ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / arch / sh / kernel / perf_event.c
blob2ee21a47b5af6e1aac2889712c69848b7194f317
1 /*
2 * Performance event support framework for SuperH hardware counters.
4 * Copyright (C) 2009 Paul Mundt
6 * Heavily based on the x86 and PowerPC implementations.
8 * x86:
9 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
10 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
11 * Copyright (C) 2009 Jaswinder Singh Rajput
12 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
13 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
14 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
16 * ppc:
17 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
19 * This file is subject to the terms and conditions of the GNU General Public
20 * License. See the file "COPYING" in the main directory of this archive
21 * for more details.
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/io.h>
26 #include <linux/irq.h>
27 #include <linux/perf_event.h>
28 #include <asm/processor.h>
30 struct cpu_hw_events {
31 struct perf_event *events[MAX_HWEVENTS];
32 unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
33 unsigned long active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
36 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
38 static struct sh_pmu *sh_pmu __read_mostly;
40 /* Number of perf_events counting hardware events */
41 static atomic_t num_events;
42 /* Used to avoid races in calling reserve/release_pmc_hardware */
43 static DEFINE_MUTEX(pmc_reserve_mutex);
46 * Stub these out for now, do something more profound later.
48 int reserve_pmc_hardware(void)
50 return 0;
53 void release_pmc_hardware(void)
57 static inline int sh_pmu_initialized(void)
59 return !!sh_pmu;
62 const char *perf_pmu_name(void)
64 if (!sh_pmu)
65 return NULL;
67 return sh_pmu->name;
69 EXPORT_SYMBOL_GPL(perf_pmu_name);
71 int perf_num_counters(void)
73 if (!sh_pmu)
74 return 0;
76 return sh_pmu->num_events;
78 EXPORT_SYMBOL_GPL(perf_num_counters);
81 * Release the PMU if this is the last perf_event.
83 static void hw_perf_event_destroy(struct perf_event *event)
85 if (!atomic_add_unless(&num_events, -1, 1)) {
86 mutex_lock(&pmc_reserve_mutex);
87 if (atomic_dec_return(&num_events) == 0)
88 release_pmc_hardware();
89 mutex_unlock(&pmc_reserve_mutex);
93 static int hw_perf_cache_event(int config, int *evp)
95 unsigned long type, op, result;
96 int ev;
98 if (!sh_pmu->cache_events)
99 return -EINVAL;
101 /* unpack config */
102 type = config & 0xff;
103 op = (config >> 8) & 0xff;
104 result = (config >> 16) & 0xff;
106 if (type >= PERF_COUNT_HW_CACHE_MAX ||
107 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
108 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
109 return -EINVAL;
111 ev = (*sh_pmu->cache_events)[type][op][result];
112 if (ev == 0)
113 return -EOPNOTSUPP;
114 if (ev == -1)
115 return -EINVAL;
116 *evp = ev;
117 return 0;
120 static int __hw_perf_event_init(struct perf_event *event)
122 struct perf_event_attr *attr = &event->attr;
123 struct hw_perf_event *hwc = &event->hw;
124 int config = -1;
125 int err;
127 if (!sh_pmu_initialized())
128 return -ENODEV;
131 * All of the on-chip counters are "limited", in that they have
132 * no interrupts, and are therefore unable to do sampling without
133 * further work and timer assistance.
135 if (hwc->sample_period)
136 return -EINVAL;
139 * See if we need to reserve the counter.
141 * If no events are currently in use, then we have to take a
142 * mutex to ensure that we don't race with another task doing
143 * reserve_pmc_hardware or release_pmc_hardware.
145 err = 0;
146 if (!atomic_inc_not_zero(&num_events)) {
147 mutex_lock(&pmc_reserve_mutex);
148 if (atomic_read(&num_events) == 0 &&
149 reserve_pmc_hardware())
150 err = -EBUSY;
151 else
152 atomic_inc(&num_events);
153 mutex_unlock(&pmc_reserve_mutex);
156 if (err)
157 return err;
159 event->destroy = hw_perf_event_destroy;
161 switch (attr->type) {
162 case PERF_TYPE_RAW:
163 config = attr->config & sh_pmu->raw_event_mask;
164 break;
165 case PERF_TYPE_HW_CACHE:
166 err = hw_perf_cache_event(attr->config, &config);
167 if (err)
168 return err;
169 break;
170 case PERF_TYPE_HARDWARE:
171 if (attr->config >= sh_pmu->max_events)
172 return -EINVAL;
174 config = sh_pmu->event_map(attr->config);
175 break;
178 if (config == -1)
179 return -EINVAL;
181 hwc->config |= config;
183 return 0;
186 static void sh_perf_event_update(struct perf_event *event,
187 struct hw_perf_event *hwc, int idx)
189 u64 prev_raw_count, new_raw_count;
190 s64 delta;
191 int shift = 0;
194 * Depending on the counter configuration, they may or may not
195 * be chained, in which case the previous counter value can be
196 * updated underneath us if the lower-half overflows.
198 * Our tactic to handle this is to first atomically read and
199 * exchange a new raw count - then add that new-prev delta
200 * count to the generic counter atomically.
202 * As there is no interrupt associated with the overflow events,
203 * this is the simplest approach for maintaining consistency.
205 again:
206 prev_raw_count = local64_read(&hwc->prev_count);
207 new_raw_count = sh_pmu->read(idx);
209 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
210 new_raw_count) != prev_raw_count)
211 goto again;
214 * Now we have the new raw value and have updated the prev
215 * timestamp already. We can now calculate the elapsed delta
216 * (counter-)time and add that to the generic counter.
218 * Careful, not all hw sign-extends above the physical width
219 * of the count.
221 delta = (new_raw_count << shift) - (prev_raw_count << shift);
222 delta >>= shift;
224 local64_add(delta, &event->count);
227 static void sh_pmu_stop(struct perf_event *event, int flags)
229 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
230 struct hw_perf_event *hwc = &event->hw;
231 int idx = hwc->idx;
233 if (!(event->hw.state & PERF_HES_STOPPED)) {
234 sh_pmu->disable(hwc, idx);
235 cpuc->events[idx] = NULL;
236 event->hw.state |= PERF_HES_STOPPED;
239 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
240 sh_perf_event_update(event, &event->hw, idx);
241 event->hw.state |= PERF_HES_UPTODATE;
245 static void sh_pmu_start(struct perf_event *event, int flags)
247 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
248 struct hw_perf_event *hwc = &event->hw;
249 int idx = hwc->idx;
251 if (WARN_ON_ONCE(idx == -1))
252 return;
254 if (flags & PERF_EF_RELOAD)
255 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
257 cpuc->events[idx] = event;
258 event->hw.state = 0;
259 sh_pmu->enable(hwc, idx);
262 static void sh_pmu_del(struct perf_event *event, int flags)
264 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
266 sh_pmu_stop(event, PERF_EF_UPDATE);
267 __clear_bit(event->hw.idx, cpuc->used_mask);
269 perf_event_update_userpage(event);
272 static int sh_pmu_add(struct perf_event *event, int flags)
274 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
275 struct hw_perf_event *hwc = &event->hw;
276 int idx = hwc->idx;
277 int ret = -EAGAIN;
279 perf_pmu_disable(event->pmu);
281 if (__test_and_set_bit(idx, cpuc->used_mask)) {
282 idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
283 if (idx == sh_pmu->num_events)
284 goto out;
286 __set_bit(idx, cpuc->used_mask);
287 hwc->idx = idx;
290 sh_pmu->disable(hwc, idx);
292 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
293 if (flags & PERF_EF_START)
294 sh_pmu_start(event, PERF_EF_RELOAD);
296 perf_event_update_userpage(event);
297 ret = 0;
298 out:
299 perf_pmu_enable(event->pmu);
300 return ret;
303 static void sh_pmu_read(struct perf_event *event)
305 sh_perf_event_update(event, &event->hw, event->hw.idx);
308 static int sh_pmu_event_init(struct perf_event *event)
310 int err;
312 switch (event->attr.type) {
313 case PERF_TYPE_RAW:
314 case PERF_TYPE_HW_CACHE:
315 case PERF_TYPE_HARDWARE:
316 err = __hw_perf_event_init(event);
317 break;
319 default:
320 return -ENOENT;
323 if (unlikely(err)) {
324 if (event->destroy)
325 event->destroy(event);
328 return err;
331 static void sh_pmu_enable(struct pmu *pmu)
333 if (!sh_pmu_initialized())
334 return;
336 sh_pmu->enable_all();
339 static void sh_pmu_disable(struct pmu *pmu)
341 if (!sh_pmu_initialized())
342 return;
344 sh_pmu->disable_all();
347 static struct pmu pmu = {
348 .pmu_enable = sh_pmu_enable,
349 .pmu_disable = sh_pmu_disable,
350 .event_init = sh_pmu_event_init,
351 .add = sh_pmu_add,
352 .del = sh_pmu_del,
353 .start = sh_pmu_start,
354 .stop = sh_pmu_stop,
355 .read = sh_pmu_read,
358 static void sh_pmu_setup(int cpu)
360 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
362 memset(cpuhw, 0, sizeof(struct cpu_hw_events));
365 static int __cpuinit
366 sh_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
368 unsigned int cpu = (long)hcpu;
370 switch (action & ~CPU_TASKS_FROZEN) {
371 case CPU_UP_PREPARE:
372 sh_pmu_setup(cpu);
373 break;
375 default:
376 break;
379 return NOTIFY_OK;
382 int __cpuinit register_sh_pmu(struct sh_pmu *_pmu)
384 if (sh_pmu)
385 return -EBUSY;
386 sh_pmu = _pmu;
388 pr_info("Performance Events: %s support registered\n", _pmu->name);
390 WARN_ON(_pmu->num_events > MAX_HWEVENTS);
392 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
393 perf_cpu_notifier(sh_pmu_notifier);
394 return 0;