ARM: 7409/1: Do not call flush_cache_user_range with mmap_sem held
[linux/fpc-iii.git] / arch / x86 / kernel / apb_timer.c
blob289e92862fd97aac3534eca0048cd646abb60860
1 /*
2 * apb_timer.c: Driver for Langwell APB timers
4 * (C) Copyright 2009 Intel Corporation
5 * Author: Jacob Pan (jacob.jun.pan@intel.com)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
12 * Note:
13 * Langwell is the south complex of Intel Moorestown MID platform. There are
14 * eight external timers in total that can be used by the operating system.
15 * The timer information, such as frequency and addresses, is provided to the
16 * OS via SFI tables.
17 * Timer interrupts are routed via FW/HW emulated IOAPIC independently via
18 * individual redirection table entries (RTE).
19 * Unlike HPET, there is no master counter, therefore one of the timers are
20 * used as clocksource. The overall allocation looks like:
21 * - timer 0 - NR_CPUs for per cpu timer
22 * - one timer for clocksource
23 * - one timer for watchdog driver.
24 * It is also worth notice that APB timer does not support true one-shot mode,
25 * free-running mode will be used here to emulate one-shot mode.
26 * APB timer can also be used as broadcast timer along with per cpu local APIC
27 * timer, but by default APB timer has higher rating than local APIC timers.
30 #include <linux/clocksource.h>
31 #include <linux/clockchips.h>
32 #include <linux/delay.h>
33 #include <linux/errno.h>
34 #include <linux/init.h>
35 #include <linux/sysdev.h>
36 #include <linux/slab.h>
37 #include <linux/pm.h>
38 #include <linux/pci.h>
39 #include <linux/sfi.h>
40 #include <linux/interrupt.h>
41 #include <linux/cpu.h>
42 #include <linux/irq.h>
44 #include <asm/fixmap.h>
45 #include <asm/apb_timer.h>
46 #include <asm/mrst.h>
48 #define APBT_MASK CLOCKSOURCE_MASK(32)
49 #define APBT_SHIFT 22
50 #define APBT_CLOCKEVENT_RATING 110
51 #define APBT_CLOCKSOURCE_RATING 250
52 #define APBT_MIN_DELTA_USEC 200
54 #define EVT_TO_APBT_DEV(evt) container_of(evt, struct apbt_dev, evt)
55 #define APBT_CLOCKEVENT0_NUM (0)
56 #define APBT_CLOCKEVENT1_NUM (1)
57 #define APBT_CLOCKSOURCE_NUM (2)
59 static unsigned long apbt_address;
60 static int apb_timer_block_enabled;
61 static void __iomem *apbt_virt_address;
62 static int phy_cs_timer_id;
65 * Common DW APB timer info
67 static uint64_t apbt_freq;
69 static void apbt_set_mode(enum clock_event_mode mode,
70 struct clock_event_device *evt);
71 static int apbt_next_event(unsigned long delta,
72 struct clock_event_device *evt);
73 static cycle_t apbt_read_clocksource(struct clocksource *cs);
74 static void apbt_restart_clocksource(struct clocksource *cs);
76 struct apbt_dev {
77 struct clock_event_device evt;
78 unsigned int num;
79 int cpu;
80 unsigned int irq;
81 unsigned int tick;
82 unsigned int count;
83 unsigned int flags;
84 char name[10];
87 static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev);
89 #ifdef CONFIG_SMP
90 static unsigned int apbt_num_timers_used;
91 static struct apbt_dev *apbt_devs;
92 #endif
94 static inline unsigned long apbt_readl_reg(unsigned long a)
96 return readl(apbt_virt_address + a);
99 static inline void apbt_writel_reg(unsigned long d, unsigned long a)
101 writel(d, apbt_virt_address + a);
104 static inline unsigned long apbt_readl(int n, unsigned long a)
106 return readl(apbt_virt_address + a + n * APBTMRS_REG_SIZE);
109 static inline void apbt_writel(int n, unsigned long d, unsigned long a)
111 writel(d, apbt_virt_address + a + n * APBTMRS_REG_SIZE);
114 static inline void apbt_set_mapping(void)
116 struct sfi_timer_table_entry *mtmr;
118 if (apbt_virt_address) {
119 pr_debug("APBT base already mapped\n");
120 return;
122 mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
123 if (mtmr == NULL) {
124 printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
125 APBT_CLOCKEVENT0_NUM);
126 return;
128 apbt_address = (unsigned long)mtmr->phys_addr;
129 if (!apbt_address) {
130 printk(KERN_WARNING "No timer base from SFI, use default\n");
131 apbt_address = APBT_DEFAULT_BASE;
133 apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE);
134 if (apbt_virt_address) {
135 pr_debug("Mapped APBT physical addr %p at virtual addr %p\n",\
136 (void *)apbt_address, (void *)apbt_virt_address);
137 } else {
138 pr_debug("Failed mapping APBT phy address at %p\n",\
139 (void *)apbt_address);
140 goto panic_noapbt;
142 apbt_freq = mtmr->freq_hz / USEC_PER_SEC;
143 sfi_free_mtmr(mtmr);
145 /* Now figure out the physical timer id for clocksource device */
146 mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM);
147 if (mtmr == NULL)
148 goto panic_noapbt;
150 /* Now figure out the physical timer id */
151 phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff)
152 / APBTMRS_REG_SIZE;
153 pr_debug("Use timer %d for clocksource\n", phy_cs_timer_id);
154 return;
156 panic_noapbt:
157 panic("Failed to setup APB system timer\n");
161 static inline void apbt_clear_mapping(void)
163 iounmap(apbt_virt_address);
164 apbt_virt_address = NULL;
168 * APBT timer interrupt enable / disable
170 static inline int is_apbt_capable(void)
172 return apbt_virt_address ? 1 : 0;
175 static struct clocksource clocksource_apbt = {
176 .name = "apbt",
177 .rating = APBT_CLOCKSOURCE_RATING,
178 .read = apbt_read_clocksource,
179 .mask = APBT_MASK,
180 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
181 .resume = apbt_restart_clocksource,
184 /* boot APB clock event device */
185 static struct clock_event_device apbt_clockevent = {
186 .name = "apbt0",
187 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
188 .set_mode = apbt_set_mode,
189 .set_next_event = apbt_next_event,
190 .shift = APBT_SHIFT,
191 .irq = 0,
192 .rating = APBT_CLOCKEVENT_RATING,
196 * start count down from 0xffff_ffff. this is done by toggling the enable bit
197 * then load initial load count to ~0.
199 static void apbt_start_counter(int n)
201 unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
203 ctrl &= ~APBTMR_CONTROL_ENABLE;
204 apbt_writel(n, ctrl, APBTMR_N_CONTROL);
205 apbt_writel(n, ~0, APBTMR_N_LOAD_COUNT);
206 /* enable, mask interrupt */
207 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
208 ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
209 apbt_writel(n, ctrl, APBTMR_N_CONTROL);
210 /* read it once to get cached counter value initialized */
211 apbt_read_clocksource(&clocksource_apbt);
214 static irqreturn_t apbt_interrupt_handler(int irq, void *data)
216 struct apbt_dev *dev = (struct apbt_dev *)data;
217 struct clock_event_device *aevt = &dev->evt;
219 if (!aevt->event_handler) {
220 printk(KERN_INFO "Spurious APBT timer interrupt on %d\n",
221 dev->num);
222 return IRQ_NONE;
224 aevt->event_handler(aevt);
225 return IRQ_HANDLED;
228 static void apbt_restart_clocksource(struct clocksource *cs)
230 apbt_start_counter(phy_cs_timer_id);
233 static void apbt_enable_int(int n)
235 unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
236 /* clear pending intr */
237 apbt_readl(n, APBTMR_N_EOI);
238 ctrl &= ~APBTMR_CONTROL_INT;
239 apbt_writel(n, ctrl, APBTMR_N_CONTROL);
242 static void apbt_disable_int(int n)
244 unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
246 ctrl |= APBTMR_CONTROL_INT;
247 apbt_writel(n, ctrl, APBTMR_N_CONTROL);
251 static int __init apbt_clockevent_register(void)
253 struct sfi_timer_table_entry *mtmr;
254 struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev);
256 mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
257 if (mtmr == NULL) {
258 printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
259 APBT_CLOCKEVENT0_NUM);
260 return -ENODEV;
264 * We need to calculate the scaled math multiplication factor for
265 * nanosecond to apbt tick conversion.
266 * mult = (nsec/cycle)*2^APBT_SHIFT
268 apbt_clockevent.mult = div_sc((unsigned long) mtmr->freq_hz
269 , NSEC_PER_SEC, APBT_SHIFT);
271 /* Calculate the min / max delta */
272 apbt_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
273 &apbt_clockevent);
274 apbt_clockevent.min_delta_ns = clockevent_delta2ns(
275 APBT_MIN_DELTA_USEC*apbt_freq,
276 &apbt_clockevent);
278 * Start apbt with the boot cpu mask and make it
279 * global if not used for per cpu timer.
281 apbt_clockevent.cpumask = cpumask_of(smp_processor_id());
282 adev->num = smp_processor_id();
283 memcpy(&adev->evt, &apbt_clockevent, sizeof(struct clock_event_device));
285 if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) {
286 adev->evt.rating = APBT_CLOCKEVENT_RATING - 100;
287 global_clock_event = &adev->evt;
288 printk(KERN_DEBUG "%s clockevent registered as global\n",
289 global_clock_event->name);
292 if (request_irq(apbt_clockevent.irq, apbt_interrupt_handler,
293 IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
294 apbt_clockevent.name, adev)) {
295 printk(KERN_ERR "Failed request IRQ for APBT%d\n",
296 apbt_clockevent.irq);
299 clockevents_register_device(&adev->evt);
300 /* Start APBT 0 interrupts */
301 apbt_enable_int(APBT_CLOCKEVENT0_NUM);
303 sfi_free_mtmr(mtmr);
304 return 0;
307 #ifdef CONFIG_SMP
309 static void apbt_setup_irq(struct apbt_dev *adev)
311 /* timer0 irq has been setup early */
312 if (adev->irq == 0)
313 return;
315 irq_modify_status(adev->irq, 0, IRQ_MOVE_PCNTXT);
316 irq_set_affinity(adev->irq, cpumask_of(adev->cpu));
317 /* APB timer irqs are set up as mp_irqs, timer is edge type */
318 __irq_set_handler(adev->irq, handle_edge_irq, 0, "edge");
320 if (system_state == SYSTEM_BOOTING) {
321 if (request_irq(adev->irq, apbt_interrupt_handler,
322 IRQF_TIMER | IRQF_DISABLED |
323 IRQF_NOBALANCING,
324 adev->name, adev)) {
325 printk(KERN_ERR "Failed request IRQ for APBT%d\n",
326 adev->num);
328 } else
329 enable_irq(adev->irq);
332 /* Should be called with per cpu */
333 void apbt_setup_secondary_clock(void)
335 struct apbt_dev *adev;
336 struct clock_event_device *aevt;
337 int cpu;
339 /* Don't register boot CPU clockevent */
340 cpu = smp_processor_id();
341 if (!cpu)
342 return;
344 * We need to calculate the scaled math multiplication factor for
345 * nanosecond to apbt tick conversion.
346 * mult = (nsec/cycle)*2^APBT_SHIFT
348 printk(KERN_INFO "Init per CPU clockevent %d\n", cpu);
349 adev = &per_cpu(cpu_apbt_dev, cpu);
350 aevt = &adev->evt;
352 memcpy(aevt, &apbt_clockevent, sizeof(*aevt));
353 aevt->cpumask = cpumask_of(cpu);
354 aevt->name = adev->name;
355 aevt->mode = CLOCK_EVT_MODE_UNUSED;
357 printk(KERN_INFO "Registering CPU %d clockevent device %s, mask %08x\n",
358 cpu, aevt->name, *(u32 *)aevt->cpumask);
360 apbt_setup_irq(adev);
362 clockevents_register_device(aevt);
364 apbt_enable_int(cpu);
366 return;
370 * this notify handler process CPU hotplug events. in case of S0i3, nonboot
371 * cpus are disabled/enabled frequently, for performance reasons, we keep the
372 * per cpu timer irq registered so that we do need to do free_irq/request_irq.
374 * TODO: it might be more reliable to directly disable percpu clockevent device
375 * without the notifier chain. currently, cpu 0 may get interrupts from other
376 * cpu timers during the offline process due to the ordering of notification.
377 * the extra interrupt is harmless.
379 static int apbt_cpuhp_notify(struct notifier_block *n,
380 unsigned long action, void *hcpu)
382 unsigned long cpu = (unsigned long)hcpu;
383 struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu);
385 switch (action & 0xf) {
386 case CPU_DEAD:
387 disable_irq(adev->irq);
388 apbt_disable_int(cpu);
389 if (system_state == SYSTEM_RUNNING) {
390 pr_debug("skipping APBT CPU %lu offline\n", cpu);
391 } else if (adev) {
392 pr_debug("APBT clockevent for cpu %lu offline\n", cpu);
393 free_irq(adev->irq, adev);
395 break;
396 default:
397 pr_debug("APBT notified %lu, no action\n", action);
399 return NOTIFY_OK;
402 static __init int apbt_late_init(void)
404 if (mrst_timer_options == MRST_TIMER_LAPIC_APBT ||
405 !apb_timer_block_enabled)
406 return 0;
407 /* This notifier should be called after workqueue is ready */
408 hotcpu_notifier(apbt_cpuhp_notify, -20);
409 return 0;
411 fs_initcall(apbt_late_init);
412 #else
414 void apbt_setup_secondary_clock(void) {}
416 #endif /* CONFIG_SMP */
418 static void apbt_set_mode(enum clock_event_mode mode,
419 struct clock_event_device *evt)
421 unsigned long ctrl;
422 uint64_t delta;
423 int timer_num;
424 struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
426 BUG_ON(!apbt_virt_address);
428 timer_num = adev->num;
429 pr_debug("%s CPU %d timer %d mode=%d\n",
430 __func__, first_cpu(*evt->cpumask), timer_num, mode);
432 switch (mode) {
433 case CLOCK_EVT_MODE_PERIODIC:
434 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * apbt_clockevent.mult;
435 delta >>= apbt_clockevent.shift;
436 ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
437 ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
438 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
440 * DW APB p. 46, have to disable timer before load counter,
441 * may cause sync problem.
443 ctrl &= ~APBTMR_CONTROL_ENABLE;
444 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
445 udelay(1);
446 pr_debug("Setting clock period %d for HZ %d\n", (int)delta, HZ);
447 apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
448 ctrl |= APBTMR_CONTROL_ENABLE;
449 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
450 break;
451 /* APB timer does not have one-shot mode, use free running mode */
452 case CLOCK_EVT_MODE_ONESHOT:
453 ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
455 * set free running mode, this mode will let timer reload max
456 * timeout which will give time (3min on 25MHz clock) to rearm
457 * the next event, therefore emulate the one-shot mode.
459 ctrl &= ~APBTMR_CONTROL_ENABLE;
460 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
462 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
463 /* write again to set free running mode */
464 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
467 * DW APB p. 46, load counter with all 1s before starting free
468 * running mode.
470 apbt_writel(timer_num, ~0, APBTMR_N_LOAD_COUNT);
471 ctrl &= ~APBTMR_CONTROL_INT;
472 ctrl |= APBTMR_CONTROL_ENABLE;
473 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
474 break;
476 case CLOCK_EVT_MODE_UNUSED:
477 case CLOCK_EVT_MODE_SHUTDOWN:
478 apbt_disable_int(timer_num);
479 ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
480 ctrl &= ~APBTMR_CONTROL_ENABLE;
481 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
482 break;
484 case CLOCK_EVT_MODE_RESUME:
485 apbt_enable_int(timer_num);
486 break;
490 static int apbt_next_event(unsigned long delta,
491 struct clock_event_device *evt)
493 unsigned long ctrl;
494 int timer_num;
496 struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
498 timer_num = adev->num;
499 /* Disable timer */
500 ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
501 ctrl &= ~APBTMR_CONTROL_ENABLE;
502 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
503 /* write new count */
504 apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
505 ctrl |= APBTMR_CONTROL_ENABLE;
506 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
507 return 0;
510 static cycle_t apbt_read_clocksource(struct clocksource *cs)
512 unsigned long current_count;
514 current_count = apbt_readl(phy_cs_timer_id, APBTMR_N_CURRENT_VALUE);
515 return (cycle_t)~current_count;
518 static int apbt_clocksource_register(void)
520 u64 start, now;
521 cycle_t t1;
523 /* Start the counter, use timer 2 as source, timer 0/1 for event */
524 apbt_start_counter(phy_cs_timer_id);
526 /* Verify whether apbt counter works */
527 t1 = apbt_read_clocksource(&clocksource_apbt);
528 rdtscll(start);
531 * We don't know the TSC frequency yet, but waiting for
532 * 200000 TSC cycles is safe:
533 * 4 GHz == 50us
534 * 1 GHz == 200us
536 do {
537 rep_nop();
538 rdtscll(now);
539 } while ((now - start) < 200000UL);
541 /* APBT is the only always on clocksource, it has to work! */
542 if (t1 == apbt_read_clocksource(&clocksource_apbt))
543 panic("APBT counter not counting. APBT disabled\n");
545 clocksource_register_khz(&clocksource_apbt, (u32)apbt_freq*1000);
547 return 0;
551 * Early setup the APBT timer, only use timer 0 for booting then switch to
552 * per CPU timer if possible.
553 * returns 1 if per cpu apbt is setup
554 * returns 0 if no per cpu apbt is chosen
555 * panic if set up failed, this is the only platform timer on Moorestown.
557 void __init apbt_time_init(void)
559 #ifdef CONFIG_SMP
560 int i;
561 struct sfi_timer_table_entry *p_mtmr;
562 unsigned int percpu_timer;
563 struct apbt_dev *adev;
564 #endif
566 if (apb_timer_block_enabled)
567 return;
568 apbt_set_mapping();
569 if (apbt_virt_address) {
570 pr_debug("Found APBT version 0x%lx\n",\
571 apbt_readl_reg(APBTMRS_COMP_VERSION));
572 } else
573 goto out_noapbt;
575 * Read the frequency and check for a sane value, for ESL model
576 * we extend the possible clock range to allow time scaling.
579 if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) {
580 pr_debug("APBT has invalid freq 0x%llx\n", apbt_freq);
581 goto out_noapbt;
583 if (apbt_clocksource_register()) {
584 pr_debug("APBT has failed to register clocksource\n");
585 goto out_noapbt;
587 if (!apbt_clockevent_register())
588 apb_timer_block_enabled = 1;
589 else {
590 pr_debug("APBT has failed to register clockevent\n");
591 goto out_noapbt;
593 #ifdef CONFIG_SMP
594 /* kernel cmdline disable apb timer, so we will use lapic timers */
595 if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) {
596 printk(KERN_INFO "apbt: disabled per cpu timer\n");
597 return;
599 pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus());
600 if (num_possible_cpus() <= sfi_mtimer_num) {
601 percpu_timer = 1;
602 apbt_num_timers_used = num_possible_cpus();
603 } else {
604 percpu_timer = 0;
605 apbt_num_timers_used = 1;
606 adev = &per_cpu(cpu_apbt_dev, 0);
607 adev->flags &= ~APBT_DEV_USED;
609 pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used);
611 /* here we set up per CPU timer data structure */
612 apbt_devs = kzalloc(sizeof(struct apbt_dev) * apbt_num_timers_used,
613 GFP_KERNEL);
614 if (!apbt_devs) {
615 printk(KERN_ERR "Failed to allocate APB timer devices\n");
616 return;
618 for (i = 0; i < apbt_num_timers_used; i++) {
619 adev = &per_cpu(cpu_apbt_dev, i);
620 adev->num = i;
621 adev->cpu = i;
622 p_mtmr = sfi_get_mtmr(i);
623 if (p_mtmr) {
624 adev->tick = p_mtmr->freq_hz;
625 adev->irq = p_mtmr->irq;
626 } else
627 printk(KERN_ERR "Failed to get timer for cpu %d\n", i);
628 adev->count = 0;
629 sprintf(adev->name, "apbt%d", i);
631 #endif
633 return;
635 out_noapbt:
636 apbt_clear_mapping();
637 apb_timer_block_enabled = 0;
638 panic("failed to enable APB timer\n");
641 static inline void apbt_disable(int n)
643 if (is_apbt_capable()) {
644 unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
645 ctrl &= ~APBTMR_CONTROL_ENABLE;
646 apbt_writel(n, ctrl, APBTMR_N_CONTROL);
650 /* called before apb_timer_enable, use early map */
651 unsigned long apbt_quick_calibrate()
653 int i, scale;
654 u64 old, new;
655 cycle_t t1, t2;
656 unsigned long khz = 0;
657 u32 loop, shift;
659 apbt_set_mapping();
660 apbt_start_counter(phy_cs_timer_id);
662 /* check if the timer can count down, otherwise return */
663 old = apbt_read_clocksource(&clocksource_apbt);
664 i = 10000;
665 while (--i) {
666 if (old != apbt_read_clocksource(&clocksource_apbt))
667 break;
669 if (!i)
670 goto failed;
672 /* count 16 ms */
673 loop = (apbt_freq * 1000) << 4;
675 /* restart the timer to ensure it won't get to 0 in the calibration */
676 apbt_start_counter(phy_cs_timer_id);
678 old = apbt_read_clocksource(&clocksource_apbt);
679 old += loop;
681 t1 = __native_read_tsc();
683 do {
684 new = apbt_read_clocksource(&clocksource_apbt);
685 } while (new < old);
687 t2 = __native_read_tsc();
689 shift = 5;
690 if (unlikely(loop >> shift == 0)) {
691 printk(KERN_INFO
692 "APBT TSC calibration failed, not enough resolution\n");
693 return 0;
695 scale = (int)div_u64((t2 - t1), loop >> shift);
696 khz = (scale * apbt_freq * 1000) >> shift;
697 printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz);
698 return khz;
699 failed:
700 return 0;