Merge tag 'for-linus-20171218' of git://git.infradead.org/linux-mtd
[linux/fpc-iii.git] / mm / ksm.c
blobbe8f4576f84211499e269f4c69f993a975a8e0a9
1 /*
2 * Memory merging support.
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
14 * This work is licensed under the terms of the GNU GPL, version 2.
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/jhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
43 #include <asm/tlbflush.h>
44 #include "internal.h"
46 #ifdef CONFIG_NUMA
47 #define NUMA(x) (x)
48 #define DO_NUMA(x) do { (x); } while (0)
49 #else
50 #define NUMA(x) (0)
51 #define DO_NUMA(x) do { } while (0)
52 #endif
55 * A few notes about the KSM scanning process,
56 * to make it easier to understand the data structures below:
58 * In order to reduce excessive scanning, KSM sorts the memory pages by their
59 * contents into a data structure that holds pointers to the pages' locations.
61 * Since the contents of the pages may change at any moment, KSM cannot just
62 * insert the pages into a normal sorted tree and expect it to find anything.
63 * Therefore KSM uses two data structures - the stable and the unstable tree.
65 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66 * by their contents. Because each such page is write-protected, searching on
67 * this tree is fully assured to be working (except when pages are unmapped),
68 * and therefore this tree is called the stable tree.
70 * In addition to the stable tree, KSM uses a second data structure called the
71 * unstable tree: this tree holds pointers to pages which have been found to
72 * be "unchanged for a period of time". The unstable tree sorts these pages
73 * by their contents, but since they are not write-protected, KSM cannot rely
74 * upon the unstable tree to work correctly - the unstable tree is liable to
75 * be corrupted as its contents are modified, and so it is called unstable.
77 * KSM solves this problem by several techniques:
79 * 1) The unstable tree is flushed every time KSM completes scanning all
80 * memory areas, and then the tree is rebuilt again from the beginning.
81 * 2) KSM will only insert into the unstable tree, pages whose hash value
82 * has not changed since the previous scan of all memory areas.
83 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84 * colors of the nodes and not on their contents, assuring that even when
85 * the tree gets "corrupted" it won't get out of balance, so scanning time
86 * remains the same (also, searching and inserting nodes in an rbtree uses
87 * the same algorithm, so we have no overhead when we flush and rebuild).
88 * 4) KSM never flushes the stable tree, which means that even if it were to
89 * take 10 attempts to find a page in the unstable tree, once it is found,
90 * it is secured in the stable tree. (When we scan a new page, we first
91 * compare it against the stable tree, and then against the unstable tree.)
93 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94 * stable trees and multiple unstable trees: one of each for each NUMA node.
97 /**
98 * struct mm_slot - ksm information per mm that is being scanned
99 * @link: link to the mm_slots hash list
100 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
101 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
102 * @mm: the mm that this information is valid for
104 struct mm_slot {
105 struct hlist_node link;
106 struct list_head mm_list;
107 struct rmap_item *rmap_list;
108 struct mm_struct *mm;
112 * struct ksm_scan - cursor for scanning
113 * @mm_slot: the current mm_slot we are scanning
114 * @address: the next address inside that to be scanned
115 * @rmap_list: link to the next rmap to be scanned in the rmap_list
116 * @seqnr: count of completed full scans (needed when removing unstable node)
118 * There is only the one ksm_scan instance of this cursor structure.
120 struct ksm_scan {
121 struct mm_slot *mm_slot;
122 unsigned long address;
123 struct rmap_item **rmap_list;
124 unsigned long seqnr;
128 * struct stable_node - node of the stable rbtree
129 * @node: rb node of this ksm page in the stable tree
130 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
131 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
132 * @list: linked into migrate_nodes, pending placement in the proper node tree
133 * @hlist: hlist head of rmap_items using this ksm page
134 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
135 * @chain_prune_time: time of the last full garbage collection
136 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
137 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
139 struct stable_node {
140 union {
141 struct rb_node node; /* when node of stable tree */
142 struct { /* when listed for migration */
143 struct list_head *head;
144 struct {
145 struct hlist_node hlist_dup;
146 struct list_head list;
150 struct hlist_head hlist;
151 union {
152 unsigned long kpfn;
153 unsigned long chain_prune_time;
156 * STABLE_NODE_CHAIN can be any negative number in
157 * rmap_hlist_len negative range, but better not -1 to be able
158 * to reliably detect underflows.
160 #define STABLE_NODE_CHAIN -1024
161 int rmap_hlist_len;
162 #ifdef CONFIG_NUMA
163 int nid;
164 #endif
168 * struct rmap_item - reverse mapping item for virtual addresses
169 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
170 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
171 * @nid: NUMA node id of unstable tree in which linked (may not match page)
172 * @mm: the memory structure this rmap_item is pointing into
173 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
174 * @oldchecksum: previous checksum of the page at that virtual address
175 * @node: rb node of this rmap_item in the unstable tree
176 * @head: pointer to stable_node heading this list in the stable tree
177 * @hlist: link into hlist of rmap_items hanging off that stable_node
179 struct rmap_item {
180 struct rmap_item *rmap_list;
181 union {
182 struct anon_vma *anon_vma; /* when stable */
183 #ifdef CONFIG_NUMA
184 int nid; /* when node of unstable tree */
185 #endif
187 struct mm_struct *mm;
188 unsigned long address; /* + low bits used for flags below */
189 unsigned int oldchecksum; /* when unstable */
190 union {
191 struct rb_node node; /* when node of unstable tree */
192 struct { /* when listed from stable tree */
193 struct stable_node *head;
194 struct hlist_node hlist;
199 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
200 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
201 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
203 /* The stable and unstable tree heads */
204 static struct rb_root one_stable_tree[1] = { RB_ROOT };
205 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
206 static struct rb_root *root_stable_tree = one_stable_tree;
207 static struct rb_root *root_unstable_tree = one_unstable_tree;
209 /* Recently migrated nodes of stable tree, pending proper placement */
210 static LIST_HEAD(migrate_nodes);
211 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
213 #define MM_SLOTS_HASH_BITS 10
214 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
216 static struct mm_slot ksm_mm_head = {
217 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
219 static struct ksm_scan ksm_scan = {
220 .mm_slot = &ksm_mm_head,
223 static struct kmem_cache *rmap_item_cache;
224 static struct kmem_cache *stable_node_cache;
225 static struct kmem_cache *mm_slot_cache;
227 /* The number of nodes in the stable tree */
228 static unsigned long ksm_pages_shared;
230 /* The number of page slots additionally sharing those nodes */
231 static unsigned long ksm_pages_sharing;
233 /* The number of nodes in the unstable tree */
234 static unsigned long ksm_pages_unshared;
236 /* The number of rmap_items in use: to calculate pages_volatile */
237 static unsigned long ksm_rmap_items;
239 /* The number of stable_node chains */
240 static unsigned long ksm_stable_node_chains;
242 /* The number of stable_node dups linked to the stable_node chains */
243 static unsigned long ksm_stable_node_dups;
245 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
246 static int ksm_stable_node_chains_prune_millisecs = 2000;
248 /* Maximum number of page slots sharing a stable node */
249 static int ksm_max_page_sharing = 256;
251 /* Number of pages ksmd should scan in one batch */
252 static unsigned int ksm_thread_pages_to_scan = 100;
254 /* Milliseconds ksmd should sleep between batches */
255 static unsigned int ksm_thread_sleep_millisecs = 20;
257 /* Checksum of an empty (zeroed) page */
258 static unsigned int zero_checksum __read_mostly;
260 /* Whether to merge empty (zeroed) pages with actual zero pages */
261 static bool ksm_use_zero_pages __read_mostly;
263 #ifdef CONFIG_NUMA
264 /* Zeroed when merging across nodes is not allowed */
265 static unsigned int ksm_merge_across_nodes = 1;
266 static int ksm_nr_node_ids = 1;
267 #else
268 #define ksm_merge_across_nodes 1U
269 #define ksm_nr_node_ids 1
270 #endif
272 #define KSM_RUN_STOP 0
273 #define KSM_RUN_MERGE 1
274 #define KSM_RUN_UNMERGE 2
275 #define KSM_RUN_OFFLINE 4
276 static unsigned long ksm_run = KSM_RUN_STOP;
277 static void wait_while_offlining(void);
279 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
280 static DEFINE_MUTEX(ksm_thread_mutex);
281 static DEFINE_SPINLOCK(ksm_mmlist_lock);
283 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
284 sizeof(struct __struct), __alignof__(struct __struct),\
285 (__flags), NULL)
287 static int __init ksm_slab_init(void)
289 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
290 if (!rmap_item_cache)
291 goto out;
293 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
294 if (!stable_node_cache)
295 goto out_free1;
297 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
298 if (!mm_slot_cache)
299 goto out_free2;
301 return 0;
303 out_free2:
304 kmem_cache_destroy(stable_node_cache);
305 out_free1:
306 kmem_cache_destroy(rmap_item_cache);
307 out:
308 return -ENOMEM;
311 static void __init ksm_slab_free(void)
313 kmem_cache_destroy(mm_slot_cache);
314 kmem_cache_destroy(stable_node_cache);
315 kmem_cache_destroy(rmap_item_cache);
316 mm_slot_cache = NULL;
319 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
321 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
324 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
326 return dup->head == STABLE_NODE_DUP_HEAD;
329 static inline void stable_node_chain_add_dup(struct stable_node *dup,
330 struct stable_node *chain)
332 VM_BUG_ON(is_stable_node_dup(dup));
333 dup->head = STABLE_NODE_DUP_HEAD;
334 VM_BUG_ON(!is_stable_node_chain(chain));
335 hlist_add_head(&dup->hlist_dup, &chain->hlist);
336 ksm_stable_node_dups++;
339 static inline void __stable_node_dup_del(struct stable_node *dup)
341 VM_BUG_ON(!is_stable_node_dup(dup));
342 hlist_del(&dup->hlist_dup);
343 ksm_stable_node_dups--;
346 static inline void stable_node_dup_del(struct stable_node *dup)
348 VM_BUG_ON(is_stable_node_chain(dup));
349 if (is_stable_node_dup(dup))
350 __stable_node_dup_del(dup);
351 else
352 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
353 #ifdef CONFIG_DEBUG_VM
354 dup->head = NULL;
355 #endif
358 static inline struct rmap_item *alloc_rmap_item(void)
360 struct rmap_item *rmap_item;
362 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
363 __GFP_NORETRY | __GFP_NOWARN);
364 if (rmap_item)
365 ksm_rmap_items++;
366 return rmap_item;
369 static inline void free_rmap_item(struct rmap_item *rmap_item)
371 ksm_rmap_items--;
372 rmap_item->mm = NULL; /* debug safety */
373 kmem_cache_free(rmap_item_cache, rmap_item);
376 static inline struct stable_node *alloc_stable_node(void)
379 * The allocation can take too long with GFP_KERNEL when memory is under
380 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
381 * grants access to memory reserves, helping to avoid this problem.
383 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
386 static inline void free_stable_node(struct stable_node *stable_node)
388 VM_BUG_ON(stable_node->rmap_hlist_len &&
389 !is_stable_node_chain(stable_node));
390 kmem_cache_free(stable_node_cache, stable_node);
393 static inline struct mm_slot *alloc_mm_slot(void)
395 if (!mm_slot_cache) /* initialization failed */
396 return NULL;
397 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
400 static inline void free_mm_slot(struct mm_slot *mm_slot)
402 kmem_cache_free(mm_slot_cache, mm_slot);
405 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
407 struct mm_slot *slot;
409 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
410 if (slot->mm == mm)
411 return slot;
413 return NULL;
416 static void insert_to_mm_slots_hash(struct mm_struct *mm,
417 struct mm_slot *mm_slot)
419 mm_slot->mm = mm;
420 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
424 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
425 * page tables after it has passed through ksm_exit() - which, if necessary,
426 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
427 * a special flag: they can just back out as soon as mm_users goes to zero.
428 * ksm_test_exit() is used throughout to make this test for exit: in some
429 * places for correctness, in some places just to avoid unnecessary work.
431 static inline bool ksm_test_exit(struct mm_struct *mm)
433 return atomic_read(&mm->mm_users) == 0;
437 * We use break_ksm to break COW on a ksm page: it's a stripped down
439 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
440 * put_page(page);
442 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
443 * in case the application has unmapped and remapped mm,addr meanwhile.
444 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
445 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
447 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
448 * of the process that owns 'vma'. We also do not want to enforce
449 * protection keys here anyway.
451 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
453 struct page *page;
454 int ret = 0;
456 do {
457 cond_resched();
458 page = follow_page(vma, addr,
459 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
460 if (IS_ERR_OR_NULL(page))
461 break;
462 if (PageKsm(page))
463 ret = handle_mm_fault(vma, addr,
464 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
465 else
466 ret = VM_FAULT_WRITE;
467 put_page(page);
468 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
470 * We must loop because handle_mm_fault() may back out if there's
471 * any difficulty e.g. if pte accessed bit gets updated concurrently.
473 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
474 * COW has been broken, even if the vma does not permit VM_WRITE;
475 * but note that a concurrent fault might break PageKsm for us.
477 * VM_FAULT_SIGBUS could occur if we race with truncation of the
478 * backing file, which also invalidates anonymous pages: that's
479 * okay, that truncation will have unmapped the PageKsm for us.
481 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
482 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
483 * current task has TIF_MEMDIE set, and will be OOM killed on return
484 * to user; and ksmd, having no mm, would never be chosen for that.
486 * But if the mm is in a limited mem_cgroup, then the fault may fail
487 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
488 * even ksmd can fail in this way - though it's usually breaking ksm
489 * just to undo a merge it made a moment before, so unlikely to oom.
491 * That's a pity: we might therefore have more kernel pages allocated
492 * than we're counting as nodes in the stable tree; but ksm_do_scan
493 * will retry to break_cow on each pass, so should recover the page
494 * in due course. The important thing is to not let VM_MERGEABLE
495 * be cleared while any such pages might remain in the area.
497 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
500 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
501 unsigned long addr)
503 struct vm_area_struct *vma;
504 if (ksm_test_exit(mm))
505 return NULL;
506 vma = find_vma(mm, addr);
507 if (!vma || vma->vm_start > addr)
508 return NULL;
509 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
510 return NULL;
511 return vma;
514 static void break_cow(struct rmap_item *rmap_item)
516 struct mm_struct *mm = rmap_item->mm;
517 unsigned long addr = rmap_item->address;
518 struct vm_area_struct *vma;
521 * It is not an accident that whenever we want to break COW
522 * to undo, we also need to drop a reference to the anon_vma.
524 put_anon_vma(rmap_item->anon_vma);
526 down_read(&mm->mmap_sem);
527 vma = find_mergeable_vma(mm, addr);
528 if (vma)
529 break_ksm(vma, addr);
530 up_read(&mm->mmap_sem);
533 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
535 struct mm_struct *mm = rmap_item->mm;
536 unsigned long addr = rmap_item->address;
537 struct vm_area_struct *vma;
538 struct page *page;
540 down_read(&mm->mmap_sem);
541 vma = find_mergeable_vma(mm, addr);
542 if (!vma)
543 goto out;
545 page = follow_page(vma, addr, FOLL_GET);
546 if (IS_ERR_OR_NULL(page))
547 goto out;
548 if (PageAnon(page)) {
549 flush_anon_page(vma, page, addr);
550 flush_dcache_page(page);
551 } else {
552 put_page(page);
553 out:
554 page = NULL;
556 up_read(&mm->mmap_sem);
557 return page;
561 * This helper is used for getting right index into array of tree roots.
562 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
563 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
564 * every node has its own stable and unstable tree.
566 static inline int get_kpfn_nid(unsigned long kpfn)
568 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
571 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
572 struct rb_root *root)
574 struct stable_node *chain = alloc_stable_node();
575 VM_BUG_ON(is_stable_node_chain(dup));
576 if (likely(chain)) {
577 INIT_HLIST_HEAD(&chain->hlist);
578 chain->chain_prune_time = jiffies;
579 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
580 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
581 chain->nid = -1; /* debug */
582 #endif
583 ksm_stable_node_chains++;
586 * Put the stable node chain in the first dimension of
587 * the stable tree and at the same time remove the old
588 * stable node.
590 rb_replace_node(&dup->node, &chain->node, root);
593 * Move the old stable node to the second dimension
594 * queued in the hlist_dup. The invariant is that all
595 * dup stable_nodes in the chain->hlist point to pages
596 * that are wrprotected and have the exact same
597 * content.
599 stable_node_chain_add_dup(dup, chain);
601 return chain;
604 static inline void free_stable_node_chain(struct stable_node *chain,
605 struct rb_root *root)
607 rb_erase(&chain->node, root);
608 free_stable_node(chain);
609 ksm_stable_node_chains--;
612 static void remove_node_from_stable_tree(struct stable_node *stable_node)
614 struct rmap_item *rmap_item;
616 /* check it's not STABLE_NODE_CHAIN or negative */
617 BUG_ON(stable_node->rmap_hlist_len < 0);
619 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
620 if (rmap_item->hlist.next)
621 ksm_pages_sharing--;
622 else
623 ksm_pages_shared--;
624 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
625 stable_node->rmap_hlist_len--;
626 put_anon_vma(rmap_item->anon_vma);
627 rmap_item->address &= PAGE_MASK;
628 cond_resched();
632 * We need the second aligned pointer of the migrate_nodes
633 * list_head to stay clear from the rb_parent_color union
634 * (aligned and different than any node) and also different
635 * from &migrate_nodes. This will verify that future list.h changes
636 * don't break STABLE_NODE_DUP_HEAD.
638 #if GCC_VERSION >= 40903 /* only recent gcc can handle it */
639 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
640 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
641 #endif
643 if (stable_node->head == &migrate_nodes)
644 list_del(&stable_node->list);
645 else
646 stable_node_dup_del(stable_node);
647 free_stable_node(stable_node);
651 * get_ksm_page: checks if the page indicated by the stable node
652 * is still its ksm page, despite having held no reference to it.
653 * In which case we can trust the content of the page, and it
654 * returns the gotten page; but if the page has now been zapped,
655 * remove the stale node from the stable tree and return NULL.
656 * But beware, the stable node's page might be being migrated.
658 * You would expect the stable_node to hold a reference to the ksm page.
659 * But if it increments the page's count, swapping out has to wait for
660 * ksmd to come around again before it can free the page, which may take
661 * seconds or even minutes: much too unresponsive. So instead we use a
662 * "keyhole reference": access to the ksm page from the stable node peeps
663 * out through its keyhole to see if that page still holds the right key,
664 * pointing back to this stable node. This relies on freeing a PageAnon
665 * page to reset its page->mapping to NULL, and relies on no other use of
666 * a page to put something that might look like our key in page->mapping.
667 * is on its way to being freed; but it is an anomaly to bear in mind.
669 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
671 struct page *page;
672 void *expected_mapping;
673 unsigned long kpfn;
675 expected_mapping = (void *)((unsigned long)stable_node |
676 PAGE_MAPPING_KSM);
677 again:
678 kpfn = READ_ONCE(stable_node->kpfn);
679 page = pfn_to_page(kpfn);
682 * page is computed from kpfn, so on most architectures reading
683 * page->mapping is naturally ordered after reading node->kpfn,
684 * but on Alpha we need to be more careful.
686 smp_read_barrier_depends();
687 if (READ_ONCE(page->mapping) != expected_mapping)
688 goto stale;
691 * We cannot do anything with the page while its refcount is 0.
692 * Usually 0 means free, or tail of a higher-order page: in which
693 * case this node is no longer referenced, and should be freed;
694 * however, it might mean that the page is under page_freeze_refs().
695 * The __remove_mapping() case is easy, again the node is now stale;
696 * but if page is swapcache in migrate_page_move_mapping(), it might
697 * still be our page, in which case it's essential to keep the node.
699 while (!get_page_unless_zero(page)) {
701 * Another check for page->mapping != expected_mapping would
702 * work here too. We have chosen the !PageSwapCache test to
703 * optimize the common case, when the page is or is about to
704 * be freed: PageSwapCache is cleared (under spin_lock_irq)
705 * in the freeze_refs section of __remove_mapping(); but Anon
706 * page->mapping reset to NULL later, in free_pages_prepare().
708 if (!PageSwapCache(page))
709 goto stale;
710 cpu_relax();
713 if (READ_ONCE(page->mapping) != expected_mapping) {
714 put_page(page);
715 goto stale;
718 if (lock_it) {
719 lock_page(page);
720 if (READ_ONCE(page->mapping) != expected_mapping) {
721 unlock_page(page);
722 put_page(page);
723 goto stale;
726 return page;
728 stale:
730 * We come here from above when page->mapping or !PageSwapCache
731 * suggests that the node is stale; but it might be under migration.
732 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
733 * before checking whether node->kpfn has been changed.
735 smp_rmb();
736 if (READ_ONCE(stable_node->kpfn) != kpfn)
737 goto again;
738 remove_node_from_stable_tree(stable_node);
739 return NULL;
743 * Removing rmap_item from stable or unstable tree.
744 * This function will clean the information from the stable/unstable tree.
746 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
748 if (rmap_item->address & STABLE_FLAG) {
749 struct stable_node *stable_node;
750 struct page *page;
752 stable_node = rmap_item->head;
753 page = get_ksm_page(stable_node, true);
754 if (!page)
755 goto out;
757 hlist_del(&rmap_item->hlist);
758 unlock_page(page);
759 put_page(page);
761 if (!hlist_empty(&stable_node->hlist))
762 ksm_pages_sharing--;
763 else
764 ksm_pages_shared--;
765 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
766 stable_node->rmap_hlist_len--;
768 put_anon_vma(rmap_item->anon_vma);
769 rmap_item->address &= PAGE_MASK;
771 } else if (rmap_item->address & UNSTABLE_FLAG) {
772 unsigned char age;
774 * Usually ksmd can and must skip the rb_erase, because
775 * root_unstable_tree was already reset to RB_ROOT.
776 * But be careful when an mm is exiting: do the rb_erase
777 * if this rmap_item was inserted by this scan, rather
778 * than left over from before.
780 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
781 BUG_ON(age > 1);
782 if (!age)
783 rb_erase(&rmap_item->node,
784 root_unstable_tree + NUMA(rmap_item->nid));
785 ksm_pages_unshared--;
786 rmap_item->address &= PAGE_MASK;
788 out:
789 cond_resched(); /* we're called from many long loops */
792 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
793 struct rmap_item **rmap_list)
795 while (*rmap_list) {
796 struct rmap_item *rmap_item = *rmap_list;
797 *rmap_list = rmap_item->rmap_list;
798 remove_rmap_item_from_tree(rmap_item);
799 free_rmap_item(rmap_item);
804 * Though it's very tempting to unmerge rmap_items from stable tree rather
805 * than check every pte of a given vma, the locking doesn't quite work for
806 * that - an rmap_item is assigned to the stable tree after inserting ksm
807 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
808 * rmap_items from parent to child at fork time (so as not to waste time
809 * if exit comes before the next scan reaches it).
811 * Similarly, although we'd like to remove rmap_items (so updating counts
812 * and freeing memory) when unmerging an area, it's easier to leave that
813 * to the next pass of ksmd - consider, for example, how ksmd might be
814 * in cmp_and_merge_page on one of the rmap_items we would be removing.
816 static int unmerge_ksm_pages(struct vm_area_struct *vma,
817 unsigned long start, unsigned long end)
819 unsigned long addr;
820 int err = 0;
822 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
823 if (ksm_test_exit(vma->vm_mm))
824 break;
825 if (signal_pending(current))
826 err = -ERESTARTSYS;
827 else
828 err = break_ksm(vma, addr);
830 return err;
833 #ifdef CONFIG_SYSFS
835 * Only called through the sysfs control interface:
837 static int remove_stable_node(struct stable_node *stable_node)
839 struct page *page;
840 int err;
842 page = get_ksm_page(stable_node, true);
843 if (!page) {
845 * get_ksm_page did remove_node_from_stable_tree itself.
847 return 0;
850 if (WARN_ON_ONCE(page_mapped(page))) {
852 * This should not happen: but if it does, just refuse to let
853 * merge_across_nodes be switched - there is no need to panic.
855 err = -EBUSY;
856 } else {
858 * The stable node did not yet appear stale to get_ksm_page(),
859 * since that allows for an unmapped ksm page to be recognized
860 * right up until it is freed; but the node is safe to remove.
861 * This page might be in a pagevec waiting to be freed,
862 * or it might be PageSwapCache (perhaps under writeback),
863 * or it might have been removed from swapcache a moment ago.
865 set_page_stable_node(page, NULL);
866 remove_node_from_stable_tree(stable_node);
867 err = 0;
870 unlock_page(page);
871 put_page(page);
872 return err;
875 static int remove_stable_node_chain(struct stable_node *stable_node,
876 struct rb_root *root)
878 struct stable_node *dup;
879 struct hlist_node *hlist_safe;
881 if (!is_stable_node_chain(stable_node)) {
882 VM_BUG_ON(is_stable_node_dup(stable_node));
883 if (remove_stable_node(stable_node))
884 return true;
885 else
886 return false;
889 hlist_for_each_entry_safe(dup, hlist_safe,
890 &stable_node->hlist, hlist_dup) {
891 VM_BUG_ON(!is_stable_node_dup(dup));
892 if (remove_stable_node(dup))
893 return true;
895 BUG_ON(!hlist_empty(&stable_node->hlist));
896 free_stable_node_chain(stable_node, root);
897 return false;
900 static int remove_all_stable_nodes(void)
902 struct stable_node *stable_node, *next;
903 int nid;
904 int err = 0;
906 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
907 while (root_stable_tree[nid].rb_node) {
908 stable_node = rb_entry(root_stable_tree[nid].rb_node,
909 struct stable_node, node);
910 if (remove_stable_node_chain(stable_node,
911 root_stable_tree + nid)) {
912 err = -EBUSY;
913 break; /* proceed to next nid */
915 cond_resched();
918 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
919 if (remove_stable_node(stable_node))
920 err = -EBUSY;
921 cond_resched();
923 return err;
926 static int unmerge_and_remove_all_rmap_items(void)
928 struct mm_slot *mm_slot;
929 struct mm_struct *mm;
930 struct vm_area_struct *vma;
931 int err = 0;
933 spin_lock(&ksm_mmlist_lock);
934 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
935 struct mm_slot, mm_list);
936 spin_unlock(&ksm_mmlist_lock);
938 for (mm_slot = ksm_scan.mm_slot;
939 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
940 mm = mm_slot->mm;
941 down_read(&mm->mmap_sem);
942 for (vma = mm->mmap; vma; vma = vma->vm_next) {
943 if (ksm_test_exit(mm))
944 break;
945 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
946 continue;
947 err = unmerge_ksm_pages(vma,
948 vma->vm_start, vma->vm_end);
949 if (err)
950 goto error;
953 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
954 up_read(&mm->mmap_sem);
956 spin_lock(&ksm_mmlist_lock);
957 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
958 struct mm_slot, mm_list);
959 if (ksm_test_exit(mm)) {
960 hash_del(&mm_slot->link);
961 list_del(&mm_slot->mm_list);
962 spin_unlock(&ksm_mmlist_lock);
964 free_mm_slot(mm_slot);
965 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
966 mmdrop(mm);
967 } else
968 spin_unlock(&ksm_mmlist_lock);
971 /* Clean up stable nodes, but don't worry if some are still busy */
972 remove_all_stable_nodes();
973 ksm_scan.seqnr = 0;
974 return 0;
976 error:
977 up_read(&mm->mmap_sem);
978 spin_lock(&ksm_mmlist_lock);
979 ksm_scan.mm_slot = &ksm_mm_head;
980 spin_unlock(&ksm_mmlist_lock);
981 return err;
983 #endif /* CONFIG_SYSFS */
985 static u32 calc_checksum(struct page *page)
987 u32 checksum;
988 void *addr = kmap_atomic(page);
989 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
990 kunmap_atomic(addr);
991 return checksum;
994 static int memcmp_pages(struct page *page1, struct page *page2)
996 char *addr1, *addr2;
997 int ret;
999 addr1 = kmap_atomic(page1);
1000 addr2 = kmap_atomic(page2);
1001 ret = memcmp(addr1, addr2, PAGE_SIZE);
1002 kunmap_atomic(addr2);
1003 kunmap_atomic(addr1);
1004 return ret;
1007 static inline int pages_identical(struct page *page1, struct page *page2)
1009 return !memcmp_pages(page1, page2);
1012 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1013 pte_t *orig_pte)
1015 struct mm_struct *mm = vma->vm_mm;
1016 struct page_vma_mapped_walk pvmw = {
1017 .page = page,
1018 .vma = vma,
1020 int swapped;
1021 int err = -EFAULT;
1022 unsigned long mmun_start; /* For mmu_notifiers */
1023 unsigned long mmun_end; /* For mmu_notifiers */
1025 pvmw.address = page_address_in_vma(page, vma);
1026 if (pvmw.address == -EFAULT)
1027 goto out;
1029 BUG_ON(PageTransCompound(page));
1031 mmun_start = pvmw.address;
1032 mmun_end = pvmw.address + PAGE_SIZE;
1033 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1035 if (!page_vma_mapped_walk(&pvmw))
1036 goto out_mn;
1037 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1038 goto out_unlock;
1040 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1041 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1042 mm_tlb_flush_pending(mm)) {
1043 pte_t entry;
1045 swapped = PageSwapCache(page);
1046 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1048 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1049 * take any lock, therefore the check that we are going to make
1050 * with the pagecount against the mapcount is racey and
1051 * O_DIRECT can happen right after the check.
1052 * So we clear the pte and flush the tlb before the check
1053 * this assure us that no O_DIRECT can happen after the check
1054 * or in the middle of the check.
1056 * No need to notify as we are downgrading page table to read
1057 * only not changing it to point to a new page.
1059 * See Documentation/vm/mmu_notifier.txt
1061 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1063 * Check that no O_DIRECT or similar I/O is in progress on the
1064 * page
1066 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1067 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1068 goto out_unlock;
1070 if (pte_dirty(entry))
1071 set_page_dirty(page);
1073 if (pte_protnone(entry))
1074 entry = pte_mkclean(pte_clear_savedwrite(entry));
1075 else
1076 entry = pte_mkclean(pte_wrprotect(entry));
1077 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1079 *orig_pte = *pvmw.pte;
1080 err = 0;
1082 out_unlock:
1083 page_vma_mapped_walk_done(&pvmw);
1084 out_mn:
1085 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1086 out:
1087 return err;
1091 * replace_page - replace page in vma by new ksm page
1092 * @vma: vma that holds the pte pointing to page
1093 * @page: the page we are replacing by kpage
1094 * @kpage: the ksm page we replace page by
1095 * @orig_pte: the original value of the pte
1097 * Returns 0 on success, -EFAULT on failure.
1099 static int replace_page(struct vm_area_struct *vma, struct page *page,
1100 struct page *kpage, pte_t orig_pte)
1102 struct mm_struct *mm = vma->vm_mm;
1103 pmd_t *pmd;
1104 pte_t *ptep;
1105 pte_t newpte;
1106 spinlock_t *ptl;
1107 unsigned long addr;
1108 int err = -EFAULT;
1109 unsigned long mmun_start; /* For mmu_notifiers */
1110 unsigned long mmun_end; /* For mmu_notifiers */
1112 addr = page_address_in_vma(page, vma);
1113 if (addr == -EFAULT)
1114 goto out;
1116 pmd = mm_find_pmd(mm, addr);
1117 if (!pmd)
1118 goto out;
1120 mmun_start = addr;
1121 mmun_end = addr + PAGE_SIZE;
1122 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1124 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1125 if (!pte_same(*ptep, orig_pte)) {
1126 pte_unmap_unlock(ptep, ptl);
1127 goto out_mn;
1131 * No need to check ksm_use_zero_pages here: we can only have a
1132 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1134 if (!is_zero_pfn(page_to_pfn(kpage))) {
1135 get_page(kpage);
1136 page_add_anon_rmap(kpage, vma, addr, false);
1137 newpte = mk_pte(kpage, vma->vm_page_prot);
1138 } else {
1139 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1140 vma->vm_page_prot));
1143 flush_cache_page(vma, addr, pte_pfn(*ptep));
1145 * No need to notify as we are replacing a read only page with another
1146 * read only page with the same content.
1148 * See Documentation/vm/mmu_notifier.txt
1150 ptep_clear_flush(vma, addr, ptep);
1151 set_pte_at_notify(mm, addr, ptep, newpte);
1153 page_remove_rmap(page, false);
1154 if (!page_mapped(page))
1155 try_to_free_swap(page);
1156 put_page(page);
1158 pte_unmap_unlock(ptep, ptl);
1159 err = 0;
1160 out_mn:
1161 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1162 out:
1163 return err;
1167 * try_to_merge_one_page - take two pages and merge them into one
1168 * @vma: the vma that holds the pte pointing to page
1169 * @page: the PageAnon page that we want to replace with kpage
1170 * @kpage: the PageKsm page that we want to map instead of page,
1171 * or NULL the first time when we want to use page as kpage.
1173 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1175 static int try_to_merge_one_page(struct vm_area_struct *vma,
1176 struct page *page, struct page *kpage)
1178 pte_t orig_pte = __pte(0);
1179 int err = -EFAULT;
1181 if (page == kpage) /* ksm page forked */
1182 return 0;
1184 if (!PageAnon(page))
1185 goto out;
1188 * We need the page lock to read a stable PageSwapCache in
1189 * write_protect_page(). We use trylock_page() instead of
1190 * lock_page() because we don't want to wait here - we
1191 * prefer to continue scanning and merging different pages,
1192 * then come back to this page when it is unlocked.
1194 if (!trylock_page(page))
1195 goto out;
1197 if (PageTransCompound(page)) {
1198 if (split_huge_page(page))
1199 goto out_unlock;
1203 * If this anonymous page is mapped only here, its pte may need
1204 * to be write-protected. If it's mapped elsewhere, all of its
1205 * ptes are necessarily already write-protected. But in either
1206 * case, we need to lock and check page_count is not raised.
1208 if (write_protect_page(vma, page, &orig_pte) == 0) {
1209 if (!kpage) {
1211 * While we hold page lock, upgrade page from
1212 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1213 * stable_tree_insert() will update stable_node.
1215 set_page_stable_node(page, NULL);
1216 mark_page_accessed(page);
1218 * Page reclaim just frees a clean page with no dirty
1219 * ptes: make sure that the ksm page would be swapped.
1221 if (!PageDirty(page))
1222 SetPageDirty(page);
1223 err = 0;
1224 } else if (pages_identical(page, kpage))
1225 err = replace_page(vma, page, kpage, orig_pte);
1228 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1229 munlock_vma_page(page);
1230 if (!PageMlocked(kpage)) {
1231 unlock_page(page);
1232 lock_page(kpage);
1233 mlock_vma_page(kpage);
1234 page = kpage; /* for final unlock */
1238 out_unlock:
1239 unlock_page(page);
1240 out:
1241 return err;
1245 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1246 * but no new kernel page is allocated: kpage must already be a ksm page.
1248 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1250 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1251 struct page *page, struct page *kpage)
1253 struct mm_struct *mm = rmap_item->mm;
1254 struct vm_area_struct *vma;
1255 int err = -EFAULT;
1257 down_read(&mm->mmap_sem);
1258 vma = find_mergeable_vma(mm, rmap_item->address);
1259 if (!vma)
1260 goto out;
1262 err = try_to_merge_one_page(vma, page, kpage);
1263 if (err)
1264 goto out;
1266 /* Unstable nid is in union with stable anon_vma: remove first */
1267 remove_rmap_item_from_tree(rmap_item);
1269 /* Must get reference to anon_vma while still holding mmap_sem */
1270 rmap_item->anon_vma = vma->anon_vma;
1271 get_anon_vma(vma->anon_vma);
1272 out:
1273 up_read(&mm->mmap_sem);
1274 return err;
1278 * try_to_merge_two_pages - take two identical pages and prepare them
1279 * to be merged into one page.
1281 * This function returns the kpage if we successfully merged two identical
1282 * pages into one ksm page, NULL otherwise.
1284 * Note that this function upgrades page to ksm page: if one of the pages
1285 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1287 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1288 struct page *page,
1289 struct rmap_item *tree_rmap_item,
1290 struct page *tree_page)
1292 int err;
1294 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1295 if (!err) {
1296 err = try_to_merge_with_ksm_page(tree_rmap_item,
1297 tree_page, page);
1299 * If that fails, we have a ksm page with only one pte
1300 * pointing to it: so break it.
1302 if (err)
1303 break_cow(rmap_item);
1305 return err ? NULL : page;
1308 static __always_inline
1309 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1311 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1313 * Check that at least one mapping still exists, otherwise
1314 * there's no much point to merge and share with this
1315 * stable_node, as the underlying tree_page of the other
1316 * sharer is going to be freed soon.
1318 return stable_node->rmap_hlist_len &&
1319 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1322 static __always_inline
1323 bool is_page_sharing_candidate(struct stable_node *stable_node)
1325 return __is_page_sharing_candidate(stable_node, 0);
1328 struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1329 struct stable_node **_stable_node,
1330 struct rb_root *root,
1331 bool prune_stale_stable_nodes)
1333 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1334 struct hlist_node *hlist_safe;
1335 struct page *_tree_page, *tree_page = NULL;
1336 int nr = 0;
1337 int found_rmap_hlist_len;
1339 if (!prune_stale_stable_nodes ||
1340 time_before(jiffies, stable_node->chain_prune_time +
1341 msecs_to_jiffies(
1342 ksm_stable_node_chains_prune_millisecs)))
1343 prune_stale_stable_nodes = false;
1344 else
1345 stable_node->chain_prune_time = jiffies;
1347 hlist_for_each_entry_safe(dup, hlist_safe,
1348 &stable_node->hlist, hlist_dup) {
1349 cond_resched();
1351 * We must walk all stable_node_dup to prune the stale
1352 * stable nodes during lookup.
1354 * get_ksm_page can drop the nodes from the
1355 * stable_node->hlist if they point to freed pages
1356 * (that's why we do a _safe walk). The "dup"
1357 * stable_node parameter itself will be freed from
1358 * under us if it returns NULL.
1360 _tree_page = get_ksm_page(dup, false);
1361 if (!_tree_page)
1362 continue;
1363 nr += 1;
1364 if (is_page_sharing_candidate(dup)) {
1365 if (!found ||
1366 dup->rmap_hlist_len > found_rmap_hlist_len) {
1367 if (found)
1368 put_page(tree_page);
1369 found = dup;
1370 found_rmap_hlist_len = found->rmap_hlist_len;
1371 tree_page = _tree_page;
1373 /* skip put_page for found dup */
1374 if (!prune_stale_stable_nodes)
1375 break;
1376 continue;
1379 put_page(_tree_page);
1382 if (found) {
1384 * nr is counting all dups in the chain only if
1385 * prune_stale_stable_nodes is true, otherwise we may
1386 * break the loop at nr == 1 even if there are
1387 * multiple entries.
1389 if (prune_stale_stable_nodes && nr == 1) {
1391 * If there's not just one entry it would
1392 * corrupt memory, better BUG_ON. In KSM
1393 * context with no lock held it's not even
1394 * fatal.
1396 BUG_ON(stable_node->hlist.first->next);
1399 * There's just one entry and it is below the
1400 * deduplication limit so drop the chain.
1402 rb_replace_node(&stable_node->node, &found->node,
1403 root);
1404 free_stable_node(stable_node);
1405 ksm_stable_node_chains--;
1406 ksm_stable_node_dups--;
1408 * NOTE: the caller depends on the stable_node
1409 * to be equal to stable_node_dup if the chain
1410 * was collapsed.
1412 *_stable_node = found;
1414 * Just for robustneess as stable_node is
1415 * otherwise left as a stable pointer, the
1416 * compiler shall optimize it away at build
1417 * time.
1419 stable_node = NULL;
1420 } else if (stable_node->hlist.first != &found->hlist_dup &&
1421 __is_page_sharing_candidate(found, 1)) {
1423 * If the found stable_node dup can accept one
1424 * more future merge (in addition to the one
1425 * that is underway) and is not at the head of
1426 * the chain, put it there so next search will
1427 * be quicker in the !prune_stale_stable_nodes
1428 * case.
1430 * NOTE: it would be inaccurate to use nr > 1
1431 * instead of checking the hlist.first pointer
1432 * directly, because in the
1433 * prune_stale_stable_nodes case "nr" isn't
1434 * the position of the found dup in the chain,
1435 * but the total number of dups in the chain.
1437 hlist_del(&found->hlist_dup);
1438 hlist_add_head(&found->hlist_dup,
1439 &stable_node->hlist);
1443 *_stable_node_dup = found;
1444 return tree_page;
1447 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1448 struct rb_root *root)
1450 if (!is_stable_node_chain(stable_node))
1451 return stable_node;
1452 if (hlist_empty(&stable_node->hlist)) {
1453 free_stable_node_chain(stable_node, root);
1454 return NULL;
1456 return hlist_entry(stable_node->hlist.first,
1457 typeof(*stable_node), hlist_dup);
1461 * Like for get_ksm_page, this function can free the *_stable_node and
1462 * *_stable_node_dup if the returned tree_page is NULL.
1464 * It can also free and overwrite *_stable_node with the found
1465 * stable_node_dup if the chain is collapsed (in which case
1466 * *_stable_node will be equal to *_stable_node_dup like if the chain
1467 * never existed). It's up to the caller to verify tree_page is not
1468 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1470 * *_stable_node_dup is really a second output parameter of this
1471 * function and will be overwritten in all cases, the caller doesn't
1472 * need to initialize it.
1474 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1475 struct stable_node **_stable_node,
1476 struct rb_root *root,
1477 bool prune_stale_stable_nodes)
1479 struct stable_node *stable_node = *_stable_node;
1480 if (!is_stable_node_chain(stable_node)) {
1481 if (is_page_sharing_candidate(stable_node)) {
1482 *_stable_node_dup = stable_node;
1483 return get_ksm_page(stable_node, false);
1486 * _stable_node_dup set to NULL means the stable_node
1487 * reached the ksm_max_page_sharing limit.
1489 *_stable_node_dup = NULL;
1490 return NULL;
1492 return stable_node_dup(_stable_node_dup, _stable_node, root,
1493 prune_stale_stable_nodes);
1496 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1497 struct stable_node **s_n,
1498 struct rb_root *root)
1500 return __stable_node_chain(s_n_d, s_n, root, true);
1503 static __always_inline struct page *chain(struct stable_node **s_n_d,
1504 struct stable_node *s_n,
1505 struct rb_root *root)
1507 struct stable_node *old_stable_node = s_n;
1508 struct page *tree_page;
1510 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1511 /* not pruning dups so s_n cannot have changed */
1512 VM_BUG_ON(s_n != old_stable_node);
1513 return tree_page;
1517 * stable_tree_search - search for page inside the stable tree
1519 * This function checks if there is a page inside the stable tree
1520 * with identical content to the page that we are scanning right now.
1522 * This function returns the stable tree node of identical content if found,
1523 * NULL otherwise.
1525 static struct page *stable_tree_search(struct page *page)
1527 int nid;
1528 struct rb_root *root;
1529 struct rb_node **new;
1530 struct rb_node *parent;
1531 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1532 struct stable_node *page_node;
1534 page_node = page_stable_node(page);
1535 if (page_node && page_node->head != &migrate_nodes) {
1536 /* ksm page forked */
1537 get_page(page);
1538 return page;
1541 nid = get_kpfn_nid(page_to_pfn(page));
1542 root = root_stable_tree + nid;
1543 again:
1544 new = &root->rb_node;
1545 parent = NULL;
1547 while (*new) {
1548 struct page *tree_page;
1549 int ret;
1551 cond_resched();
1552 stable_node = rb_entry(*new, struct stable_node, node);
1553 stable_node_any = NULL;
1554 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1556 * NOTE: stable_node may have been freed by
1557 * chain_prune() if the returned stable_node_dup is
1558 * not NULL. stable_node_dup may have been inserted in
1559 * the rbtree instead as a regular stable_node (in
1560 * order to collapse the stable_node chain if a single
1561 * stable_node dup was found in it). In such case the
1562 * stable_node is overwritten by the calleee to point
1563 * to the stable_node_dup that was collapsed in the
1564 * stable rbtree and stable_node will be equal to
1565 * stable_node_dup like if the chain never existed.
1567 if (!stable_node_dup) {
1569 * Either all stable_node dups were full in
1570 * this stable_node chain, or this chain was
1571 * empty and should be rb_erased.
1573 stable_node_any = stable_node_dup_any(stable_node,
1574 root);
1575 if (!stable_node_any) {
1576 /* rb_erase just run */
1577 goto again;
1580 * Take any of the stable_node dups page of
1581 * this stable_node chain to let the tree walk
1582 * continue. All KSM pages belonging to the
1583 * stable_node dups in a stable_node chain
1584 * have the same content and they're
1585 * wrprotected at all times. Any will work
1586 * fine to continue the walk.
1588 tree_page = get_ksm_page(stable_node_any, false);
1590 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1591 if (!tree_page) {
1593 * If we walked over a stale stable_node,
1594 * get_ksm_page() will call rb_erase() and it
1595 * may rebalance the tree from under us. So
1596 * restart the search from scratch. Returning
1597 * NULL would be safe too, but we'd generate
1598 * false negative insertions just because some
1599 * stable_node was stale.
1601 goto again;
1604 ret = memcmp_pages(page, tree_page);
1605 put_page(tree_page);
1607 parent = *new;
1608 if (ret < 0)
1609 new = &parent->rb_left;
1610 else if (ret > 0)
1611 new = &parent->rb_right;
1612 else {
1613 if (page_node) {
1614 VM_BUG_ON(page_node->head != &migrate_nodes);
1616 * Test if the migrated page should be merged
1617 * into a stable node dup. If the mapcount is
1618 * 1 we can migrate it with another KSM page
1619 * without adding it to the chain.
1621 if (page_mapcount(page) > 1)
1622 goto chain_append;
1625 if (!stable_node_dup) {
1627 * If the stable_node is a chain and
1628 * we got a payload match in memcmp
1629 * but we cannot merge the scanned
1630 * page in any of the existing
1631 * stable_node dups because they're
1632 * all full, we need to wait the
1633 * scanned page to find itself a match
1634 * in the unstable tree to create a
1635 * brand new KSM page to add later to
1636 * the dups of this stable_node.
1638 return NULL;
1642 * Lock and unlock the stable_node's page (which
1643 * might already have been migrated) so that page
1644 * migration is sure to notice its raised count.
1645 * It would be more elegant to return stable_node
1646 * than kpage, but that involves more changes.
1648 tree_page = get_ksm_page(stable_node_dup, true);
1649 if (unlikely(!tree_page))
1651 * The tree may have been rebalanced,
1652 * so re-evaluate parent and new.
1654 goto again;
1655 unlock_page(tree_page);
1657 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1658 NUMA(stable_node_dup->nid)) {
1659 put_page(tree_page);
1660 goto replace;
1662 return tree_page;
1666 if (!page_node)
1667 return NULL;
1669 list_del(&page_node->list);
1670 DO_NUMA(page_node->nid = nid);
1671 rb_link_node(&page_node->node, parent, new);
1672 rb_insert_color(&page_node->node, root);
1673 out:
1674 if (is_page_sharing_candidate(page_node)) {
1675 get_page(page);
1676 return page;
1677 } else
1678 return NULL;
1680 replace:
1682 * If stable_node was a chain and chain_prune collapsed it,
1683 * stable_node has been updated to be the new regular
1684 * stable_node. A collapse of the chain is indistinguishable
1685 * from the case there was no chain in the stable
1686 * rbtree. Otherwise stable_node is the chain and
1687 * stable_node_dup is the dup to replace.
1689 if (stable_node_dup == stable_node) {
1690 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1691 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1692 /* there is no chain */
1693 if (page_node) {
1694 VM_BUG_ON(page_node->head != &migrate_nodes);
1695 list_del(&page_node->list);
1696 DO_NUMA(page_node->nid = nid);
1697 rb_replace_node(&stable_node_dup->node,
1698 &page_node->node,
1699 root);
1700 if (is_page_sharing_candidate(page_node))
1701 get_page(page);
1702 else
1703 page = NULL;
1704 } else {
1705 rb_erase(&stable_node_dup->node, root);
1706 page = NULL;
1708 } else {
1709 VM_BUG_ON(!is_stable_node_chain(stable_node));
1710 __stable_node_dup_del(stable_node_dup);
1711 if (page_node) {
1712 VM_BUG_ON(page_node->head != &migrate_nodes);
1713 list_del(&page_node->list);
1714 DO_NUMA(page_node->nid = nid);
1715 stable_node_chain_add_dup(page_node, stable_node);
1716 if (is_page_sharing_candidate(page_node))
1717 get_page(page);
1718 else
1719 page = NULL;
1720 } else {
1721 page = NULL;
1724 stable_node_dup->head = &migrate_nodes;
1725 list_add(&stable_node_dup->list, stable_node_dup->head);
1726 return page;
1728 chain_append:
1729 /* stable_node_dup could be null if it reached the limit */
1730 if (!stable_node_dup)
1731 stable_node_dup = stable_node_any;
1733 * If stable_node was a chain and chain_prune collapsed it,
1734 * stable_node has been updated to be the new regular
1735 * stable_node. A collapse of the chain is indistinguishable
1736 * from the case there was no chain in the stable
1737 * rbtree. Otherwise stable_node is the chain and
1738 * stable_node_dup is the dup to replace.
1740 if (stable_node_dup == stable_node) {
1741 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1742 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1743 /* chain is missing so create it */
1744 stable_node = alloc_stable_node_chain(stable_node_dup,
1745 root);
1746 if (!stable_node)
1747 return NULL;
1750 * Add this stable_node dup that was
1751 * migrated to the stable_node chain
1752 * of the current nid for this page
1753 * content.
1755 VM_BUG_ON(!is_stable_node_chain(stable_node));
1756 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1757 VM_BUG_ON(page_node->head != &migrate_nodes);
1758 list_del(&page_node->list);
1759 DO_NUMA(page_node->nid = nid);
1760 stable_node_chain_add_dup(page_node, stable_node);
1761 goto out;
1765 * stable_tree_insert - insert stable tree node pointing to new ksm page
1766 * into the stable tree.
1768 * This function returns the stable tree node just allocated on success,
1769 * NULL otherwise.
1771 static struct stable_node *stable_tree_insert(struct page *kpage)
1773 int nid;
1774 unsigned long kpfn;
1775 struct rb_root *root;
1776 struct rb_node **new;
1777 struct rb_node *parent;
1778 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1779 bool need_chain = false;
1781 kpfn = page_to_pfn(kpage);
1782 nid = get_kpfn_nid(kpfn);
1783 root = root_stable_tree + nid;
1784 again:
1785 parent = NULL;
1786 new = &root->rb_node;
1788 while (*new) {
1789 struct page *tree_page;
1790 int ret;
1792 cond_resched();
1793 stable_node = rb_entry(*new, struct stable_node, node);
1794 stable_node_any = NULL;
1795 tree_page = chain(&stable_node_dup, stable_node, root);
1796 if (!stable_node_dup) {
1798 * Either all stable_node dups were full in
1799 * this stable_node chain, or this chain was
1800 * empty and should be rb_erased.
1802 stable_node_any = stable_node_dup_any(stable_node,
1803 root);
1804 if (!stable_node_any) {
1805 /* rb_erase just run */
1806 goto again;
1809 * Take any of the stable_node dups page of
1810 * this stable_node chain to let the tree walk
1811 * continue. All KSM pages belonging to the
1812 * stable_node dups in a stable_node chain
1813 * have the same content and they're
1814 * wrprotected at all times. Any will work
1815 * fine to continue the walk.
1817 tree_page = get_ksm_page(stable_node_any, false);
1819 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1820 if (!tree_page) {
1822 * If we walked over a stale stable_node,
1823 * get_ksm_page() will call rb_erase() and it
1824 * may rebalance the tree from under us. So
1825 * restart the search from scratch. Returning
1826 * NULL would be safe too, but we'd generate
1827 * false negative insertions just because some
1828 * stable_node was stale.
1830 goto again;
1833 ret = memcmp_pages(kpage, tree_page);
1834 put_page(tree_page);
1836 parent = *new;
1837 if (ret < 0)
1838 new = &parent->rb_left;
1839 else if (ret > 0)
1840 new = &parent->rb_right;
1841 else {
1842 need_chain = true;
1843 break;
1847 stable_node_dup = alloc_stable_node();
1848 if (!stable_node_dup)
1849 return NULL;
1851 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1852 stable_node_dup->kpfn = kpfn;
1853 set_page_stable_node(kpage, stable_node_dup);
1854 stable_node_dup->rmap_hlist_len = 0;
1855 DO_NUMA(stable_node_dup->nid = nid);
1856 if (!need_chain) {
1857 rb_link_node(&stable_node_dup->node, parent, new);
1858 rb_insert_color(&stable_node_dup->node, root);
1859 } else {
1860 if (!is_stable_node_chain(stable_node)) {
1861 struct stable_node *orig = stable_node;
1862 /* chain is missing so create it */
1863 stable_node = alloc_stable_node_chain(orig, root);
1864 if (!stable_node) {
1865 free_stable_node(stable_node_dup);
1866 return NULL;
1869 stable_node_chain_add_dup(stable_node_dup, stable_node);
1872 return stable_node_dup;
1876 * unstable_tree_search_insert - search for identical page,
1877 * else insert rmap_item into the unstable tree.
1879 * This function searches for a page in the unstable tree identical to the
1880 * page currently being scanned; and if no identical page is found in the
1881 * tree, we insert rmap_item as a new object into the unstable tree.
1883 * This function returns pointer to rmap_item found to be identical
1884 * to the currently scanned page, NULL otherwise.
1886 * This function does both searching and inserting, because they share
1887 * the same walking algorithm in an rbtree.
1889 static
1890 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1891 struct page *page,
1892 struct page **tree_pagep)
1894 struct rb_node **new;
1895 struct rb_root *root;
1896 struct rb_node *parent = NULL;
1897 int nid;
1899 nid = get_kpfn_nid(page_to_pfn(page));
1900 root = root_unstable_tree + nid;
1901 new = &root->rb_node;
1903 while (*new) {
1904 struct rmap_item *tree_rmap_item;
1905 struct page *tree_page;
1906 int ret;
1908 cond_resched();
1909 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1910 tree_page = get_mergeable_page(tree_rmap_item);
1911 if (!tree_page)
1912 return NULL;
1915 * Don't substitute a ksm page for a forked page.
1917 if (page == tree_page) {
1918 put_page(tree_page);
1919 return NULL;
1922 ret = memcmp_pages(page, tree_page);
1924 parent = *new;
1925 if (ret < 0) {
1926 put_page(tree_page);
1927 new = &parent->rb_left;
1928 } else if (ret > 0) {
1929 put_page(tree_page);
1930 new = &parent->rb_right;
1931 } else if (!ksm_merge_across_nodes &&
1932 page_to_nid(tree_page) != nid) {
1934 * If tree_page has been migrated to another NUMA node,
1935 * it will be flushed out and put in the right unstable
1936 * tree next time: only merge with it when across_nodes.
1938 put_page(tree_page);
1939 return NULL;
1940 } else {
1941 *tree_pagep = tree_page;
1942 return tree_rmap_item;
1946 rmap_item->address |= UNSTABLE_FLAG;
1947 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1948 DO_NUMA(rmap_item->nid = nid);
1949 rb_link_node(&rmap_item->node, parent, new);
1950 rb_insert_color(&rmap_item->node, root);
1952 ksm_pages_unshared++;
1953 return NULL;
1957 * stable_tree_append - add another rmap_item to the linked list of
1958 * rmap_items hanging off a given node of the stable tree, all sharing
1959 * the same ksm page.
1961 static void stable_tree_append(struct rmap_item *rmap_item,
1962 struct stable_node *stable_node,
1963 bool max_page_sharing_bypass)
1966 * rmap won't find this mapping if we don't insert the
1967 * rmap_item in the right stable_node
1968 * duplicate. page_migration could break later if rmap breaks,
1969 * so we can as well crash here. We really need to check for
1970 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1971 * for other negative values as an undeflow if detected here
1972 * for the first time (and not when decreasing rmap_hlist_len)
1973 * would be sign of memory corruption in the stable_node.
1975 BUG_ON(stable_node->rmap_hlist_len < 0);
1977 stable_node->rmap_hlist_len++;
1978 if (!max_page_sharing_bypass)
1979 /* possibly non fatal but unexpected overflow, only warn */
1980 WARN_ON_ONCE(stable_node->rmap_hlist_len >
1981 ksm_max_page_sharing);
1983 rmap_item->head = stable_node;
1984 rmap_item->address |= STABLE_FLAG;
1985 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1987 if (rmap_item->hlist.next)
1988 ksm_pages_sharing++;
1989 else
1990 ksm_pages_shared++;
1994 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1995 * if not, compare checksum to previous and if it's the same, see if page can
1996 * be inserted into the unstable tree, or merged with a page already there and
1997 * both transferred to the stable tree.
1999 * @page: the page that we are searching identical page to.
2000 * @rmap_item: the reverse mapping into the virtual address of this page
2002 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2004 struct mm_struct *mm = rmap_item->mm;
2005 struct rmap_item *tree_rmap_item;
2006 struct page *tree_page = NULL;
2007 struct stable_node *stable_node;
2008 struct page *kpage;
2009 unsigned int checksum;
2010 int err;
2011 bool max_page_sharing_bypass = false;
2013 stable_node = page_stable_node(page);
2014 if (stable_node) {
2015 if (stable_node->head != &migrate_nodes &&
2016 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2017 NUMA(stable_node->nid)) {
2018 stable_node_dup_del(stable_node);
2019 stable_node->head = &migrate_nodes;
2020 list_add(&stable_node->list, stable_node->head);
2022 if (stable_node->head != &migrate_nodes &&
2023 rmap_item->head == stable_node)
2024 return;
2026 * If it's a KSM fork, allow it to go over the sharing limit
2027 * without warnings.
2029 if (!is_page_sharing_candidate(stable_node))
2030 max_page_sharing_bypass = true;
2033 /* We first start with searching the page inside the stable tree */
2034 kpage = stable_tree_search(page);
2035 if (kpage == page && rmap_item->head == stable_node) {
2036 put_page(kpage);
2037 return;
2040 remove_rmap_item_from_tree(rmap_item);
2042 if (kpage) {
2043 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2044 if (!err) {
2046 * The page was successfully merged:
2047 * add its rmap_item to the stable tree.
2049 lock_page(kpage);
2050 stable_tree_append(rmap_item, page_stable_node(kpage),
2051 max_page_sharing_bypass);
2052 unlock_page(kpage);
2054 put_page(kpage);
2055 return;
2059 * If the hash value of the page has changed from the last time
2060 * we calculated it, this page is changing frequently: therefore we
2061 * don't want to insert it in the unstable tree, and we don't want
2062 * to waste our time searching for something identical to it there.
2064 checksum = calc_checksum(page);
2065 if (rmap_item->oldchecksum != checksum) {
2066 rmap_item->oldchecksum = checksum;
2067 return;
2071 * Same checksum as an empty page. We attempt to merge it with the
2072 * appropriate zero page if the user enabled this via sysfs.
2074 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2075 struct vm_area_struct *vma;
2077 down_read(&mm->mmap_sem);
2078 vma = find_mergeable_vma(mm, rmap_item->address);
2079 err = try_to_merge_one_page(vma, page,
2080 ZERO_PAGE(rmap_item->address));
2081 up_read(&mm->mmap_sem);
2083 * In case of failure, the page was not really empty, so we
2084 * need to continue. Otherwise we're done.
2086 if (!err)
2087 return;
2089 tree_rmap_item =
2090 unstable_tree_search_insert(rmap_item, page, &tree_page);
2091 if (tree_rmap_item) {
2092 kpage = try_to_merge_two_pages(rmap_item, page,
2093 tree_rmap_item, tree_page);
2094 put_page(tree_page);
2095 if (kpage) {
2097 * The pages were successfully merged: insert new
2098 * node in the stable tree and add both rmap_items.
2100 lock_page(kpage);
2101 stable_node = stable_tree_insert(kpage);
2102 if (stable_node) {
2103 stable_tree_append(tree_rmap_item, stable_node,
2104 false);
2105 stable_tree_append(rmap_item, stable_node,
2106 false);
2108 unlock_page(kpage);
2111 * If we fail to insert the page into the stable tree,
2112 * we will have 2 virtual addresses that are pointing
2113 * to a ksm page left outside the stable tree,
2114 * in which case we need to break_cow on both.
2116 if (!stable_node) {
2117 break_cow(tree_rmap_item);
2118 break_cow(rmap_item);
2124 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2125 struct rmap_item **rmap_list,
2126 unsigned long addr)
2128 struct rmap_item *rmap_item;
2130 while (*rmap_list) {
2131 rmap_item = *rmap_list;
2132 if ((rmap_item->address & PAGE_MASK) == addr)
2133 return rmap_item;
2134 if (rmap_item->address > addr)
2135 break;
2136 *rmap_list = rmap_item->rmap_list;
2137 remove_rmap_item_from_tree(rmap_item);
2138 free_rmap_item(rmap_item);
2141 rmap_item = alloc_rmap_item();
2142 if (rmap_item) {
2143 /* It has already been zeroed */
2144 rmap_item->mm = mm_slot->mm;
2145 rmap_item->address = addr;
2146 rmap_item->rmap_list = *rmap_list;
2147 *rmap_list = rmap_item;
2149 return rmap_item;
2152 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2154 struct mm_struct *mm;
2155 struct mm_slot *slot;
2156 struct vm_area_struct *vma;
2157 struct rmap_item *rmap_item;
2158 int nid;
2160 if (list_empty(&ksm_mm_head.mm_list))
2161 return NULL;
2163 slot = ksm_scan.mm_slot;
2164 if (slot == &ksm_mm_head) {
2166 * A number of pages can hang around indefinitely on per-cpu
2167 * pagevecs, raised page count preventing write_protect_page
2168 * from merging them. Though it doesn't really matter much,
2169 * it is puzzling to see some stuck in pages_volatile until
2170 * other activity jostles them out, and they also prevented
2171 * LTP's KSM test from succeeding deterministically; so drain
2172 * them here (here rather than on entry to ksm_do_scan(),
2173 * so we don't IPI too often when pages_to_scan is set low).
2175 lru_add_drain_all();
2178 * Whereas stale stable_nodes on the stable_tree itself
2179 * get pruned in the regular course of stable_tree_search(),
2180 * those moved out to the migrate_nodes list can accumulate:
2181 * so prune them once before each full scan.
2183 if (!ksm_merge_across_nodes) {
2184 struct stable_node *stable_node, *next;
2185 struct page *page;
2187 list_for_each_entry_safe(stable_node, next,
2188 &migrate_nodes, list) {
2189 page = get_ksm_page(stable_node, false);
2190 if (page)
2191 put_page(page);
2192 cond_resched();
2196 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2197 root_unstable_tree[nid] = RB_ROOT;
2199 spin_lock(&ksm_mmlist_lock);
2200 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2201 ksm_scan.mm_slot = slot;
2202 spin_unlock(&ksm_mmlist_lock);
2204 * Although we tested list_empty() above, a racing __ksm_exit
2205 * of the last mm on the list may have removed it since then.
2207 if (slot == &ksm_mm_head)
2208 return NULL;
2209 next_mm:
2210 ksm_scan.address = 0;
2211 ksm_scan.rmap_list = &slot->rmap_list;
2214 mm = slot->mm;
2215 down_read(&mm->mmap_sem);
2216 if (ksm_test_exit(mm))
2217 vma = NULL;
2218 else
2219 vma = find_vma(mm, ksm_scan.address);
2221 for (; vma; vma = vma->vm_next) {
2222 if (!(vma->vm_flags & VM_MERGEABLE))
2223 continue;
2224 if (ksm_scan.address < vma->vm_start)
2225 ksm_scan.address = vma->vm_start;
2226 if (!vma->anon_vma)
2227 ksm_scan.address = vma->vm_end;
2229 while (ksm_scan.address < vma->vm_end) {
2230 if (ksm_test_exit(mm))
2231 break;
2232 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2233 if (IS_ERR_OR_NULL(*page)) {
2234 ksm_scan.address += PAGE_SIZE;
2235 cond_resched();
2236 continue;
2238 if (PageAnon(*page)) {
2239 flush_anon_page(vma, *page, ksm_scan.address);
2240 flush_dcache_page(*page);
2241 rmap_item = get_next_rmap_item(slot,
2242 ksm_scan.rmap_list, ksm_scan.address);
2243 if (rmap_item) {
2244 ksm_scan.rmap_list =
2245 &rmap_item->rmap_list;
2246 ksm_scan.address += PAGE_SIZE;
2247 } else
2248 put_page(*page);
2249 up_read(&mm->mmap_sem);
2250 return rmap_item;
2252 put_page(*page);
2253 ksm_scan.address += PAGE_SIZE;
2254 cond_resched();
2258 if (ksm_test_exit(mm)) {
2259 ksm_scan.address = 0;
2260 ksm_scan.rmap_list = &slot->rmap_list;
2263 * Nuke all the rmap_items that are above this current rmap:
2264 * because there were no VM_MERGEABLE vmas with such addresses.
2266 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2268 spin_lock(&ksm_mmlist_lock);
2269 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2270 struct mm_slot, mm_list);
2271 if (ksm_scan.address == 0) {
2273 * We've completed a full scan of all vmas, holding mmap_sem
2274 * throughout, and found no VM_MERGEABLE: so do the same as
2275 * __ksm_exit does to remove this mm from all our lists now.
2276 * This applies either when cleaning up after __ksm_exit
2277 * (but beware: we can reach here even before __ksm_exit),
2278 * or when all VM_MERGEABLE areas have been unmapped (and
2279 * mmap_sem then protects against race with MADV_MERGEABLE).
2281 hash_del(&slot->link);
2282 list_del(&slot->mm_list);
2283 spin_unlock(&ksm_mmlist_lock);
2285 free_mm_slot(slot);
2286 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2287 up_read(&mm->mmap_sem);
2288 mmdrop(mm);
2289 } else {
2290 up_read(&mm->mmap_sem);
2292 * up_read(&mm->mmap_sem) first because after
2293 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2294 * already have been freed under us by __ksm_exit()
2295 * because the "mm_slot" is still hashed and
2296 * ksm_scan.mm_slot doesn't point to it anymore.
2298 spin_unlock(&ksm_mmlist_lock);
2301 /* Repeat until we've completed scanning the whole list */
2302 slot = ksm_scan.mm_slot;
2303 if (slot != &ksm_mm_head)
2304 goto next_mm;
2306 ksm_scan.seqnr++;
2307 return NULL;
2311 * ksm_do_scan - the ksm scanner main worker function.
2312 * @scan_npages - number of pages we want to scan before we return.
2314 static void ksm_do_scan(unsigned int scan_npages)
2316 struct rmap_item *rmap_item;
2317 struct page *uninitialized_var(page);
2319 while (scan_npages-- && likely(!freezing(current))) {
2320 cond_resched();
2321 rmap_item = scan_get_next_rmap_item(&page);
2322 if (!rmap_item)
2323 return;
2324 cmp_and_merge_page(page, rmap_item);
2325 put_page(page);
2329 static int ksmd_should_run(void)
2331 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2334 static int ksm_scan_thread(void *nothing)
2336 set_freezable();
2337 set_user_nice(current, 5);
2339 while (!kthread_should_stop()) {
2340 mutex_lock(&ksm_thread_mutex);
2341 wait_while_offlining();
2342 if (ksmd_should_run())
2343 ksm_do_scan(ksm_thread_pages_to_scan);
2344 mutex_unlock(&ksm_thread_mutex);
2346 try_to_freeze();
2348 if (ksmd_should_run()) {
2349 schedule_timeout_interruptible(
2350 msecs_to_jiffies(ksm_thread_sleep_millisecs));
2351 } else {
2352 wait_event_freezable(ksm_thread_wait,
2353 ksmd_should_run() || kthread_should_stop());
2356 return 0;
2359 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2360 unsigned long end, int advice, unsigned long *vm_flags)
2362 struct mm_struct *mm = vma->vm_mm;
2363 int err;
2365 switch (advice) {
2366 case MADV_MERGEABLE:
2368 * Be somewhat over-protective for now!
2370 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2371 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
2372 VM_HUGETLB | VM_MIXEDMAP))
2373 return 0; /* just ignore the advice */
2375 #ifdef VM_SAO
2376 if (*vm_flags & VM_SAO)
2377 return 0;
2378 #endif
2380 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2381 err = __ksm_enter(mm);
2382 if (err)
2383 return err;
2386 *vm_flags |= VM_MERGEABLE;
2387 break;
2389 case MADV_UNMERGEABLE:
2390 if (!(*vm_flags & VM_MERGEABLE))
2391 return 0; /* just ignore the advice */
2393 if (vma->anon_vma) {
2394 err = unmerge_ksm_pages(vma, start, end);
2395 if (err)
2396 return err;
2399 *vm_flags &= ~VM_MERGEABLE;
2400 break;
2403 return 0;
2406 int __ksm_enter(struct mm_struct *mm)
2408 struct mm_slot *mm_slot;
2409 int needs_wakeup;
2411 mm_slot = alloc_mm_slot();
2412 if (!mm_slot)
2413 return -ENOMEM;
2415 /* Check ksm_run too? Would need tighter locking */
2416 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2418 spin_lock(&ksm_mmlist_lock);
2419 insert_to_mm_slots_hash(mm, mm_slot);
2421 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2422 * insert just behind the scanning cursor, to let the area settle
2423 * down a little; when fork is followed by immediate exec, we don't
2424 * want ksmd to waste time setting up and tearing down an rmap_list.
2426 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2427 * scanning cursor, otherwise KSM pages in newly forked mms will be
2428 * missed: then we might as well insert at the end of the list.
2430 if (ksm_run & KSM_RUN_UNMERGE)
2431 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2432 else
2433 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2434 spin_unlock(&ksm_mmlist_lock);
2436 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2437 mmgrab(mm);
2439 if (needs_wakeup)
2440 wake_up_interruptible(&ksm_thread_wait);
2442 return 0;
2445 void __ksm_exit(struct mm_struct *mm)
2447 struct mm_slot *mm_slot;
2448 int easy_to_free = 0;
2451 * This process is exiting: if it's straightforward (as is the
2452 * case when ksmd was never running), free mm_slot immediately.
2453 * But if it's at the cursor or has rmap_items linked to it, use
2454 * mmap_sem to synchronize with any break_cows before pagetables
2455 * are freed, and leave the mm_slot on the list for ksmd to free.
2456 * Beware: ksm may already have noticed it exiting and freed the slot.
2459 spin_lock(&ksm_mmlist_lock);
2460 mm_slot = get_mm_slot(mm);
2461 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2462 if (!mm_slot->rmap_list) {
2463 hash_del(&mm_slot->link);
2464 list_del(&mm_slot->mm_list);
2465 easy_to_free = 1;
2466 } else {
2467 list_move(&mm_slot->mm_list,
2468 &ksm_scan.mm_slot->mm_list);
2471 spin_unlock(&ksm_mmlist_lock);
2473 if (easy_to_free) {
2474 free_mm_slot(mm_slot);
2475 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2476 mmdrop(mm);
2477 } else if (mm_slot) {
2478 down_write(&mm->mmap_sem);
2479 up_write(&mm->mmap_sem);
2483 struct page *ksm_might_need_to_copy(struct page *page,
2484 struct vm_area_struct *vma, unsigned long address)
2486 struct anon_vma *anon_vma = page_anon_vma(page);
2487 struct page *new_page;
2489 if (PageKsm(page)) {
2490 if (page_stable_node(page) &&
2491 !(ksm_run & KSM_RUN_UNMERGE))
2492 return page; /* no need to copy it */
2493 } else if (!anon_vma) {
2494 return page; /* no need to copy it */
2495 } else if (anon_vma->root == vma->anon_vma->root &&
2496 page->index == linear_page_index(vma, address)) {
2497 return page; /* still no need to copy it */
2499 if (!PageUptodate(page))
2500 return page; /* let do_swap_page report the error */
2502 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2503 if (new_page) {
2504 copy_user_highpage(new_page, page, address, vma);
2506 SetPageDirty(new_page);
2507 __SetPageUptodate(new_page);
2508 __SetPageLocked(new_page);
2511 return new_page;
2514 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2516 struct stable_node *stable_node;
2517 struct rmap_item *rmap_item;
2518 int search_new_forks = 0;
2520 VM_BUG_ON_PAGE(!PageKsm(page), page);
2523 * Rely on the page lock to protect against concurrent modifications
2524 * to that page's node of the stable tree.
2526 VM_BUG_ON_PAGE(!PageLocked(page), page);
2528 stable_node = page_stable_node(page);
2529 if (!stable_node)
2530 return;
2531 again:
2532 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2533 struct anon_vma *anon_vma = rmap_item->anon_vma;
2534 struct anon_vma_chain *vmac;
2535 struct vm_area_struct *vma;
2537 cond_resched();
2538 anon_vma_lock_read(anon_vma);
2539 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2540 0, ULONG_MAX) {
2541 cond_resched();
2542 vma = vmac->vma;
2543 if (rmap_item->address < vma->vm_start ||
2544 rmap_item->address >= vma->vm_end)
2545 continue;
2547 * Initially we examine only the vma which covers this
2548 * rmap_item; but later, if there is still work to do,
2549 * we examine covering vmas in other mms: in case they
2550 * were forked from the original since ksmd passed.
2552 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2553 continue;
2555 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2556 continue;
2558 if (!rwc->rmap_one(page, vma,
2559 rmap_item->address, rwc->arg)) {
2560 anon_vma_unlock_read(anon_vma);
2561 return;
2563 if (rwc->done && rwc->done(page)) {
2564 anon_vma_unlock_read(anon_vma);
2565 return;
2568 anon_vma_unlock_read(anon_vma);
2570 if (!search_new_forks++)
2571 goto again;
2574 #ifdef CONFIG_MIGRATION
2575 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2577 struct stable_node *stable_node;
2579 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2580 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2581 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2583 stable_node = page_stable_node(newpage);
2584 if (stable_node) {
2585 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2586 stable_node->kpfn = page_to_pfn(newpage);
2588 * newpage->mapping was set in advance; now we need smp_wmb()
2589 * to make sure that the new stable_node->kpfn is visible
2590 * to get_ksm_page() before it can see that oldpage->mapping
2591 * has gone stale (or that PageSwapCache has been cleared).
2593 smp_wmb();
2594 set_page_stable_node(oldpage, NULL);
2597 #endif /* CONFIG_MIGRATION */
2599 #ifdef CONFIG_MEMORY_HOTREMOVE
2600 static void wait_while_offlining(void)
2602 while (ksm_run & KSM_RUN_OFFLINE) {
2603 mutex_unlock(&ksm_thread_mutex);
2604 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2605 TASK_UNINTERRUPTIBLE);
2606 mutex_lock(&ksm_thread_mutex);
2610 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2611 unsigned long start_pfn,
2612 unsigned long end_pfn)
2614 if (stable_node->kpfn >= start_pfn &&
2615 stable_node->kpfn < end_pfn) {
2617 * Don't get_ksm_page, page has already gone:
2618 * which is why we keep kpfn instead of page*
2620 remove_node_from_stable_tree(stable_node);
2621 return true;
2623 return false;
2626 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2627 unsigned long start_pfn,
2628 unsigned long end_pfn,
2629 struct rb_root *root)
2631 struct stable_node *dup;
2632 struct hlist_node *hlist_safe;
2634 if (!is_stable_node_chain(stable_node)) {
2635 VM_BUG_ON(is_stable_node_dup(stable_node));
2636 return stable_node_dup_remove_range(stable_node, start_pfn,
2637 end_pfn);
2640 hlist_for_each_entry_safe(dup, hlist_safe,
2641 &stable_node->hlist, hlist_dup) {
2642 VM_BUG_ON(!is_stable_node_dup(dup));
2643 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2645 if (hlist_empty(&stable_node->hlist)) {
2646 free_stable_node_chain(stable_node, root);
2647 return true; /* notify caller that tree was rebalanced */
2648 } else
2649 return false;
2652 static void ksm_check_stable_tree(unsigned long start_pfn,
2653 unsigned long end_pfn)
2655 struct stable_node *stable_node, *next;
2656 struct rb_node *node;
2657 int nid;
2659 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2660 node = rb_first(root_stable_tree + nid);
2661 while (node) {
2662 stable_node = rb_entry(node, struct stable_node, node);
2663 if (stable_node_chain_remove_range(stable_node,
2664 start_pfn, end_pfn,
2665 root_stable_tree +
2666 nid))
2667 node = rb_first(root_stable_tree + nid);
2668 else
2669 node = rb_next(node);
2670 cond_resched();
2673 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2674 if (stable_node->kpfn >= start_pfn &&
2675 stable_node->kpfn < end_pfn)
2676 remove_node_from_stable_tree(stable_node);
2677 cond_resched();
2681 static int ksm_memory_callback(struct notifier_block *self,
2682 unsigned long action, void *arg)
2684 struct memory_notify *mn = arg;
2686 switch (action) {
2687 case MEM_GOING_OFFLINE:
2689 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2690 * and remove_all_stable_nodes() while memory is going offline:
2691 * it is unsafe for them to touch the stable tree at this time.
2692 * But unmerge_ksm_pages(), rmap lookups and other entry points
2693 * which do not need the ksm_thread_mutex are all safe.
2695 mutex_lock(&ksm_thread_mutex);
2696 ksm_run |= KSM_RUN_OFFLINE;
2697 mutex_unlock(&ksm_thread_mutex);
2698 break;
2700 case MEM_OFFLINE:
2702 * Most of the work is done by page migration; but there might
2703 * be a few stable_nodes left over, still pointing to struct
2704 * pages which have been offlined: prune those from the tree,
2705 * otherwise get_ksm_page() might later try to access a
2706 * non-existent struct page.
2708 ksm_check_stable_tree(mn->start_pfn,
2709 mn->start_pfn + mn->nr_pages);
2710 /* fallthrough */
2712 case MEM_CANCEL_OFFLINE:
2713 mutex_lock(&ksm_thread_mutex);
2714 ksm_run &= ~KSM_RUN_OFFLINE;
2715 mutex_unlock(&ksm_thread_mutex);
2717 smp_mb(); /* wake_up_bit advises this */
2718 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2719 break;
2721 return NOTIFY_OK;
2723 #else
2724 static void wait_while_offlining(void)
2727 #endif /* CONFIG_MEMORY_HOTREMOVE */
2729 #ifdef CONFIG_SYSFS
2731 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2734 #define KSM_ATTR_RO(_name) \
2735 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2736 #define KSM_ATTR(_name) \
2737 static struct kobj_attribute _name##_attr = \
2738 __ATTR(_name, 0644, _name##_show, _name##_store)
2740 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2741 struct kobj_attribute *attr, char *buf)
2743 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2746 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2747 struct kobj_attribute *attr,
2748 const char *buf, size_t count)
2750 unsigned long msecs;
2751 int err;
2753 err = kstrtoul(buf, 10, &msecs);
2754 if (err || msecs > UINT_MAX)
2755 return -EINVAL;
2757 ksm_thread_sleep_millisecs = msecs;
2759 return count;
2761 KSM_ATTR(sleep_millisecs);
2763 static ssize_t pages_to_scan_show(struct kobject *kobj,
2764 struct kobj_attribute *attr, char *buf)
2766 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2769 static ssize_t pages_to_scan_store(struct kobject *kobj,
2770 struct kobj_attribute *attr,
2771 const char *buf, size_t count)
2773 int err;
2774 unsigned long nr_pages;
2776 err = kstrtoul(buf, 10, &nr_pages);
2777 if (err || nr_pages > UINT_MAX)
2778 return -EINVAL;
2780 ksm_thread_pages_to_scan = nr_pages;
2782 return count;
2784 KSM_ATTR(pages_to_scan);
2786 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2787 char *buf)
2789 return sprintf(buf, "%lu\n", ksm_run);
2792 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2793 const char *buf, size_t count)
2795 int err;
2796 unsigned long flags;
2798 err = kstrtoul(buf, 10, &flags);
2799 if (err || flags > UINT_MAX)
2800 return -EINVAL;
2801 if (flags > KSM_RUN_UNMERGE)
2802 return -EINVAL;
2805 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2806 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2807 * breaking COW to free the pages_shared (but leaves mm_slots
2808 * on the list for when ksmd may be set running again).
2811 mutex_lock(&ksm_thread_mutex);
2812 wait_while_offlining();
2813 if (ksm_run != flags) {
2814 ksm_run = flags;
2815 if (flags & KSM_RUN_UNMERGE) {
2816 set_current_oom_origin();
2817 err = unmerge_and_remove_all_rmap_items();
2818 clear_current_oom_origin();
2819 if (err) {
2820 ksm_run = KSM_RUN_STOP;
2821 count = err;
2825 mutex_unlock(&ksm_thread_mutex);
2827 if (flags & KSM_RUN_MERGE)
2828 wake_up_interruptible(&ksm_thread_wait);
2830 return count;
2832 KSM_ATTR(run);
2834 #ifdef CONFIG_NUMA
2835 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2836 struct kobj_attribute *attr, char *buf)
2838 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2841 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2842 struct kobj_attribute *attr,
2843 const char *buf, size_t count)
2845 int err;
2846 unsigned long knob;
2848 err = kstrtoul(buf, 10, &knob);
2849 if (err)
2850 return err;
2851 if (knob > 1)
2852 return -EINVAL;
2854 mutex_lock(&ksm_thread_mutex);
2855 wait_while_offlining();
2856 if (ksm_merge_across_nodes != knob) {
2857 if (ksm_pages_shared || remove_all_stable_nodes())
2858 err = -EBUSY;
2859 else if (root_stable_tree == one_stable_tree) {
2860 struct rb_root *buf;
2862 * This is the first time that we switch away from the
2863 * default of merging across nodes: must now allocate
2864 * a buffer to hold as many roots as may be needed.
2865 * Allocate stable and unstable together:
2866 * MAXSMP NODES_SHIFT 10 will use 16kB.
2868 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2869 GFP_KERNEL);
2870 /* Let us assume that RB_ROOT is NULL is zero */
2871 if (!buf)
2872 err = -ENOMEM;
2873 else {
2874 root_stable_tree = buf;
2875 root_unstable_tree = buf + nr_node_ids;
2876 /* Stable tree is empty but not the unstable */
2877 root_unstable_tree[0] = one_unstable_tree[0];
2880 if (!err) {
2881 ksm_merge_across_nodes = knob;
2882 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2885 mutex_unlock(&ksm_thread_mutex);
2887 return err ? err : count;
2889 KSM_ATTR(merge_across_nodes);
2890 #endif
2892 static ssize_t use_zero_pages_show(struct kobject *kobj,
2893 struct kobj_attribute *attr, char *buf)
2895 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2897 static ssize_t use_zero_pages_store(struct kobject *kobj,
2898 struct kobj_attribute *attr,
2899 const char *buf, size_t count)
2901 int err;
2902 bool value;
2904 err = kstrtobool(buf, &value);
2905 if (err)
2906 return -EINVAL;
2908 ksm_use_zero_pages = value;
2910 return count;
2912 KSM_ATTR(use_zero_pages);
2914 static ssize_t max_page_sharing_show(struct kobject *kobj,
2915 struct kobj_attribute *attr, char *buf)
2917 return sprintf(buf, "%u\n", ksm_max_page_sharing);
2920 static ssize_t max_page_sharing_store(struct kobject *kobj,
2921 struct kobj_attribute *attr,
2922 const char *buf, size_t count)
2924 int err;
2925 int knob;
2927 err = kstrtoint(buf, 10, &knob);
2928 if (err)
2929 return err;
2931 * When a KSM page is created it is shared by 2 mappings. This
2932 * being a signed comparison, it implicitly verifies it's not
2933 * negative.
2935 if (knob < 2)
2936 return -EINVAL;
2938 if (READ_ONCE(ksm_max_page_sharing) == knob)
2939 return count;
2941 mutex_lock(&ksm_thread_mutex);
2942 wait_while_offlining();
2943 if (ksm_max_page_sharing != knob) {
2944 if (ksm_pages_shared || remove_all_stable_nodes())
2945 err = -EBUSY;
2946 else
2947 ksm_max_page_sharing = knob;
2949 mutex_unlock(&ksm_thread_mutex);
2951 return err ? err : count;
2953 KSM_ATTR(max_page_sharing);
2955 static ssize_t pages_shared_show(struct kobject *kobj,
2956 struct kobj_attribute *attr, char *buf)
2958 return sprintf(buf, "%lu\n", ksm_pages_shared);
2960 KSM_ATTR_RO(pages_shared);
2962 static ssize_t pages_sharing_show(struct kobject *kobj,
2963 struct kobj_attribute *attr, char *buf)
2965 return sprintf(buf, "%lu\n", ksm_pages_sharing);
2967 KSM_ATTR_RO(pages_sharing);
2969 static ssize_t pages_unshared_show(struct kobject *kobj,
2970 struct kobj_attribute *attr, char *buf)
2972 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2974 KSM_ATTR_RO(pages_unshared);
2976 static ssize_t pages_volatile_show(struct kobject *kobj,
2977 struct kobj_attribute *attr, char *buf)
2979 long ksm_pages_volatile;
2981 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2982 - ksm_pages_sharing - ksm_pages_unshared;
2984 * It was not worth any locking to calculate that statistic,
2985 * but it might therefore sometimes be negative: conceal that.
2987 if (ksm_pages_volatile < 0)
2988 ksm_pages_volatile = 0;
2989 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2991 KSM_ATTR_RO(pages_volatile);
2993 static ssize_t stable_node_dups_show(struct kobject *kobj,
2994 struct kobj_attribute *attr, char *buf)
2996 return sprintf(buf, "%lu\n", ksm_stable_node_dups);
2998 KSM_ATTR_RO(stable_node_dups);
3000 static ssize_t stable_node_chains_show(struct kobject *kobj,
3001 struct kobj_attribute *attr, char *buf)
3003 return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3005 KSM_ATTR_RO(stable_node_chains);
3007 static ssize_t
3008 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3009 struct kobj_attribute *attr,
3010 char *buf)
3012 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3015 static ssize_t
3016 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3017 struct kobj_attribute *attr,
3018 const char *buf, size_t count)
3020 unsigned long msecs;
3021 int err;
3023 err = kstrtoul(buf, 10, &msecs);
3024 if (err || msecs > UINT_MAX)
3025 return -EINVAL;
3027 ksm_stable_node_chains_prune_millisecs = msecs;
3029 return count;
3031 KSM_ATTR(stable_node_chains_prune_millisecs);
3033 static ssize_t full_scans_show(struct kobject *kobj,
3034 struct kobj_attribute *attr, char *buf)
3036 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3038 KSM_ATTR_RO(full_scans);
3040 static struct attribute *ksm_attrs[] = {
3041 &sleep_millisecs_attr.attr,
3042 &pages_to_scan_attr.attr,
3043 &run_attr.attr,
3044 &pages_shared_attr.attr,
3045 &pages_sharing_attr.attr,
3046 &pages_unshared_attr.attr,
3047 &pages_volatile_attr.attr,
3048 &full_scans_attr.attr,
3049 #ifdef CONFIG_NUMA
3050 &merge_across_nodes_attr.attr,
3051 #endif
3052 &max_page_sharing_attr.attr,
3053 &stable_node_chains_attr.attr,
3054 &stable_node_dups_attr.attr,
3055 &stable_node_chains_prune_millisecs_attr.attr,
3056 &use_zero_pages_attr.attr,
3057 NULL,
3060 static const struct attribute_group ksm_attr_group = {
3061 .attrs = ksm_attrs,
3062 .name = "ksm",
3064 #endif /* CONFIG_SYSFS */
3066 static int __init ksm_init(void)
3068 struct task_struct *ksm_thread;
3069 int err;
3071 /* The correct value depends on page size and endianness */
3072 zero_checksum = calc_checksum(ZERO_PAGE(0));
3073 /* Default to false for backwards compatibility */
3074 ksm_use_zero_pages = false;
3076 err = ksm_slab_init();
3077 if (err)
3078 goto out;
3080 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3081 if (IS_ERR(ksm_thread)) {
3082 pr_err("ksm: creating kthread failed\n");
3083 err = PTR_ERR(ksm_thread);
3084 goto out_free;
3087 #ifdef CONFIG_SYSFS
3088 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3089 if (err) {
3090 pr_err("ksm: register sysfs failed\n");
3091 kthread_stop(ksm_thread);
3092 goto out_free;
3094 #else
3095 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3097 #endif /* CONFIG_SYSFS */
3099 #ifdef CONFIG_MEMORY_HOTREMOVE
3100 /* There is no significance to this priority 100 */
3101 hotplug_memory_notifier(ksm_memory_callback, 100);
3102 #endif
3103 return 0;
3105 out_free:
3106 ksm_slab_free();
3107 out:
3108 return err;
3110 subsys_initcall(ksm_init);