
->nr_active
++;
1328 pos
->children_weight
+= pos
->leaf_weight
;
1329 vfr
= vfr
* pos
->leaf_weight
/ pos
->children_weight
;
1332 * Compound ->weight walking up the tree. Both activation and
1333 * vfraction calculation are done in the same loop. Propagation
1334 * stops once an already activated node is met. vfraction
1335 * calculation should always continue to the root.
1337 while ((parent
= cfqg_parent(pos
))) {
1339 cfq_update_group_weight(pos
);
1340 propagate
= !parent
->nr_active
++;
1341 parent
->children_weight
+= pos
->weight
;
1343 vfr
= vfr
* pos
->weight
/ parent
->children_weight
;
1347 cfqg
->vfraction
= max_t(unsigned, vfr
, 1);
1351 cfq_group_notify_queue_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1353 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1354 struct cfq_group
*__cfqg
;
1358 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
1362 * Currently put the group at the end. Later implement something
1363 * so that groups get lesser vtime based on their weights, so that
1364 * if group does not loose all if it was not continuously backlogged.
1366 n
= rb_last(&st
->rb
);
1368 __cfqg
= rb_entry_cfqg(n
);
1369 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
1371 cfqg
->vdisktime
= st
->min_vdisktime
;
1372 cfq_group_service_tree_add(st
, cfqg
);
1376 cfq_group_service_tree_del(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1378 struct cfq_group
*pos
= cfqg
;
1382 * Undo activation from cfq_group_service_tree_add(). Deactivate
1383 * @cfqg and propagate deactivation upwards.
1385 propagate
= !--pos
->nr_active
;
1386 pos
->children_weight
-= pos
->leaf_weight
;
1389 struct cfq_group
*parent
= cfqg_parent(pos
);
1391 /* @pos has 0 nr_active at this point */
1392 WARN_ON_ONCE(pos
->children_weight
);
1398 propagate
= !--parent
->nr_active
;
1399 parent
->children_weight
-= pos
->weight
;
1403 /* remove from the service tree */
1404 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
1405 cfq_rb_erase(&cfqg
->rb_node
, st
);
1409 cfq_group_notify_queue_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1411 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1413 BUG_ON(cfqg
->nr_cfqq
< 1);
1416 /* If there are other cfq queues under this group, don't delete it */
1420 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
1421 cfq_group_service_tree_del(st
, cfqg
);
1422 cfqg
->saved_wl_slice
= 0;
1423 cfqg_stats_update_dequeue(cfqg
);
1426 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
,
1427 unsigned int *unaccounted_time
)
1429 unsigned int slice_used
;
1432 * Queue got expired before even a single request completed or
1433 * got expired immediately after first request completion.
1435 if (!cfqq
->slice_start
|| cfqq
->slice_start
== jiffies
) {
1437 * Also charge the seek time incurred to the group, otherwise
1438 * if there are mutiple queues in the group, each can dispatch
1439 * a single request on seeky media and cause lots of seek time
1440 * and group will never know it.
1442 slice_used
= max_t(unsigned, (jiffies
- cfqq
->dispatch_start
),
1445 slice_used
= jiffies
- cfqq
->slice_start
;
1446 if (slice_used
> cfqq
->allocated_slice
) {
1447 *unaccounted_time
= slice_used
- cfqq
->allocated_slice
;
1448 slice_used
= cfqq
->allocated_slice
;
1450 if (time_after(cfqq
->slice_start
, cfqq
->dispatch_start
))
1451 *unaccounted_time
+= cfqq
->slice_start
-
1452 cfqq
->dispatch_start
;
1458 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
1459 struct cfq_queue
*cfqq
)
1461 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1462 unsigned int used_sl
, charge
, unaccounted_sl
= 0;
1463 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
1464 - cfqg
->service_tree_idle
.count
;
1467 BUG_ON(nr_sync
< 0);
1468 used_sl
= charge
= cfq_cfqq_slice_usage(cfqq
, &unaccounted_sl
);
1470 if (iops_mode(cfqd
))
1471 charge
= cfqq
->slice_dispatch
;
1472 else if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
1473 charge
= cfqq
->allocated_slice
;
1476 * Can't update vdisktime while on service tree and cfqg->vfraction
1477 * is valid only while on it. Cache vfr, leave the service tree,
1478 * update vdisktime and go back on. The re-addition to the tree
1479 * will also update the weights as necessary.
1481 vfr
= cfqg
->vfraction
;
1482 cfq_group_service_tree_del(st
, cfqg
);
1483 cfqg
->vdisktime
+= cfqg_scale_charge(charge
, vfr
);
1484 cfq_group_service_tree_add(st
, cfqg
);
1486 /* This group is being expired. Save the context */
1487 if (time_after(cfqd
->workload_expires
, jiffies
)) {
1488 cfqg
->saved_wl_slice
= cfqd
->workload_expires
1490 cfqg
->saved_wl_type
= cfqd
->serving_wl_type
;
1491 cfqg
->saved_wl_class
= cfqd
->serving_wl_class
;
1493 cfqg
->saved_wl_slice
= 0;
1495 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
1497 cfq_log_cfqq(cfqq
->cfqd
, cfqq
,
1498 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1499 used_sl
, cfqq
->slice_dispatch
, charge
,
1500 iops_mode(cfqd
), cfqq
->nr_sectors
);
1501 cfqg_stats_update_timeslice_used(cfqg
, used_sl
, unaccounted_sl
);
1502 cfqg_stats_set_start_empty_time(cfqg
);
1506 * cfq_init_cfqg_base - initialize base part of a cfq_group
1507 * @cfqg: cfq_group to initialize
1509 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1510 * is enabled or not.
1512 static void cfq_init_cfqg_base(struct cfq_group
*cfqg
)
1514 struct cfq_rb_root
*st
;
1517 for_each_cfqg_st(cfqg
, i
, j
, st
)
1519 RB_CLEAR_NODE(&cfqg
->rb_node
);
1521 cfqg
->ttime
.last_end_request
= jiffies
;
1524 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1525 static int __cfq_set_weight(struct cgroup_subsys_state
*css
, u64 val
,
1526 bool on_dfl
, bool reset_dev
, bool is_leaf_weight
);
1528 static void cfqg_stats_exit(struct cfqg_stats
*stats
)
1530 blkg_rwstat_exit(&stats
->merged
);
1531 blkg_rwstat_exit(&stats
->service_time
);
1532 blkg_rwstat_exit(&stats
->wait_time
);
1533 blkg_rwstat_exit(&stats
->queued
);
1534 blkg_stat_exit(&stats
->time
);
1535 #ifdef CONFIG_DEBUG_BLK_CGROUP
1536 blkg_stat_exit(&stats
->unaccounted_time
);
1537 blkg_stat_exit(&stats
->avg_queue_size_sum
);
1538 blkg_stat_exit(&stats
->avg_queue_size_samples
);
1539 blkg_stat_exit(&stats
->dequeue
);
1540 blkg_stat_exit(&stats
->group_wait_time
);
1541 blkg_stat_exit(&stats
->idle_time
);
1542 blkg_stat_exit(&stats
->empty_time
);
1546 static int cfqg_stats_init(struct cfqg_stats
*stats
, gfp_t gfp
)
1548 if (blkg_rwstat_init(&stats
->merged
, gfp
) ||
1549 blkg_rwstat_init(&stats
->service_time
, gfp
) ||
1550 blkg_rwstat_init(&stats
->wait_time
, gfp
) ||
1551 blkg_rwstat_init(&stats
->queued
, gfp
) ||
1552 blkg_stat_init(&stats
->time
, gfp
))
1555 #ifdef CONFIG_DEBUG_BLK_CGROUP
1556 if (blkg_stat_init(&stats
->unaccounted_time
, gfp
) ||
1557 blkg_stat_init(&stats
->avg_queue_size_sum
, gfp
) ||
1558 blkg_stat_init(&stats
->avg_queue_size_samples
, gfp
) ||
1559 blkg_stat_init(&stats
->dequeue
, gfp
) ||
1560 blkg_stat_init(&stats
->group_wait_time
, gfp
) ||
1561 blkg_stat_init(&stats
->idle_time
, gfp
) ||
1562 blkg_stat_init(&stats
->empty_time
, gfp
))
1567 cfqg_stats_exit(stats
);
1571 static struct blkcg_policy_data
*cfq_cpd_alloc(gfp_t gfp
)
1573 struct cfq_group_data
*cgd
;
1575 cgd
= kzalloc(sizeof(*cgd
), gfp
);
1581 static void cfq_cpd_init(struct blkcg_policy_data
*cpd
)
1583 struct cfq_group_data
*cgd
= cpd_to_cfqgd(cpd
);
1584 unsigned int weight
= cgroup_subsys_on_dfl(io_cgrp_subsys
) ?
1585 CGROUP_WEIGHT_DFL
: CFQ_WEIGHT_LEGACY_DFL
;
1587 if (cpd_to_blkcg(cpd
) == &blkcg_root
)
1590 cgd
->weight
= weight
;
1591 cgd
->leaf_weight
= weight
;
1594 static void cfq_cpd_free(struct blkcg_policy_data
*cpd
)
1596 kfree(cpd_to_cfqgd(cpd
));
1599 static void cfq_cpd_bind(struct blkcg_policy_data
*cpd
)
1601 struct blkcg
*blkcg
= cpd_to_blkcg(cpd
);
1602 bool on_dfl
= cgroup_subsys_on_dfl(io_cgrp_subsys
);
1603 unsigned int weight
= on_dfl
? CGROUP_WEIGHT_DFL
: CFQ_WEIGHT_LEGACY_DFL
;
1605 if (blkcg
== &blkcg_root
)
1608 WARN_ON_ONCE(__cfq_set_weight(&blkcg
->css
, weight
, on_dfl
, true, false));
1609 WARN_ON_ONCE(__cfq_set_weight(&blkcg
->css
, weight
, on_dfl
, true, true));
1612 static struct blkg_policy_data
*cfq_pd_alloc(gfp_t gfp
, int node
)
1614 struct cfq_group
*cfqg
;
1616 cfqg
= kzalloc_node(sizeof(*cfqg
), gfp
, node
);
1620 cfq_init_cfqg_base(cfqg
);
1621 if (cfqg_stats_init(&cfqg
->stats
, gfp
)) {
1629 static void cfq_pd_init(struct blkg_policy_data
*pd
)
1631 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1632 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(pd
->blkg
->blkcg
);
1634 cfqg
->weight
= cgd
->weight
;
1635 cfqg
->leaf_weight
= cgd
->leaf_weight
;
1638 static void cfq_pd_offline(struct blkg_policy_data
*pd
)
1640 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1643 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
1644 if (cfqg
->async_cfqq
[0][i
])
1645 cfq_put_queue(cfqg
->async_cfqq
[0][i
]);
1646 if (cfqg
->async_cfqq
[1][i
])
1647 cfq_put_queue(cfqg
->async_cfqq
[1][i
]);
1650 if (cfqg
->async_idle_cfqq
)
1651 cfq_put_queue(cfqg
->async_idle_cfqq
);
1654 * @blkg is going offline and will be ignored by
1655 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1656 * that they don't get lost. If IOs complete after this point, the
1657 * stats for them will be lost. Oh well...
1659 cfqg_stats_xfer_dead(cfqg
);
1662 static void cfq_pd_free(struct blkg_policy_data
*pd
)
1664 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1666 cfqg_stats_exit(&cfqg
->stats
);
1670 static void cfq_pd_reset_stats(struct blkg_policy_data
*pd
)
1672 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1674 cfqg_stats_reset(&cfqg
->stats
);
1677 static struct cfq_group
*cfq_lookup_cfqg(struct cfq_data
*cfqd
,
1678 struct blkcg
*blkcg
)
1680 struct blkcg_gq
*blkg
;
1682 blkg
= blkg_lookup(blkcg
, cfqd
->queue
);
1684 return blkg_to_cfqg(blkg
);
1688 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1691 /* cfqq reference on cfqg */
1695 static u64
cfqg_prfill_weight_device(struct seq_file
*sf
,
1696 struct blkg_policy_data
*pd
, int off
)
1698 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1700 if (!cfqg
->dev_weight
)
1702 return __blkg_prfill_u64(sf
, pd
, cfqg
->dev_weight
);
1705 static int cfqg_print_weight_device(struct seq_file
*sf
, void *v
)
1707 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1708 cfqg_prfill_weight_device
, &blkcg_policy_cfq
,
1713 static u64
cfqg_prfill_leaf_weight_device(struct seq_file
*sf
,
1714 struct blkg_policy_data
*pd
, int off
)
1716 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1718 if (!cfqg
->dev_leaf_weight
)
1720 return __blkg_prfill_u64(sf
, pd
, cfqg
->dev_leaf_weight
);
1723 static int cfqg_print_leaf_weight_device(struct seq_file
*sf
, void *v
)
1725 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1726 cfqg_prfill_leaf_weight_device
, &blkcg_policy_cfq
,
1731 static int cfq_print_weight(struct seq_file
*sf
, void *v
)
1733 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
1734 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
1735 unsigned int val
= 0;
1740 seq_printf(sf
, "%u\n", val
);
1744 static int cfq_print_leaf_weight(struct seq_file
*sf
, void *v
)
1746 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
1747 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
1748 unsigned int val
= 0;
1751 val
= cgd
->leaf_weight
;
1753 seq_printf(sf
, "%u\n", val
);
1757 static ssize_t
__cfqg_set_weight_device(struct kernfs_open_file
*of
,
1758 char *buf
, size_t nbytes
, loff_t off
,
1759 bool on_dfl
, bool is_leaf_weight
)
1761 unsigned int min
= on_dfl
? CGROUP_WEIGHT_MIN
: CFQ_WEIGHT_LEGACY_MIN
;
1762 unsigned int max
= on_dfl
? CGROUP_WEIGHT_MAX
: CFQ_WEIGHT_LEGACY_MAX
;
1763 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1764 struct blkg_conf_ctx ctx
;
1765 struct cfq_group
*cfqg
;
1766 struct cfq_group_data
*cfqgd
;
1770 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_cfq
, buf
, &ctx
);
1774 if (sscanf(ctx
.body
, "%llu", &v
) == 1) {
1775 /* require "default" on dfl */
1779 } else if (!strcmp(strim(ctx
.body
), "default")) {
1786 cfqg
= blkg_to_cfqg(ctx
.blkg
);
1787 cfqgd
= blkcg_to_cfqgd(blkcg
);
1790 if (!v
|| (v
>= min
&& v
<= max
)) {
1791 if (!is_leaf_weight
) {
1792 cfqg
->dev_weight
= v
;
1793 cfqg
->new_weight
= v
?: cfqgd
->weight
;
1795 cfqg
->dev_leaf_weight
= v
;
1796 cfqg
->new_leaf_weight
= v
?: cfqgd
->leaf_weight
;
1801 blkg_conf_finish(&ctx
);
1802 return ret
?: nbytes
;
1805 static ssize_t
cfqg_set_weight_device(struct kernfs_open_file
*of
,
1806 char *buf
, size_t nbytes
, loff_t off
)
1808 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, false, false);
1811 static ssize_t
cfqg_set_leaf_weight_device(struct kernfs_open_file
*of
,
1812 char *buf
, size_t nbytes
, loff_t off
)
1814 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, false, true);
1817 static int __cfq_set_weight(struct cgroup_subsys_state
*css
, u64 val
,
1818 bool on_dfl
, bool reset_dev
, bool is_leaf_weight
)
1820 unsigned int min
= on_dfl
? CGROUP_WEIGHT_MIN
: CFQ_WEIGHT_LEGACY_MIN
;
1821 unsigned int max
= on_dfl
? CGROUP_WEIGHT_MAX
: CFQ_WEIGHT_LEGACY_MAX
;
1822 struct blkcg
*blkcg
= css_to_blkcg(css
);
1823 struct blkcg_gq
*blkg
;
1824 struct cfq_group_data
*cfqgd
;
1827 if (val
< min
|| val
> max
)
1830 spin_lock_irq(&blkcg
->lock
);
1831 cfqgd
= blkcg_to_cfqgd(blkcg
);
1837 if (!is_leaf_weight
)
1838 cfqgd
->weight
= val
;
1840 cfqgd
->leaf_weight
= val
;
1842 hlist_for_each_entry(blkg
, &blkcg
->blkg_list
, blkcg_node
) {
1843 struct cfq_group
*cfqg
= blkg_to_cfqg(blkg
);
1848 if (!is_leaf_weight
) {
1850 cfqg
->dev_weight
= 0;
1851 if (!cfqg
->dev_weight
)
1852 cfqg
->new_weight
= cfqgd
->weight
;
1855 cfqg
->dev_leaf_weight
= 0;
1856 if (!cfqg
->dev_leaf_weight
)
1857 cfqg
->new_leaf_weight
= cfqgd
->leaf_weight
;
1862 spin_unlock_irq(&blkcg
->lock
);
1866 static int cfq_set_weight(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
1869 return __cfq_set_weight(css
, val
, false, false, false);
1872 static int cfq_set_leaf_weight(struct cgroup_subsys_state
*css
,
1873 struct cftype
*cft
, u64 val
)
1875 return __cfq_set_weight(css
, val
, false, false, true);
1878 static int cfqg_print_stat(struct seq_file
*sf
, void *v
)
1880 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), blkg_prfill_stat
,
1881 &blkcg_policy_cfq
, seq_cft(sf
)->private, false);
1885 static int cfqg_print_rwstat(struct seq_file
*sf
, void *v
)
1887 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), blkg_prfill_rwstat
,
1888 &blkcg_policy_cfq
, seq_cft(sf
)->private, true);
1892 static u64
cfqg_prfill_stat_recursive(struct seq_file
*sf
,
1893 struct blkg_policy_data
*pd
, int off
)
1895 u64 sum
= blkg_stat_recursive_sum(pd_to_blkg(pd
),
1896 &blkcg_policy_cfq
, off
);
1897 return __blkg_prfill_u64(sf
, pd
, sum
);
1900 static u64
cfqg_prfill_rwstat_recursive(struct seq_file
*sf
,
1901 struct blkg_policy_data
*pd
, int off
)
1903 struct blkg_rwstat sum
= blkg_rwstat_recursive_sum(pd_to_blkg(pd
),
1904 &blkcg_policy_cfq
, off
);
1905 return __blkg_prfill_rwstat(sf
, pd
, &sum
);
1908 static int cfqg_print_stat_recursive(struct seq_file
*sf
, void *v
)
1910 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1911 cfqg_prfill_stat_recursive
, &blkcg_policy_cfq
,
1912 seq_cft(sf
)->private, false);
1916 static int cfqg_print_rwstat_recursive(struct seq_file
*sf
, void *v
)
1918 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1919 cfqg_prfill_rwstat_recursive
, &blkcg_policy_cfq
,
1920 seq_cft(sf
)->private, true);
1924 static u64
cfqg_prfill_sectors(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1927 u64 sum
= blkg_rwstat_total(&pd
->blkg
->stat_bytes
);
1929 return __blkg_prfill_u64(sf
, pd
, sum
>> 9);
1932 static int cfqg_print_stat_sectors(struct seq_file
*sf
, void *v
)
1934 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1935 cfqg_prfill_sectors
, &blkcg_policy_cfq
, 0, false);
1939 static u64
cfqg_prfill_sectors_recursive(struct seq_file
*sf
,
1940 struct blkg_policy_data
*pd
, int off
)
1942 struct blkg_rwstat tmp
= blkg_rwstat_recursive_sum(pd
->blkg
, NULL
,
1943 offsetof(struct blkcg_gq
, stat_bytes
));
1944 u64 sum
= atomic64_read(&tmp
.aux_cnt
[BLKG_RWSTAT_READ
]) +
1945 atomic64_read(&tmp
.aux_cnt
[BLKG_RWSTAT_WRITE
]);
1947 return __blkg_prfill_u64(sf
, pd
, sum
>> 9);
1950 static int cfqg_print_stat_sectors_recursive(struct seq_file
*sf
, void *v
)
1952 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1953 cfqg_prfill_sectors_recursive
, &blkcg_policy_cfq
, 0,
1958 #ifdef CONFIG_DEBUG_BLK_CGROUP
1959 static u64
cfqg_prfill_avg_queue_size(struct seq_file
*sf
,
1960 struct blkg_policy_data
*pd
, int off
)
1962 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1963 u64 samples
= blkg_stat_read(&cfqg
->stats
.avg_queue_size_samples
);
1967 v
= blkg_stat_read(&cfqg
->stats
.avg_queue_size_sum
);
1968 v
= div64_u64(v
, samples
);
1970 __blkg_prfill_u64(sf
, pd
, v
);
1974 /* print avg_queue_size */
1975 static int cfqg_print_avg_queue_size(struct seq_file
*sf
, void *v
)
1977 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1978 cfqg_prfill_avg_queue_size
, &blkcg_policy_cfq
,
1982 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1984 static struct cftype cfq_blkcg_legacy_files
[] = {
1985 /* on root, weight is mapped to leaf_weight */
1987 .name
= "weight_device",
1988 .flags
= CFTYPE_ONLY_ON_ROOT
,
1989 .seq_show
= cfqg_print_leaf_weight_device
,
1990 .write
= cfqg_set_leaf_weight_device
,
1994 .flags
= CFTYPE_ONLY_ON_ROOT
,
1995 .seq_show
= cfq_print_leaf_weight
,
1996 .write_u64
= cfq_set_leaf_weight
,
1999 /* no such mapping necessary for !roots */
2001 .name
= "weight_device",
2002 .flags
= CFTYPE_NOT_ON_ROOT
,
2003 .seq_show
= cfqg_print_weight_device
,
2004 .write
= cfqg_set_weight_device
,
2008 .flags
= CFTYPE_NOT_ON_ROOT
,
2009 .seq_show
= cfq_print_weight
,
2010 .write_u64
= cfq_set_weight
,
2014 .name
= "leaf_weight_device",
2015 .seq_show
= cfqg_print_leaf_weight_device
,
2016 .write
= cfqg_set_leaf_weight_device
,
2019 .name
= "leaf_weight",
2020 .seq_show
= cfq_print_leaf_weight
,
2021 .write_u64
= cfq_set_leaf_weight
,
2024 /* statistics, covers only the tasks in the cfqg */
2027 .private = offsetof(struct cfq_group
, stats
.time
),
2028 .seq_show
= cfqg_print_stat
,
2032 .seq_show
= cfqg_print_stat_sectors
,
2035 .name
= "io_service_bytes",
2036 .private = (unsigned long)&blkcg_policy_cfq
,
2037 .seq_show
= blkg_print_stat_bytes
,
2040 .name
= "io_serviced",
2041 .private = (unsigned long)&blkcg_policy_cfq
,
2042 .seq_show
= blkg_print_stat_ios
,
2045 .name
= "io_service_time",
2046 .private = offsetof(struct cfq_group
, stats
.service_time
),
2047 .seq_show
= cfqg_print_rwstat
,
2050 .name
= "io_wait_time",
2051 .private = offsetof(struct cfq_group
, stats
.wait_time
),
2052 .seq_show
= cfqg_print_rwstat
,
2055 .name
= "io_merged",
2056 .private = offsetof(struct cfq_group
, stats
.merged
),
2057 .seq_show
= cfqg_print_rwstat
,
2060 .name
= "io_queued",
2061 .private = offsetof(struct cfq_group
, stats
.queued
),
2062 .seq_show
= cfqg_print_rwstat
,
2065 /* the same statictics which cover the cfqg and its descendants */
2067 .name
= "time_recursive",
2068 .private = offsetof(struct cfq_group
, stats
.time
),
2069 .seq_show
= cfqg_print_stat_recursive
,
2072 .name
= "sectors_recursive",
2073 .seq_show
= cfqg_print_stat_sectors_recursive
,
2076 .name
= "io_service_bytes_recursive",
2077 .private = (unsigned long)&blkcg_policy_cfq
,
2078 .seq_show
= blkg_print_stat_bytes_recursive
,
2081 .name
= "io_serviced_recursive",
2082 .private = (unsigned long)&blkcg_policy_cfq
,
2083 .seq_show
= blkg_print_stat_ios_recursive
,
2086 .name
= "io_service_time_recursive",
2087 .private = offsetof(struct cfq_group
, stats
.service_time
),
2088 .seq_show
= cfqg_print_rwstat_recursive
,
2091 .name
= "io_wait_time_recursive",
2092 .private = offsetof(struct cfq_group
, stats
.wait_time
),
2093 .seq_show
= cfqg_print_rwstat_recursive
,
2096 .name
= "io_merged_recursive",
2097 .private = offsetof(struct cfq_group
, stats
.merged
),
2098 .seq_show
= cfqg_print_rwstat_recursive
,
2101 .name
= "io_queued_recursive",
2102 .private = offsetof(struct cfq_group
, stats
.queued
),
2103 .seq_show
= cfqg_print_rwstat_recursive
,
2105 #ifdef CONFIG_DEBUG_BLK_CGROUP
2107 .name
= "avg_queue_size",
2108 .seq_show
= cfqg_print_avg_queue_size
,
2111 .name
= "group_wait_time",
2112 .private = offsetof(struct cfq_group
, stats
.group_wait_time
),
2113 .seq_show
= cfqg_print_stat
,
2116 .name
= "idle_time",
2117 .private = offsetof(struct cfq_group
, stats
.idle_time
),
2118 .seq_show
= cfqg_print_stat
,
2121 .name
= "empty_time",
2122 .private = offsetof(struct cfq_group
, stats
.empty_time
),
2123 .seq_show
= cfqg_print_stat
,
2127 .private = offsetof(struct cfq_group
, stats
.dequeue
),
2128 .seq_show
= cfqg_print_stat
,
2131 .name
= "unaccounted_time",
2132 .private = offsetof(struct cfq_group
, stats
.unaccounted_time
),
2133 .seq_show
= cfqg_print_stat
,
2135 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2139 static int cfq_print_weight_on_dfl(struct seq_file
*sf
, void *v
)
2141 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
2142 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
2144 seq_printf(sf
, "default %u\n", cgd
->weight
);
2145 blkcg_print_blkgs(sf
, blkcg
, cfqg_prfill_weight_device
,
2146 &blkcg_policy_cfq
, 0, false);
2150 static ssize_t
cfq_set_weight_on_dfl(struct kernfs_open_file
*of
,
2151 char *buf
, size_t nbytes
, loff_t off
)
2159 /* "WEIGHT" or "default WEIGHT" sets the default weight */
2160 v
= simple_strtoull(buf
, &endp
, 0);
2161 if (*endp
== '\0' || sscanf(buf
, "default %llu", &v
) == 1) {
2162 ret
= __cfq_set_weight(of_css(of
), v
, true, false, false);
2163 return ret
?: nbytes
;
2166 /* "MAJ:MIN WEIGHT" */
2167 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, true, false);
2170 static struct cftype cfq_blkcg_files
[] = {
2173 .flags
= CFTYPE_NOT_ON_ROOT
,
2174 .seq_show
= cfq_print_weight_on_dfl
,
2175 .write
= cfq_set_weight_on_dfl
,
2180 #else /* GROUP_IOSCHED */
2181 static struct cfq_group
*cfq_lookup_cfqg(struct cfq_data
*cfqd
,
2182 struct blkcg
*blkcg
)
2184 return cfqd
->root_group
;
2188 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
2192 #endif /* GROUP_IOSCHED */
2195 * The cfqd->service_trees holds all pending cfq_queue's that have
2196 * requests waiting to be processed. It is sorted in the order that
2197 * we will service the queues.
2199 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2202 struct rb_node
**p
, *parent
;
2203 struct cfq_queue
*__cfqq
;
2204 unsigned long rb_key
;
2205 struct cfq_rb_root
*st
;
2209 st
= st_for(cfqq
->cfqg
, cfqq_class(cfqq
), cfqq_type(cfqq
));
2210 if (cfq_class_idle(cfqq
)) {
2211 rb_key
= CFQ_IDLE_DELAY
;
2212 parent
= rb_last(&st
->rb
);
2213 if (parent
&& parent
!= &cfqq
->rb_node
) {
2214 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
2215 rb_key
+= __cfqq
->rb_key
;
2218 } else if (!add_front
) {
2220 * Get our rb key offset. Subtract any residual slice
2221 * value carried from last service. A negative resid
2222 * count indicates slice overrun, and this should position
2223 * the next service time further away in the tree.
2225 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
2226 rb_key
-= cfqq
->slice_resid
;
2227 cfqq
->slice_resid
= 0;
2230 __cfqq
= cfq_rb_first(st
);
2231 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
2234 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
2237 * same position, nothing more to do
2239 if (rb_key
== cfqq
->rb_key
&& cfqq
->service_tree
== st
)
2242 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
2243 cfqq
->service_tree
= NULL
;
2248 cfqq
->service_tree
= st
;
2249 p
= &st
->rb
.rb_node
;
2252 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
2255 * sort by key, that represents service time.
2257 if (time_before(rb_key
, __cfqq
->rb_key
))
2258 p
= &parent
->rb_left
;
2260 p
= &parent
->rb_right
;
2266 st
->left
= &cfqq
->rb_node
;
2268 cfqq
->rb_key
= rb_key
;
2269 rb_link_node(&cfqq
->rb_node
, parent
, p
);
2270 rb_insert_color(&cfqq
->rb_node
, &st
->rb
);
2272 if (add_front
|| !new_cfqq
)
2274 cfq_group_notify_queue_add(cfqd
, cfqq
->cfqg
);
2277 static struct cfq_queue
*
2278 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
2279 sector_t sector
, struct rb_node
**ret_parent
,
2280 struct rb_node
***rb_link
)
2282 struct rb_node
**p
, *parent
;
2283 struct cfq_queue
*cfqq
= NULL
;
2291 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
2294 * Sort strictly based on sector. Smallest to the left,
2295 * largest to the right.
2297 if (sector
> blk_rq_pos(cfqq
->next_rq
))
2298 n
= &(*p
)->rb_right
;
2299 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
2307 *ret_parent
= parent
;
2313 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2315 struct rb_node
**p
, *parent
;
2316 struct cfq_queue
*__cfqq
;
2319 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2320 cfqq
->p_root
= NULL
;
2323 if (cfq_class_idle(cfqq
))
2328 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
2329 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
2330 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
2332 rb_link_node(&cfqq
->p_node
, parent
, p
);
2333 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
2335 cfqq
->p_root
= NULL
;
2339 * Update cfqq's position in the service tree.
2341 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2344 * Resorting requires the cfqq to be on the RR list already.
2346 if (cfq_cfqq_on_rr(cfqq
)) {
2347 cfq_service_tree_add(cfqd
, cfqq
, 0);
2348 cfq_prio_tree_add(cfqd
, cfqq
);
2353 * add to busy list of queues for service, trying to be fair in ordering
2354 * the pending list according to last request service
2356 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2358 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
2359 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2360 cfq_mark_cfqq_on_rr(cfqq
);
2361 cfqd
->busy_queues
++;
2362 if (cfq_cfqq_sync(cfqq
))
2363 cfqd
->busy_sync_queues
++;
2365 cfq_resort_rr_list(cfqd
, cfqq
);
2369 * Called when the cfqq no longer has requests pending, remove it from
2372 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2374 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
2375 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
2376 cfq_clear_cfqq_on_rr(cfqq
);
2378 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
2379 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
2380 cfqq
->service_tree
= NULL
;
2383 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2384 cfqq
->p_root
= NULL
;
2387 cfq_group_notify_queue_del(cfqd
, cfqq
->cfqg
);
2388 BUG_ON(!cfqd
->busy_queues
);
2389 cfqd
->busy_queues
--;
2390 if (cfq_cfqq_sync(cfqq
))
2391 cfqd
->busy_sync_queues
--;
2395 * rb tree support functions
2397 static void cfq_del_rq_rb(struct request
*rq
)
2399 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2400 const int sync
= rq_is_sync(rq
);
2402 BUG_ON(!cfqq
->queued
[sync
]);
2403 cfqq
->queued
[sync
]--;
2405 elv_rb_del(&cfqq
->sort_list
, rq
);
2407 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
2409 * Queue will be deleted from service tree when we actually
2410 * expire it later. Right now just remove it from prio tree
2414 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2415 cfqq
->p_root
= NULL
;
2420 static void cfq_add_rq_rb(struct request
*rq
)
2422 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2423 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2424 struct request
*prev
;
2426 cfqq
->queued
[rq_is_sync(rq
)]++;
2428 elv_rb_add(&cfqq
->sort_list
, rq
);
2430 if (!cfq_cfqq_on_rr(cfqq
))
2431 cfq_add_cfqq_rr(cfqd
, cfqq
);
2434 * check if this request is a better next-serve candidate
2436 prev
= cfqq
->next_rq
;
2437 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
2440 * adjust priority tree position, if ->next_rq changes
2442 if (prev
!= cfqq
->next_rq
)
2443 cfq_prio_tree_add(cfqd
, cfqq
);
2445 BUG_ON(!cfqq
->next_rq
);
2448 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
2450 elv_rb_del(&cfqq
->sort_list
, rq
);
2451 cfqq
->queued
[rq_is_sync(rq
)]--;
2452 cfqg_stats_update_io_remove(RQ_CFQG(rq
), rq
->cmd_flags
);
2454 cfqg_stats_update_io_add(RQ_CFQG(rq
), cfqq
->cfqd
->serving_group
,
2458 static struct request
*
2459 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
2461 struct task_struct
*tsk
= current
;
2462 struct cfq_io_cq
*cic
;
2463 struct cfq_queue
*cfqq
;
2465 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
2469 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
2471 return elv_rb_find(&cfqq
->sort_list
, bio_end_sector(bio
));
2476 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
2478 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2480 cfqd
->rq_in_driver
++;
2481 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
2482 cfqd
->rq_in_driver
);
2484 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
2487 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
2489 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2491 WARN_ON(!cfqd
->rq_in_driver
);
2492 cfqd
->rq_in_driver
--;
2493 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
2494 cfqd
->rq_in_driver
);
2497 static void cfq_remove_request(struct request
*rq
)
2499 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2501 if (cfqq
->next_rq
== rq
)
2502 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
2504 list_del_init(&rq
->queuelist
);
2507 cfqq
->cfqd
->rq_queued
--;
2508 cfqg_stats_update_io_remove(RQ_CFQG(rq
), rq
->cmd_flags
);
2509 if (rq
->cmd_flags
& REQ_PRIO
) {
2510 WARN_ON(!cfqq
->prio_pending
);
2511 cfqq
->prio_pending
--;
2515 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
2518 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2519 struct request
*__rq
;
2521 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
2522 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
2524 return ELEVATOR_FRONT_MERGE
;
2527 return ELEVATOR_NO_MERGE
;
2530 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
2533 if (type
== ELEVATOR_FRONT_MERGE
) {
2534 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
2536 cfq_reposition_rq_rb(cfqq
, req
);
2540 static void cfq_bio_merged(struct request_queue
*q
, struct request
*req
,
2543 cfqg_stats_update_io_merged(RQ_CFQG(req
), bio
->bi_rw
);
2547 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
2548 struct request
*next
)
2550 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2551 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2554 * reposition in fifo if next is older than rq
2556 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
2557 time_before(next
->fifo_time
, rq
->fifo_time
) &&
2558 cfqq
== RQ_CFQQ(next
)) {
2559 list_move(&rq
->queuelist
, &next
->queuelist
);
2560 rq
->fifo_time
= next
->fifo_time
;
2563 if (cfqq
->next_rq
== next
)
2565 cfq_remove_request(next
);
2566 cfqg_stats_update_io_merged(RQ_CFQG(rq
), next
->cmd_flags
);
2568 cfqq
= RQ_CFQQ(next
);
2570 * all requests of this queue are merged to other queues, delete it
2571 * from the service tree. If it's the active_queue,
2572 * cfq_dispatch_requests() will choose to expire it or do idle
2574 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
) &&
2575 cfqq
!= cfqd
->active_queue
)
2576 cfq_del_cfqq_rr(cfqd
, cfqq
);
2579 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
2582 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2583 struct cfq_io_cq
*cic
;
2584 struct cfq_queue
*cfqq
;
2587 * Disallow merge of a sync bio into an async request.
2589 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
2593 * Lookup the cfqq that this bio will be queued with and allow
2594 * merge only if rq is queued there.
2596 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
2600 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
2601 return cfqq
== RQ_CFQQ(rq
);
2604 static inline void cfq_del_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2606 del_timer(&cfqd
->idle_slice_timer
);
2607 cfqg_stats_update_idle_time(cfqq
->cfqg
);
2610 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
2611 struct cfq_queue
*cfqq
)
2614 cfq_log_cfqq(cfqd
, cfqq
, "set_active wl_class:%d wl_type:%d",
2615 cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
2616 cfqg_stats_update_avg_queue_size(cfqq
->cfqg
);
2617 cfqq
->slice_start
= 0;
2618 cfqq
->dispatch_start
= jiffies
;
2619 cfqq
->allocated_slice
= 0;
2620 cfqq
->slice_end
= 0;
2621 cfqq
->slice_dispatch
= 0;
2622 cfqq
->nr_sectors
= 0;
2624 cfq_clear_cfqq_wait_request(cfqq
);
2625 cfq_clear_cfqq_must_dispatch(cfqq
);
2626 cfq_clear_cfqq_must_alloc_slice(cfqq
);
2627 cfq_clear_cfqq_fifo_expire(cfqq
);
2628 cfq_mark_cfqq_slice_new(cfqq
);
2630 cfq_del_timer(cfqd
, cfqq
);
2633 cfqd
->active_queue
= cfqq
;
2637 * current cfqq expired its slice (or was too idle), select new one
2640 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2643 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
2645 if (cfq_cfqq_wait_request(cfqq
))
2646 cfq_del_timer(cfqd
, cfqq
);
2648 cfq_clear_cfqq_wait_request(cfqq
);
2649 cfq_clear_cfqq_wait_busy(cfqq
);
2652 * If this cfqq is shared between multiple processes, check to
2653 * make sure that those processes are still issuing I/Os within
2654 * the mean seek distance. If not, it may be time to break the
2655 * queues apart again.
2657 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
2658 cfq_mark_cfqq_split_coop(cfqq
);
2661 * store what was left of this slice, if the queue idled/timed out
2664 if (cfq_cfqq_slice_new(cfqq
))
2665 cfqq
->slice_resid
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
2667 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
2668 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
2671 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
2673 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
2674 cfq_del_cfqq_rr(cfqd
, cfqq
);
2676 cfq_resort_rr_list(cfqd
, cfqq
);
2678 if (cfqq
== cfqd
->active_queue
)
2679 cfqd
->active_queue
= NULL
;
2681 if (cfqd
->active_cic
) {
2682 put_io_context(cfqd
->active_cic
->icq
.ioc
);
2683 cfqd
->active_cic
= NULL
;
2687 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
2689 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2692 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
2696 * Get next queue for service. Unless we have a queue preemption,
2697 * we'll simply select the first cfqq in the service tree.
2699 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
2701 struct cfq_rb_root
*st
= st_for(cfqd
->serving_group
,
2702 cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
2704 if (!cfqd
->rq_queued
)
2707 /* There is nothing to dispatch */
2710 if (RB_EMPTY_ROOT(&st
->rb
))
2712 return cfq_rb_first(st
);
2715 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
2717 struct cfq_group
*cfqg
;
2718 struct cfq_queue
*cfqq
;
2720 struct cfq_rb_root
*st
;
2722 if (!cfqd
->rq_queued
)
2725 cfqg
= cfq_get_next_cfqg(cfqd
);
2729 for_each_cfqg_st(cfqg
, i
, j
, st
)
2730 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
2736 * Get and set a new active queue for service.
2738 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
2739 struct cfq_queue
*cfqq
)
2742 cfqq
= cfq_get_next_queue(cfqd
);
2744 __cfq_set_active_queue(cfqd
, cfqq
);
2748 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
2751 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
2752 return blk_rq_pos(rq
) - cfqd
->last_position
;
2754 return cfqd
->last_position
- blk_rq_pos(rq
);
2757 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2760 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_CLOSE_THR
;
2763 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
2764 struct cfq_queue
*cur_cfqq
)
2766 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
2767 struct rb_node
*parent
, *node
;
2768 struct cfq_queue
*__cfqq
;
2769 sector_t sector
= cfqd
->last_position
;
2771 if (RB_EMPTY_ROOT(root
))
2775 * First, if we find a request starting at the end of the last
2776 * request, choose it.
2778 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
2783 * If the exact sector wasn't found, the parent of the NULL leaf
2784 * will contain the closest sector.
2786 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
2787 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
2790 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
2791 node
= rb_next(&__cfqq
->p_node
);
2793 node
= rb_prev(&__cfqq
->p_node
);
2797 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
2798 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
2806 * cur_cfqq - passed in so that we don't decide that the current queue is
2807 * closely cooperating with itself.
2809 * So, basically we're assuming that that cur_cfqq has dispatched at least
2810 * one request, and that cfqd->last_position reflects a position on the disk
2811 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2814 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
2815 struct cfq_queue
*cur_cfqq
)
2817 struct cfq_queue
*cfqq
;
2819 if (cfq_class_idle(cur_cfqq
))
2821 if (!cfq_cfqq_sync(cur_cfqq
))
2823 if (CFQQ_SEEKY(cur_cfqq
))
2827 * Don't search priority tree if it's the only queue in the group.
2829 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
2833 * We should notice if some of the queues are cooperating, eg
2834 * working closely on the same area of the disk. In that case,
2835 * we can group them together and don't waste time idling.
2837 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
2841 /* If new queue belongs to different cfq_group, don't choose it */
2842 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
2846 * It only makes sense to merge sync queues.
2848 if (!cfq_cfqq_sync(cfqq
))
2850 if (CFQQ_SEEKY(cfqq
))
2854 * Do not merge queues of different priority classes
2856 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
2863 * Determine whether we should enforce idle window for this queue.
2866 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2868 enum wl_class_t wl_class
= cfqq_class(cfqq
);
2869 struct cfq_rb_root
*st
= cfqq
->service_tree
;
2874 if (!cfqd
->cfq_slice_idle
)
2877 /* We never do for idle class queues. */
2878 if (wl_class
== IDLE_WORKLOAD
)
2881 /* We do for queues that were marked with idle window flag. */
2882 if (cfq_cfqq_idle_window(cfqq
) &&
2883 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
2887 * Otherwise, we do only if they are the last ones
2888 * in their service tree.
2890 if (st
->count
== 1 && cfq_cfqq_sync(cfqq
) &&
2891 !cfq_io_thinktime_big(cfqd
, &st
->ttime
, false))
2893 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. st->count:%d", st
->count
);
2897 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
2899 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2900 struct cfq_io_cq
*cic
;
2901 unsigned long sl
, group_idle
= 0;
2904 * SSD device without seek penalty, disable idling. But only do so
2905 * for devices that support queuing, otherwise we still have a problem
2906 * with sync vs async workloads.
2908 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
&&
2909 !cfqd
->cfq_group_idle
)
2912 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
2913 WARN_ON(cfq_cfqq_slice_new(cfqq
));
2916 * idle is disabled, either manually or by past process history
2918 if (!cfq_should_idle(cfqd
, cfqq
)) {
2919 /* no queue idling. Check for group idling */
2920 if (cfqd
->cfq_group_idle
)
2921 group_idle
= cfqd
->cfq_group_idle
;
2927 * still active requests from this queue, don't idle
2929 if (cfqq
->dispatched
)
2933 * task has exited, don't wait
2935 cic
= cfqd
->active_cic
;
2936 if (!cic
|| !atomic_read(&cic
->icq
.ioc
->active_ref
))
2940 * If our average think time is larger than the remaining time
2941 * slice, then don't idle. This avoids overrunning the allotted
2944 if (sample_valid(cic
->ttime
.ttime_samples
) &&
2945 (cfqq
->slice_end
- jiffies
< cic
->ttime
.ttime_mean
)) {
2946 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. think_time:%lu",
2947 cic
->ttime
.ttime_mean
);
2951 /* There are other queues in the group, don't do group idle */
2952 if (group_idle
&& cfqq
->cfqg
->nr_cfqq
> 1)
2955 cfq_mark_cfqq_wait_request(cfqq
);
2958 sl
= cfqd
->cfq_group_idle
;
2960 sl
= cfqd
->cfq_slice_idle
;
2962 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
2963 cfqg_stats_set_start_idle_time(cfqq
->cfqg
);
2964 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu group_idle: %d", sl
,
2965 group_idle
? 1 : 0);
2969 * Move request from internal lists to the request queue dispatch list.
2971 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
2973 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2974 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2976 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
2978 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
2979 cfq_remove_request(rq
);
2981 (RQ_CFQG(rq
))->dispatched
++;
2982 elv_dispatch_sort(q
, rq
);
2984 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
2985 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
2989 * return expired entry, or NULL to just start from scratch in rbtree
2991 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
2993 struct request
*rq
= NULL
;
2995 if (cfq_cfqq_fifo_expire(cfqq
))
2998 cfq_mark_cfqq_fifo_expire(cfqq
);
3000 if (list_empty(&cfqq
->fifo
))
3003 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
3004 if (time_before(jiffies
, rq
->fifo_time
))
3011 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3013 const int base_rq
= cfqd
->cfq_slice_async_rq
;
3015 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
3017 return 2 * base_rq
* (IOPRIO_BE_NR
- cfqq
->ioprio
);
3021 * Must be called with the queue_lock held.
3023 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
3025 int process_refs
, io_refs
;
3027 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
3028 process_refs
= cfqq
->ref
- io_refs
;
3029 BUG_ON(process_refs
< 0);
3030 return process_refs
;
3033 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
3035 int process_refs
, new_process_refs
;
3036 struct cfq_queue
*__cfqq
;
3039 * If there are no process references on the new_cfqq, then it is
3040 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3041 * chain may have dropped their last reference (not just their
3042 * last process reference).
3044 if (!cfqq_process_refs(new_cfqq
))
3047 /* Avoid a circular list and skip interim queue merges */
3048 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
3054 process_refs
= cfqq_process_refs(cfqq
);
3055 new_process_refs
= cfqq_process_refs(new_cfqq
);
3057 * If the process for the cfqq has gone away, there is no
3058 * sense in merging the queues.
3060 if (process_refs
== 0 || new_process_refs
== 0)
3064 * Merge in the direction of the lesser amount of work.
3066 if (new_process_refs
>= process_refs
) {
3067 cfqq
->new_cfqq
= new_cfqq
;
3068 new_cfqq
->ref
+= process_refs
;
3070 new_cfqq
->new_cfqq
= cfqq
;
3071 cfqq
->ref
+= new_process_refs
;
3075 static enum wl_type_t
cfq_choose_wl_type(struct cfq_data
*cfqd
,
3076 struct cfq_group
*cfqg
, enum wl_class_t wl_class
)
3078 struct cfq_queue
*queue
;
3080 bool key_valid
= false;
3081 unsigned long lowest_key
= 0;
3082 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
3084 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
3085 /* select the one with lowest rb_key */
3086 queue
= cfq_rb_first(st_for(cfqg
, wl_class
, i
));
3088 (!key_valid
|| time_before(queue
->rb_key
, lowest_key
))) {
3089 lowest_key
= queue
->rb_key
;
3099 choose_wl_class_and_type(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
3103 struct cfq_rb_root
*st
;
3104 unsigned group_slice
;
3105 enum wl_class_t original_class
= cfqd
->serving_wl_class
;
3107 /* Choose next priority. RT > BE > IDLE */
3108 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
3109 cfqd
->serving_wl_class
= RT_WORKLOAD
;
3110 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
3111 cfqd
->serving_wl_class
= BE_WORKLOAD
;
3113 cfqd
->serving_wl_class
= IDLE_WORKLOAD
;
3114 cfqd
->workload_expires
= jiffies
+ 1;
3118 if (original_class
!= cfqd
->serving_wl_class
)
3122 * For RT and BE, we have to choose also the type
3123 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3126 st
= st_for(cfqg
, cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
3130 * check workload expiration, and that we still have other queues ready
3132 if (count
&& !time_after(jiffies
, cfqd
->workload_expires
))
3136 /* otherwise select new workload type */
3137 cfqd
->serving_wl_type
= cfq_choose_wl_type(cfqd
, cfqg
,
3138 cfqd
->serving_wl_class
);
3139 st
= st_for(cfqg
, cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
3143 * the workload slice is computed as a fraction of target latency
3144 * proportional to the number of queues in that workload, over
3145 * all the queues in the same priority class
3147 group_slice
= cfq_group_slice(cfqd
, cfqg
);
3149 slice
= group_slice
* count
/
3150 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_wl_class
],
3151 cfq_group_busy_queues_wl(cfqd
->serving_wl_class
, cfqd
,
3154 if (cfqd
->serving_wl_type
== ASYNC_WORKLOAD
) {
3158 * Async queues are currently system wide. Just taking
3159 * proportion of queues with-in same group will lead to higher
3160 * async ratio system wide as generally root group is going
3161 * to have higher weight. A more accurate thing would be to
3162 * calculate system wide asnc/sync ratio.
3164 tmp
= cfqd
->cfq_target_latency
*
3165 cfqg_busy_async_queues(cfqd
, cfqg
);
3166 tmp
= tmp
/cfqd
->busy_queues
;
3167 slice
= min_t(unsigned, slice
, tmp
);
3169 /* async workload slice is scaled down according to
3170 * the sync/async slice ratio. */
3171 slice
= slice
* cfqd
->cfq_slice
[0] / cfqd
->cfq_slice
[1];
3173 /* sync workload slice is at least 2 * cfq_slice_idle */
3174 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
3176 slice
= max_t(unsigned, slice
, CFQ_MIN_TT
);
3177 cfq_log(cfqd
, "workload slice:%d", slice
);
3178 cfqd
->workload_expires
= jiffies
+ slice
;
3181 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
3183 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
3184 struct cfq_group
*cfqg
;
3186 if (RB_EMPTY_ROOT(&st
->rb
))
3188 cfqg
= cfq_rb_first_group(st
);
3189 update_min_vdisktime(st
);
3193 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
3195 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
3197 cfqd
->serving_group
= cfqg
;
3199 /* Restore the workload type data */
3200 if (cfqg
->saved_wl_slice
) {
3201 cfqd
->workload_expires
= jiffies
+ cfqg
->saved_wl_slice
;
3202 cfqd
->serving_wl_type
= cfqg
->saved_wl_type
;
3203 cfqd
->serving_wl_class
= cfqg
->saved_wl_class
;
3205 cfqd
->workload_expires
= jiffies
- 1;
3207 choose_wl_class_and_type(cfqd
, cfqg
);
3211 * Select a queue for service. If we have a current active queue,
3212 * check whether to continue servicing it, or retrieve and set a new one.
3214 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
3216 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
3218 cfqq
= cfqd
->active_queue
;
3222 if (!cfqd
->rq_queued
)
3226 * We were waiting for group to get backlogged. Expire the queue
3228 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
3232 * The active queue has run out of time, expire it and select new.
3234 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
3236 * If slice had not expired at the completion of last request
3237 * we might not have turned on wait_busy flag. Don't expire
3238 * the queue yet. Allow the group to get backlogged.
3240 * The very fact that we have used the slice, that means we
3241 * have been idling all along on this queue and it should be
3242 * ok to wait for this request to complete.
3244 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
3245 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
3249 goto check_group_idle
;
3253 * The active queue has requests and isn't expired, allow it to
3256 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3260 * If another queue has a request waiting within our mean seek
3261 * distance, let it run. The expire code will check for close
3262 * cooperators and put the close queue at the front of the service
3263 * tree. If possible, merge the expiring queue with the new cfqq.
3265 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
3267 if (!cfqq
->new_cfqq
)
3268 cfq_setup_merge(cfqq
, new_cfqq
);
3273 * No requests pending. If the active queue still has requests in
3274 * flight or is idling for a new request, allow either of these
3275 * conditions to happen (or time out) before selecting a new queue.
3277 if (timer_pending(&cfqd
->idle_slice_timer
)) {
3283 * This is a deep seek queue, but the device is much faster than
3284 * the queue can deliver, don't idle
3286 if (CFQQ_SEEKY(cfqq
) && cfq_cfqq_idle_window(cfqq
) &&
3287 (cfq_cfqq_slice_new(cfqq
) ||
3288 (cfqq
->slice_end
- jiffies
> jiffies
- cfqq
->slice_start
))) {
3289 cfq_clear_cfqq_deep(cfqq
);
3290 cfq_clear_cfqq_idle_window(cfqq
);
3293 if (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
3299 * If group idle is enabled and there are requests dispatched from
3300 * this group, wait for requests to complete.
3303 if (cfqd
->cfq_group_idle
&& cfqq
->cfqg
->nr_cfqq
== 1 &&
3304 cfqq
->cfqg
->dispatched
&&
3305 !cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true)) {
3311 cfq_slice_expired(cfqd
, 0);
3314 * Current queue expired. Check if we have to switch to a new
3318 cfq_choose_cfqg(cfqd
);
3320 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
3325 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
3329 while (cfqq
->next_rq
) {
3330 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
3334 BUG_ON(!list_empty(&cfqq
->fifo
));
3336 /* By default cfqq is not expired if it is empty. Do it explicitly */
3337 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
3342 * Drain our current requests. Used for barriers and when switching
3343 * io schedulers on-the-fly.
3345 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
3347 struct cfq_queue
*cfqq
;
3350 /* Expire the timeslice of the current active queue first */
3351 cfq_slice_expired(cfqd
, 0);
3352 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
) {
3353 __cfq_set_active_queue(cfqd
, cfqq
);
3354 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
3357 BUG_ON(cfqd
->busy_queues
);
3359 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
3363 static inline bool cfq_slice_used_soon(struct cfq_data
*cfqd
,
3364 struct cfq_queue
*cfqq
)
3366 /* the queue hasn't finished any request, can't estimate */
3367 if (cfq_cfqq_slice_new(cfqq
))
3369 if (time_after(jiffies
+ cfqd
->cfq_slice_idle
* cfqq
->dispatched
,
3376 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3378 unsigned int max_dispatch
;
3380 if (cfq_cfqq_must_dispatch(cfqq
))
3384 * Drain async requests before we start sync IO
3386 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
3390 * If this is an async queue and we have sync IO in flight, let it wait
3392 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
3395 max_dispatch
= max_t(unsigned int, cfqd
->cfq_quantum
/ 2, 1);
3396 if (cfq_class_idle(cfqq
))
3400 * Does this cfqq already have too much IO in flight?
3402 if (cfqq
->dispatched
>= max_dispatch
) {
3403 bool promote_sync
= false;
3405 * idle queue must always only have a single IO in flight
3407 if (cfq_class_idle(cfqq
))
3411 * If there is only one sync queue
3412 * we can ignore async queue here and give the sync
3413 * queue no dispatch limit. The reason is a sync queue can
3414 * preempt async queue, limiting the sync queue doesn't make
3415 * sense. This is useful for aiostress test.
3417 if (cfq_cfqq_sync(cfqq
) && cfqd
->busy_sync_queues
== 1)
3418 promote_sync
= true;
3421 * We have other queues, don't allow more IO from this one
3423 if (cfqd
->busy_queues
> 1 && cfq_slice_used_soon(cfqd
, cfqq
) &&
3428 * Sole queue user, no limit
3430 if (cfqd
->busy_queues
== 1 || promote_sync
)
3434 * Normally we start throttling cfqq when cfq_quantum/2
3435 * requests have been dispatched. But we can drive
3436 * deeper queue depths at the beginning of slice
3437 * subjected to upper limit of cfq_quantum.
3439 max_dispatch
= cfqd
->cfq_quantum
;
3443 * Async queues must wait a bit before being allowed dispatch.
3444 * We also ramp up the dispatch depth gradually for async IO,
3445 * based on the last sync IO we serviced
3447 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
3448 unsigned long last_sync
= jiffies
- cfqd
->last_delayed_sync
;
3451 depth
= last_sync
/ cfqd
->cfq_slice
[1];
3452 if (!depth
&& !cfqq
->dispatched
)
3454 if (depth
< max_dispatch
)
3455 max_dispatch
= depth
;
3459 * If we're below the current max, allow a dispatch
3461 return cfqq
->dispatched
< max_dispatch
;
3465 * Dispatch a request from cfqq, moving them to the request queue
3468 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3472 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
3474 rq
= cfq_check_fifo(cfqq
);
3476 cfq_mark_cfqq_must_dispatch(cfqq
);
3478 if (!cfq_may_dispatch(cfqd
, cfqq
))
3482 * follow expired path, else get first next available
3487 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
3490 * insert request into driver dispatch list
3492 cfq_dispatch_insert(cfqd
->queue
, rq
);
3494 if (!cfqd
->active_cic
) {
3495 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
3497 atomic_long_inc(&cic
->icq
.ioc
->refcount
);
3498 cfqd
->active_cic
= cic
;
3505 * Find the cfqq that we need to service and move a request from that to the
3508 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
3510 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3511 struct cfq_queue
*cfqq
;
3513 if (!cfqd
->busy_queues
)
3516 if (unlikely(force
))
3517 return cfq_forced_dispatch(cfqd
);
3519 cfqq
= cfq_select_queue(cfqd
);
3524 * Dispatch a request from this cfqq, if it is allowed
3526 if (!cfq_dispatch_request(cfqd
, cfqq
))
3529 cfqq
->slice_dispatch
++;
3530 cfq_clear_cfqq_must_dispatch(cfqq
);
3533 * expire an async queue immediately if it has used up its slice. idle
3534 * queue always expire after 1 dispatch round.
3536 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
3537 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
3538 cfq_class_idle(cfqq
))) {
3539 cfqq
->slice_end
= jiffies
+ 1;
3540 cfq_slice_expired(cfqd
, 0);
3543 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
3548 * task holds one reference to the queue, dropped when task exits. each rq
3549 * in-flight on this queue also holds a reference, dropped when rq is freed.
3551 * Each cfq queue took a reference on the parent group. Drop it now.
3552 * queue lock must be held here.
3554 static void cfq_put_queue(struct cfq_queue
*cfqq
)
3556 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3557 struct cfq_group
*cfqg
;
3559 BUG_ON(cfqq
->ref
<= 0);
3565 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
3566 BUG_ON(rb_first(&cfqq
->sort_list
));
3567 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
3570 if (unlikely(cfqd
->active_queue
== cfqq
)) {
3571 __cfq_slice_expired(cfqd
, cfqq
, 0);
3572 cfq_schedule_dispatch(cfqd
);
3575 BUG_ON(cfq_cfqq_on_rr(cfqq
));
3576 kmem_cache_free(cfq_pool
, cfqq
);
3580 static void cfq_put_cooperator(struct cfq_queue
*cfqq
)
3582 struct cfq_queue
*__cfqq
, *next
;
3585 * If this queue was scheduled to merge with another queue, be
3586 * sure to drop the reference taken on that queue (and others in
3587 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3589 __cfqq
= cfqq
->new_cfqq
;
3591 if (__cfqq
== cfqq
) {
3592 WARN(1, "cfqq->new_cfqq loop detected\n");
3595 next
= __cfqq
->new_cfqq
;
3596 cfq_put_queue(__cfqq
);
3601 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3603 if (unlikely(cfqq
== cfqd
->active_queue
)) {
3604 __cfq_slice_expired(cfqd
, cfqq
, 0);
3605 cfq_schedule_dispatch(cfqd
);
3608 cfq_put_cooperator(cfqq
);
3610 cfq_put_queue(cfqq
);
3613 static void cfq_init_icq(struct io_cq
*icq
)
3615 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
3617 cic
->ttime
.last_end_request
= jiffies
;
3620 static void cfq_exit_icq(struct io_cq
*icq
)
3622 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
3623 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3625 if (cic_to_cfqq(cic
, false)) {
3626 cfq_exit_cfqq(cfqd
, cic_to_cfqq(cic
, false));
3627 cic_set_cfqq(cic
, NULL
, false);
3630 if (cic_to_cfqq(cic
, true)) {
3631 cfq_exit_cfqq(cfqd
, cic_to_cfqq(cic
, true));
3632 cic_set_cfqq(cic
, NULL
, true);
3636 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct cfq_io_cq
*cic
)
3638 struct task_struct
*tsk
= current
;
3641 if (!cfq_cfqq_prio_changed(cfqq
))
3644 ioprio_class
= IOPRIO_PRIO_CLASS(cic
->ioprio
);
3645 switch (ioprio_class
) {
3647 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
3648 case IOPRIO_CLASS_NONE
:
3650 * no prio set, inherit CPU scheduling settings
3652 cfqq
->ioprio
= task_nice_ioprio(tsk
);
3653 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
3655 case IOPRIO_CLASS_RT
:
3656 cfqq
->ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3657 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
3659 case IOPRIO_CLASS_BE
:
3660 cfqq
->ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3661 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3663 case IOPRIO_CLASS_IDLE
:
3664 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
3666 cfq_clear_cfqq_idle_window(cfqq
);
3671 * keep track of original prio settings in case we have to temporarily
3672 * elevate the priority of this queue
3674 cfqq
->org_ioprio
= cfqq
->ioprio
;
3675 cfq_clear_cfqq_prio_changed(cfqq
);
3678 static void check_ioprio_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3680 int ioprio
= cic
->icq
.ioc
->ioprio
;
3681 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3682 struct cfq_queue
*cfqq
;
3685 * Check whether ioprio has changed. The condition may trigger
3686 * spuriously on a newly created cic but there's no harm.
3688 if (unlikely(!cfqd
) || likely(cic
->ioprio
== ioprio
))
3691 cfqq
= cic_to_cfqq(cic
, false);
3693 cfq_put_queue(cfqq
);
3694 cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
, bio
);
3695 cic_set_cfqq(cic
, cfqq
, false);
3698 cfqq
= cic_to_cfqq(cic
, true);
3700 cfq_mark_cfqq_prio_changed(cfqq
);
3702 cic
->ioprio
= ioprio
;
3705 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3706 pid_t pid
, bool is_sync
)
3708 RB_CLEAR_NODE(&cfqq
->rb_node
);
3709 RB_CLEAR_NODE(&cfqq
->p_node
);
3710 INIT_LIST_HEAD(&cfqq
->fifo
);
3715 cfq_mark_cfqq_prio_changed(cfqq
);
3718 if (!cfq_class_idle(cfqq
))
3719 cfq_mark_cfqq_idle_window(cfqq
);
3720 cfq_mark_cfqq_sync(cfqq
);
3725 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3726 static void check_blkcg_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3728 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3729 struct cfq_queue
*cfqq
;
3733 serial_nr
= bio_blkcg(bio
)->css
.serial_nr
;
3737 * Check whether blkcg has changed. The condition may trigger
3738 * spuriously on a newly created cic but there's no harm.
3740 if (unlikely(!cfqd
) || likely(cic
->blkcg_serial_nr
== serial_nr
))
3744 * Drop reference to queues. New queues will be assigned in new
3745 * group upon arrival of fresh requests.
3747 cfqq
= cic_to_cfqq(cic
, false);
3749 cfq_log_cfqq(cfqd
, cfqq
, "changed cgroup");
3750 cic_set_cfqq(cic
, NULL
, false);
3751 cfq_put_queue(cfqq
);
3754 cfqq
= cic_to_cfqq(cic
, true);
3756 cfq_log_cfqq(cfqd
, cfqq
, "changed cgroup");
3757 cic_set_cfqq(cic
, NULL
, true);
3758 cfq_put_queue(cfqq
);
3761 cic
->blkcg_serial_nr
= serial_nr
;
3764 static inline void check_blkcg_changed(struct cfq_io_cq
*cic
, struct bio
*bio
) { }
3765 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3767 static struct cfq_queue
**
3768 cfq_async_queue_prio(struct cfq_group
*cfqg
, int ioprio_class
, int ioprio
)
3770 switch (ioprio_class
) {
3771 case IOPRIO_CLASS_RT
:
3772 return &cfqg
->async_cfqq
[0][ioprio
];
3773 case IOPRIO_CLASS_NONE
:
3774 ioprio
= IOPRIO_NORM
;
3776 case IOPRIO_CLASS_BE
:
3777 return &cfqg
->async_cfqq
[1][ioprio
];
3778 case IOPRIO_CLASS_IDLE
:
3779 return &cfqg
->async_idle_cfqq
;
3785 static struct cfq_queue
*
3786 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct cfq_io_cq
*cic
,
3789 int ioprio_class
= IOPRIO_PRIO_CLASS(cic
->ioprio
);
3790 int ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3791 struct cfq_queue
**async_cfqq
= NULL
;
3792 struct cfq_queue
*cfqq
;
3793 struct cfq_group
*cfqg
;
3796 cfqg
= cfq_lookup_cfqg(cfqd
, bio_blkcg(bio
));
3798 cfqq
= &cfqd
->oom_cfqq
;
3803 if (!ioprio_valid(cic
->ioprio
)) {
3804 struct task_struct
*tsk
= current
;
3805 ioprio
= task_nice_ioprio(tsk
);
3806 ioprio_class
= task_nice_ioclass(tsk
);
3808 async_cfqq
= cfq_async_queue_prio(cfqg
, ioprio_class
, ioprio
);
3814 cfqq
= kmem_cache_alloc_node(cfq_pool
,
3815 GFP_NOWAIT
| __GFP_ZERO
| __GFP_NOWARN
,
3818 cfqq
= &cfqd
->oom_cfqq
;
3822 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
3823 cfq_init_prio_data(cfqq
, cic
);
3824 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
3825 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
3828 /* a new async queue is created, pin and remember */
3839 __cfq_update_io_thinktime(struct cfq_ttime
*ttime
, unsigned long slice_idle
)
3841 unsigned long elapsed
= jiffies
- ttime
->last_end_request
;
3842 elapsed
= min(elapsed
, 2UL * slice_idle
);
3844 ttime
->ttime_samples
= (7*ttime
->ttime_samples
+ 256) / 8;
3845 ttime
->ttime_total
= (7*ttime
->ttime_total
+ 256*elapsed
) / 8;
3846 ttime
->ttime_mean
= (ttime
->ttime_total
+ 128) / ttime
->ttime_samples
;
3850 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3851 struct cfq_io_cq
*cic
)
3853 if (cfq_cfqq_sync(cfqq
)) {
3854 __cfq_update_io_thinktime(&cic
->ttime
, cfqd
->cfq_slice_idle
);
3855 __cfq_update_io_thinktime(&cfqq
->service_tree
->ttime
,
3856 cfqd
->cfq_slice_idle
);
3858 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3859 __cfq_update_io_thinktime(&cfqq
->cfqg
->ttime
, cfqd
->cfq_group_idle
);
3864 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3868 sector_t n_sec
= blk_rq_sectors(rq
);
3869 if (cfqq
->last_request_pos
) {
3870 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3871 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3873 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3876 cfqq
->seek_history
<<= 1;
3877 if (blk_queue_nonrot(cfqd
->queue
))
3878 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
3880 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
3884 * Disable idle window if the process thinks too long or seeks so much that
3888 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3889 struct cfq_io_cq
*cic
)
3891 int old_idle
, enable_idle
;
3894 * Don't idle for async or idle io prio class
3896 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3899 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3901 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3902 cfq_mark_cfqq_deep(cfqq
);
3904 if (cfqq
->next_rq
&& (cfqq
->next_rq
->cmd_flags
& REQ_NOIDLE
))
3906 else if (!atomic_read(&cic
->icq
.ioc
->active_ref
) ||
3907 !cfqd
->cfq_slice_idle
||
3908 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3910 else if (sample_valid(cic
->ttime
.ttime_samples
)) {
3911 if (cic
->ttime
.ttime_mean
> cfqd
->cfq_slice_idle
)
3917 if (old_idle
!= enable_idle
) {
3918 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3920 cfq_mark_cfqq_idle_window(cfqq
);
3922 cfq_clear_cfqq_idle_window(cfqq
);
3927 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3928 * no or if we aren't sure, a 1 will cause a preempt.
3931 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3934 struct cfq_queue
*cfqq
;
3936 cfqq
= cfqd
->active_queue
;
3940 if (cfq_class_idle(new_cfqq
))
3943 if (cfq_class_idle(cfqq
))
3947 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3949 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
3953 * if the new request is sync, but the currently running queue is
3954 * not, let the sync request have priority.
3956 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
))
3959 if (new_cfqq
->cfqg
!= cfqq
->cfqg
)
3962 if (cfq_slice_used(cfqq
))
3965 /* Allow preemption only if we are idling on sync-noidle tree */
3966 if (cfqd
->serving_wl_type
== SYNC_NOIDLE_WORKLOAD
&&
3967 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
3968 new_cfqq
->service_tree
->count
== 2 &&
3969 RB_EMPTY_ROOT(&cfqq
->sort_list
))
3973 * So both queues are sync. Let the new request get disk time if
3974 * it's a metadata request and the current queue is doing regular IO.
3976 if ((rq
->cmd_flags
& REQ_PRIO
) && !cfqq
->prio_pending
)
3980 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3982 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
3985 /* An idle queue should not be idle now for some reason */
3986 if (RB_EMPTY_ROOT(&cfqq
->sort_list
) && !cfq_should_idle(cfqd
, cfqq
))
3989 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
3993 * if this request is as-good as one we would expect from the
3994 * current cfqq, let it preempt
3996 if (cfq_rq_close(cfqd
, cfqq
, rq
))
4003 * cfqq preempts the active queue. if we allowed preempt with no slice left,
4004 * let it have half of its nominal slice.
4006 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
4008 enum wl_type_t old_type
= cfqq_type(cfqd
->active_queue
);
4010 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
4011 cfq_slice_expired(cfqd
, 1);
4014 * workload type is changed, don't save slice, otherwise preempt
4017 if (old_type
!= cfqq_type(cfqq
))
4018 cfqq
->cfqg
->saved_wl_slice
= 0;
4021 * Put the new queue at the front of the of the current list,
4022 * so we know that it will be selected next.
4024 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
4026 cfq_service_tree_add(cfqd
, cfqq
, 1);
4028 cfqq
->slice_end
= 0;
4029 cfq_mark_cfqq_slice_new(cfqq
);
4033 * Called when a new fs request (rq) is added (to cfqq). Check if there's
4034 * something we should do about it
4037 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
4040 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
4043 if (rq
->cmd_flags
& REQ_PRIO
)
4044 cfqq
->prio_pending
++;
4046 cfq_update_io_thinktime(cfqd
, cfqq
, cic
);
4047 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
4048 cfq_update_idle_window(cfqd
, cfqq
, cic
);
4050 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
4052 if (cfqq
== cfqd
->active_queue
) {
4054 * Remember that we saw a request from this process, but
4055 * don't start queuing just yet. Otherwise we risk seeing lots
4056 * of tiny requests, because we disrupt the normal plugging
4057 * and merging. If the request is already larger than a single
4058 * page, let it rip immediately. For that case we assume that
4059 * merging is already done. Ditto for a busy system that
4060 * has other work pending, don't risk delaying until the
4061 * idle timer unplug to continue working.
4063 if (cfq_cfqq_wait_request(cfqq
)) {
4064 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
4065 cfqd
->busy_queues
> 1) {
4066 cfq_del_timer(cfqd
, cfqq
);
4067 cfq_clear_cfqq_wait_request(cfqq
);
4068 __blk_run_queue(cfqd
->queue
);
4070 cfqg_stats_update_idle_time(cfqq
->cfqg
);
4071 cfq_mark_cfqq_must_dispatch(cfqq
);
4074 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
4076 * not the active queue - expire current slice if it is
4077 * idle and has expired it's mean thinktime or this new queue
4078 * has some old slice time left and is of higher priority or
4079 * this new queue is RT and the current one is BE
4081 cfq_preempt_queue(cfqd
, cfqq
);
4082 __blk_run_queue(cfqd
->queue
);
4086 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
4088 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4089 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4091 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
4092 cfq_init_prio_data(cfqq
, RQ_CIC(rq
));
4094 rq
->fifo_time
= jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)];
4095 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
4097 cfqg_stats_update_io_add(RQ_CFQG(rq
), cfqd
->serving_group
,
4099 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
4103 * Update hw_tag based on peak queue depth over 50 samples under
4106 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
4108 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
4110 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
4111 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
4113 if (cfqd
->hw_tag
== 1)
4116 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
4117 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
4121 * If active queue hasn't enough requests and can idle, cfq might not
4122 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4125 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
4126 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
4127 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
4130 if (cfqd
->hw_tag_samples
++ < 50)
4133 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
4139 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
4141 struct cfq_io_cq
*cic
= cfqd
->active_cic
;
4143 /* If the queue already has requests, don't wait */
4144 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
4147 /* If there are other queues in the group, don't wait */
4148 if (cfqq
->cfqg
->nr_cfqq
> 1)
4151 /* the only queue in the group, but think time is big */
4152 if (cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true))
4155 if (cfq_slice_used(cfqq
))
4158 /* if slice left is less than think time, wait busy */
4159 if (cic
&& sample_valid(cic
->ttime
.ttime_samples
)
4160 && (cfqq
->slice_end
- jiffies
< cic
->ttime
.ttime_mean
))
4164 * If think times is less than a jiffy than ttime_mean=0 and above
4165 * will not be true. It might happen that slice has not expired yet
4166 * but will expire soon (4-5 ns) during select_queue(). To cover the
4167 * case where think time is less than a jiffy, mark the queue wait
4168 * busy if only 1 jiffy is left in the slice.
4170 if (cfqq
->slice_end
- jiffies
== 1)
4176 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
4178 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4179 struct cfq_data
*cfqd
= cfqq
->cfqd
;
4180 const int sync
= rq_is_sync(rq
);
4184 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d",
4185 !!(rq
->cmd_flags
& REQ_NOIDLE
));
4187 cfq_update_hw_tag(cfqd
);
4189 WARN_ON(!cfqd
->rq_in_driver
);
4190 WARN_ON(!cfqq
->dispatched
);
4191 cfqd
->rq_in_driver
--;
4193 (RQ_CFQG(rq
))->dispatched
--;
4194 cfqg_stats_update_completion(cfqq
->cfqg
, rq_start_time_ns(rq
),
4195 rq_io_start_time_ns(rq
), rq
->cmd_flags
);
4197 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
4200 struct cfq_rb_root
*st
;
4202 RQ_CIC(rq
)->ttime
.last_end_request
= now
;
4204 if (cfq_cfqq_on_rr(cfqq
))
4205 st
= cfqq
->service_tree
;
4207 st
= st_for(cfqq
->cfqg
, cfqq_class(cfqq
),
4210 st
->ttime
.last_end_request
= now
;
4211 if (!time_after(rq
->start_time
+ cfqd
->cfq_fifo_expire
[1], now
))
4212 cfqd
->last_delayed_sync
= now
;
4215 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4216 cfqq
->cfqg
->ttime
.last_end_request
= now
;
4220 * If this is the active queue, check if it needs to be expired,
4221 * or if we want to idle in case it has no pending requests.
4223 if (cfqd
->active_queue
== cfqq
) {
4224 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
4226 if (cfq_cfqq_slice_new(cfqq
)) {
4227 cfq_set_prio_slice(cfqd
, cfqq
);
4228 cfq_clear_cfqq_slice_new(cfqq
);
4232 * Should we wait for next request to come in before we expire
4235 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
4236 unsigned long extend_sl
= cfqd
->cfq_slice_idle
;
4237 if (!cfqd
->cfq_slice_idle
)
4238 extend_sl
= cfqd
->cfq_group_idle
;
4239 cfqq
->slice_end
= jiffies
+ extend_sl
;
4240 cfq_mark_cfqq_wait_busy(cfqq
);
4241 cfq_log_cfqq(cfqd
, cfqq
, "will busy wait");
4245 * Idling is not enabled on:
4247 * - idle-priority queues
4249 * - queues with still some requests queued
4250 * - when there is a close cooperator
4252 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
4253 cfq_slice_expired(cfqd
, 1);
4254 else if (sync
&& cfqq_empty
&&
4255 !cfq_close_cooperator(cfqd
, cfqq
)) {
4256 cfq_arm_slice_timer(cfqd
);
4260 if (!cfqd
->rq_in_driver
)
4261 cfq_schedule_dispatch(cfqd
);
4264 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
4266 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
4267 cfq_mark_cfqq_must_alloc_slice(cfqq
);
4268 return ELV_MQUEUE_MUST
;
4271 return ELV_MQUEUE_MAY
;
4274 static int cfq_may_queue(struct request_queue
*q
, int rw
)
4276 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4277 struct task_struct
*tsk
= current
;
4278 struct cfq_io_cq
*cic
;
4279 struct cfq_queue
*cfqq
;
4282 * don't force setup of a queue from here, as a call to may_queue
4283 * does not necessarily imply that a request actually will be queued.
4284 * so just lookup a possibly existing queue, or return 'may queue'
4287 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
4289 return ELV_MQUEUE_MAY
;
4291 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
4293 cfq_init_prio_data(cfqq
, cic
);
4295 return __cfq_may_queue(cfqq
);
4298 return ELV_MQUEUE_MAY
;
4302 * queue lock held here
4304 static void cfq_put_request(struct request
*rq
)
4306 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4309 const int rw
= rq_data_dir(rq
);
4311 BUG_ON(!cfqq
->allocated
[rw
]);
4312 cfqq
->allocated
[rw
]--;
4314 /* Put down rq reference on cfqg */
4315 cfqg_put(RQ_CFQG(rq
));
4316 rq
->elv
.priv
[0] = NULL
;
4317 rq
->elv
.priv
[1] = NULL
;
4319 cfq_put_queue(cfqq
);
4323 static struct cfq_queue
*
4324 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_cq
*cic
,
4325 struct cfq_queue
*cfqq
)
4327 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
4328 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
4329 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
4330 cfq_put_queue(cfqq
);
4331 return cic_to_cfqq(cic
, 1);
4335 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4336 * was the last process referring to said cfqq.
4338 static struct cfq_queue
*
4339 split_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
)
4341 if (cfqq_process_refs(cfqq
) == 1) {
4342 cfqq
->pid
= current
->pid
;
4343 cfq_clear_cfqq_coop(cfqq
);
4344 cfq_clear_cfqq_split_coop(cfqq
);
4348 cic_set_cfqq(cic
, NULL
, 1);
4350 cfq_put_cooperator(cfqq
);
4352 cfq_put_queue(cfqq
);
4356 * Allocate cfq data structures associated with this request.
4359 cfq_set_request(struct request_queue
*q
, struct request
*rq
, struct bio
*bio
,
4362 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4363 struct cfq_io_cq
*cic
= icq_to_cic(rq
->elv
.icq
);
4364 const int rw
= rq_data_dir(rq
);
4365 const bool is_sync
= rq_is_sync(rq
);
4366 struct cfq_queue
*cfqq
;
4368 spin_lock_irq(q
->queue_lock
);
4370 check_ioprio_changed(cic
, bio
);
4371 check_blkcg_changed(cic
, bio
);
4373 cfqq
= cic_to_cfqq(cic
, is_sync
);
4374 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
4376 cfq_put_queue(cfqq
);
4377 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
, bio
);
4378 cic_set_cfqq(cic
, cfqq
, is_sync
);
4381 * If the queue was seeky for too long, break it apart.
4383 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
4384 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
4385 cfqq
= split_cfqq(cic
, cfqq
);
4391 * Check to see if this queue is scheduled to merge with
4392 * another, closely cooperating queue. The merging of
4393 * queues happens here as it must be done in process context.
4394 * The reference on new_cfqq was taken in merge_cfqqs.
4397 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
4400 cfqq
->allocated
[rw
]++;
4403 cfqg_get(cfqq
->cfqg
);
4404 rq
->elv
.priv
[0] = cfqq
;
4405 rq
->elv
.priv
[1] = cfqq
->cfqg
;
4406 spin_unlock_irq(q
->queue_lock
);
4410 static void cfq_kick_queue(struct work_struct
*work
)
4412 struct cfq_data
*cfqd
=
4413 container_of(work
, struct cfq_data
, unplug_work
);
4414 struct request_queue
*q
= cfqd
->queue
;
4416 spin_lock_irq(q
->queue_lock
);
4417 __blk_run_queue(cfqd
->queue
);
4418 spin_unlock_irq(q
->queue_lock
);
4422 * Timer running if the active_queue is currently idling inside its time slice
4424 static void cfq_idle_slice_timer(unsigned long data
)
4426 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
4427 struct cfq_queue
*cfqq
;
4428 unsigned long flags
;
4431 cfq_log(cfqd
, "idle timer fired");
4433 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
4435 cfqq
= cfqd
->active_queue
;
4440 * We saw a request before the queue expired, let it through
4442 if (cfq_cfqq_must_dispatch(cfqq
))
4448 if (cfq_slice_used(cfqq
))
4452 * only expire and reinvoke request handler, if there are
4453 * other queues with pending requests
4455 if (!cfqd
->busy_queues
)
4459 * not expired and it has a request pending, let it dispatch
4461 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
4465 * Queue depth flag is reset only when the idle didn't succeed
4467 cfq_clear_cfqq_deep(cfqq
);
4470 cfq_slice_expired(cfqd
, timed_out
);
4472 cfq_schedule_dispatch(cfqd
);
4474 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
4477 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
4479 del_timer_sync(&cfqd
->idle_slice_timer
);
4480 cancel_work_sync(&cfqd
->unplug_work
);
4483 static void cfq_exit_queue(struct elevator_queue
*e
)
4485 struct cfq_data
*cfqd
= e
->elevator_data
;
4486 struct request_queue
*q
= cfqd
->queue
;
4488 cfq_shutdown_timer_wq(cfqd
);
4490 spin_lock_irq(q
->queue_lock
);
4492 if (cfqd
->active_queue
)
4493 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
4495 spin_unlock_irq(q
->queue_lock
);
4497 cfq_shutdown_timer_wq(cfqd
);
4499 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4500 blkcg_deactivate_policy(q
, &blkcg_policy_cfq
);
4502 kfree(cfqd
->root_group
);
4507 static int cfq_init_queue(struct request_queue
*q
, struct elevator_type
*e
)
4509 struct cfq_data
*cfqd
;
4510 struct blkcg_gq
*blkg __maybe_unused
;
4512 struct elevator_queue
*eq
;
4514 eq
= elevator_alloc(q
, e
);
4518 cfqd
= kzalloc_node(sizeof(*cfqd
), GFP_KERNEL
, q
->node
);
4520 kobject_put(&eq
->kobj
);
4523 eq
->elevator_data
= cfqd
;
4526 spin_lock_irq(q
->queue_lock
);
4528 spin_unlock_irq(q
->queue_lock
);
4530 /* Init root service tree */
4531 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
4533 /* Init root group and prefer root group over other groups by default */
4534 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4535 ret
= blkcg_activate_policy(q
, &blkcg_policy_cfq
);
4539 cfqd
->root_group
= blkg_to_cfqg(q
->root_blkg
);
4542 cfqd
->root_group
= kzalloc_node(sizeof(*cfqd
->root_group
),
4543 GFP_KERNEL
, cfqd
->queue
->node
);
4544 if (!cfqd
->root_group
)
4547 cfq_init_cfqg_base(cfqd
->root_group
);
4548 cfqd
->root_group
->weight
= 2 * CFQ_WEIGHT_LEGACY_DFL
;
4549 cfqd
->root_group
->leaf_weight
= 2 * CFQ_WEIGHT_LEGACY_DFL
;
4553 * Not strictly needed (since RB_ROOT just clears the node and we
4554 * zeroed cfqd on alloc), but better be safe in case someone decides
4555 * to add magic to the rb code
4557 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
4558 cfqd
->prio_trees
[i
] = RB_ROOT
;
4561 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4562 * Grab a permanent reference to it, so that the normal code flow
4563 * will not attempt to free it. oom_cfqq is linked to root_group
4564 * but shouldn't hold a reference as it'll never be unlinked. Lose
4565 * the reference from linking right away.
4567 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
4568 cfqd
->oom_cfqq
.ref
++;
4570 spin_lock_irq(q
->queue_lock
);
4571 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, cfqd
->root_group
);
4572 cfqg_put(cfqd
->root_group
);
4573 spin_unlock_irq(q
->queue_lock
);
4575 init_timer(&cfqd
->idle_slice_timer
);
4576 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
4577 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
4579 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
4581 cfqd
->cfq_quantum
= cfq_quantum
;
4582 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
4583 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
4584 cfqd
->cfq_back_max
= cfq_back_max
;
4585 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
4586 cfqd
->cfq_slice
[0] = cfq_slice_async
;
4587 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
4588 cfqd
->cfq_target_latency
= cfq_target_latency
;
4589 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
4590 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
4591 cfqd
->cfq_group_idle
= cfq_group_idle
;
4592 cfqd
->cfq_latency
= 1;
4595 * we optimistically start assuming sync ops weren't delayed in last
4596 * second, in order to have larger depth for async operations.
4598 cfqd
->last_delayed_sync
= jiffies
- HZ
;
4603 kobject_put(&eq
->kobj
);
4607 static void cfq_registered_queue(struct request_queue
*q
)
4609 struct elevator_queue
*e
= q
->elevator
;
4610 struct cfq_data
*cfqd
= e
->elevator_data
;
4613 * Default to IOPS mode with no idling for SSDs
4615 if (blk_queue_nonrot(q
))
4616 cfqd
->cfq_slice_idle
= 0;
4620 * sysfs parts below -->
4623 cfq_var_show(unsigned int var
, char *page
)
4625 return sprintf(page
, "%u\n", var
);
4629 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
4631 char *p
= (char *) page
;
4633 *var
= simple_strtoul(p
, &p
, 10);
4637 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4638 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4640 struct cfq_data *cfqd = e->elevator_data; \
4641 unsigned int __data = __VAR; \
4643 __data = jiffies_to_msecs(__data); \
4644 return cfq_var_show(__data, (page)); \
4646 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
4647 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
4648 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
4649 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
4650 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
4651 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
4652 SHOW_FUNCTION(cfq_group_idle_show
, cfqd
->cfq_group_idle
, 1);
4653 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
4654 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
4655 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
4656 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
4657 SHOW_FUNCTION(cfq_target_latency_show
, cfqd
->cfq_target_latency
, 1);
4658 #undef SHOW_FUNCTION
4660 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4661 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4663 struct cfq_data *cfqd = e->elevator_data; \
4664 unsigned int __data; \
4665 int ret = cfq_var_store(&__data, (page), count); \
4666 if (__data < (MIN)) \
4668 else if (__data > (MAX)) \
4671 *(__PTR) = msecs_to_jiffies(__data); \
4673 *(__PTR) = __data; \
4676 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
4677 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
4679 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
4681 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
4682 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
4684 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
4685 STORE_FUNCTION(cfq_group_idle_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
, 1);
4686 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
4687 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
4688 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
4690 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
4691 STORE_FUNCTION(cfq_target_latency_store
, &cfqd
->cfq_target_latency
, 1, UINT_MAX
, 1);
4692 #undef STORE_FUNCTION
4694 #define CFQ_ATTR(name) \
4695 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4697 static struct elv_fs_entry cfq_attrs
[] = {
4699 CFQ_ATTR(fifo_expire_sync
),
4700 CFQ_ATTR(fifo_expire_async
),
4701 CFQ_ATTR(back_seek_max
),
4702 CFQ_ATTR(back_seek_penalty
),
4703 CFQ_ATTR(slice_sync
),
4704 CFQ_ATTR(slice_async
),
4705 CFQ_ATTR(slice_async_rq
),
4706 CFQ_ATTR(slice_idle
),
4707 CFQ_ATTR(group_idle
),
4708 CFQ_ATTR(low_latency
),
4709 CFQ_ATTR(target_latency
),
4713 static struct elevator_type iosched_cfq
= {
4715 .elevator_merge_fn
= cfq_merge
,
4716 .elevator_merged_fn
= cfq_merged_request
,
4717 .elevator_merge_req_fn
= cfq_merged_requests
,
4718 .elevator_allow_merge_fn
= cfq_allow_merge
,
4719 .elevator_bio_merged_fn
= cfq_bio_merged
,
4720 .elevator_dispatch_fn
= cfq_dispatch_requests
,
4721 .elevator_add_req_fn
= cfq_insert_request
,
4722 .elevator_activate_req_fn
= cfq_activate_request
,
4723 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
4724 .elevator_completed_req_fn
= cfq_completed_request
,
4725 .elevator_former_req_fn
= elv_rb_former_request
,
4726 .elevator_latter_req_fn
= elv_rb_latter_request
,
4727 .elevator_init_icq_fn
= cfq_init_icq
,
4728 .elevator_exit_icq_fn
= cfq_exit_icq
,
4729 .elevator_set_req_fn
= cfq_set_request
,
4730 .elevator_put_req_fn
= cfq_put_request
,
4731 .elevator_may_queue_fn
= cfq_may_queue
,
4732 .elevator_init_fn
= cfq_init_queue
,
4733 .elevator_exit_fn
= cfq_exit_queue
,
4734 .elevator_registered_fn
= cfq_registered_queue
,
4736 .icq_size
= sizeof(struct cfq_io_cq
),
4737 .icq_align
= __alignof__(struct cfq_io_cq
),
4738 .elevator_attrs
= cfq_attrs
,
4739 .elevator_name
= "cfq",
4740 .elevator_owner
= THIS_MODULE
,
4743 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4744 static struct blkcg_policy blkcg_policy_cfq
= {
4745 .dfl_cftypes
= cfq_blkcg_files
,
4746 .legacy_cftypes
= cfq_blkcg_legacy_files
,
4748 .cpd_alloc_fn
= cfq_cpd_alloc
,
4749 .cpd_init_fn
= cfq_cpd_init
,
4750 .cpd_free_fn
= cfq_cpd_free
,
4751 .cpd_bind_fn
= cfq_cpd_bind
,
4753 .pd_alloc_fn
= cfq_pd_alloc
,
4754 .pd_init_fn
= cfq_pd_init
,
4755 .pd_offline_fn
= cfq_pd_offline
,
4756 .pd_free_fn
= cfq_pd_free
,
4757 .pd_reset_stats_fn
= cfq_pd_reset_stats
,
4761 static int __init
cfq_init(void)
4766 * could be 0 on HZ < 1000 setups
4768 if (!cfq_slice_async
)
4769 cfq_slice_async
= 1;
4770 if (!cfq_slice_idle
)
4773 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4774 if (!cfq_group_idle
)
4777 ret
= blkcg_policy_register(&blkcg_policy_cfq
);
4785 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
4789 ret
= elv_register(&iosched_cfq
);
4796 kmem_cache_destroy(cfq_pool
);
4798 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4799 blkcg_policy_unregister(&blkcg_policy_cfq
);
4804 static void __exit
cfq_exit(void)
4806 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4807 blkcg_policy_unregister(&blkcg_policy_cfq
);
4809 elv_unregister(&iosched_cfq
);
4810 kmem_cache_destroy(cfq_pool
);
4813 module_init(cfq_init
);
4814 module_exit(cfq_exit
);
4816 MODULE_AUTHOR("Jens Axboe");
4817 MODULE_LICENSE("GPL");
4818 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");