2 * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
3 * August 2002: added remote node KVA remap - Martin J. Bligh
5 * Copyright (C) 2002, IBM Corp.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
17 * NON INFRINGEMENT. See the GNU General Public License for more
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/bootmem.h>
26 #include <linux/memblock.h>
27 #include <linux/module.h>
29 #include "numa_internal.h"
31 #ifdef CONFIG_DISCONTIGMEM
33 * 4) physnode_map - the mapping between a pfn and owning node
34 * physnode_map keeps track of the physical memory layout of a generic
35 * numa node on a 64Mb break (each element of the array will
36 * represent 64Mb of memory and will be marked by the node id. so,
37 * if the first gig is on node 0, and the second gig is on node 1
38 * physnode_map will contain:
40 * physnode_map[0-15] = 0;
41 * physnode_map[16-31] = 1;
42 * physnode_map[32- ] = -1;
44 s8 physnode_map
[MAX_ELEMENTS
] __read_mostly
= { [0 ... (MAX_ELEMENTS
- 1)] = -1};
45 EXPORT_SYMBOL(physnode_map
);
47 void memory_present(int nid
, unsigned long start
, unsigned long end
)
51 printk(KERN_INFO
"Node: %d, start_pfn: %lx, end_pfn: %lx\n",
53 printk(KERN_DEBUG
" Setting physnode_map array to node %d for pfns:\n", nid
);
54 printk(KERN_DEBUG
" ");
55 for (pfn
= start
; pfn
< end
; pfn
+= PAGES_PER_ELEMENT
) {
56 physnode_map
[pfn
/ PAGES_PER_ELEMENT
] = nid
;
57 printk(KERN_CONT
"%lx ", pfn
);
59 printk(KERN_CONT
"\n");
62 unsigned long node_memmap_size_bytes(int nid
, unsigned long start_pfn
,
63 unsigned long end_pfn
)
65 unsigned long nr_pages
= end_pfn
- start_pfn
;
70 return (nr_pages
+ 1) * sizeof(struct page
);
74 extern unsigned long highend_pfn
, highstart_pfn
;
76 #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
78 static void *node_remap_start_vaddr
[MAX_NUMNODES
];
79 void set_pmd_pfn(unsigned long vaddr
, unsigned long pfn
, pgprot_t flags
);
82 * Remap memory allocator
84 static unsigned long node_remap_start_pfn
[MAX_NUMNODES
];
85 static void *node_remap_end_vaddr
[MAX_NUMNODES
];
86 static void *node_remap_alloc_vaddr
[MAX_NUMNODES
];
89 * alloc_remap - Allocate remapped memory
90 * @nid: NUMA node to allocate memory from
91 * @size: The size of allocation
93 * Allocate @size bytes from the remap area of NUMA node @nid. The
94 * size of the remap area is predetermined by init_alloc_remap() and
95 * only the callers considered there should call this function. For
96 * more info, please read the comment on top of init_alloc_remap().
98 * The caller must be ready to handle allocation failure from this
99 * function and fall back to regular memory allocator in such cases.
102 * Single CPU early boot context.
105 * Pointer to the allocated memory on success, %NULL on failure.
107 void *alloc_remap(int nid
, unsigned long size
)
109 void *allocation
= node_remap_alloc_vaddr
[nid
];
111 size
= ALIGN(size
, L1_CACHE_BYTES
);
113 if (!allocation
|| (allocation
+ size
) > node_remap_end_vaddr
[nid
])
116 node_remap_alloc_vaddr
[nid
] += size
;
117 memset(allocation
, 0, size
);
122 #ifdef CONFIG_HIBERNATION
124 * resume_map_numa_kva - add KVA mapping to the temporary page tables created
125 * during resume from hibernation
126 * @pgd_base - temporary resume page directory
128 void resume_map_numa_kva(pgd_t
*pgd_base
)
132 for_each_online_node(node
) {
133 unsigned long start_va
, start_pfn
, nr_pages
, pfn
;
135 start_va
= (unsigned long)node_remap_start_vaddr
[node
];
136 start_pfn
= node_remap_start_pfn
[node
];
137 nr_pages
= (node_remap_end_vaddr
[node
] -
138 node_remap_start_vaddr
[node
]) >> PAGE_SHIFT
;
140 printk(KERN_DEBUG
"%s: node %d\n", __func__
, node
);
142 for (pfn
= 0; pfn
< nr_pages
; pfn
+= PTRS_PER_PTE
) {
143 unsigned long vaddr
= start_va
+ (pfn
<< PAGE_SHIFT
);
144 pgd_t
*pgd
= pgd_base
+ pgd_index(vaddr
);
145 pud_t
*pud
= pud_offset(pgd
, vaddr
);
146 pmd_t
*pmd
= pmd_offset(pud
, vaddr
);
148 set_pmd(pmd
, pfn_pmd(start_pfn
+ pfn
,
149 PAGE_KERNEL_LARGE_EXEC
));
151 printk(KERN_DEBUG
"%s: %08lx -> pfn %08lx\n",
152 __func__
, vaddr
, start_pfn
+ pfn
);
159 * init_alloc_remap - Initialize remap allocator for a NUMA node
160 * @nid: NUMA node to initizlie remap allocator for
162 * NUMA nodes may end up without any lowmem. As allocating pgdat and
163 * memmap on a different node with lowmem is inefficient, a special
164 * remap allocator is implemented which can be used by alloc_remap().
166 * For each node, the amount of memory which will be necessary for
167 * pgdat and memmap is calculated and two memory areas of the size are
168 * allocated - one in the node and the other in lowmem; then, the area
169 * in the node is remapped to the lowmem area.
171 * As pgdat and memmap must be allocated in lowmem anyway, this
172 * doesn't waste lowmem address space; however, the actual lowmem
173 * which gets remapped over is wasted. The amount shouldn't be
174 * problematic on machines this feature will be used.
176 * Initialization failure isn't fatal. alloc_remap() is used
177 * opportunistically and the callers will fall back to other memory
178 * allocation mechanisms on failure.
180 void __init
init_alloc_remap(int nid
, u64 start
, u64 end
)
182 unsigned long start_pfn
= start
>> PAGE_SHIFT
;
183 unsigned long end_pfn
= end
>> PAGE_SHIFT
;
184 unsigned long size
, pfn
;
185 u64 node_pa
, remap_pa
;
189 * The acpi/srat node info can show hot-add memroy zones where
190 * memory could be added but not currently present.
192 printk(KERN_DEBUG
"node %d pfn: [%lx - %lx]\n",
193 nid
, start_pfn
, end_pfn
);
195 /* calculate the necessary space aligned to large page size */
196 size
= node_memmap_size_bytes(nid
, start_pfn
, end_pfn
);
197 size
+= ALIGN(sizeof(pg_data_t
), PAGE_SIZE
);
198 size
= ALIGN(size
, LARGE_PAGE_BYTES
);
200 /* allocate node memory and the lowmem remap area */
201 node_pa
= memblock_find_in_range(start
, end
, size
, LARGE_PAGE_BYTES
);
202 if (node_pa
== MEMBLOCK_ERROR
) {
203 pr_warning("remap_alloc: failed to allocate %lu bytes for node %d\n",
207 memblock_x86_reserve_range(node_pa
, node_pa
+ size
, "KVA RAM");
209 remap_pa
= memblock_find_in_range(min_low_pfn
<< PAGE_SHIFT
,
210 max_low_pfn
<< PAGE_SHIFT
,
211 size
, LARGE_PAGE_BYTES
);
212 if (remap_pa
== MEMBLOCK_ERROR
) {
213 pr_warning("remap_alloc: failed to allocate %lu bytes remap area for node %d\n",
215 memblock_x86_free_range(node_pa
, node_pa
+ size
);
218 memblock_x86_reserve_range(remap_pa
, remap_pa
+ size
, "KVA PG");
219 remap_va
= phys_to_virt(remap_pa
);
221 /* perform actual remap */
222 for (pfn
= 0; pfn
< size
>> PAGE_SHIFT
; pfn
+= PTRS_PER_PTE
)
223 set_pmd_pfn((unsigned long)remap_va
+ (pfn
<< PAGE_SHIFT
),
224 (node_pa
>> PAGE_SHIFT
) + pfn
,
227 /* initialize remap allocator parameters */
228 node_remap_start_pfn
[nid
] = node_pa
>> PAGE_SHIFT
;
229 node_remap_start_vaddr
[nid
] = remap_va
;
230 node_remap_end_vaddr
[nid
] = remap_va
+ size
;
231 node_remap_alloc_vaddr
[nid
] = remap_va
;
233 printk(KERN_DEBUG
"remap_alloc: node %d [%08llx-%08llx) -> [%p-%p)\n",
234 nid
, node_pa
, node_pa
+ size
, remap_va
, remap_va
+ size
);
237 void __init
initmem_init(void)
241 #ifdef CONFIG_HIGHMEM
242 highstart_pfn
= highend_pfn
= max_pfn
;
243 if (max_pfn
> max_low_pfn
)
244 highstart_pfn
= max_low_pfn
;
245 printk(KERN_NOTICE
"%ldMB HIGHMEM available.\n",
246 pages_to_mb(highend_pfn
- highstart_pfn
));
247 num_physpages
= highend_pfn
;
248 high_memory
= (void *) __va(highstart_pfn
* PAGE_SIZE
- 1) + 1;
250 num_physpages
= max_low_pfn
;
251 high_memory
= (void *) __va(max_low_pfn
* PAGE_SIZE
- 1) + 1;
253 printk(KERN_NOTICE
"%ldMB LOWMEM available.\n",
254 pages_to_mb(max_low_pfn
));
255 printk(KERN_DEBUG
"max_low_pfn = %lx, highstart_pfn = %lx\n",
256 max_low_pfn
, highstart_pfn
);
258 printk(KERN_DEBUG
"Low memory ends at vaddr %08lx\n",
259 (ulong
) pfn_to_kaddr(max_low_pfn
));
261 printk(KERN_DEBUG
"High memory starts at vaddr %08lx\n",
262 (ulong
) pfn_to_kaddr(highstart_pfn
));
264 setup_bootmem_allocator();