ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / arch / x86 / kernel / amd_iommu.c
blobbfd75ff5d5bda6083651eaa23cfc86e8f3a843de
1 /*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/pci.h>
21 #include <linux/pci-ats.h>
22 #include <linux/bitmap.h>
23 #include <linux/slab.h>
24 #include <linux/debugfs.h>
25 #include <linux/scatterlist.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/iommu-helper.h>
28 #include <linux/iommu.h>
29 #include <linux/delay.h>
30 #include <asm/proto.h>
31 #include <asm/iommu.h>
32 #include <asm/gart.h>
33 #include <asm/dma.h>
34 #include <asm/amd_iommu_proto.h>
35 #include <asm/amd_iommu_types.h>
36 #include <asm/amd_iommu.h>
38 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
40 #define LOOP_TIMEOUT 100000
42 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
44 /* A list of preallocated protection domains */
45 static LIST_HEAD(iommu_pd_list);
46 static DEFINE_SPINLOCK(iommu_pd_list_lock);
49 * Domain for untranslated devices - only allocated
50 * if iommu=pt passed on kernel cmd line.
52 static struct protection_domain *pt_domain;
54 static struct iommu_ops amd_iommu_ops;
57 * general struct to manage commands send to an IOMMU
59 struct iommu_cmd {
60 u32 data[4];
63 static void update_domain(struct protection_domain *domain);
65 /****************************************************************************
67 * Helper functions
69 ****************************************************************************/
71 static inline u16 get_device_id(struct device *dev)
73 struct pci_dev *pdev = to_pci_dev(dev);
75 return calc_devid(pdev->bus->number, pdev->devfn);
78 static struct iommu_dev_data *get_dev_data(struct device *dev)
80 return dev->archdata.iommu;
84 * In this function the list of preallocated protection domains is traversed to
85 * find the domain for a specific device
87 static struct dma_ops_domain *find_protection_domain(u16 devid)
89 struct dma_ops_domain *entry, *ret = NULL;
90 unsigned long flags;
91 u16 alias = amd_iommu_alias_table[devid];
93 if (list_empty(&iommu_pd_list))
94 return NULL;
96 spin_lock_irqsave(&iommu_pd_list_lock, flags);
98 list_for_each_entry(entry, &iommu_pd_list, list) {
99 if (entry->target_dev == devid ||
100 entry->target_dev == alias) {
101 ret = entry;
102 break;
106 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
108 return ret;
112 * This function checks if the driver got a valid device from the caller to
113 * avoid dereferencing invalid pointers.
115 static bool check_device(struct device *dev)
117 u16 devid;
119 if (!dev || !dev->dma_mask)
120 return false;
122 /* No device or no PCI device */
123 if (dev->bus != &pci_bus_type)
124 return false;
126 devid = get_device_id(dev);
128 /* Out of our scope? */
129 if (devid > amd_iommu_last_bdf)
130 return false;
132 if (amd_iommu_rlookup_table[devid] == NULL)
133 return false;
135 return true;
138 static int iommu_init_device(struct device *dev)
140 struct iommu_dev_data *dev_data;
141 struct pci_dev *pdev;
142 u16 devid, alias;
144 if (dev->archdata.iommu)
145 return 0;
147 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
148 if (!dev_data)
149 return -ENOMEM;
151 dev_data->dev = dev;
153 devid = get_device_id(dev);
154 alias = amd_iommu_alias_table[devid];
155 pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
156 if (pdev)
157 dev_data->alias = &pdev->dev;
158 else {
159 kfree(dev_data);
160 return -ENOTSUPP;
163 atomic_set(&dev_data->bind, 0);
165 dev->archdata.iommu = dev_data;
168 return 0;
171 static void iommu_ignore_device(struct device *dev)
173 u16 devid, alias;
175 devid = get_device_id(dev);
176 alias = amd_iommu_alias_table[devid];
178 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
179 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
181 amd_iommu_rlookup_table[devid] = NULL;
182 amd_iommu_rlookup_table[alias] = NULL;
185 static void iommu_uninit_device(struct device *dev)
187 kfree(dev->archdata.iommu);
190 void __init amd_iommu_uninit_devices(void)
192 struct pci_dev *pdev = NULL;
194 for_each_pci_dev(pdev) {
196 if (!check_device(&pdev->dev))
197 continue;
199 iommu_uninit_device(&pdev->dev);
203 int __init amd_iommu_init_devices(void)
205 struct pci_dev *pdev = NULL;
206 int ret = 0;
208 for_each_pci_dev(pdev) {
210 if (!check_device(&pdev->dev))
211 continue;
213 ret = iommu_init_device(&pdev->dev);
214 if (ret == -ENOTSUPP)
215 iommu_ignore_device(&pdev->dev);
216 else if (ret)
217 goto out_free;
220 return 0;
222 out_free:
224 amd_iommu_uninit_devices();
226 return ret;
228 #ifdef CONFIG_AMD_IOMMU_STATS
231 * Initialization code for statistics collection
234 DECLARE_STATS_COUNTER(compl_wait);
235 DECLARE_STATS_COUNTER(cnt_map_single);
236 DECLARE_STATS_COUNTER(cnt_unmap_single);
237 DECLARE_STATS_COUNTER(cnt_map_sg);
238 DECLARE_STATS_COUNTER(cnt_unmap_sg);
239 DECLARE_STATS_COUNTER(cnt_alloc_coherent);
240 DECLARE_STATS_COUNTER(cnt_free_coherent);
241 DECLARE_STATS_COUNTER(cross_page);
242 DECLARE_STATS_COUNTER(domain_flush_single);
243 DECLARE_STATS_COUNTER(domain_flush_all);
244 DECLARE_STATS_COUNTER(alloced_io_mem);
245 DECLARE_STATS_COUNTER(total_map_requests);
247 static struct dentry *stats_dir;
248 static struct dentry *de_fflush;
250 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
252 if (stats_dir == NULL)
253 return;
255 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
256 &cnt->value);
259 static void amd_iommu_stats_init(void)
261 stats_dir = debugfs_create_dir("amd-iommu", NULL);
262 if (stats_dir == NULL)
263 return;
265 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
266 (u32 *)&amd_iommu_unmap_flush);
268 amd_iommu_stats_add(&compl_wait);
269 amd_iommu_stats_add(&cnt_map_single);
270 amd_iommu_stats_add(&cnt_unmap_single);
271 amd_iommu_stats_add(&cnt_map_sg);
272 amd_iommu_stats_add(&cnt_unmap_sg);
273 amd_iommu_stats_add(&cnt_alloc_coherent);
274 amd_iommu_stats_add(&cnt_free_coherent);
275 amd_iommu_stats_add(&cross_page);
276 amd_iommu_stats_add(&domain_flush_single);
277 amd_iommu_stats_add(&domain_flush_all);
278 amd_iommu_stats_add(&alloced_io_mem);
279 amd_iommu_stats_add(&total_map_requests);
282 #endif
284 /****************************************************************************
286 * Interrupt handling functions
288 ****************************************************************************/
290 static void dump_dte_entry(u16 devid)
292 int i;
294 for (i = 0; i < 8; ++i)
295 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
296 amd_iommu_dev_table[devid].data[i]);
299 static void dump_command(unsigned long phys_addr)
301 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
302 int i;
304 for (i = 0; i < 4; ++i)
305 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
308 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
310 u32 *event = __evt;
311 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
312 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
313 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
314 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
315 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
317 printk(KERN_ERR "AMD-Vi: Event logged [");
319 switch (type) {
320 case EVENT_TYPE_ILL_DEV:
321 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
322 "address=0x%016llx flags=0x%04x]\n",
323 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
324 address, flags);
325 dump_dte_entry(devid);
326 break;
327 case EVENT_TYPE_IO_FAULT:
328 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
329 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
330 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
331 domid, address, flags);
332 break;
333 case EVENT_TYPE_DEV_TAB_ERR:
334 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
335 "address=0x%016llx flags=0x%04x]\n",
336 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
337 address, flags);
338 break;
339 case EVENT_TYPE_PAGE_TAB_ERR:
340 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
341 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
342 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
343 domid, address, flags);
344 break;
345 case EVENT_TYPE_ILL_CMD:
346 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
347 dump_command(address);
348 break;
349 case EVENT_TYPE_CMD_HARD_ERR:
350 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
351 "flags=0x%04x]\n", address, flags);
352 break;
353 case EVENT_TYPE_IOTLB_INV_TO:
354 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
355 "address=0x%016llx]\n",
356 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
357 address);
358 break;
359 case EVENT_TYPE_INV_DEV_REQ:
360 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
361 "address=0x%016llx flags=0x%04x]\n",
362 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
363 address, flags);
364 break;
365 default:
366 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
370 static void iommu_poll_events(struct amd_iommu *iommu)
372 u32 head, tail;
373 unsigned long flags;
375 spin_lock_irqsave(&iommu->lock, flags);
377 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
378 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
380 while (head != tail) {
381 iommu_print_event(iommu, iommu->evt_buf + head);
382 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
385 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
387 spin_unlock_irqrestore(&iommu->lock, flags);
390 irqreturn_t amd_iommu_int_thread(int irq, void *data)
392 struct amd_iommu *iommu;
394 for_each_iommu(iommu)
395 iommu_poll_events(iommu);
397 return IRQ_HANDLED;
400 irqreturn_t amd_iommu_int_handler(int irq, void *data)
402 return IRQ_WAKE_THREAD;
405 /****************************************************************************
407 * IOMMU command queuing functions
409 ****************************************************************************/
411 static int wait_on_sem(volatile u64 *sem)
413 int i = 0;
415 while (*sem == 0 && i < LOOP_TIMEOUT) {
416 udelay(1);
417 i += 1;
420 if (i == LOOP_TIMEOUT) {
421 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
422 return -EIO;
425 return 0;
428 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
429 struct iommu_cmd *cmd,
430 u32 tail)
432 u8 *target;
434 target = iommu->cmd_buf + tail;
435 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
437 /* Copy command to buffer */
438 memcpy(target, cmd, sizeof(*cmd));
440 /* Tell the IOMMU about it */
441 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
444 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
446 WARN_ON(address & 0x7ULL);
448 memset(cmd, 0, sizeof(*cmd));
449 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
450 cmd->data[1] = upper_32_bits(__pa(address));
451 cmd->data[2] = 1;
452 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
455 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
457 memset(cmd, 0, sizeof(*cmd));
458 cmd->data[0] = devid;
459 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
462 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
463 size_t size, u16 domid, int pde)
465 u64 pages;
466 int s;
468 pages = iommu_num_pages(address, size, PAGE_SIZE);
469 s = 0;
471 if (pages > 1) {
473 * If we have to flush more than one page, flush all
474 * TLB entries for this domain
476 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
477 s = 1;
480 address &= PAGE_MASK;
482 memset(cmd, 0, sizeof(*cmd));
483 cmd->data[1] |= domid;
484 cmd->data[2] = lower_32_bits(address);
485 cmd->data[3] = upper_32_bits(address);
486 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
487 if (s) /* size bit - we flush more than one 4kb page */
488 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
489 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
490 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
493 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
494 u64 address, size_t size)
496 u64 pages;
497 int s;
499 pages = iommu_num_pages(address, size, PAGE_SIZE);
500 s = 0;
502 if (pages > 1) {
504 * If we have to flush more than one page, flush all
505 * TLB entries for this domain
507 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
508 s = 1;
511 address &= PAGE_MASK;
513 memset(cmd, 0, sizeof(*cmd));
514 cmd->data[0] = devid;
515 cmd->data[0] |= (qdep & 0xff) << 24;
516 cmd->data[1] = devid;
517 cmd->data[2] = lower_32_bits(address);
518 cmd->data[3] = upper_32_bits(address);
519 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
520 if (s)
521 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
524 static void build_inv_all(struct iommu_cmd *cmd)
526 memset(cmd, 0, sizeof(*cmd));
527 CMD_SET_TYPE(cmd, CMD_INV_ALL);
531 * Writes the command to the IOMMUs command buffer and informs the
532 * hardware about the new command.
534 static int iommu_queue_command_sync(struct amd_iommu *iommu,
535 struct iommu_cmd *cmd,
536 bool sync)
538 u32 left, tail, head, next_tail;
539 unsigned long flags;
541 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
543 again:
544 spin_lock_irqsave(&iommu->lock, flags);
546 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
547 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
548 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
549 left = (head - next_tail) % iommu->cmd_buf_size;
551 if (left <= 2) {
552 struct iommu_cmd sync_cmd;
553 volatile u64 sem = 0;
554 int ret;
556 build_completion_wait(&sync_cmd, (u64)&sem);
557 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
559 spin_unlock_irqrestore(&iommu->lock, flags);
561 if ((ret = wait_on_sem(&sem)) != 0)
562 return ret;
564 goto again;
567 copy_cmd_to_buffer(iommu, cmd, tail);
569 /* We need to sync now to make sure all commands are processed */
570 iommu->need_sync = sync;
572 spin_unlock_irqrestore(&iommu->lock, flags);
574 return 0;
577 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
579 return iommu_queue_command_sync(iommu, cmd, true);
583 * This function queues a completion wait command into the command
584 * buffer of an IOMMU
586 static int iommu_completion_wait(struct amd_iommu *iommu)
588 struct iommu_cmd cmd;
589 volatile u64 sem = 0;
590 int ret;
592 if (!iommu->need_sync)
593 return 0;
595 build_completion_wait(&cmd, (u64)&sem);
597 ret = iommu_queue_command_sync(iommu, &cmd, false);
598 if (ret)
599 return ret;
601 return wait_on_sem(&sem);
604 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
606 struct iommu_cmd cmd;
608 build_inv_dte(&cmd, devid);
610 return iommu_queue_command(iommu, &cmd);
613 static void iommu_flush_dte_all(struct amd_iommu *iommu)
615 u32 devid;
617 for (devid = 0; devid <= 0xffff; ++devid)
618 iommu_flush_dte(iommu, devid);
620 iommu_completion_wait(iommu);
624 * This function uses heavy locking and may disable irqs for some time. But
625 * this is no issue because it is only called during resume.
627 static void iommu_flush_tlb_all(struct amd_iommu *iommu)
629 u32 dom_id;
631 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
632 struct iommu_cmd cmd;
633 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
634 dom_id, 1);
635 iommu_queue_command(iommu, &cmd);
638 iommu_completion_wait(iommu);
641 static void iommu_flush_all(struct amd_iommu *iommu)
643 struct iommu_cmd cmd;
645 build_inv_all(&cmd);
647 iommu_queue_command(iommu, &cmd);
648 iommu_completion_wait(iommu);
651 void iommu_flush_all_caches(struct amd_iommu *iommu)
653 if (iommu_feature(iommu, FEATURE_IA)) {
654 iommu_flush_all(iommu);
655 } else {
656 iommu_flush_dte_all(iommu);
657 iommu_flush_tlb_all(iommu);
662 * Command send function for flushing on-device TLB
664 static int device_flush_iotlb(struct device *dev, u64 address, size_t size)
666 struct pci_dev *pdev = to_pci_dev(dev);
667 struct amd_iommu *iommu;
668 struct iommu_cmd cmd;
669 u16 devid;
670 int qdep;
672 qdep = pci_ats_queue_depth(pdev);
673 devid = get_device_id(dev);
674 iommu = amd_iommu_rlookup_table[devid];
676 build_inv_iotlb_pages(&cmd, devid, qdep, address, size);
678 return iommu_queue_command(iommu, &cmd);
682 * Command send function for invalidating a device table entry
684 static int device_flush_dte(struct device *dev)
686 struct amd_iommu *iommu;
687 struct pci_dev *pdev;
688 u16 devid;
689 int ret;
691 pdev = to_pci_dev(dev);
692 devid = get_device_id(dev);
693 iommu = amd_iommu_rlookup_table[devid];
695 ret = iommu_flush_dte(iommu, devid);
696 if (ret)
697 return ret;
699 if (pci_ats_enabled(pdev))
700 ret = device_flush_iotlb(dev, 0, ~0UL);
702 return ret;
706 * TLB invalidation function which is called from the mapping functions.
707 * It invalidates a single PTE if the range to flush is within a single
708 * page. Otherwise it flushes the whole TLB of the IOMMU.
710 static void __domain_flush_pages(struct protection_domain *domain,
711 u64 address, size_t size, int pde)
713 struct iommu_dev_data *dev_data;
714 struct iommu_cmd cmd;
715 int ret = 0, i;
717 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
719 for (i = 0; i < amd_iommus_present; ++i) {
720 if (!domain->dev_iommu[i])
721 continue;
724 * Devices of this domain are behind this IOMMU
725 * We need a TLB flush
727 ret |= iommu_queue_command(amd_iommus[i], &cmd);
730 list_for_each_entry(dev_data, &domain->dev_list, list) {
731 struct pci_dev *pdev = to_pci_dev(dev_data->dev);
733 if (!pci_ats_enabled(pdev))
734 continue;
736 ret |= device_flush_iotlb(dev_data->dev, address, size);
739 WARN_ON(ret);
742 static void domain_flush_pages(struct protection_domain *domain,
743 u64 address, size_t size)
745 __domain_flush_pages(domain, address, size, 0);
748 /* Flush the whole IO/TLB for a given protection domain */
749 static void domain_flush_tlb(struct protection_domain *domain)
751 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
754 /* Flush the whole IO/TLB for a given protection domain - including PDE */
755 static void domain_flush_tlb_pde(struct protection_domain *domain)
757 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
760 static void domain_flush_complete(struct protection_domain *domain)
762 int i;
764 for (i = 0; i < amd_iommus_present; ++i) {
765 if (!domain->dev_iommu[i])
766 continue;
769 * Devices of this domain are behind this IOMMU
770 * We need to wait for completion of all commands.
772 iommu_completion_wait(amd_iommus[i]);
778 * This function flushes the DTEs for all devices in domain
780 static void domain_flush_devices(struct protection_domain *domain)
782 struct iommu_dev_data *dev_data;
784 list_for_each_entry(dev_data, &domain->dev_list, list)
785 device_flush_dte(dev_data->dev);
788 /****************************************************************************
790 * The functions below are used the create the page table mappings for
791 * unity mapped regions.
793 ****************************************************************************/
796 * This function is used to add another level to an IO page table. Adding
797 * another level increases the size of the address space by 9 bits to a size up
798 * to 64 bits.
800 static bool increase_address_space(struct protection_domain *domain,
801 gfp_t gfp)
803 u64 *pte;
805 if (domain->mode == PAGE_MODE_6_LEVEL)
806 /* address space already 64 bit large */
807 return false;
809 pte = (void *)get_zeroed_page(gfp);
810 if (!pte)
811 return false;
813 *pte = PM_LEVEL_PDE(domain->mode,
814 virt_to_phys(domain->pt_root));
815 domain->pt_root = pte;
816 domain->mode += 1;
817 domain->updated = true;
819 return true;
822 static u64 *alloc_pte(struct protection_domain *domain,
823 unsigned long address,
824 unsigned long page_size,
825 u64 **pte_page,
826 gfp_t gfp)
828 int level, end_lvl;
829 u64 *pte, *page;
831 BUG_ON(!is_power_of_2(page_size));
833 while (address > PM_LEVEL_SIZE(domain->mode))
834 increase_address_space(domain, gfp);
836 level = domain->mode - 1;
837 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
838 address = PAGE_SIZE_ALIGN(address, page_size);
839 end_lvl = PAGE_SIZE_LEVEL(page_size);
841 while (level > end_lvl) {
842 if (!IOMMU_PTE_PRESENT(*pte)) {
843 page = (u64 *)get_zeroed_page(gfp);
844 if (!page)
845 return NULL;
846 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
849 /* No level skipping support yet */
850 if (PM_PTE_LEVEL(*pte) != level)
851 return NULL;
853 level -= 1;
855 pte = IOMMU_PTE_PAGE(*pte);
857 if (pte_page && level == end_lvl)
858 *pte_page = pte;
860 pte = &pte[PM_LEVEL_INDEX(level, address)];
863 return pte;
867 * This function checks if there is a PTE for a given dma address. If
868 * there is one, it returns the pointer to it.
870 static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
872 int level;
873 u64 *pte;
875 if (address > PM_LEVEL_SIZE(domain->mode))
876 return NULL;
878 level = domain->mode - 1;
879 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
881 while (level > 0) {
883 /* Not Present */
884 if (!IOMMU_PTE_PRESENT(*pte))
885 return NULL;
887 /* Large PTE */
888 if (PM_PTE_LEVEL(*pte) == 0x07) {
889 unsigned long pte_mask, __pte;
892 * If we have a series of large PTEs, make
893 * sure to return a pointer to the first one.
895 pte_mask = PTE_PAGE_SIZE(*pte);
896 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
897 __pte = ((unsigned long)pte) & pte_mask;
899 return (u64 *)__pte;
902 /* No level skipping support yet */
903 if (PM_PTE_LEVEL(*pte) != level)
904 return NULL;
906 level -= 1;
908 /* Walk to the next level */
909 pte = IOMMU_PTE_PAGE(*pte);
910 pte = &pte[PM_LEVEL_INDEX(level, address)];
913 return pte;
917 * Generic mapping functions. It maps a physical address into a DMA
918 * address space. It allocates the page table pages if necessary.
919 * In the future it can be extended to a generic mapping function
920 * supporting all features of AMD IOMMU page tables like level skipping
921 * and full 64 bit address spaces.
923 static int iommu_map_page(struct protection_domain *dom,
924 unsigned long bus_addr,
925 unsigned long phys_addr,
926 int prot,
927 unsigned long page_size)
929 u64 __pte, *pte;
930 int i, count;
932 if (!(prot & IOMMU_PROT_MASK))
933 return -EINVAL;
935 bus_addr = PAGE_ALIGN(bus_addr);
936 phys_addr = PAGE_ALIGN(phys_addr);
937 count = PAGE_SIZE_PTE_COUNT(page_size);
938 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
940 for (i = 0; i < count; ++i)
941 if (IOMMU_PTE_PRESENT(pte[i]))
942 return -EBUSY;
944 if (page_size > PAGE_SIZE) {
945 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
946 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
947 } else
948 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
950 if (prot & IOMMU_PROT_IR)
951 __pte |= IOMMU_PTE_IR;
952 if (prot & IOMMU_PROT_IW)
953 __pte |= IOMMU_PTE_IW;
955 for (i = 0; i < count; ++i)
956 pte[i] = __pte;
958 update_domain(dom);
960 return 0;
963 static unsigned long iommu_unmap_page(struct protection_domain *dom,
964 unsigned long bus_addr,
965 unsigned long page_size)
967 unsigned long long unmap_size, unmapped;
968 u64 *pte;
970 BUG_ON(!is_power_of_2(page_size));
972 unmapped = 0;
974 while (unmapped < page_size) {
976 pte = fetch_pte(dom, bus_addr);
978 if (!pte) {
980 * No PTE for this address
981 * move forward in 4kb steps
983 unmap_size = PAGE_SIZE;
984 } else if (PM_PTE_LEVEL(*pte) == 0) {
985 /* 4kb PTE found for this address */
986 unmap_size = PAGE_SIZE;
987 *pte = 0ULL;
988 } else {
989 int count, i;
991 /* Large PTE found which maps this address */
992 unmap_size = PTE_PAGE_SIZE(*pte);
993 count = PAGE_SIZE_PTE_COUNT(unmap_size);
994 for (i = 0; i < count; i++)
995 pte[i] = 0ULL;
998 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
999 unmapped += unmap_size;
1002 BUG_ON(!is_power_of_2(unmapped));
1004 return unmapped;
1008 * This function checks if a specific unity mapping entry is needed for
1009 * this specific IOMMU.
1011 static int iommu_for_unity_map(struct amd_iommu *iommu,
1012 struct unity_map_entry *entry)
1014 u16 bdf, i;
1016 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1017 bdf = amd_iommu_alias_table[i];
1018 if (amd_iommu_rlookup_table[bdf] == iommu)
1019 return 1;
1022 return 0;
1026 * This function actually applies the mapping to the page table of the
1027 * dma_ops domain.
1029 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1030 struct unity_map_entry *e)
1032 u64 addr;
1033 int ret;
1035 for (addr = e->address_start; addr < e->address_end;
1036 addr += PAGE_SIZE) {
1037 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1038 PAGE_SIZE);
1039 if (ret)
1040 return ret;
1042 * if unity mapping is in aperture range mark the page
1043 * as allocated in the aperture
1045 if (addr < dma_dom->aperture_size)
1046 __set_bit(addr >> PAGE_SHIFT,
1047 dma_dom->aperture[0]->bitmap);
1050 return 0;
1054 * Init the unity mappings for a specific IOMMU in the system
1056 * Basically iterates over all unity mapping entries and applies them to
1057 * the default domain DMA of that IOMMU if necessary.
1059 static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1061 struct unity_map_entry *entry;
1062 int ret;
1064 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1065 if (!iommu_for_unity_map(iommu, entry))
1066 continue;
1067 ret = dma_ops_unity_map(iommu->default_dom, entry);
1068 if (ret)
1069 return ret;
1072 return 0;
1076 * Inits the unity mappings required for a specific device
1078 static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1079 u16 devid)
1081 struct unity_map_entry *e;
1082 int ret;
1084 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1085 if (!(devid >= e->devid_start && devid <= e->devid_end))
1086 continue;
1087 ret = dma_ops_unity_map(dma_dom, e);
1088 if (ret)
1089 return ret;
1092 return 0;
1095 /****************************************************************************
1097 * The next functions belong to the address allocator for the dma_ops
1098 * interface functions. They work like the allocators in the other IOMMU
1099 * drivers. Its basically a bitmap which marks the allocated pages in
1100 * the aperture. Maybe it could be enhanced in the future to a more
1101 * efficient allocator.
1103 ****************************************************************************/
1106 * The address allocator core functions.
1108 * called with domain->lock held
1112 * Used to reserve address ranges in the aperture (e.g. for exclusion
1113 * ranges.
1115 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1116 unsigned long start_page,
1117 unsigned int pages)
1119 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1121 if (start_page + pages > last_page)
1122 pages = last_page - start_page;
1124 for (i = start_page; i < start_page + pages; ++i) {
1125 int index = i / APERTURE_RANGE_PAGES;
1126 int page = i % APERTURE_RANGE_PAGES;
1127 __set_bit(page, dom->aperture[index]->bitmap);
1132 * This function is used to add a new aperture range to an existing
1133 * aperture in case of dma_ops domain allocation or address allocation
1134 * failure.
1136 static int alloc_new_range(struct dma_ops_domain *dma_dom,
1137 bool populate, gfp_t gfp)
1139 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1140 struct amd_iommu *iommu;
1141 unsigned long i;
1143 #ifdef CONFIG_IOMMU_STRESS
1144 populate = false;
1145 #endif
1147 if (index >= APERTURE_MAX_RANGES)
1148 return -ENOMEM;
1150 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1151 if (!dma_dom->aperture[index])
1152 return -ENOMEM;
1154 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1155 if (!dma_dom->aperture[index]->bitmap)
1156 goto out_free;
1158 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1160 if (populate) {
1161 unsigned long address = dma_dom->aperture_size;
1162 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1163 u64 *pte, *pte_page;
1165 for (i = 0; i < num_ptes; ++i) {
1166 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1167 &pte_page, gfp);
1168 if (!pte)
1169 goto out_free;
1171 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1173 address += APERTURE_RANGE_SIZE / 64;
1177 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1179 /* Initialize the exclusion range if necessary */
1180 for_each_iommu(iommu) {
1181 if (iommu->exclusion_start &&
1182 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1183 && iommu->exclusion_start < dma_dom->aperture_size) {
1184 unsigned long startpage;
1185 int pages = iommu_num_pages(iommu->exclusion_start,
1186 iommu->exclusion_length,
1187 PAGE_SIZE);
1188 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1189 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1194 * Check for areas already mapped as present in the new aperture
1195 * range and mark those pages as reserved in the allocator. Such
1196 * mappings may already exist as a result of requested unity
1197 * mappings for devices.
1199 for (i = dma_dom->aperture[index]->offset;
1200 i < dma_dom->aperture_size;
1201 i += PAGE_SIZE) {
1202 u64 *pte = fetch_pte(&dma_dom->domain, i);
1203 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1204 continue;
1206 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1209 update_domain(&dma_dom->domain);
1211 return 0;
1213 out_free:
1214 update_domain(&dma_dom->domain);
1216 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1218 kfree(dma_dom->aperture[index]);
1219 dma_dom->aperture[index] = NULL;
1221 return -ENOMEM;
1224 static unsigned long dma_ops_area_alloc(struct device *dev,
1225 struct dma_ops_domain *dom,
1226 unsigned int pages,
1227 unsigned long align_mask,
1228 u64 dma_mask,
1229 unsigned long start)
1231 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1232 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1233 int i = start >> APERTURE_RANGE_SHIFT;
1234 unsigned long boundary_size;
1235 unsigned long address = -1;
1236 unsigned long limit;
1238 next_bit >>= PAGE_SHIFT;
1240 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1241 PAGE_SIZE) >> PAGE_SHIFT;
1243 for (;i < max_index; ++i) {
1244 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1246 if (dom->aperture[i]->offset >= dma_mask)
1247 break;
1249 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1250 dma_mask >> PAGE_SHIFT);
1252 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1253 limit, next_bit, pages, 0,
1254 boundary_size, align_mask);
1255 if (address != -1) {
1256 address = dom->aperture[i]->offset +
1257 (address << PAGE_SHIFT);
1258 dom->next_address = address + (pages << PAGE_SHIFT);
1259 break;
1262 next_bit = 0;
1265 return address;
1268 static unsigned long dma_ops_alloc_addresses(struct device *dev,
1269 struct dma_ops_domain *dom,
1270 unsigned int pages,
1271 unsigned long align_mask,
1272 u64 dma_mask)
1274 unsigned long address;
1276 #ifdef CONFIG_IOMMU_STRESS
1277 dom->next_address = 0;
1278 dom->need_flush = true;
1279 #endif
1281 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1282 dma_mask, dom->next_address);
1284 if (address == -1) {
1285 dom->next_address = 0;
1286 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1287 dma_mask, 0);
1288 dom->need_flush = true;
1291 if (unlikely(address == -1))
1292 address = DMA_ERROR_CODE;
1294 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1296 return address;
1300 * The address free function.
1302 * called with domain->lock held
1304 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1305 unsigned long address,
1306 unsigned int pages)
1308 unsigned i = address >> APERTURE_RANGE_SHIFT;
1309 struct aperture_range *range = dom->aperture[i];
1311 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1313 #ifdef CONFIG_IOMMU_STRESS
1314 if (i < 4)
1315 return;
1316 #endif
1318 if (address >= dom->next_address)
1319 dom->need_flush = true;
1321 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1323 bitmap_clear(range->bitmap, address, pages);
1327 /****************************************************************************
1329 * The next functions belong to the domain allocation. A domain is
1330 * allocated for every IOMMU as the default domain. If device isolation
1331 * is enabled, every device get its own domain. The most important thing
1332 * about domains is the page table mapping the DMA address space they
1333 * contain.
1335 ****************************************************************************/
1338 * This function adds a protection domain to the global protection domain list
1340 static void add_domain_to_list(struct protection_domain *domain)
1342 unsigned long flags;
1344 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1345 list_add(&domain->list, &amd_iommu_pd_list);
1346 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1350 * This function removes a protection domain to the global
1351 * protection domain list
1353 static void del_domain_from_list(struct protection_domain *domain)
1355 unsigned long flags;
1357 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1358 list_del(&domain->list);
1359 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1362 static u16 domain_id_alloc(void)
1364 unsigned long flags;
1365 int id;
1367 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1368 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1369 BUG_ON(id == 0);
1370 if (id > 0 && id < MAX_DOMAIN_ID)
1371 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1372 else
1373 id = 0;
1374 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1376 return id;
1379 static void domain_id_free(int id)
1381 unsigned long flags;
1383 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1384 if (id > 0 && id < MAX_DOMAIN_ID)
1385 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1386 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1389 static void free_pagetable(struct protection_domain *domain)
1391 int i, j;
1392 u64 *p1, *p2, *p3;
1394 p1 = domain->pt_root;
1396 if (!p1)
1397 return;
1399 for (i = 0; i < 512; ++i) {
1400 if (!IOMMU_PTE_PRESENT(p1[i]))
1401 continue;
1403 p2 = IOMMU_PTE_PAGE(p1[i]);
1404 for (j = 0; j < 512; ++j) {
1405 if (!IOMMU_PTE_PRESENT(p2[j]))
1406 continue;
1407 p3 = IOMMU_PTE_PAGE(p2[j]);
1408 free_page((unsigned long)p3);
1411 free_page((unsigned long)p2);
1414 free_page((unsigned long)p1);
1416 domain->pt_root = NULL;
1420 * Free a domain, only used if something went wrong in the
1421 * allocation path and we need to free an already allocated page table
1423 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1425 int i;
1427 if (!dom)
1428 return;
1430 del_domain_from_list(&dom->domain);
1432 free_pagetable(&dom->domain);
1434 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1435 if (!dom->aperture[i])
1436 continue;
1437 free_page((unsigned long)dom->aperture[i]->bitmap);
1438 kfree(dom->aperture[i]);
1441 kfree(dom);
1445 * Allocates a new protection domain usable for the dma_ops functions.
1446 * It also initializes the page table and the address allocator data
1447 * structures required for the dma_ops interface
1449 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1451 struct dma_ops_domain *dma_dom;
1453 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1454 if (!dma_dom)
1455 return NULL;
1457 spin_lock_init(&dma_dom->domain.lock);
1459 dma_dom->domain.id = domain_id_alloc();
1460 if (dma_dom->domain.id == 0)
1461 goto free_dma_dom;
1462 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1463 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1464 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1465 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1466 dma_dom->domain.priv = dma_dom;
1467 if (!dma_dom->domain.pt_root)
1468 goto free_dma_dom;
1470 dma_dom->need_flush = false;
1471 dma_dom->target_dev = 0xffff;
1473 add_domain_to_list(&dma_dom->domain);
1475 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1476 goto free_dma_dom;
1479 * mark the first page as allocated so we never return 0 as
1480 * a valid dma-address. So we can use 0 as error value
1482 dma_dom->aperture[0]->bitmap[0] = 1;
1483 dma_dom->next_address = 0;
1486 return dma_dom;
1488 free_dma_dom:
1489 dma_ops_domain_free(dma_dom);
1491 return NULL;
1495 * little helper function to check whether a given protection domain is a
1496 * dma_ops domain
1498 static bool dma_ops_domain(struct protection_domain *domain)
1500 return domain->flags & PD_DMA_OPS_MASK;
1503 static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1505 u64 pte_root = virt_to_phys(domain->pt_root);
1506 u32 flags = 0;
1508 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1509 << DEV_ENTRY_MODE_SHIFT;
1510 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1512 if (ats)
1513 flags |= DTE_FLAG_IOTLB;
1515 amd_iommu_dev_table[devid].data[3] |= flags;
1516 amd_iommu_dev_table[devid].data[2] = domain->id;
1517 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1518 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1521 static void clear_dte_entry(u16 devid)
1523 /* remove entry from the device table seen by the hardware */
1524 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1525 amd_iommu_dev_table[devid].data[1] = 0;
1526 amd_iommu_dev_table[devid].data[2] = 0;
1528 amd_iommu_apply_erratum_63(devid);
1531 static void do_attach(struct device *dev, struct protection_domain *domain)
1533 struct iommu_dev_data *dev_data;
1534 struct amd_iommu *iommu;
1535 struct pci_dev *pdev;
1536 bool ats = false;
1537 u16 devid;
1539 devid = get_device_id(dev);
1540 iommu = amd_iommu_rlookup_table[devid];
1541 dev_data = get_dev_data(dev);
1542 pdev = to_pci_dev(dev);
1544 if (amd_iommu_iotlb_sup)
1545 ats = pci_ats_enabled(pdev);
1547 /* Update data structures */
1548 dev_data->domain = domain;
1549 list_add(&dev_data->list, &domain->dev_list);
1550 set_dte_entry(devid, domain, ats);
1552 /* Do reference counting */
1553 domain->dev_iommu[iommu->index] += 1;
1554 domain->dev_cnt += 1;
1556 /* Flush the DTE entry */
1557 device_flush_dte(dev);
1560 static void do_detach(struct device *dev)
1562 struct iommu_dev_data *dev_data;
1563 struct amd_iommu *iommu;
1564 u16 devid;
1566 devid = get_device_id(dev);
1567 iommu = amd_iommu_rlookup_table[devid];
1568 dev_data = get_dev_data(dev);
1570 /* decrease reference counters */
1571 dev_data->domain->dev_iommu[iommu->index] -= 1;
1572 dev_data->domain->dev_cnt -= 1;
1574 /* Update data structures */
1575 dev_data->domain = NULL;
1576 list_del(&dev_data->list);
1577 clear_dte_entry(devid);
1579 /* Flush the DTE entry */
1580 device_flush_dte(dev);
1584 * If a device is not yet associated with a domain, this function does
1585 * assigns it visible for the hardware
1587 static int __attach_device(struct device *dev,
1588 struct protection_domain *domain)
1590 struct iommu_dev_data *dev_data, *alias_data;
1591 int ret;
1593 dev_data = get_dev_data(dev);
1594 alias_data = get_dev_data(dev_data->alias);
1596 if (!alias_data)
1597 return -EINVAL;
1599 /* lock domain */
1600 spin_lock(&domain->lock);
1602 /* Some sanity checks */
1603 ret = -EBUSY;
1604 if (alias_data->domain != NULL &&
1605 alias_data->domain != domain)
1606 goto out_unlock;
1608 if (dev_data->domain != NULL &&
1609 dev_data->domain != domain)
1610 goto out_unlock;
1612 /* Do real assignment */
1613 if (dev_data->alias != dev) {
1614 alias_data = get_dev_data(dev_data->alias);
1615 if (alias_data->domain == NULL)
1616 do_attach(dev_data->alias, domain);
1618 atomic_inc(&alias_data->bind);
1621 if (dev_data->domain == NULL)
1622 do_attach(dev, domain);
1624 atomic_inc(&dev_data->bind);
1626 ret = 0;
1628 out_unlock:
1630 /* ready */
1631 spin_unlock(&domain->lock);
1633 return ret;
1637 * If a device is not yet associated with a domain, this function does
1638 * assigns it visible for the hardware
1640 static int attach_device(struct device *dev,
1641 struct protection_domain *domain)
1643 struct pci_dev *pdev = to_pci_dev(dev);
1644 unsigned long flags;
1645 int ret;
1647 if (amd_iommu_iotlb_sup)
1648 pci_enable_ats(pdev, PAGE_SHIFT);
1650 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1651 ret = __attach_device(dev, domain);
1652 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1655 * We might boot into a crash-kernel here. The crashed kernel
1656 * left the caches in the IOMMU dirty. So we have to flush
1657 * here to evict all dirty stuff.
1659 domain_flush_tlb_pde(domain);
1661 return ret;
1665 * Removes a device from a protection domain (unlocked)
1667 static void __detach_device(struct device *dev)
1669 struct iommu_dev_data *dev_data = get_dev_data(dev);
1670 struct iommu_dev_data *alias_data;
1671 struct protection_domain *domain;
1672 unsigned long flags;
1674 BUG_ON(!dev_data->domain);
1676 domain = dev_data->domain;
1678 spin_lock_irqsave(&domain->lock, flags);
1680 if (dev_data->alias != dev) {
1681 alias_data = get_dev_data(dev_data->alias);
1682 if (atomic_dec_and_test(&alias_data->bind))
1683 do_detach(dev_data->alias);
1686 if (atomic_dec_and_test(&dev_data->bind))
1687 do_detach(dev);
1689 spin_unlock_irqrestore(&domain->lock, flags);
1692 * If we run in passthrough mode the device must be assigned to the
1693 * passthrough domain if it is detached from any other domain.
1694 * Make sure we can deassign from the pt_domain itself.
1696 if (iommu_pass_through &&
1697 (dev_data->domain == NULL && domain != pt_domain))
1698 __attach_device(dev, pt_domain);
1702 * Removes a device from a protection domain (with devtable_lock held)
1704 static void detach_device(struct device *dev)
1706 struct pci_dev *pdev = to_pci_dev(dev);
1707 unsigned long flags;
1709 /* lock device table */
1710 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1711 __detach_device(dev);
1712 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1714 if (amd_iommu_iotlb_sup && pci_ats_enabled(pdev))
1715 pci_disable_ats(pdev);
1719 * Find out the protection domain structure for a given PCI device. This
1720 * will give us the pointer to the page table root for example.
1722 static struct protection_domain *domain_for_device(struct device *dev)
1724 struct protection_domain *dom;
1725 struct iommu_dev_data *dev_data, *alias_data;
1726 unsigned long flags;
1727 u16 devid;
1729 devid = get_device_id(dev);
1730 dev_data = get_dev_data(dev);
1731 alias_data = get_dev_data(dev_data->alias);
1732 if (!alias_data)
1733 return NULL;
1735 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1736 dom = dev_data->domain;
1737 if (dom == NULL &&
1738 alias_data->domain != NULL) {
1739 __attach_device(dev, alias_data->domain);
1740 dom = alias_data->domain;
1743 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1745 return dom;
1748 static int device_change_notifier(struct notifier_block *nb,
1749 unsigned long action, void *data)
1751 struct device *dev = data;
1752 u16 devid;
1753 struct protection_domain *domain;
1754 struct dma_ops_domain *dma_domain;
1755 struct amd_iommu *iommu;
1756 unsigned long flags;
1758 if (!check_device(dev))
1759 return 0;
1761 devid = get_device_id(dev);
1762 iommu = amd_iommu_rlookup_table[devid];
1764 switch (action) {
1765 case BUS_NOTIFY_UNBOUND_DRIVER:
1767 domain = domain_for_device(dev);
1769 if (!domain)
1770 goto out;
1771 if (iommu_pass_through)
1772 break;
1773 detach_device(dev);
1774 break;
1775 case BUS_NOTIFY_ADD_DEVICE:
1777 iommu_init_device(dev);
1779 domain = domain_for_device(dev);
1781 /* allocate a protection domain if a device is added */
1782 dma_domain = find_protection_domain(devid);
1783 if (dma_domain)
1784 goto out;
1785 dma_domain = dma_ops_domain_alloc();
1786 if (!dma_domain)
1787 goto out;
1788 dma_domain->target_dev = devid;
1790 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1791 list_add_tail(&dma_domain->list, &iommu_pd_list);
1792 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1794 break;
1795 case BUS_NOTIFY_DEL_DEVICE:
1797 iommu_uninit_device(dev);
1799 default:
1800 goto out;
1803 device_flush_dte(dev);
1804 iommu_completion_wait(iommu);
1806 out:
1807 return 0;
1810 static struct notifier_block device_nb = {
1811 .notifier_call = device_change_notifier,
1814 void amd_iommu_init_notifier(void)
1816 bus_register_notifier(&pci_bus_type, &device_nb);
1819 /*****************************************************************************
1821 * The next functions belong to the dma_ops mapping/unmapping code.
1823 *****************************************************************************/
1826 * In the dma_ops path we only have the struct device. This function
1827 * finds the corresponding IOMMU, the protection domain and the
1828 * requestor id for a given device.
1829 * If the device is not yet associated with a domain this is also done
1830 * in this function.
1832 static struct protection_domain *get_domain(struct device *dev)
1834 struct protection_domain *domain;
1835 struct dma_ops_domain *dma_dom;
1836 u16 devid = get_device_id(dev);
1838 if (!check_device(dev))
1839 return ERR_PTR(-EINVAL);
1841 domain = domain_for_device(dev);
1842 if (domain != NULL && !dma_ops_domain(domain))
1843 return ERR_PTR(-EBUSY);
1845 if (domain != NULL)
1846 return domain;
1848 /* Device not bount yet - bind it */
1849 dma_dom = find_protection_domain(devid);
1850 if (!dma_dom)
1851 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
1852 attach_device(dev, &dma_dom->domain);
1853 DUMP_printk("Using protection domain %d for device %s\n",
1854 dma_dom->domain.id, dev_name(dev));
1856 return &dma_dom->domain;
1859 static void update_device_table(struct protection_domain *domain)
1861 struct iommu_dev_data *dev_data;
1863 list_for_each_entry(dev_data, &domain->dev_list, list) {
1864 struct pci_dev *pdev = to_pci_dev(dev_data->dev);
1865 u16 devid = get_device_id(dev_data->dev);
1866 set_dte_entry(devid, domain, pci_ats_enabled(pdev));
1870 static void update_domain(struct protection_domain *domain)
1872 if (!domain->updated)
1873 return;
1875 update_device_table(domain);
1877 domain_flush_devices(domain);
1878 domain_flush_tlb_pde(domain);
1880 domain->updated = false;
1884 * This function fetches the PTE for a given address in the aperture
1886 static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1887 unsigned long address)
1889 struct aperture_range *aperture;
1890 u64 *pte, *pte_page;
1892 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1893 if (!aperture)
1894 return NULL;
1896 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1897 if (!pte) {
1898 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
1899 GFP_ATOMIC);
1900 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1901 } else
1902 pte += PM_LEVEL_INDEX(0, address);
1904 update_domain(&dom->domain);
1906 return pte;
1910 * This is the generic map function. It maps one 4kb page at paddr to
1911 * the given address in the DMA address space for the domain.
1913 static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1914 unsigned long address,
1915 phys_addr_t paddr,
1916 int direction)
1918 u64 *pte, __pte;
1920 WARN_ON(address > dom->aperture_size);
1922 paddr &= PAGE_MASK;
1924 pte = dma_ops_get_pte(dom, address);
1925 if (!pte)
1926 return DMA_ERROR_CODE;
1928 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1930 if (direction == DMA_TO_DEVICE)
1931 __pte |= IOMMU_PTE_IR;
1932 else if (direction == DMA_FROM_DEVICE)
1933 __pte |= IOMMU_PTE_IW;
1934 else if (direction == DMA_BIDIRECTIONAL)
1935 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1937 WARN_ON(*pte);
1939 *pte = __pte;
1941 return (dma_addr_t)address;
1945 * The generic unmapping function for on page in the DMA address space.
1947 static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
1948 unsigned long address)
1950 struct aperture_range *aperture;
1951 u64 *pte;
1953 if (address >= dom->aperture_size)
1954 return;
1956 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1957 if (!aperture)
1958 return;
1960 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1961 if (!pte)
1962 return;
1964 pte += PM_LEVEL_INDEX(0, address);
1966 WARN_ON(!*pte);
1968 *pte = 0ULL;
1972 * This function contains common code for mapping of a physically
1973 * contiguous memory region into DMA address space. It is used by all
1974 * mapping functions provided with this IOMMU driver.
1975 * Must be called with the domain lock held.
1977 static dma_addr_t __map_single(struct device *dev,
1978 struct dma_ops_domain *dma_dom,
1979 phys_addr_t paddr,
1980 size_t size,
1981 int dir,
1982 bool align,
1983 u64 dma_mask)
1985 dma_addr_t offset = paddr & ~PAGE_MASK;
1986 dma_addr_t address, start, ret;
1987 unsigned int pages;
1988 unsigned long align_mask = 0;
1989 int i;
1991 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1992 paddr &= PAGE_MASK;
1994 INC_STATS_COUNTER(total_map_requests);
1996 if (pages > 1)
1997 INC_STATS_COUNTER(cross_page);
1999 if (align)
2000 align_mask = (1UL << get_order(size)) - 1;
2002 retry:
2003 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2004 dma_mask);
2005 if (unlikely(address == DMA_ERROR_CODE)) {
2007 * setting next_address here will let the address
2008 * allocator only scan the new allocated range in the
2009 * first run. This is a small optimization.
2011 dma_dom->next_address = dma_dom->aperture_size;
2013 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2014 goto out;
2017 * aperture was successfully enlarged by 128 MB, try
2018 * allocation again
2020 goto retry;
2023 start = address;
2024 for (i = 0; i < pages; ++i) {
2025 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2026 if (ret == DMA_ERROR_CODE)
2027 goto out_unmap;
2029 paddr += PAGE_SIZE;
2030 start += PAGE_SIZE;
2032 address += offset;
2034 ADD_STATS_COUNTER(alloced_io_mem, size);
2036 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2037 domain_flush_tlb(&dma_dom->domain);
2038 dma_dom->need_flush = false;
2039 } else if (unlikely(amd_iommu_np_cache))
2040 domain_flush_pages(&dma_dom->domain, address, size);
2042 out:
2043 return address;
2045 out_unmap:
2047 for (--i; i >= 0; --i) {
2048 start -= PAGE_SIZE;
2049 dma_ops_domain_unmap(dma_dom, start);
2052 dma_ops_free_addresses(dma_dom, address, pages);
2054 return DMA_ERROR_CODE;
2058 * Does the reverse of the __map_single function. Must be called with
2059 * the domain lock held too
2061 static void __unmap_single(struct dma_ops_domain *dma_dom,
2062 dma_addr_t dma_addr,
2063 size_t size,
2064 int dir)
2066 dma_addr_t flush_addr;
2067 dma_addr_t i, start;
2068 unsigned int pages;
2070 if ((dma_addr == DMA_ERROR_CODE) ||
2071 (dma_addr + size > dma_dom->aperture_size))
2072 return;
2074 flush_addr = dma_addr;
2075 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2076 dma_addr &= PAGE_MASK;
2077 start = dma_addr;
2079 for (i = 0; i < pages; ++i) {
2080 dma_ops_domain_unmap(dma_dom, start);
2081 start += PAGE_SIZE;
2084 SUB_STATS_COUNTER(alloced_io_mem, size);
2086 dma_ops_free_addresses(dma_dom, dma_addr, pages);
2088 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2089 domain_flush_pages(&dma_dom->domain, flush_addr, size);
2090 dma_dom->need_flush = false;
2095 * The exported map_single function for dma_ops.
2097 static dma_addr_t map_page(struct device *dev, struct page *page,
2098 unsigned long offset, size_t size,
2099 enum dma_data_direction dir,
2100 struct dma_attrs *attrs)
2102 unsigned long flags;
2103 struct protection_domain *domain;
2104 dma_addr_t addr;
2105 u64 dma_mask;
2106 phys_addr_t paddr = page_to_phys(page) + offset;
2108 INC_STATS_COUNTER(cnt_map_single);
2110 domain = get_domain(dev);
2111 if (PTR_ERR(domain) == -EINVAL)
2112 return (dma_addr_t)paddr;
2113 else if (IS_ERR(domain))
2114 return DMA_ERROR_CODE;
2116 dma_mask = *dev->dma_mask;
2118 spin_lock_irqsave(&domain->lock, flags);
2120 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2121 dma_mask);
2122 if (addr == DMA_ERROR_CODE)
2123 goto out;
2125 domain_flush_complete(domain);
2127 out:
2128 spin_unlock_irqrestore(&domain->lock, flags);
2130 return addr;
2134 * The exported unmap_single function for dma_ops.
2136 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2137 enum dma_data_direction dir, struct dma_attrs *attrs)
2139 unsigned long flags;
2140 struct protection_domain *domain;
2142 INC_STATS_COUNTER(cnt_unmap_single);
2144 domain = get_domain(dev);
2145 if (IS_ERR(domain))
2146 return;
2148 spin_lock_irqsave(&domain->lock, flags);
2150 __unmap_single(domain->priv, dma_addr, size, dir);
2152 domain_flush_complete(domain);
2154 spin_unlock_irqrestore(&domain->lock, flags);
2158 * This is a special map_sg function which is used if we should map a
2159 * device which is not handled by an AMD IOMMU in the system.
2161 static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2162 int nelems, int dir)
2164 struct scatterlist *s;
2165 int i;
2167 for_each_sg(sglist, s, nelems, i) {
2168 s->dma_address = (dma_addr_t)sg_phys(s);
2169 s->dma_length = s->length;
2172 return nelems;
2176 * The exported map_sg function for dma_ops (handles scatter-gather
2177 * lists).
2179 static int map_sg(struct device *dev, struct scatterlist *sglist,
2180 int nelems, enum dma_data_direction dir,
2181 struct dma_attrs *attrs)
2183 unsigned long flags;
2184 struct protection_domain *domain;
2185 int i;
2186 struct scatterlist *s;
2187 phys_addr_t paddr;
2188 int mapped_elems = 0;
2189 u64 dma_mask;
2191 INC_STATS_COUNTER(cnt_map_sg);
2193 domain = get_domain(dev);
2194 if (PTR_ERR(domain) == -EINVAL)
2195 return map_sg_no_iommu(dev, sglist, nelems, dir);
2196 else if (IS_ERR(domain))
2197 return 0;
2199 dma_mask = *dev->dma_mask;
2201 spin_lock_irqsave(&domain->lock, flags);
2203 for_each_sg(sglist, s, nelems, i) {
2204 paddr = sg_phys(s);
2206 s->dma_address = __map_single(dev, domain->priv,
2207 paddr, s->length, dir, false,
2208 dma_mask);
2210 if (s->dma_address) {
2211 s->dma_length = s->length;
2212 mapped_elems++;
2213 } else
2214 goto unmap;
2217 domain_flush_complete(domain);
2219 out:
2220 spin_unlock_irqrestore(&domain->lock, flags);
2222 return mapped_elems;
2223 unmap:
2224 for_each_sg(sglist, s, mapped_elems, i) {
2225 if (s->dma_address)
2226 __unmap_single(domain->priv, s->dma_address,
2227 s->dma_length, dir);
2228 s->dma_address = s->dma_length = 0;
2231 mapped_elems = 0;
2233 goto out;
2237 * The exported map_sg function for dma_ops (handles scatter-gather
2238 * lists).
2240 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2241 int nelems, enum dma_data_direction dir,
2242 struct dma_attrs *attrs)
2244 unsigned long flags;
2245 struct protection_domain *domain;
2246 struct scatterlist *s;
2247 int i;
2249 INC_STATS_COUNTER(cnt_unmap_sg);
2251 domain = get_domain(dev);
2252 if (IS_ERR(domain))
2253 return;
2255 spin_lock_irqsave(&domain->lock, flags);
2257 for_each_sg(sglist, s, nelems, i) {
2258 __unmap_single(domain->priv, s->dma_address,
2259 s->dma_length, dir);
2260 s->dma_address = s->dma_length = 0;
2263 domain_flush_complete(domain);
2265 spin_unlock_irqrestore(&domain->lock, flags);
2269 * The exported alloc_coherent function for dma_ops.
2271 static void *alloc_coherent(struct device *dev, size_t size,
2272 dma_addr_t *dma_addr, gfp_t flag)
2274 unsigned long flags;
2275 void *virt_addr;
2276 struct protection_domain *domain;
2277 phys_addr_t paddr;
2278 u64 dma_mask = dev->coherent_dma_mask;
2280 INC_STATS_COUNTER(cnt_alloc_coherent);
2282 domain = get_domain(dev);
2283 if (PTR_ERR(domain) == -EINVAL) {
2284 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2285 *dma_addr = __pa(virt_addr);
2286 return virt_addr;
2287 } else if (IS_ERR(domain))
2288 return NULL;
2290 dma_mask = dev->coherent_dma_mask;
2291 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2292 flag |= __GFP_ZERO;
2294 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2295 if (!virt_addr)
2296 return NULL;
2298 paddr = virt_to_phys(virt_addr);
2300 if (!dma_mask)
2301 dma_mask = *dev->dma_mask;
2303 spin_lock_irqsave(&domain->lock, flags);
2305 *dma_addr = __map_single(dev, domain->priv, paddr,
2306 size, DMA_BIDIRECTIONAL, true, dma_mask);
2308 if (*dma_addr == DMA_ERROR_CODE) {
2309 spin_unlock_irqrestore(&domain->lock, flags);
2310 goto out_free;
2313 domain_flush_complete(domain);
2315 spin_unlock_irqrestore(&domain->lock, flags);
2317 return virt_addr;
2319 out_free:
2321 free_pages((unsigned long)virt_addr, get_order(size));
2323 return NULL;
2327 * The exported free_coherent function for dma_ops.
2329 static void free_coherent(struct device *dev, size_t size,
2330 void *virt_addr, dma_addr_t dma_addr)
2332 unsigned long flags;
2333 struct protection_domain *domain;
2335 INC_STATS_COUNTER(cnt_free_coherent);
2337 domain = get_domain(dev);
2338 if (IS_ERR(domain))
2339 goto free_mem;
2341 spin_lock_irqsave(&domain->lock, flags);
2343 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2345 domain_flush_complete(domain);
2347 spin_unlock_irqrestore(&domain->lock, flags);
2349 free_mem:
2350 free_pages((unsigned long)virt_addr, get_order(size));
2354 * This function is called by the DMA layer to find out if we can handle a
2355 * particular device. It is part of the dma_ops.
2357 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2359 return check_device(dev);
2363 * The function for pre-allocating protection domains.
2365 * If the driver core informs the DMA layer if a driver grabs a device
2366 * we don't need to preallocate the protection domains anymore.
2367 * For now we have to.
2369 static void prealloc_protection_domains(void)
2371 struct pci_dev *dev = NULL;
2372 struct dma_ops_domain *dma_dom;
2373 u16 devid;
2375 for_each_pci_dev(dev) {
2377 /* Do we handle this device? */
2378 if (!check_device(&dev->dev))
2379 continue;
2381 /* Is there already any domain for it? */
2382 if (domain_for_device(&dev->dev))
2383 continue;
2385 devid = get_device_id(&dev->dev);
2387 dma_dom = dma_ops_domain_alloc();
2388 if (!dma_dom)
2389 continue;
2390 init_unity_mappings_for_device(dma_dom, devid);
2391 dma_dom->target_dev = devid;
2393 attach_device(&dev->dev, &dma_dom->domain);
2395 list_add_tail(&dma_dom->list, &iommu_pd_list);
2399 static struct dma_map_ops amd_iommu_dma_ops = {
2400 .alloc_coherent = alloc_coherent,
2401 .free_coherent = free_coherent,
2402 .map_page = map_page,
2403 .unmap_page = unmap_page,
2404 .map_sg = map_sg,
2405 .unmap_sg = unmap_sg,
2406 .dma_supported = amd_iommu_dma_supported,
2409 static unsigned device_dma_ops_init(void)
2411 struct pci_dev *pdev = NULL;
2412 unsigned unhandled = 0;
2414 for_each_pci_dev(pdev) {
2415 if (!check_device(&pdev->dev)) {
2416 unhandled += 1;
2417 continue;
2420 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
2423 return unhandled;
2427 * The function which clues the AMD IOMMU driver into dma_ops.
2430 void __init amd_iommu_init_api(void)
2432 register_iommu(&amd_iommu_ops);
2435 int __init amd_iommu_init_dma_ops(void)
2437 struct amd_iommu *iommu;
2438 int ret, unhandled;
2441 * first allocate a default protection domain for every IOMMU we
2442 * found in the system. Devices not assigned to any other
2443 * protection domain will be assigned to the default one.
2445 for_each_iommu(iommu) {
2446 iommu->default_dom = dma_ops_domain_alloc();
2447 if (iommu->default_dom == NULL)
2448 return -ENOMEM;
2449 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2450 ret = iommu_init_unity_mappings(iommu);
2451 if (ret)
2452 goto free_domains;
2456 * Pre-allocate the protection domains for each device.
2458 prealloc_protection_domains();
2460 iommu_detected = 1;
2461 swiotlb = 0;
2463 /* Make the driver finally visible to the drivers */
2464 unhandled = device_dma_ops_init();
2465 if (unhandled && max_pfn > MAX_DMA32_PFN) {
2466 /* There are unhandled devices - initialize swiotlb for them */
2467 swiotlb = 1;
2470 amd_iommu_stats_init();
2472 return 0;
2474 free_domains:
2476 for_each_iommu(iommu) {
2477 if (iommu->default_dom)
2478 dma_ops_domain_free(iommu->default_dom);
2481 return ret;
2484 /*****************************************************************************
2486 * The following functions belong to the exported interface of AMD IOMMU
2488 * This interface allows access to lower level functions of the IOMMU
2489 * like protection domain handling and assignement of devices to domains
2490 * which is not possible with the dma_ops interface.
2492 *****************************************************************************/
2494 static void cleanup_domain(struct protection_domain *domain)
2496 struct iommu_dev_data *dev_data, *next;
2497 unsigned long flags;
2499 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2501 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2502 struct device *dev = dev_data->dev;
2504 __detach_device(dev);
2505 atomic_set(&dev_data->bind, 0);
2508 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2511 static void protection_domain_free(struct protection_domain *domain)
2513 if (!domain)
2514 return;
2516 del_domain_from_list(domain);
2518 if (domain->id)
2519 domain_id_free(domain->id);
2521 kfree(domain);
2524 static struct protection_domain *protection_domain_alloc(void)
2526 struct protection_domain *domain;
2528 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2529 if (!domain)
2530 return NULL;
2532 spin_lock_init(&domain->lock);
2533 mutex_init(&domain->api_lock);
2534 domain->id = domain_id_alloc();
2535 if (!domain->id)
2536 goto out_err;
2537 INIT_LIST_HEAD(&domain->dev_list);
2539 add_domain_to_list(domain);
2541 return domain;
2543 out_err:
2544 kfree(domain);
2546 return NULL;
2549 static int amd_iommu_domain_init(struct iommu_domain *dom)
2551 struct protection_domain *domain;
2553 domain = protection_domain_alloc();
2554 if (!domain)
2555 goto out_free;
2557 domain->mode = PAGE_MODE_3_LEVEL;
2558 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2559 if (!domain->pt_root)
2560 goto out_free;
2562 dom->priv = domain;
2564 return 0;
2566 out_free:
2567 protection_domain_free(domain);
2569 return -ENOMEM;
2572 static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2574 struct protection_domain *domain = dom->priv;
2576 if (!domain)
2577 return;
2579 if (domain->dev_cnt > 0)
2580 cleanup_domain(domain);
2582 BUG_ON(domain->dev_cnt != 0);
2584 free_pagetable(domain);
2586 protection_domain_free(domain);
2588 dom->priv = NULL;
2591 static void amd_iommu_detach_device(struct iommu_domain *dom,
2592 struct device *dev)
2594 struct iommu_dev_data *dev_data = dev->archdata.iommu;
2595 struct amd_iommu *iommu;
2596 u16 devid;
2598 if (!check_device(dev))
2599 return;
2601 devid = get_device_id(dev);
2603 if (dev_data->domain != NULL)
2604 detach_device(dev);
2606 iommu = amd_iommu_rlookup_table[devid];
2607 if (!iommu)
2608 return;
2610 device_flush_dte(dev);
2611 iommu_completion_wait(iommu);
2614 static int amd_iommu_attach_device(struct iommu_domain *dom,
2615 struct device *dev)
2617 struct protection_domain *domain = dom->priv;
2618 struct iommu_dev_data *dev_data;
2619 struct amd_iommu *iommu;
2620 int ret;
2621 u16 devid;
2623 if (!check_device(dev))
2624 return -EINVAL;
2626 dev_data = dev->archdata.iommu;
2628 devid = get_device_id(dev);
2630 iommu = amd_iommu_rlookup_table[devid];
2631 if (!iommu)
2632 return -EINVAL;
2634 if (dev_data->domain)
2635 detach_device(dev);
2637 ret = attach_device(dev, domain);
2639 iommu_completion_wait(iommu);
2641 return ret;
2644 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2645 phys_addr_t paddr, int gfp_order, int iommu_prot)
2647 unsigned long page_size = 0x1000UL << gfp_order;
2648 struct protection_domain *domain = dom->priv;
2649 int prot = 0;
2650 int ret;
2652 if (iommu_prot & IOMMU_READ)
2653 prot |= IOMMU_PROT_IR;
2654 if (iommu_prot & IOMMU_WRITE)
2655 prot |= IOMMU_PROT_IW;
2657 mutex_lock(&domain->api_lock);
2658 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2659 mutex_unlock(&domain->api_lock);
2661 return ret;
2664 static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2665 int gfp_order)
2667 struct protection_domain *domain = dom->priv;
2668 unsigned long page_size, unmap_size;
2670 page_size = 0x1000UL << gfp_order;
2672 mutex_lock(&domain->api_lock);
2673 unmap_size = iommu_unmap_page(domain, iova, page_size);
2674 mutex_unlock(&domain->api_lock);
2676 domain_flush_tlb_pde(domain);
2678 return get_order(unmap_size);
2681 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2682 unsigned long iova)
2684 struct protection_domain *domain = dom->priv;
2685 unsigned long offset_mask;
2686 phys_addr_t paddr;
2687 u64 *pte, __pte;
2689 pte = fetch_pte(domain, iova);
2691 if (!pte || !IOMMU_PTE_PRESENT(*pte))
2692 return 0;
2694 if (PM_PTE_LEVEL(*pte) == 0)
2695 offset_mask = PAGE_SIZE - 1;
2696 else
2697 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
2699 __pte = *pte & PM_ADDR_MASK;
2700 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
2702 return paddr;
2705 static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2706 unsigned long cap)
2708 switch (cap) {
2709 case IOMMU_CAP_CACHE_COHERENCY:
2710 return 1;
2713 return 0;
2716 static struct iommu_ops amd_iommu_ops = {
2717 .domain_init = amd_iommu_domain_init,
2718 .domain_destroy = amd_iommu_domain_destroy,
2719 .attach_dev = amd_iommu_attach_device,
2720 .detach_dev = amd_iommu_detach_device,
2721 .map = amd_iommu_map,
2722 .unmap = amd_iommu_unmap,
2723 .iova_to_phys = amd_iommu_iova_to_phys,
2724 .domain_has_cap = amd_iommu_domain_has_cap,
2727 /*****************************************************************************
2729 * The next functions do a basic initialization of IOMMU for pass through
2730 * mode
2732 * In passthrough mode the IOMMU is initialized and enabled but not used for
2733 * DMA-API translation.
2735 *****************************************************************************/
2737 int __init amd_iommu_init_passthrough(void)
2739 struct amd_iommu *iommu;
2740 struct pci_dev *dev = NULL;
2741 u16 devid;
2743 /* allocate passthrough domain */
2744 pt_domain = protection_domain_alloc();
2745 if (!pt_domain)
2746 return -ENOMEM;
2748 pt_domain->mode |= PAGE_MODE_NONE;
2750 for_each_pci_dev(dev) {
2751 if (!check_device(&dev->dev))
2752 continue;
2754 devid = get_device_id(&dev->dev);
2756 iommu = amd_iommu_rlookup_table[devid];
2757 if (!iommu)
2758 continue;
2760 attach_device(&dev->dev, pt_domain);
2763 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2765 return 0;