hwmon: (i5500_temp) New driver for the Intel 5500/5520/X58 chipsets
[linux/fpc-iii.git] / drivers / dma / s3c24xx-dma.c
blob6941a77521c3d895dbe220a1190d8e64a9acf138
1 /*
2 * S3C24XX DMA handling
4 * Copyright (c) 2013 Heiko Stuebner <heiko@sntech.de>
6 * based on amba-pl08x.c
8 * Copyright (c) 2006 ARM Ltd.
9 * Copyright (c) 2010 ST-Ericsson SA
11 * Author: Peter Pearse <peter.pearse@arm.com>
12 * Author: Linus Walleij <linus.walleij@stericsson.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the Free
16 * Software Foundation; either version 2 of the License, or (at your option)
17 * any later version.
19 * The DMA controllers in S3C24XX SoCs have a varying number of DMA signals
20 * that can be routed to any of the 4 to 8 hardware-channels.
22 * Therefore on these DMA controllers the number of channels
23 * and the number of incoming DMA signals are two totally different things.
24 * It is usually not possible to theoretically handle all physical signals,
25 * so a multiplexing scheme with possible denial of use is necessary.
27 * Open items:
28 * - bursts
31 #include <linux/platform_device.h>
32 #include <linux/types.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/interrupt.h>
36 #include <linux/clk.h>
37 #include <linux/module.h>
38 #include <linux/slab.h>
39 #include <linux/platform_data/dma-s3c24xx.h>
41 #include "dmaengine.h"
42 #include "virt-dma.h"
44 #define MAX_DMA_CHANNELS 8
46 #define S3C24XX_DISRC 0x00
47 #define S3C24XX_DISRCC 0x04
48 #define S3C24XX_DISRCC_INC_INCREMENT 0
49 #define S3C24XX_DISRCC_INC_FIXED BIT(0)
50 #define S3C24XX_DISRCC_LOC_AHB 0
51 #define S3C24XX_DISRCC_LOC_APB BIT(1)
53 #define S3C24XX_DIDST 0x08
54 #define S3C24XX_DIDSTC 0x0c
55 #define S3C24XX_DIDSTC_INC_INCREMENT 0
56 #define S3C24XX_DIDSTC_INC_FIXED BIT(0)
57 #define S3C24XX_DIDSTC_LOC_AHB 0
58 #define S3C24XX_DIDSTC_LOC_APB BIT(1)
59 #define S3C24XX_DIDSTC_INT_TC0 0
60 #define S3C24XX_DIDSTC_INT_RELOAD BIT(2)
62 #define S3C24XX_DCON 0x10
64 #define S3C24XX_DCON_TC_MASK 0xfffff
65 #define S3C24XX_DCON_DSZ_BYTE (0 << 20)
66 #define S3C24XX_DCON_DSZ_HALFWORD (1 << 20)
67 #define S3C24XX_DCON_DSZ_WORD (2 << 20)
68 #define S3C24XX_DCON_DSZ_MASK (3 << 20)
69 #define S3C24XX_DCON_DSZ_SHIFT 20
70 #define S3C24XX_DCON_AUTORELOAD 0
71 #define S3C24XX_DCON_NORELOAD BIT(22)
72 #define S3C24XX_DCON_HWTRIG BIT(23)
73 #define S3C24XX_DCON_HWSRC_SHIFT 24
74 #define S3C24XX_DCON_SERV_SINGLE 0
75 #define S3C24XX_DCON_SERV_WHOLE BIT(27)
76 #define S3C24XX_DCON_TSZ_UNIT 0
77 #define S3C24XX_DCON_TSZ_BURST4 BIT(28)
78 #define S3C24XX_DCON_INT BIT(29)
79 #define S3C24XX_DCON_SYNC_PCLK 0
80 #define S3C24XX_DCON_SYNC_HCLK BIT(30)
81 #define S3C24XX_DCON_DEMAND 0
82 #define S3C24XX_DCON_HANDSHAKE BIT(31)
84 #define S3C24XX_DSTAT 0x14
85 #define S3C24XX_DSTAT_STAT_BUSY BIT(20)
86 #define S3C24XX_DSTAT_CURRTC_MASK 0xfffff
88 #define S3C24XX_DMASKTRIG 0x20
89 #define S3C24XX_DMASKTRIG_SWTRIG BIT(0)
90 #define S3C24XX_DMASKTRIG_ON BIT(1)
91 #define S3C24XX_DMASKTRIG_STOP BIT(2)
93 #define S3C24XX_DMAREQSEL 0x24
94 #define S3C24XX_DMAREQSEL_HW BIT(0)
97 * S3C2410, S3C2440 and S3C2442 SoCs cannot select any physical channel
98 * for a DMA source. Instead only specific channels are valid.
99 * All of these SoCs have 4 physical channels and the number of request
100 * source bits is 3. Additionally we also need 1 bit to mark the channel
101 * as valid.
102 * Therefore we separate the chansel element of the channel data into 4
103 * parts of 4 bits each, to hold the information if the channel is valid
104 * and the hw request source to use.
106 * Example:
107 * SDI is valid on channels 0, 2 and 3 - with varying hw request sources.
108 * For it the chansel field would look like
110 * ((BIT(3) | 1) << 3 * 4) | // channel 3, with request source 1
111 * ((BIT(3) | 2) << 2 * 4) | // channel 2, with request source 2
112 * ((BIT(3) | 2) << 0 * 4) // channel 0, with request source 2
114 #define S3C24XX_CHANSEL_WIDTH 4
115 #define S3C24XX_CHANSEL_VALID BIT(3)
116 #define S3C24XX_CHANSEL_REQ_MASK 7
119 * struct soc_data - vendor-specific config parameters for individual SoCs
120 * @stride: spacing between the registers of each channel
121 * @has_reqsel: does the controller use the newer requestselection mechanism
122 * @has_clocks: are controllable dma-clocks present
124 struct soc_data {
125 int stride;
126 bool has_reqsel;
127 bool has_clocks;
131 * enum s3c24xx_dma_chan_state - holds the virtual channel states
132 * @S3C24XX_DMA_CHAN_IDLE: the channel is idle
133 * @S3C24XX_DMA_CHAN_RUNNING: the channel has allocated a physical transport
134 * channel and is running a transfer on it
135 * @S3C24XX_DMA_CHAN_WAITING: the channel is waiting for a physical transport
136 * channel to become available (only pertains to memcpy channels)
138 enum s3c24xx_dma_chan_state {
139 S3C24XX_DMA_CHAN_IDLE,
140 S3C24XX_DMA_CHAN_RUNNING,
141 S3C24XX_DMA_CHAN_WAITING,
145 * struct s3c24xx_sg - structure containing data per sg
146 * @src_addr: src address of sg
147 * @dst_addr: dst address of sg
148 * @len: transfer len in bytes
149 * @node: node for txd's dsg_list
151 struct s3c24xx_sg {
152 dma_addr_t src_addr;
153 dma_addr_t dst_addr;
154 size_t len;
155 struct list_head node;
159 * struct s3c24xx_txd - wrapper for struct dma_async_tx_descriptor
160 * @vd: virtual DMA descriptor
161 * @dsg_list: list of children sg's
162 * @at: sg currently being transfered
163 * @width: transfer width
164 * @disrcc: value for source control register
165 * @didstc: value for destination control register
166 * @dcon: base value for dcon register
167 * @cyclic: indicate cyclic transfer
169 struct s3c24xx_txd {
170 struct virt_dma_desc vd;
171 struct list_head dsg_list;
172 struct list_head *at;
173 u8 width;
174 u32 disrcc;
175 u32 didstc;
176 u32 dcon;
177 bool cyclic;
180 struct s3c24xx_dma_chan;
183 * struct s3c24xx_dma_phy - holder for the physical channels
184 * @id: physical index to this channel
185 * @valid: does the channel have all required elements
186 * @base: virtual memory base (remapped) for the this channel
187 * @irq: interrupt for this channel
188 * @clk: clock for this channel
189 * @lock: a lock to use when altering an instance of this struct
190 * @serving: virtual channel currently being served by this physicalchannel
191 * @host: a pointer to the host (internal use)
193 struct s3c24xx_dma_phy {
194 unsigned int id;
195 bool valid;
196 void __iomem *base;
197 int irq;
198 struct clk *clk;
199 spinlock_t lock;
200 struct s3c24xx_dma_chan *serving;
201 struct s3c24xx_dma_engine *host;
205 * struct s3c24xx_dma_chan - this structure wraps a DMA ENGINE channel
206 * @id: the id of the channel
207 * @name: name of the channel
208 * @vc: wrappped virtual channel
209 * @phy: the physical channel utilized by this channel, if there is one
210 * @runtime_addr: address for RX/TX according to the runtime config
211 * @at: active transaction on this channel
212 * @lock: a lock for this channel data
213 * @host: a pointer to the host (internal use)
214 * @state: whether the channel is idle, running etc
215 * @slave: whether this channel is a device (slave) or for memcpy
217 struct s3c24xx_dma_chan {
218 int id;
219 const char *name;
220 struct virt_dma_chan vc;
221 struct s3c24xx_dma_phy *phy;
222 struct dma_slave_config cfg;
223 struct s3c24xx_txd *at;
224 struct s3c24xx_dma_engine *host;
225 enum s3c24xx_dma_chan_state state;
226 bool slave;
230 * struct s3c24xx_dma_engine - the local state holder for the S3C24XX
231 * @pdev: the corresponding platform device
232 * @pdata: platform data passed in from the platform/machine
233 * @base: virtual memory base (remapped)
234 * @slave: slave engine for this instance
235 * @memcpy: memcpy engine for this instance
236 * @phy_chans: array of data for the physical channels
238 struct s3c24xx_dma_engine {
239 struct platform_device *pdev;
240 const struct s3c24xx_dma_platdata *pdata;
241 struct soc_data *sdata;
242 void __iomem *base;
243 struct dma_device slave;
244 struct dma_device memcpy;
245 struct s3c24xx_dma_phy *phy_chans;
249 * Physical channel handling
253 * Check whether a certain channel is busy or not.
255 static int s3c24xx_dma_phy_busy(struct s3c24xx_dma_phy *phy)
257 unsigned int val = readl(phy->base + S3C24XX_DSTAT);
258 return val & S3C24XX_DSTAT_STAT_BUSY;
261 static bool s3c24xx_dma_phy_valid(struct s3c24xx_dma_chan *s3cchan,
262 struct s3c24xx_dma_phy *phy)
264 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
265 const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
266 struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
267 int phyvalid;
269 /* every phy is valid for memcopy channels */
270 if (!s3cchan->slave)
271 return true;
273 /* On newer variants all phys can be used for all virtual channels */
274 if (s3cdma->sdata->has_reqsel)
275 return true;
277 phyvalid = (cdata->chansel >> (phy->id * S3C24XX_CHANSEL_WIDTH));
278 return (phyvalid & S3C24XX_CHANSEL_VALID) ? true : false;
282 * Allocate a physical channel for a virtual channel
284 * Try to locate a physical channel to be used for this transfer. If all
285 * are taken return NULL and the requester will have to cope by using
286 * some fallback PIO mode or retrying later.
288 static
289 struct s3c24xx_dma_phy *s3c24xx_dma_get_phy(struct s3c24xx_dma_chan *s3cchan)
291 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
292 const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
293 struct s3c24xx_dma_channel *cdata;
294 struct s3c24xx_dma_phy *phy = NULL;
295 unsigned long flags;
296 int i;
297 int ret;
299 if (s3cchan->slave)
300 cdata = &pdata->channels[s3cchan->id];
302 for (i = 0; i < s3cdma->pdata->num_phy_channels; i++) {
303 phy = &s3cdma->phy_chans[i];
305 if (!phy->valid)
306 continue;
308 if (!s3c24xx_dma_phy_valid(s3cchan, phy))
309 continue;
311 spin_lock_irqsave(&phy->lock, flags);
313 if (!phy->serving) {
314 phy->serving = s3cchan;
315 spin_unlock_irqrestore(&phy->lock, flags);
316 break;
319 spin_unlock_irqrestore(&phy->lock, flags);
322 /* No physical channel available, cope with it */
323 if (i == s3cdma->pdata->num_phy_channels) {
324 dev_warn(&s3cdma->pdev->dev, "no phy channel available\n");
325 return NULL;
328 /* start the phy clock */
329 if (s3cdma->sdata->has_clocks) {
330 ret = clk_enable(phy->clk);
331 if (ret) {
332 dev_err(&s3cdma->pdev->dev, "could not enable clock for channel %d, err %d\n",
333 phy->id, ret);
334 phy->serving = NULL;
335 return NULL;
339 return phy;
343 * Mark the physical channel as free.
345 * This drops the link between the physical and virtual channel.
347 static inline void s3c24xx_dma_put_phy(struct s3c24xx_dma_phy *phy)
349 struct s3c24xx_dma_engine *s3cdma = phy->host;
351 if (s3cdma->sdata->has_clocks)
352 clk_disable(phy->clk);
354 phy->serving = NULL;
358 * Stops the channel by writing the stop bit.
359 * This should not be used for an on-going transfer, but as a method of
360 * shutting down a channel (eg, when it's no longer used) or terminating a
361 * transfer.
363 static void s3c24xx_dma_terminate_phy(struct s3c24xx_dma_phy *phy)
365 writel(S3C24XX_DMASKTRIG_STOP, phy->base + S3C24XX_DMASKTRIG);
369 * Virtual channel handling
372 static inline
373 struct s3c24xx_dma_chan *to_s3c24xx_dma_chan(struct dma_chan *chan)
375 return container_of(chan, struct s3c24xx_dma_chan, vc.chan);
378 static u32 s3c24xx_dma_getbytes_chan(struct s3c24xx_dma_chan *s3cchan)
380 struct s3c24xx_dma_phy *phy = s3cchan->phy;
381 struct s3c24xx_txd *txd = s3cchan->at;
382 u32 tc = readl(phy->base + S3C24XX_DSTAT) & S3C24XX_DSTAT_CURRTC_MASK;
384 return tc * txd->width;
387 static int s3c24xx_dma_set_runtime_config(struct s3c24xx_dma_chan *s3cchan,
388 struct dma_slave_config *config)
390 if (!s3cchan->slave)
391 return -EINVAL;
393 /* Reject definitely invalid configurations */
394 if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
395 config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
396 return -EINVAL;
398 s3cchan->cfg = *config;
400 return 0;
404 * Transfer handling
407 static inline
408 struct s3c24xx_txd *to_s3c24xx_txd(struct dma_async_tx_descriptor *tx)
410 return container_of(tx, struct s3c24xx_txd, vd.tx);
413 static struct s3c24xx_txd *s3c24xx_dma_get_txd(void)
415 struct s3c24xx_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
417 if (txd) {
418 INIT_LIST_HEAD(&txd->dsg_list);
419 txd->dcon = S3C24XX_DCON_INT | S3C24XX_DCON_NORELOAD;
422 return txd;
425 static void s3c24xx_dma_free_txd(struct s3c24xx_txd *txd)
427 struct s3c24xx_sg *dsg, *_dsg;
429 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
430 list_del(&dsg->node);
431 kfree(dsg);
434 kfree(txd);
437 static void s3c24xx_dma_start_next_sg(struct s3c24xx_dma_chan *s3cchan,
438 struct s3c24xx_txd *txd)
440 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
441 struct s3c24xx_dma_phy *phy = s3cchan->phy;
442 const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
443 struct s3c24xx_sg *dsg = list_entry(txd->at, struct s3c24xx_sg, node);
444 u32 dcon = txd->dcon;
445 u32 val;
447 /* transfer-size and -count from len and width */
448 switch (txd->width) {
449 case 1:
450 dcon |= S3C24XX_DCON_DSZ_BYTE | dsg->len;
451 break;
452 case 2:
453 dcon |= S3C24XX_DCON_DSZ_HALFWORD | (dsg->len / 2);
454 break;
455 case 4:
456 dcon |= S3C24XX_DCON_DSZ_WORD | (dsg->len / 4);
457 break;
460 if (s3cchan->slave) {
461 struct s3c24xx_dma_channel *cdata =
462 &pdata->channels[s3cchan->id];
464 if (s3cdma->sdata->has_reqsel) {
465 writel_relaxed((cdata->chansel << 1) |
466 S3C24XX_DMAREQSEL_HW,
467 phy->base + S3C24XX_DMAREQSEL);
468 } else {
469 int csel = cdata->chansel >> (phy->id *
470 S3C24XX_CHANSEL_WIDTH);
472 csel &= S3C24XX_CHANSEL_REQ_MASK;
473 dcon |= csel << S3C24XX_DCON_HWSRC_SHIFT;
474 dcon |= S3C24XX_DCON_HWTRIG;
476 } else {
477 if (s3cdma->sdata->has_reqsel)
478 writel_relaxed(0, phy->base + S3C24XX_DMAREQSEL);
481 writel_relaxed(dsg->src_addr, phy->base + S3C24XX_DISRC);
482 writel_relaxed(txd->disrcc, phy->base + S3C24XX_DISRCC);
483 writel_relaxed(dsg->dst_addr, phy->base + S3C24XX_DIDST);
484 writel_relaxed(txd->didstc, phy->base + S3C24XX_DIDSTC);
485 writel_relaxed(dcon, phy->base + S3C24XX_DCON);
487 val = readl_relaxed(phy->base + S3C24XX_DMASKTRIG);
488 val &= ~S3C24XX_DMASKTRIG_STOP;
489 val |= S3C24XX_DMASKTRIG_ON;
491 /* trigger the dma operation for memcpy transfers */
492 if (!s3cchan->slave)
493 val |= S3C24XX_DMASKTRIG_SWTRIG;
495 writel(val, phy->base + S3C24XX_DMASKTRIG);
499 * Set the initial DMA register values and start first sg.
501 static void s3c24xx_dma_start_next_txd(struct s3c24xx_dma_chan *s3cchan)
503 struct s3c24xx_dma_phy *phy = s3cchan->phy;
504 struct virt_dma_desc *vd = vchan_next_desc(&s3cchan->vc);
505 struct s3c24xx_txd *txd = to_s3c24xx_txd(&vd->tx);
507 list_del(&txd->vd.node);
509 s3cchan->at = txd;
511 /* Wait for channel inactive */
512 while (s3c24xx_dma_phy_busy(phy))
513 cpu_relax();
515 /* point to the first element of the sg list */
516 txd->at = txd->dsg_list.next;
517 s3c24xx_dma_start_next_sg(s3cchan, txd);
520 static void s3c24xx_dma_free_txd_list(struct s3c24xx_dma_engine *s3cdma,
521 struct s3c24xx_dma_chan *s3cchan)
523 LIST_HEAD(head);
525 vchan_get_all_descriptors(&s3cchan->vc, &head);
526 vchan_dma_desc_free_list(&s3cchan->vc, &head);
530 * Try to allocate a physical channel. When successful, assign it to
531 * this virtual channel, and initiate the next descriptor. The
532 * virtual channel lock must be held at this point.
534 static void s3c24xx_dma_phy_alloc_and_start(struct s3c24xx_dma_chan *s3cchan)
536 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
537 struct s3c24xx_dma_phy *phy;
539 phy = s3c24xx_dma_get_phy(s3cchan);
540 if (!phy) {
541 dev_dbg(&s3cdma->pdev->dev, "no physical channel available for xfer on %s\n",
542 s3cchan->name);
543 s3cchan->state = S3C24XX_DMA_CHAN_WAITING;
544 return;
547 dev_dbg(&s3cdma->pdev->dev, "allocated physical channel %d for xfer on %s\n",
548 phy->id, s3cchan->name);
550 s3cchan->phy = phy;
551 s3cchan->state = S3C24XX_DMA_CHAN_RUNNING;
553 s3c24xx_dma_start_next_txd(s3cchan);
556 static void s3c24xx_dma_phy_reassign_start(struct s3c24xx_dma_phy *phy,
557 struct s3c24xx_dma_chan *s3cchan)
559 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
561 dev_dbg(&s3cdma->pdev->dev, "reassigned physical channel %d for xfer on %s\n",
562 phy->id, s3cchan->name);
565 * We do this without taking the lock; we're really only concerned
566 * about whether this pointer is NULL or not, and we're guaranteed
567 * that this will only be called when it _already_ is non-NULL.
569 phy->serving = s3cchan;
570 s3cchan->phy = phy;
571 s3cchan->state = S3C24XX_DMA_CHAN_RUNNING;
572 s3c24xx_dma_start_next_txd(s3cchan);
576 * Free a physical DMA channel, potentially reallocating it to another
577 * virtual channel if we have any pending.
579 static void s3c24xx_dma_phy_free(struct s3c24xx_dma_chan *s3cchan)
581 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
582 struct s3c24xx_dma_chan *p, *next;
584 retry:
585 next = NULL;
587 /* Find a waiting virtual channel for the next transfer. */
588 list_for_each_entry(p, &s3cdma->memcpy.channels, vc.chan.device_node)
589 if (p->state == S3C24XX_DMA_CHAN_WAITING) {
590 next = p;
591 break;
594 if (!next) {
595 list_for_each_entry(p, &s3cdma->slave.channels,
596 vc.chan.device_node)
597 if (p->state == S3C24XX_DMA_CHAN_WAITING &&
598 s3c24xx_dma_phy_valid(p, s3cchan->phy)) {
599 next = p;
600 break;
604 /* Ensure that the physical channel is stopped */
605 s3c24xx_dma_terminate_phy(s3cchan->phy);
607 if (next) {
608 bool success;
611 * Eww. We know this isn't going to deadlock
612 * but lockdep probably doesn't.
614 spin_lock(&next->vc.lock);
615 /* Re-check the state now that we have the lock */
616 success = next->state == S3C24XX_DMA_CHAN_WAITING;
617 if (success)
618 s3c24xx_dma_phy_reassign_start(s3cchan->phy, next);
619 spin_unlock(&next->vc.lock);
621 /* If the state changed, try to find another channel */
622 if (!success)
623 goto retry;
624 } else {
625 /* No more jobs, so free up the physical channel */
626 s3c24xx_dma_put_phy(s3cchan->phy);
629 s3cchan->phy = NULL;
630 s3cchan->state = S3C24XX_DMA_CHAN_IDLE;
633 static void s3c24xx_dma_desc_free(struct virt_dma_desc *vd)
635 struct s3c24xx_txd *txd = to_s3c24xx_txd(&vd->tx);
636 struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(vd->tx.chan);
638 if (!s3cchan->slave)
639 dma_descriptor_unmap(&vd->tx);
641 s3c24xx_dma_free_txd(txd);
644 static irqreturn_t s3c24xx_dma_irq(int irq, void *data)
646 struct s3c24xx_dma_phy *phy = data;
647 struct s3c24xx_dma_chan *s3cchan = phy->serving;
648 struct s3c24xx_txd *txd;
650 dev_dbg(&phy->host->pdev->dev, "interrupt on channel %d\n", phy->id);
653 * Interrupts happen to notify the completion of a transfer and the
654 * channel should have moved into its stop state already on its own.
655 * Therefore interrupts on channels not bound to a virtual channel
656 * should never happen. Nevertheless send a terminate command to the
657 * channel if the unlikely case happens.
659 if (unlikely(!s3cchan)) {
660 dev_err(&phy->host->pdev->dev, "interrupt on unused channel %d\n",
661 phy->id);
663 s3c24xx_dma_terminate_phy(phy);
665 return IRQ_HANDLED;
668 spin_lock(&s3cchan->vc.lock);
669 txd = s3cchan->at;
670 if (txd) {
671 /* when more sg's are in this txd, start the next one */
672 if (!list_is_last(txd->at, &txd->dsg_list)) {
673 txd->at = txd->at->next;
674 if (txd->cyclic)
675 vchan_cyclic_callback(&txd->vd);
676 s3c24xx_dma_start_next_sg(s3cchan, txd);
677 } else if (!txd->cyclic) {
678 s3cchan->at = NULL;
679 vchan_cookie_complete(&txd->vd);
682 * And start the next descriptor (if any),
683 * otherwise free this channel.
685 if (vchan_next_desc(&s3cchan->vc))
686 s3c24xx_dma_start_next_txd(s3cchan);
687 else
688 s3c24xx_dma_phy_free(s3cchan);
689 } else {
690 vchan_cyclic_callback(&txd->vd);
692 /* Cyclic: reset at beginning */
693 txd->at = txd->dsg_list.next;
694 s3c24xx_dma_start_next_sg(s3cchan, txd);
697 spin_unlock(&s3cchan->vc.lock);
699 return IRQ_HANDLED;
703 * The DMA ENGINE API
706 static int s3c24xx_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
707 unsigned long arg)
709 struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
710 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
711 unsigned long flags;
712 int ret = 0;
714 spin_lock_irqsave(&s3cchan->vc.lock, flags);
716 switch (cmd) {
717 case DMA_SLAVE_CONFIG:
718 ret = s3c24xx_dma_set_runtime_config(s3cchan,
719 (struct dma_slave_config *)arg);
720 break;
721 case DMA_TERMINATE_ALL:
722 if (!s3cchan->phy && !s3cchan->at) {
723 dev_err(&s3cdma->pdev->dev, "trying to terminate already stopped channel %d\n",
724 s3cchan->id);
725 ret = -EINVAL;
726 break;
729 s3cchan->state = S3C24XX_DMA_CHAN_IDLE;
731 /* Mark physical channel as free */
732 if (s3cchan->phy)
733 s3c24xx_dma_phy_free(s3cchan);
735 /* Dequeue current job */
736 if (s3cchan->at) {
737 s3c24xx_dma_desc_free(&s3cchan->at->vd);
738 s3cchan->at = NULL;
741 /* Dequeue jobs not yet fired as well */
742 s3c24xx_dma_free_txd_list(s3cdma, s3cchan);
743 break;
744 default:
745 /* Unknown command */
746 ret = -ENXIO;
747 break;
750 spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
752 return ret;
755 static int s3c24xx_dma_alloc_chan_resources(struct dma_chan *chan)
757 return 0;
760 static void s3c24xx_dma_free_chan_resources(struct dma_chan *chan)
762 /* Ensure all queued descriptors are freed */
763 vchan_free_chan_resources(to_virt_chan(chan));
766 static enum dma_status s3c24xx_dma_tx_status(struct dma_chan *chan,
767 dma_cookie_t cookie, struct dma_tx_state *txstate)
769 struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
770 struct s3c24xx_txd *txd;
771 struct s3c24xx_sg *dsg;
772 struct virt_dma_desc *vd;
773 unsigned long flags;
774 enum dma_status ret;
775 size_t bytes = 0;
777 spin_lock_irqsave(&s3cchan->vc.lock, flags);
778 ret = dma_cookie_status(chan, cookie, txstate);
779 if (ret == DMA_COMPLETE) {
780 spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
781 return ret;
785 * There's no point calculating the residue if there's
786 * no txstate to store the value.
788 if (!txstate) {
789 spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
790 return ret;
793 vd = vchan_find_desc(&s3cchan->vc, cookie);
794 if (vd) {
795 /* On the issued list, so hasn't been processed yet */
796 txd = to_s3c24xx_txd(&vd->tx);
798 list_for_each_entry(dsg, &txd->dsg_list, node)
799 bytes += dsg->len;
800 } else {
802 * Currently running, so sum over the pending sg's and
803 * the currently active one.
805 txd = s3cchan->at;
807 dsg = list_entry(txd->at, struct s3c24xx_sg, node);
808 list_for_each_entry_from(dsg, &txd->dsg_list, node)
809 bytes += dsg->len;
811 bytes += s3c24xx_dma_getbytes_chan(s3cchan);
813 spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
816 * This cookie not complete yet
817 * Get number of bytes left in the active transactions and queue
819 dma_set_residue(txstate, bytes);
821 /* Whether waiting or running, we're in progress */
822 return ret;
826 * Initialize a descriptor to be used by memcpy submit
828 static struct dma_async_tx_descriptor *s3c24xx_dma_prep_memcpy(
829 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
830 size_t len, unsigned long flags)
832 struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
833 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
834 struct s3c24xx_txd *txd;
835 struct s3c24xx_sg *dsg;
836 int src_mod, dest_mod;
838 dev_dbg(&s3cdma->pdev->dev, "prepare memcpy of %d bytes from %s\n",
839 len, s3cchan->name);
841 if ((len & S3C24XX_DCON_TC_MASK) != len) {
842 dev_err(&s3cdma->pdev->dev, "memcpy size %d to large\n", len);
843 return NULL;
846 txd = s3c24xx_dma_get_txd();
847 if (!txd)
848 return NULL;
850 dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
851 if (!dsg) {
852 s3c24xx_dma_free_txd(txd);
853 return NULL;
855 list_add_tail(&dsg->node, &txd->dsg_list);
857 dsg->src_addr = src;
858 dsg->dst_addr = dest;
859 dsg->len = len;
862 * Determine a suitable transfer width.
863 * The DMA controller cannot fetch/store information which is not
864 * naturally aligned on the bus, i.e., a 4 byte fetch must start at
865 * an address divisible by 4 - more generally addr % width must be 0.
867 src_mod = src % 4;
868 dest_mod = dest % 4;
869 switch (len % 4) {
870 case 0:
871 txd->width = (src_mod == 0 && dest_mod == 0) ? 4 : 1;
872 break;
873 case 2:
874 txd->width = ((src_mod == 2 || src_mod == 0) &&
875 (dest_mod == 2 || dest_mod == 0)) ? 2 : 1;
876 break;
877 default:
878 txd->width = 1;
879 break;
882 txd->disrcc = S3C24XX_DISRCC_LOC_AHB | S3C24XX_DISRCC_INC_INCREMENT;
883 txd->didstc = S3C24XX_DIDSTC_LOC_AHB | S3C24XX_DIDSTC_INC_INCREMENT;
884 txd->dcon |= S3C24XX_DCON_DEMAND | S3C24XX_DCON_SYNC_HCLK |
885 S3C24XX_DCON_SERV_WHOLE;
887 return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
890 static struct dma_async_tx_descriptor *s3c24xx_dma_prep_dma_cyclic(
891 struct dma_chan *chan, dma_addr_t addr, size_t size, size_t period,
892 enum dma_transfer_direction direction, unsigned long flags)
894 struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
895 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
896 const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
897 struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
898 struct s3c24xx_txd *txd;
899 struct s3c24xx_sg *dsg;
900 unsigned sg_len;
901 dma_addr_t slave_addr;
902 u32 hwcfg = 0;
903 int i;
905 dev_dbg(&s3cdma->pdev->dev,
906 "prepare cyclic transaction of %zu bytes with period %zu from %s\n",
907 size, period, s3cchan->name);
909 if (!is_slave_direction(direction)) {
910 dev_err(&s3cdma->pdev->dev,
911 "direction %d unsupported\n", direction);
912 return NULL;
915 txd = s3c24xx_dma_get_txd();
916 if (!txd)
917 return NULL;
919 txd->cyclic = 1;
921 if (cdata->handshake)
922 txd->dcon |= S3C24XX_DCON_HANDSHAKE;
924 switch (cdata->bus) {
925 case S3C24XX_DMA_APB:
926 txd->dcon |= S3C24XX_DCON_SYNC_PCLK;
927 hwcfg |= S3C24XX_DISRCC_LOC_APB;
928 break;
929 case S3C24XX_DMA_AHB:
930 txd->dcon |= S3C24XX_DCON_SYNC_HCLK;
931 hwcfg |= S3C24XX_DISRCC_LOC_AHB;
932 break;
936 * Always assume our peripheral desintation is a fixed
937 * address in memory.
939 hwcfg |= S3C24XX_DISRCC_INC_FIXED;
942 * Individual dma operations are requested by the slave,
943 * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
945 txd->dcon |= S3C24XX_DCON_SERV_SINGLE;
947 if (direction == DMA_MEM_TO_DEV) {
948 txd->disrcc = S3C24XX_DISRCC_LOC_AHB |
949 S3C24XX_DISRCC_INC_INCREMENT;
950 txd->didstc = hwcfg;
951 slave_addr = s3cchan->cfg.dst_addr;
952 txd->width = s3cchan->cfg.dst_addr_width;
953 } else {
954 txd->disrcc = hwcfg;
955 txd->didstc = S3C24XX_DIDSTC_LOC_AHB |
956 S3C24XX_DIDSTC_INC_INCREMENT;
957 slave_addr = s3cchan->cfg.src_addr;
958 txd->width = s3cchan->cfg.src_addr_width;
961 sg_len = size / period;
963 for (i = 0; i < sg_len; i++) {
964 dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
965 if (!dsg) {
966 s3c24xx_dma_free_txd(txd);
967 return NULL;
969 list_add_tail(&dsg->node, &txd->dsg_list);
971 dsg->len = period;
972 /* Check last period length */
973 if (i == sg_len - 1)
974 dsg->len = size - period * i;
975 if (direction == DMA_MEM_TO_DEV) {
976 dsg->src_addr = addr + period * i;
977 dsg->dst_addr = slave_addr;
978 } else { /* DMA_DEV_TO_MEM */
979 dsg->src_addr = slave_addr;
980 dsg->dst_addr = addr + period * i;
984 return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
987 static struct dma_async_tx_descriptor *s3c24xx_dma_prep_slave_sg(
988 struct dma_chan *chan, struct scatterlist *sgl,
989 unsigned int sg_len, enum dma_transfer_direction direction,
990 unsigned long flags, void *context)
992 struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
993 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
994 const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
995 struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
996 struct s3c24xx_txd *txd;
997 struct s3c24xx_sg *dsg;
998 struct scatterlist *sg;
999 dma_addr_t slave_addr;
1000 u32 hwcfg = 0;
1001 int tmp;
1003 dev_dbg(&s3cdma->pdev->dev, "prepare transaction of %d bytes from %s\n",
1004 sg_dma_len(sgl), s3cchan->name);
1006 txd = s3c24xx_dma_get_txd();
1007 if (!txd)
1008 return NULL;
1010 if (cdata->handshake)
1011 txd->dcon |= S3C24XX_DCON_HANDSHAKE;
1013 switch (cdata->bus) {
1014 case S3C24XX_DMA_APB:
1015 txd->dcon |= S3C24XX_DCON_SYNC_PCLK;
1016 hwcfg |= S3C24XX_DISRCC_LOC_APB;
1017 break;
1018 case S3C24XX_DMA_AHB:
1019 txd->dcon |= S3C24XX_DCON_SYNC_HCLK;
1020 hwcfg |= S3C24XX_DISRCC_LOC_AHB;
1021 break;
1025 * Always assume our peripheral desintation is a fixed
1026 * address in memory.
1028 hwcfg |= S3C24XX_DISRCC_INC_FIXED;
1031 * Individual dma operations are requested by the slave,
1032 * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
1034 txd->dcon |= S3C24XX_DCON_SERV_SINGLE;
1036 if (direction == DMA_MEM_TO_DEV) {
1037 txd->disrcc = S3C24XX_DISRCC_LOC_AHB |
1038 S3C24XX_DISRCC_INC_INCREMENT;
1039 txd->didstc = hwcfg;
1040 slave_addr = s3cchan->cfg.dst_addr;
1041 txd->width = s3cchan->cfg.dst_addr_width;
1042 } else if (direction == DMA_DEV_TO_MEM) {
1043 txd->disrcc = hwcfg;
1044 txd->didstc = S3C24XX_DIDSTC_LOC_AHB |
1045 S3C24XX_DIDSTC_INC_INCREMENT;
1046 slave_addr = s3cchan->cfg.src_addr;
1047 txd->width = s3cchan->cfg.src_addr_width;
1048 } else {
1049 s3c24xx_dma_free_txd(txd);
1050 dev_err(&s3cdma->pdev->dev,
1051 "direction %d unsupported\n", direction);
1052 return NULL;
1055 for_each_sg(sgl, sg, sg_len, tmp) {
1056 dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
1057 if (!dsg) {
1058 s3c24xx_dma_free_txd(txd);
1059 return NULL;
1061 list_add_tail(&dsg->node, &txd->dsg_list);
1063 dsg->len = sg_dma_len(sg);
1064 if (direction == DMA_MEM_TO_DEV) {
1065 dsg->src_addr = sg_dma_address(sg);
1066 dsg->dst_addr = slave_addr;
1067 } else { /* DMA_DEV_TO_MEM */
1068 dsg->src_addr = slave_addr;
1069 dsg->dst_addr = sg_dma_address(sg);
1073 return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
1077 * Slave transactions callback to the slave device to allow
1078 * synchronization of slave DMA signals with the DMAC enable
1080 static void s3c24xx_dma_issue_pending(struct dma_chan *chan)
1082 struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
1083 unsigned long flags;
1085 spin_lock_irqsave(&s3cchan->vc.lock, flags);
1086 if (vchan_issue_pending(&s3cchan->vc)) {
1087 if (!s3cchan->phy && s3cchan->state != S3C24XX_DMA_CHAN_WAITING)
1088 s3c24xx_dma_phy_alloc_and_start(s3cchan);
1090 spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
1094 * Bringup and teardown
1098 * Initialise the DMAC memcpy/slave channels.
1099 * Make a local wrapper to hold required data
1101 static int s3c24xx_dma_init_virtual_channels(struct s3c24xx_dma_engine *s3cdma,
1102 struct dma_device *dmadev, unsigned int channels, bool slave)
1104 struct s3c24xx_dma_chan *chan;
1105 int i;
1107 INIT_LIST_HEAD(&dmadev->channels);
1110 * Register as many many memcpy as we have physical channels,
1111 * we won't always be able to use all but the code will have
1112 * to cope with that situation.
1114 for (i = 0; i < channels; i++) {
1115 chan = devm_kzalloc(dmadev->dev, sizeof(*chan), GFP_KERNEL);
1116 if (!chan) {
1117 dev_err(dmadev->dev,
1118 "%s no memory for channel\n", __func__);
1119 return -ENOMEM;
1122 chan->id = i;
1123 chan->host = s3cdma;
1124 chan->state = S3C24XX_DMA_CHAN_IDLE;
1126 if (slave) {
1127 chan->slave = true;
1128 chan->name = kasprintf(GFP_KERNEL, "slave%d", i);
1129 if (!chan->name)
1130 return -ENOMEM;
1131 } else {
1132 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1133 if (!chan->name)
1134 return -ENOMEM;
1136 dev_dbg(dmadev->dev,
1137 "initialize virtual channel \"%s\"\n",
1138 chan->name);
1140 chan->vc.desc_free = s3c24xx_dma_desc_free;
1141 vchan_init(&chan->vc, dmadev);
1143 dev_info(dmadev->dev, "initialized %d virtual %s channels\n",
1144 i, slave ? "slave" : "memcpy");
1145 return i;
1148 static void s3c24xx_dma_free_virtual_channels(struct dma_device *dmadev)
1150 struct s3c24xx_dma_chan *chan = NULL;
1151 struct s3c24xx_dma_chan *next;
1153 list_for_each_entry_safe(chan,
1154 next, &dmadev->channels, vc.chan.device_node)
1155 list_del(&chan->vc.chan.device_node);
1158 /* s3c2410, s3c2440 and s3c2442 have a 0x40 stride without separate clocks */
1159 static struct soc_data soc_s3c2410 = {
1160 .stride = 0x40,
1161 .has_reqsel = false,
1162 .has_clocks = false,
1165 /* s3c2412 and s3c2413 have a 0x40 stride and dmareqsel mechanism */
1166 static struct soc_data soc_s3c2412 = {
1167 .stride = 0x40,
1168 .has_reqsel = true,
1169 .has_clocks = true,
1172 /* s3c2443 and following have a 0x100 stride and dmareqsel mechanism */
1173 static struct soc_data soc_s3c2443 = {
1174 .stride = 0x100,
1175 .has_reqsel = true,
1176 .has_clocks = true,
1179 static struct platform_device_id s3c24xx_dma_driver_ids[] = {
1181 .name = "s3c2410-dma",
1182 .driver_data = (kernel_ulong_t)&soc_s3c2410,
1183 }, {
1184 .name = "s3c2412-dma",
1185 .driver_data = (kernel_ulong_t)&soc_s3c2412,
1186 }, {
1187 .name = "s3c2443-dma",
1188 .driver_data = (kernel_ulong_t)&soc_s3c2443,
1190 { },
1193 static struct soc_data *s3c24xx_dma_get_soc_data(struct platform_device *pdev)
1195 return (struct soc_data *)
1196 platform_get_device_id(pdev)->driver_data;
1199 static int s3c24xx_dma_probe(struct platform_device *pdev)
1201 const struct s3c24xx_dma_platdata *pdata = dev_get_platdata(&pdev->dev);
1202 struct s3c24xx_dma_engine *s3cdma;
1203 struct soc_data *sdata;
1204 struct resource *res;
1205 int ret;
1206 int i;
1208 if (!pdata) {
1209 dev_err(&pdev->dev, "platform data missing\n");
1210 return -ENODEV;
1213 /* Basic sanity check */
1214 if (pdata->num_phy_channels > MAX_DMA_CHANNELS) {
1215 dev_err(&pdev->dev, "to many dma channels %d, max %d\n",
1216 pdata->num_phy_channels, MAX_DMA_CHANNELS);
1217 return -EINVAL;
1220 sdata = s3c24xx_dma_get_soc_data(pdev);
1221 if (!sdata)
1222 return -EINVAL;
1224 s3cdma = devm_kzalloc(&pdev->dev, sizeof(*s3cdma), GFP_KERNEL);
1225 if (!s3cdma)
1226 return -ENOMEM;
1228 s3cdma->pdev = pdev;
1229 s3cdma->pdata = pdata;
1230 s3cdma->sdata = sdata;
1232 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1233 s3cdma->base = devm_ioremap_resource(&pdev->dev, res);
1234 if (IS_ERR(s3cdma->base))
1235 return PTR_ERR(s3cdma->base);
1237 s3cdma->phy_chans = devm_kzalloc(&pdev->dev,
1238 sizeof(struct s3c24xx_dma_phy) *
1239 pdata->num_phy_channels,
1240 GFP_KERNEL);
1241 if (!s3cdma->phy_chans)
1242 return -ENOMEM;
1244 /* aquire irqs and clocks for all physical channels */
1245 for (i = 0; i < pdata->num_phy_channels; i++) {
1246 struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1247 char clk_name[6];
1249 phy->id = i;
1250 phy->base = s3cdma->base + (i * sdata->stride);
1251 phy->host = s3cdma;
1253 phy->irq = platform_get_irq(pdev, i);
1254 if (phy->irq < 0) {
1255 dev_err(&pdev->dev, "failed to get irq %d, err %d\n",
1256 i, phy->irq);
1257 continue;
1260 ret = devm_request_irq(&pdev->dev, phy->irq, s3c24xx_dma_irq,
1261 0, pdev->name, phy);
1262 if (ret) {
1263 dev_err(&pdev->dev, "Unable to request irq for channel %d, error %d\n",
1264 i, ret);
1265 continue;
1268 if (sdata->has_clocks) {
1269 sprintf(clk_name, "dma.%d", i);
1270 phy->clk = devm_clk_get(&pdev->dev, clk_name);
1271 if (IS_ERR(phy->clk) && sdata->has_clocks) {
1272 dev_err(&pdev->dev, "unable to aquire clock for channel %d, error %lu",
1273 i, PTR_ERR(phy->clk));
1274 continue;
1277 ret = clk_prepare(phy->clk);
1278 if (ret) {
1279 dev_err(&pdev->dev, "clock for phy %d failed, error %d\n",
1280 i, ret);
1281 continue;
1285 spin_lock_init(&phy->lock);
1286 phy->valid = true;
1288 dev_dbg(&pdev->dev, "physical channel %d is %s\n",
1289 i, s3c24xx_dma_phy_busy(phy) ? "BUSY" : "FREE");
1292 /* Initialize memcpy engine */
1293 dma_cap_set(DMA_MEMCPY, s3cdma->memcpy.cap_mask);
1294 dma_cap_set(DMA_PRIVATE, s3cdma->memcpy.cap_mask);
1295 s3cdma->memcpy.dev = &pdev->dev;
1296 s3cdma->memcpy.device_alloc_chan_resources =
1297 s3c24xx_dma_alloc_chan_resources;
1298 s3cdma->memcpy.device_free_chan_resources =
1299 s3c24xx_dma_free_chan_resources;
1300 s3cdma->memcpy.device_prep_dma_memcpy = s3c24xx_dma_prep_memcpy;
1301 s3cdma->memcpy.device_tx_status = s3c24xx_dma_tx_status;
1302 s3cdma->memcpy.device_issue_pending = s3c24xx_dma_issue_pending;
1303 s3cdma->memcpy.device_control = s3c24xx_dma_control;
1305 /* Initialize slave engine for SoC internal dedicated peripherals */
1306 dma_cap_set(DMA_SLAVE, s3cdma->slave.cap_mask);
1307 dma_cap_set(DMA_CYCLIC, s3cdma->slave.cap_mask);
1308 dma_cap_set(DMA_PRIVATE, s3cdma->slave.cap_mask);
1309 s3cdma->slave.dev = &pdev->dev;
1310 s3cdma->slave.device_alloc_chan_resources =
1311 s3c24xx_dma_alloc_chan_resources;
1312 s3cdma->slave.device_free_chan_resources =
1313 s3c24xx_dma_free_chan_resources;
1314 s3cdma->slave.device_tx_status = s3c24xx_dma_tx_status;
1315 s3cdma->slave.device_issue_pending = s3c24xx_dma_issue_pending;
1316 s3cdma->slave.device_prep_slave_sg = s3c24xx_dma_prep_slave_sg;
1317 s3cdma->slave.device_prep_dma_cyclic = s3c24xx_dma_prep_dma_cyclic;
1318 s3cdma->slave.device_control = s3c24xx_dma_control;
1320 /* Register as many memcpy channels as there are physical channels */
1321 ret = s3c24xx_dma_init_virtual_channels(s3cdma, &s3cdma->memcpy,
1322 pdata->num_phy_channels, false);
1323 if (ret <= 0) {
1324 dev_warn(&pdev->dev,
1325 "%s failed to enumerate memcpy channels - %d\n",
1326 __func__, ret);
1327 goto err_memcpy;
1330 /* Register slave channels */
1331 ret = s3c24xx_dma_init_virtual_channels(s3cdma, &s3cdma->slave,
1332 pdata->num_channels, true);
1333 if (ret <= 0) {
1334 dev_warn(&pdev->dev,
1335 "%s failed to enumerate slave channels - %d\n",
1336 __func__, ret);
1337 goto err_slave;
1340 ret = dma_async_device_register(&s3cdma->memcpy);
1341 if (ret) {
1342 dev_warn(&pdev->dev,
1343 "%s failed to register memcpy as an async device - %d\n",
1344 __func__, ret);
1345 goto err_memcpy_reg;
1348 ret = dma_async_device_register(&s3cdma->slave);
1349 if (ret) {
1350 dev_warn(&pdev->dev,
1351 "%s failed to register slave as an async device - %d\n",
1352 __func__, ret);
1353 goto err_slave_reg;
1356 platform_set_drvdata(pdev, s3cdma);
1357 dev_info(&pdev->dev, "Loaded dma driver with %d physical channels\n",
1358 pdata->num_phy_channels);
1360 return 0;
1362 err_slave_reg:
1363 dma_async_device_unregister(&s3cdma->memcpy);
1364 err_memcpy_reg:
1365 s3c24xx_dma_free_virtual_channels(&s3cdma->slave);
1366 err_slave:
1367 s3c24xx_dma_free_virtual_channels(&s3cdma->memcpy);
1368 err_memcpy:
1369 if (sdata->has_clocks)
1370 for (i = 0; i < pdata->num_phy_channels; i++) {
1371 struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1372 if (phy->valid)
1373 clk_unprepare(phy->clk);
1376 return ret;
1379 static int s3c24xx_dma_remove(struct platform_device *pdev)
1381 const struct s3c24xx_dma_platdata *pdata = dev_get_platdata(&pdev->dev);
1382 struct s3c24xx_dma_engine *s3cdma = platform_get_drvdata(pdev);
1383 struct soc_data *sdata = s3c24xx_dma_get_soc_data(pdev);
1384 int i;
1386 dma_async_device_unregister(&s3cdma->slave);
1387 dma_async_device_unregister(&s3cdma->memcpy);
1389 s3c24xx_dma_free_virtual_channels(&s3cdma->slave);
1390 s3c24xx_dma_free_virtual_channels(&s3cdma->memcpy);
1392 if (sdata->has_clocks)
1393 for (i = 0; i < pdata->num_phy_channels; i++) {
1394 struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1395 if (phy->valid)
1396 clk_unprepare(phy->clk);
1399 return 0;
1402 static struct platform_driver s3c24xx_dma_driver = {
1403 .driver = {
1404 .name = "s3c24xx-dma",
1406 .id_table = s3c24xx_dma_driver_ids,
1407 .probe = s3c24xx_dma_probe,
1408 .remove = s3c24xx_dma_remove,
1411 module_platform_driver(s3c24xx_dma_driver);
1413 bool s3c24xx_dma_filter(struct dma_chan *chan, void *param)
1415 struct s3c24xx_dma_chan *s3cchan;
1417 if (chan->device->dev->driver != &s3c24xx_dma_driver.driver)
1418 return false;
1420 s3cchan = to_s3c24xx_dma_chan(chan);
1422 return s3cchan->id == (int)param;
1424 EXPORT_SYMBOL(s3c24xx_dma_filter);
1426 MODULE_DESCRIPTION("S3C24XX DMA Driver");
1427 MODULE_AUTHOR("Heiko Stuebner");
1428 MODULE_LICENSE("GPL v2");