4 * Copyright (c) 2013 Heiko Stuebner <heiko@sntech.de>
6 * based on amba-pl08x.c
8 * Copyright (c) 2006 ARM Ltd.
9 * Copyright (c) 2010 ST-Ericsson SA
11 * Author: Peter Pearse <peter.pearse@arm.com>
12 * Author: Linus Walleij <linus.walleij@stericsson.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the Free
16 * Software Foundation; either version 2 of the License, or (at your option)
19 * The DMA controllers in S3C24XX SoCs have a varying number of DMA signals
20 * that can be routed to any of the 4 to 8 hardware-channels.
22 * Therefore on these DMA controllers the number of channels
23 * and the number of incoming DMA signals are two totally different things.
24 * It is usually not possible to theoretically handle all physical signals,
25 * so a multiplexing scheme with possible denial of use is necessary.
31 #include <linux/platform_device.h>
32 #include <linux/types.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/interrupt.h>
36 #include <linux/clk.h>
37 #include <linux/module.h>
38 #include <linux/slab.h>
39 #include <linux/platform_data/dma-s3c24xx.h>
41 #include "dmaengine.h"
44 #define MAX_DMA_CHANNELS 8
46 #define S3C24XX_DISRC 0x00
47 #define S3C24XX_DISRCC 0x04
48 #define S3C24XX_DISRCC_INC_INCREMENT 0
49 #define S3C24XX_DISRCC_INC_FIXED BIT(0)
50 #define S3C24XX_DISRCC_LOC_AHB 0
51 #define S3C24XX_DISRCC_LOC_APB BIT(1)
53 #define S3C24XX_DIDST 0x08
54 #define S3C24XX_DIDSTC 0x0c
55 #define S3C24XX_DIDSTC_INC_INCREMENT 0
56 #define S3C24XX_DIDSTC_INC_FIXED BIT(0)
57 #define S3C24XX_DIDSTC_LOC_AHB 0
58 #define S3C24XX_DIDSTC_LOC_APB BIT(1)
59 #define S3C24XX_DIDSTC_INT_TC0 0
60 #define S3C24XX_DIDSTC_INT_RELOAD BIT(2)
62 #define S3C24XX_DCON 0x10
64 #define S3C24XX_DCON_TC_MASK 0xfffff
65 #define S3C24XX_DCON_DSZ_BYTE (0 << 20)
66 #define S3C24XX_DCON_DSZ_HALFWORD (1 << 20)
67 #define S3C24XX_DCON_DSZ_WORD (2 << 20)
68 #define S3C24XX_DCON_DSZ_MASK (3 << 20)
69 #define S3C24XX_DCON_DSZ_SHIFT 20
70 #define S3C24XX_DCON_AUTORELOAD 0
71 #define S3C24XX_DCON_NORELOAD BIT(22)
72 #define S3C24XX_DCON_HWTRIG BIT(23)
73 #define S3C24XX_DCON_HWSRC_SHIFT 24
74 #define S3C24XX_DCON_SERV_SINGLE 0
75 #define S3C24XX_DCON_SERV_WHOLE BIT(27)
76 #define S3C24XX_DCON_TSZ_UNIT 0
77 #define S3C24XX_DCON_TSZ_BURST4 BIT(28)
78 #define S3C24XX_DCON_INT BIT(29)
79 #define S3C24XX_DCON_SYNC_PCLK 0
80 #define S3C24XX_DCON_SYNC_HCLK BIT(30)
81 #define S3C24XX_DCON_DEMAND 0
82 #define S3C24XX_DCON_HANDSHAKE BIT(31)
84 #define S3C24XX_DSTAT 0x14
85 #define S3C24XX_DSTAT_STAT_BUSY BIT(20)
86 #define S3C24XX_DSTAT_CURRTC_MASK 0xfffff
88 #define S3C24XX_DMASKTRIG 0x20
89 #define S3C24XX_DMASKTRIG_SWTRIG BIT(0)
90 #define S3C24XX_DMASKTRIG_ON BIT(1)
91 #define S3C24XX_DMASKTRIG_STOP BIT(2)
93 #define S3C24XX_DMAREQSEL 0x24
94 #define S3C24XX_DMAREQSEL_HW BIT(0)
97 * S3C2410, S3C2440 and S3C2442 SoCs cannot select any physical channel
98 * for a DMA source. Instead only specific channels are valid.
99 * All of these SoCs have 4 physical channels and the number of request
100 * source bits is 3. Additionally we also need 1 bit to mark the channel
102 * Therefore we separate the chansel element of the channel data into 4
103 * parts of 4 bits each, to hold the information if the channel is valid
104 * and the hw request source to use.
107 * SDI is valid on channels 0, 2 and 3 - with varying hw request sources.
108 * For it the chansel field would look like
110 * ((BIT(3) | 1) << 3 * 4) | // channel 3, with request source 1
111 * ((BIT(3) | 2) << 2 * 4) | // channel 2, with request source 2
112 * ((BIT(3) | 2) << 0 * 4) // channel 0, with request source 2
114 #define S3C24XX_CHANSEL_WIDTH 4
115 #define S3C24XX_CHANSEL_VALID BIT(3)
116 #define S3C24XX_CHANSEL_REQ_MASK 7
119 * struct soc_data - vendor-specific config parameters for individual SoCs
120 * @stride: spacing between the registers of each channel
121 * @has_reqsel: does the controller use the newer requestselection mechanism
122 * @has_clocks: are controllable dma-clocks present
131 * enum s3c24xx_dma_chan_state - holds the virtual channel states
132 * @S3C24XX_DMA_CHAN_IDLE: the channel is idle
133 * @S3C24XX_DMA_CHAN_RUNNING: the channel has allocated a physical transport
134 * channel and is running a transfer on it
135 * @S3C24XX_DMA_CHAN_WAITING: the channel is waiting for a physical transport
136 * channel to become available (only pertains to memcpy channels)
138 enum s3c24xx_dma_chan_state
{
139 S3C24XX_DMA_CHAN_IDLE
,
140 S3C24XX_DMA_CHAN_RUNNING
,
141 S3C24XX_DMA_CHAN_WAITING
,
145 * struct s3c24xx_sg - structure containing data per sg
146 * @src_addr: src address of sg
147 * @dst_addr: dst address of sg
148 * @len: transfer len in bytes
149 * @node: node for txd's dsg_list
155 struct list_head node
;
159 * struct s3c24xx_txd - wrapper for struct dma_async_tx_descriptor
160 * @vd: virtual DMA descriptor
161 * @dsg_list: list of children sg's
162 * @at: sg currently being transfered
163 * @width: transfer width
164 * @disrcc: value for source control register
165 * @didstc: value for destination control register
166 * @dcon: base value for dcon register
167 * @cyclic: indicate cyclic transfer
170 struct virt_dma_desc vd
;
171 struct list_head dsg_list
;
172 struct list_head
*at
;
180 struct s3c24xx_dma_chan
;
183 * struct s3c24xx_dma_phy - holder for the physical channels
184 * @id: physical index to this channel
185 * @valid: does the channel have all required elements
186 * @base: virtual memory base (remapped) for the this channel
187 * @irq: interrupt for this channel
188 * @clk: clock for this channel
189 * @lock: a lock to use when altering an instance of this struct
190 * @serving: virtual channel currently being served by this physicalchannel
191 * @host: a pointer to the host (internal use)
193 struct s3c24xx_dma_phy
{
200 struct s3c24xx_dma_chan
*serving
;
201 struct s3c24xx_dma_engine
*host
;
205 * struct s3c24xx_dma_chan - this structure wraps a DMA ENGINE channel
206 * @id: the id of the channel
207 * @name: name of the channel
208 * @vc: wrappped virtual channel
209 * @phy: the physical channel utilized by this channel, if there is one
210 * @runtime_addr: address for RX/TX according to the runtime config
211 * @at: active transaction on this channel
212 * @lock: a lock for this channel data
213 * @host: a pointer to the host (internal use)
214 * @state: whether the channel is idle, running etc
215 * @slave: whether this channel is a device (slave) or for memcpy
217 struct s3c24xx_dma_chan
{
220 struct virt_dma_chan vc
;
221 struct s3c24xx_dma_phy
*phy
;
222 struct dma_slave_config cfg
;
223 struct s3c24xx_txd
*at
;
224 struct s3c24xx_dma_engine
*host
;
225 enum s3c24xx_dma_chan_state state
;
230 * struct s3c24xx_dma_engine - the local state holder for the S3C24XX
231 * @pdev: the corresponding platform device
232 * @pdata: platform data passed in from the platform/machine
233 * @base: virtual memory base (remapped)
234 * @slave: slave engine for this instance
235 * @memcpy: memcpy engine for this instance
236 * @phy_chans: array of data for the physical channels
238 struct s3c24xx_dma_engine
{
239 struct platform_device
*pdev
;
240 const struct s3c24xx_dma_platdata
*pdata
;
241 struct soc_data
*sdata
;
243 struct dma_device slave
;
244 struct dma_device memcpy
;
245 struct s3c24xx_dma_phy
*phy_chans
;
249 * Physical channel handling
253 * Check whether a certain channel is busy or not.
255 static int s3c24xx_dma_phy_busy(struct s3c24xx_dma_phy
*phy
)
257 unsigned int val
= readl(phy
->base
+ S3C24XX_DSTAT
);
258 return val
& S3C24XX_DSTAT_STAT_BUSY
;
261 static bool s3c24xx_dma_phy_valid(struct s3c24xx_dma_chan
*s3cchan
,
262 struct s3c24xx_dma_phy
*phy
)
264 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
265 const struct s3c24xx_dma_platdata
*pdata
= s3cdma
->pdata
;
266 struct s3c24xx_dma_channel
*cdata
= &pdata
->channels
[s3cchan
->id
];
269 /* every phy is valid for memcopy channels */
273 /* On newer variants all phys can be used for all virtual channels */
274 if (s3cdma
->sdata
->has_reqsel
)
277 phyvalid
= (cdata
->chansel
>> (phy
->id
* S3C24XX_CHANSEL_WIDTH
));
278 return (phyvalid
& S3C24XX_CHANSEL_VALID
) ? true : false;
282 * Allocate a physical channel for a virtual channel
284 * Try to locate a physical channel to be used for this transfer. If all
285 * are taken return NULL and the requester will have to cope by using
286 * some fallback PIO mode or retrying later.
289 struct s3c24xx_dma_phy
*s3c24xx_dma_get_phy(struct s3c24xx_dma_chan
*s3cchan
)
291 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
292 const struct s3c24xx_dma_platdata
*pdata
= s3cdma
->pdata
;
293 struct s3c24xx_dma_channel
*cdata
;
294 struct s3c24xx_dma_phy
*phy
= NULL
;
300 cdata
= &pdata
->channels
[s3cchan
->id
];
302 for (i
= 0; i
< s3cdma
->pdata
->num_phy_channels
; i
++) {
303 phy
= &s3cdma
->phy_chans
[i
];
308 if (!s3c24xx_dma_phy_valid(s3cchan
, phy
))
311 spin_lock_irqsave(&phy
->lock
, flags
);
314 phy
->serving
= s3cchan
;
315 spin_unlock_irqrestore(&phy
->lock
, flags
);
319 spin_unlock_irqrestore(&phy
->lock
, flags
);
322 /* No physical channel available, cope with it */
323 if (i
== s3cdma
->pdata
->num_phy_channels
) {
324 dev_warn(&s3cdma
->pdev
->dev
, "no phy channel available\n");
328 /* start the phy clock */
329 if (s3cdma
->sdata
->has_clocks
) {
330 ret
= clk_enable(phy
->clk
);
332 dev_err(&s3cdma
->pdev
->dev
, "could not enable clock for channel %d, err %d\n",
343 * Mark the physical channel as free.
345 * This drops the link between the physical and virtual channel.
347 static inline void s3c24xx_dma_put_phy(struct s3c24xx_dma_phy
*phy
)
349 struct s3c24xx_dma_engine
*s3cdma
= phy
->host
;
351 if (s3cdma
->sdata
->has_clocks
)
352 clk_disable(phy
->clk
);
358 * Stops the channel by writing the stop bit.
359 * This should not be used for an on-going transfer, but as a method of
360 * shutting down a channel (eg, when it's no longer used) or terminating a
363 static void s3c24xx_dma_terminate_phy(struct s3c24xx_dma_phy
*phy
)
365 writel(S3C24XX_DMASKTRIG_STOP
, phy
->base
+ S3C24XX_DMASKTRIG
);
369 * Virtual channel handling
373 struct s3c24xx_dma_chan
*to_s3c24xx_dma_chan(struct dma_chan
*chan
)
375 return container_of(chan
, struct s3c24xx_dma_chan
, vc
.chan
);
378 static u32
s3c24xx_dma_getbytes_chan(struct s3c24xx_dma_chan
*s3cchan
)
380 struct s3c24xx_dma_phy
*phy
= s3cchan
->phy
;
381 struct s3c24xx_txd
*txd
= s3cchan
->at
;
382 u32 tc
= readl(phy
->base
+ S3C24XX_DSTAT
) & S3C24XX_DSTAT_CURRTC_MASK
;
384 return tc
* txd
->width
;
387 static int s3c24xx_dma_set_runtime_config(struct s3c24xx_dma_chan
*s3cchan
,
388 struct dma_slave_config
*config
)
393 /* Reject definitely invalid configurations */
394 if (config
->src_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
||
395 config
->dst_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
)
398 s3cchan
->cfg
= *config
;
408 struct s3c24xx_txd
*to_s3c24xx_txd(struct dma_async_tx_descriptor
*tx
)
410 return container_of(tx
, struct s3c24xx_txd
, vd
.tx
);
413 static struct s3c24xx_txd
*s3c24xx_dma_get_txd(void)
415 struct s3c24xx_txd
*txd
= kzalloc(sizeof(*txd
), GFP_NOWAIT
);
418 INIT_LIST_HEAD(&txd
->dsg_list
);
419 txd
->dcon
= S3C24XX_DCON_INT
| S3C24XX_DCON_NORELOAD
;
425 static void s3c24xx_dma_free_txd(struct s3c24xx_txd
*txd
)
427 struct s3c24xx_sg
*dsg
, *_dsg
;
429 list_for_each_entry_safe(dsg
, _dsg
, &txd
->dsg_list
, node
) {
430 list_del(&dsg
->node
);
437 static void s3c24xx_dma_start_next_sg(struct s3c24xx_dma_chan
*s3cchan
,
438 struct s3c24xx_txd
*txd
)
440 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
441 struct s3c24xx_dma_phy
*phy
= s3cchan
->phy
;
442 const struct s3c24xx_dma_platdata
*pdata
= s3cdma
->pdata
;
443 struct s3c24xx_sg
*dsg
= list_entry(txd
->at
, struct s3c24xx_sg
, node
);
444 u32 dcon
= txd
->dcon
;
447 /* transfer-size and -count from len and width */
448 switch (txd
->width
) {
450 dcon
|= S3C24XX_DCON_DSZ_BYTE
| dsg
->len
;
453 dcon
|= S3C24XX_DCON_DSZ_HALFWORD
| (dsg
->len
/ 2);
456 dcon
|= S3C24XX_DCON_DSZ_WORD
| (dsg
->len
/ 4);
460 if (s3cchan
->slave
) {
461 struct s3c24xx_dma_channel
*cdata
=
462 &pdata
->channels
[s3cchan
->id
];
464 if (s3cdma
->sdata
->has_reqsel
) {
465 writel_relaxed((cdata
->chansel
<< 1) |
466 S3C24XX_DMAREQSEL_HW
,
467 phy
->base
+ S3C24XX_DMAREQSEL
);
469 int csel
= cdata
->chansel
>> (phy
->id
*
470 S3C24XX_CHANSEL_WIDTH
);
472 csel
&= S3C24XX_CHANSEL_REQ_MASK
;
473 dcon
|= csel
<< S3C24XX_DCON_HWSRC_SHIFT
;
474 dcon
|= S3C24XX_DCON_HWTRIG
;
477 if (s3cdma
->sdata
->has_reqsel
)
478 writel_relaxed(0, phy
->base
+ S3C24XX_DMAREQSEL
);
481 writel_relaxed(dsg
->src_addr
, phy
->base
+ S3C24XX_DISRC
);
482 writel_relaxed(txd
->disrcc
, phy
->base
+ S3C24XX_DISRCC
);
483 writel_relaxed(dsg
->dst_addr
, phy
->base
+ S3C24XX_DIDST
);
484 writel_relaxed(txd
->didstc
, phy
->base
+ S3C24XX_DIDSTC
);
485 writel_relaxed(dcon
, phy
->base
+ S3C24XX_DCON
);
487 val
= readl_relaxed(phy
->base
+ S3C24XX_DMASKTRIG
);
488 val
&= ~S3C24XX_DMASKTRIG_STOP
;
489 val
|= S3C24XX_DMASKTRIG_ON
;
491 /* trigger the dma operation for memcpy transfers */
493 val
|= S3C24XX_DMASKTRIG_SWTRIG
;
495 writel(val
, phy
->base
+ S3C24XX_DMASKTRIG
);
499 * Set the initial DMA register values and start first sg.
501 static void s3c24xx_dma_start_next_txd(struct s3c24xx_dma_chan
*s3cchan
)
503 struct s3c24xx_dma_phy
*phy
= s3cchan
->phy
;
504 struct virt_dma_desc
*vd
= vchan_next_desc(&s3cchan
->vc
);
505 struct s3c24xx_txd
*txd
= to_s3c24xx_txd(&vd
->tx
);
507 list_del(&txd
->vd
.node
);
511 /* Wait for channel inactive */
512 while (s3c24xx_dma_phy_busy(phy
))
515 /* point to the first element of the sg list */
516 txd
->at
= txd
->dsg_list
.next
;
517 s3c24xx_dma_start_next_sg(s3cchan
, txd
);
520 static void s3c24xx_dma_free_txd_list(struct s3c24xx_dma_engine
*s3cdma
,
521 struct s3c24xx_dma_chan
*s3cchan
)
525 vchan_get_all_descriptors(&s3cchan
->vc
, &head
);
526 vchan_dma_desc_free_list(&s3cchan
->vc
, &head
);
530 * Try to allocate a physical channel. When successful, assign it to
531 * this virtual channel, and initiate the next descriptor. The
532 * virtual channel lock must be held at this point.
534 static void s3c24xx_dma_phy_alloc_and_start(struct s3c24xx_dma_chan
*s3cchan
)
536 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
537 struct s3c24xx_dma_phy
*phy
;
539 phy
= s3c24xx_dma_get_phy(s3cchan
);
541 dev_dbg(&s3cdma
->pdev
->dev
, "no physical channel available for xfer on %s\n",
543 s3cchan
->state
= S3C24XX_DMA_CHAN_WAITING
;
547 dev_dbg(&s3cdma
->pdev
->dev
, "allocated physical channel %d for xfer on %s\n",
548 phy
->id
, s3cchan
->name
);
551 s3cchan
->state
= S3C24XX_DMA_CHAN_RUNNING
;
553 s3c24xx_dma_start_next_txd(s3cchan
);
556 static void s3c24xx_dma_phy_reassign_start(struct s3c24xx_dma_phy
*phy
,
557 struct s3c24xx_dma_chan
*s3cchan
)
559 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
561 dev_dbg(&s3cdma
->pdev
->dev
, "reassigned physical channel %d for xfer on %s\n",
562 phy
->id
, s3cchan
->name
);
565 * We do this without taking the lock; we're really only concerned
566 * about whether this pointer is NULL or not, and we're guaranteed
567 * that this will only be called when it _already_ is non-NULL.
569 phy
->serving
= s3cchan
;
571 s3cchan
->state
= S3C24XX_DMA_CHAN_RUNNING
;
572 s3c24xx_dma_start_next_txd(s3cchan
);
576 * Free a physical DMA channel, potentially reallocating it to another
577 * virtual channel if we have any pending.
579 static void s3c24xx_dma_phy_free(struct s3c24xx_dma_chan
*s3cchan
)
581 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
582 struct s3c24xx_dma_chan
*p
, *next
;
587 /* Find a waiting virtual channel for the next transfer. */
588 list_for_each_entry(p
, &s3cdma
->memcpy
.channels
, vc
.chan
.device_node
)
589 if (p
->state
== S3C24XX_DMA_CHAN_WAITING
) {
595 list_for_each_entry(p
, &s3cdma
->slave
.channels
,
597 if (p
->state
== S3C24XX_DMA_CHAN_WAITING
&&
598 s3c24xx_dma_phy_valid(p
, s3cchan
->phy
)) {
604 /* Ensure that the physical channel is stopped */
605 s3c24xx_dma_terminate_phy(s3cchan
->phy
);
611 * Eww. We know this isn't going to deadlock
612 * but lockdep probably doesn't.
614 spin_lock(&next
->vc
.lock
);
615 /* Re-check the state now that we have the lock */
616 success
= next
->state
== S3C24XX_DMA_CHAN_WAITING
;
618 s3c24xx_dma_phy_reassign_start(s3cchan
->phy
, next
);
619 spin_unlock(&next
->vc
.lock
);
621 /* If the state changed, try to find another channel */
625 /* No more jobs, so free up the physical channel */
626 s3c24xx_dma_put_phy(s3cchan
->phy
);
630 s3cchan
->state
= S3C24XX_DMA_CHAN_IDLE
;
633 static void s3c24xx_dma_desc_free(struct virt_dma_desc
*vd
)
635 struct s3c24xx_txd
*txd
= to_s3c24xx_txd(&vd
->tx
);
636 struct s3c24xx_dma_chan
*s3cchan
= to_s3c24xx_dma_chan(vd
->tx
.chan
);
639 dma_descriptor_unmap(&vd
->tx
);
641 s3c24xx_dma_free_txd(txd
);
644 static irqreturn_t
s3c24xx_dma_irq(int irq
, void *data
)
646 struct s3c24xx_dma_phy
*phy
= data
;
647 struct s3c24xx_dma_chan
*s3cchan
= phy
->serving
;
648 struct s3c24xx_txd
*txd
;
650 dev_dbg(&phy
->host
->pdev
->dev
, "interrupt on channel %d\n", phy
->id
);
653 * Interrupts happen to notify the completion of a transfer and the
654 * channel should have moved into its stop state already on its own.
655 * Therefore interrupts on channels not bound to a virtual channel
656 * should never happen. Nevertheless send a terminate command to the
657 * channel if the unlikely case happens.
659 if (unlikely(!s3cchan
)) {
660 dev_err(&phy
->host
->pdev
->dev
, "interrupt on unused channel %d\n",
663 s3c24xx_dma_terminate_phy(phy
);
668 spin_lock(&s3cchan
->vc
.lock
);
671 /* when more sg's are in this txd, start the next one */
672 if (!list_is_last(txd
->at
, &txd
->dsg_list
)) {
673 txd
->at
= txd
->at
->next
;
675 vchan_cyclic_callback(&txd
->vd
);
676 s3c24xx_dma_start_next_sg(s3cchan
, txd
);
677 } else if (!txd
->cyclic
) {
679 vchan_cookie_complete(&txd
->vd
);
682 * And start the next descriptor (if any),
683 * otherwise free this channel.
685 if (vchan_next_desc(&s3cchan
->vc
))
686 s3c24xx_dma_start_next_txd(s3cchan
);
688 s3c24xx_dma_phy_free(s3cchan
);
690 vchan_cyclic_callback(&txd
->vd
);
692 /* Cyclic: reset at beginning */
693 txd
->at
= txd
->dsg_list
.next
;
694 s3c24xx_dma_start_next_sg(s3cchan
, txd
);
697 spin_unlock(&s3cchan
->vc
.lock
);
706 static int s3c24xx_dma_control(struct dma_chan
*chan
, enum dma_ctrl_cmd cmd
,
709 struct s3c24xx_dma_chan
*s3cchan
= to_s3c24xx_dma_chan(chan
);
710 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
714 spin_lock_irqsave(&s3cchan
->vc
.lock
, flags
);
717 case DMA_SLAVE_CONFIG
:
718 ret
= s3c24xx_dma_set_runtime_config(s3cchan
,
719 (struct dma_slave_config
*)arg
);
721 case DMA_TERMINATE_ALL
:
722 if (!s3cchan
->phy
&& !s3cchan
->at
) {
723 dev_err(&s3cdma
->pdev
->dev
, "trying to terminate already stopped channel %d\n",
729 s3cchan
->state
= S3C24XX_DMA_CHAN_IDLE
;
731 /* Mark physical channel as free */
733 s3c24xx_dma_phy_free(s3cchan
);
735 /* Dequeue current job */
737 s3c24xx_dma_desc_free(&s3cchan
->at
->vd
);
741 /* Dequeue jobs not yet fired as well */
742 s3c24xx_dma_free_txd_list(s3cdma
, s3cchan
);
745 /* Unknown command */
750 spin_unlock_irqrestore(&s3cchan
->vc
.lock
, flags
);
755 static int s3c24xx_dma_alloc_chan_resources(struct dma_chan
*chan
)
760 static void s3c24xx_dma_free_chan_resources(struct dma_chan
*chan
)
762 /* Ensure all queued descriptors are freed */
763 vchan_free_chan_resources(to_virt_chan(chan
));
766 static enum dma_status
s3c24xx_dma_tx_status(struct dma_chan
*chan
,
767 dma_cookie_t cookie
, struct dma_tx_state
*txstate
)
769 struct s3c24xx_dma_chan
*s3cchan
= to_s3c24xx_dma_chan(chan
);
770 struct s3c24xx_txd
*txd
;
771 struct s3c24xx_sg
*dsg
;
772 struct virt_dma_desc
*vd
;
777 spin_lock_irqsave(&s3cchan
->vc
.lock
, flags
);
778 ret
= dma_cookie_status(chan
, cookie
, txstate
);
779 if (ret
== DMA_COMPLETE
) {
780 spin_unlock_irqrestore(&s3cchan
->vc
.lock
, flags
);
785 * There's no point calculating the residue if there's
786 * no txstate to store the value.
789 spin_unlock_irqrestore(&s3cchan
->vc
.lock
, flags
);
793 vd
= vchan_find_desc(&s3cchan
->vc
, cookie
);
795 /* On the issued list, so hasn't been processed yet */
796 txd
= to_s3c24xx_txd(&vd
->tx
);
798 list_for_each_entry(dsg
, &txd
->dsg_list
, node
)
802 * Currently running, so sum over the pending sg's and
803 * the currently active one.
807 dsg
= list_entry(txd
->at
, struct s3c24xx_sg
, node
);
808 list_for_each_entry_from(dsg
, &txd
->dsg_list
, node
)
811 bytes
+= s3c24xx_dma_getbytes_chan(s3cchan
);
813 spin_unlock_irqrestore(&s3cchan
->vc
.lock
, flags
);
816 * This cookie not complete yet
817 * Get number of bytes left in the active transactions and queue
819 dma_set_residue(txstate
, bytes
);
821 /* Whether waiting or running, we're in progress */
826 * Initialize a descriptor to be used by memcpy submit
828 static struct dma_async_tx_descriptor
*s3c24xx_dma_prep_memcpy(
829 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
830 size_t len
, unsigned long flags
)
832 struct s3c24xx_dma_chan
*s3cchan
= to_s3c24xx_dma_chan(chan
);
833 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
834 struct s3c24xx_txd
*txd
;
835 struct s3c24xx_sg
*dsg
;
836 int src_mod
, dest_mod
;
838 dev_dbg(&s3cdma
->pdev
->dev
, "prepare memcpy of %d bytes from %s\n",
841 if ((len
& S3C24XX_DCON_TC_MASK
) != len
) {
842 dev_err(&s3cdma
->pdev
->dev
, "memcpy size %d to large\n", len
);
846 txd
= s3c24xx_dma_get_txd();
850 dsg
= kzalloc(sizeof(*dsg
), GFP_NOWAIT
);
852 s3c24xx_dma_free_txd(txd
);
855 list_add_tail(&dsg
->node
, &txd
->dsg_list
);
858 dsg
->dst_addr
= dest
;
862 * Determine a suitable transfer width.
863 * The DMA controller cannot fetch/store information which is not
864 * naturally aligned on the bus, i.e., a 4 byte fetch must start at
865 * an address divisible by 4 - more generally addr % width must be 0.
871 txd
->width
= (src_mod
== 0 && dest_mod
== 0) ? 4 : 1;
874 txd
->width
= ((src_mod
== 2 || src_mod
== 0) &&
875 (dest_mod
== 2 || dest_mod
== 0)) ? 2 : 1;
882 txd
->disrcc
= S3C24XX_DISRCC_LOC_AHB
| S3C24XX_DISRCC_INC_INCREMENT
;
883 txd
->didstc
= S3C24XX_DIDSTC_LOC_AHB
| S3C24XX_DIDSTC_INC_INCREMENT
;
884 txd
->dcon
|= S3C24XX_DCON_DEMAND
| S3C24XX_DCON_SYNC_HCLK
|
885 S3C24XX_DCON_SERV_WHOLE
;
887 return vchan_tx_prep(&s3cchan
->vc
, &txd
->vd
, flags
);
890 static struct dma_async_tx_descriptor
*s3c24xx_dma_prep_dma_cyclic(
891 struct dma_chan
*chan
, dma_addr_t addr
, size_t size
, size_t period
,
892 enum dma_transfer_direction direction
, unsigned long flags
)
894 struct s3c24xx_dma_chan
*s3cchan
= to_s3c24xx_dma_chan(chan
);
895 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
896 const struct s3c24xx_dma_platdata
*pdata
= s3cdma
->pdata
;
897 struct s3c24xx_dma_channel
*cdata
= &pdata
->channels
[s3cchan
->id
];
898 struct s3c24xx_txd
*txd
;
899 struct s3c24xx_sg
*dsg
;
901 dma_addr_t slave_addr
;
905 dev_dbg(&s3cdma
->pdev
->dev
,
906 "prepare cyclic transaction of %zu bytes with period %zu from %s\n",
907 size
, period
, s3cchan
->name
);
909 if (!is_slave_direction(direction
)) {
910 dev_err(&s3cdma
->pdev
->dev
,
911 "direction %d unsupported\n", direction
);
915 txd
= s3c24xx_dma_get_txd();
921 if (cdata
->handshake
)
922 txd
->dcon
|= S3C24XX_DCON_HANDSHAKE
;
924 switch (cdata
->bus
) {
925 case S3C24XX_DMA_APB
:
926 txd
->dcon
|= S3C24XX_DCON_SYNC_PCLK
;
927 hwcfg
|= S3C24XX_DISRCC_LOC_APB
;
929 case S3C24XX_DMA_AHB
:
930 txd
->dcon
|= S3C24XX_DCON_SYNC_HCLK
;
931 hwcfg
|= S3C24XX_DISRCC_LOC_AHB
;
936 * Always assume our peripheral desintation is a fixed
939 hwcfg
|= S3C24XX_DISRCC_INC_FIXED
;
942 * Individual dma operations are requested by the slave,
943 * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
945 txd
->dcon
|= S3C24XX_DCON_SERV_SINGLE
;
947 if (direction
== DMA_MEM_TO_DEV
) {
948 txd
->disrcc
= S3C24XX_DISRCC_LOC_AHB
|
949 S3C24XX_DISRCC_INC_INCREMENT
;
951 slave_addr
= s3cchan
->cfg
.dst_addr
;
952 txd
->width
= s3cchan
->cfg
.dst_addr_width
;
955 txd
->didstc
= S3C24XX_DIDSTC_LOC_AHB
|
956 S3C24XX_DIDSTC_INC_INCREMENT
;
957 slave_addr
= s3cchan
->cfg
.src_addr
;
958 txd
->width
= s3cchan
->cfg
.src_addr_width
;
961 sg_len
= size
/ period
;
963 for (i
= 0; i
< sg_len
; i
++) {
964 dsg
= kzalloc(sizeof(*dsg
), GFP_NOWAIT
);
966 s3c24xx_dma_free_txd(txd
);
969 list_add_tail(&dsg
->node
, &txd
->dsg_list
);
972 /* Check last period length */
974 dsg
->len
= size
- period
* i
;
975 if (direction
== DMA_MEM_TO_DEV
) {
976 dsg
->src_addr
= addr
+ period
* i
;
977 dsg
->dst_addr
= slave_addr
;
978 } else { /* DMA_DEV_TO_MEM */
979 dsg
->src_addr
= slave_addr
;
980 dsg
->dst_addr
= addr
+ period
* i
;
984 return vchan_tx_prep(&s3cchan
->vc
, &txd
->vd
, flags
);
987 static struct dma_async_tx_descriptor
*s3c24xx_dma_prep_slave_sg(
988 struct dma_chan
*chan
, struct scatterlist
*sgl
,
989 unsigned int sg_len
, enum dma_transfer_direction direction
,
990 unsigned long flags
, void *context
)
992 struct s3c24xx_dma_chan
*s3cchan
= to_s3c24xx_dma_chan(chan
);
993 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
994 const struct s3c24xx_dma_platdata
*pdata
= s3cdma
->pdata
;
995 struct s3c24xx_dma_channel
*cdata
= &pdata
->channels
[s3cchan
->id
];
996 struct s3c24xx_txd
*txd
;
997 struct s3c24xx_sg
*dsg
;
998 struct scatterlist
*sg
;
999 dma_addr_t slave_addr
;
1003 dev_dbg(&s3cdma
->pdev
->dev
, "prepare transaction of %d bytes from %s\n",
1004 sg_dma_len(sgl
), s3cchan
->name
);
1006 txd
= s3c24xx_dma_get_txd();
1010 if (cdata
->handshake
)
1011 txd
->dcon
|= S3C24XX_DCON_HANDSHAKE
;
1013 switch (cdata
->bus
) {
1014 case S3C24XX_DMA_APB
:
1015 txd
->dcon
|= S3C24XX_DCON_SYNC_PCLK
;
1016 hwcfg
|= S3C24XX_DISRCC_LOC_APB
;
1018 case S3C24XX_DMA_AHB
:
1019 txd
->dcon
|= S3C24XX_DCON_SYNC_HCLK
;
1020 hwcfg
|= S3C24XX_DISRCC_LOC_AHB
;
1025 * Always assume our peripheral desintation is a fixed
1026 * address in memory.
1028 hwcfg
|= S3C24XX_DISRCC_INC_FIXED
;
1031 * Individual dma operations are requested by the slave,
1032 * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
1034 txd
->dcon
|= S3C24XX_DCON_SERV_SINGLE
;
1036 if (direction
== DMA_MEM_TO_DEV
) {
1037 txd
->disrcc
= S3C24XX_DISRCC_LOC_AHB
|
1038 S3C24XX_DISRCC_INC_INCREMENT
;
1039 txd
->didstc
= hwcfg
;
1040 slave_addr
= s3cchan
->cfg
.dst_addr
;
1041 txd
->width
= s3cchan
->cfg
.dst_addr_width
;
1042 } else if (direction
== DMA_DEV_TO_MEM
) {
1043 txd
->disrcc
= hwcfg
;
1044 txd
->didstc
= S3C24XX_DIDSTC_LOC_AHB
|
1045 S3C24XX_DIDSTC_INC_INCREMENT
;
1046 slave_addr
= s3cchan
->cfg
.src_addr
;
1047 txd
->width
= s3cchan
->cfg
.src_addr_width
;
1049 s3c24xx_dma_free_txd(txd
);
1050 dev_err(&s3cdma
->pdev
->dev
,
1051 "direction %d unsupported\n", direction
);
1055 for_each_sg(sgl
, sg
, sg_len
, tmp
) {
1056 dsg
= kzalloc(sizeof(*dsg
), GFP_NOWAIT
);
1058 s3c24xx_dma_free_txd(txd
);
1061 list_add_tail(&dsg
->node
, &txd
->dsg_list
);
1063 dsg
->len
= sg_dma_len(sg
);
1064 if (direction
== DMA_MEM_TO_DEV
) {
1065 dsg
->src_addr
= sg_dma_address(sg
);
1066 dsg
->dst_addr
= slave_addr
;
1067 } else { /* DMA_DEV_TO_MEM */
1068 dsg
->src_addr
= slave_addr
;
1069 dsg
->dst_addr
= sg_dma_address(sg
);
1073 return vchan_tx_prep(&s3cchan
->vc
, &txd
->vd
, flags
);
1077 * Slave transactions callback to the slave device to allow
1078 * synchronization of slave DMA signals with the DMAC enable
1080 static void s3c24xx_dma_issue_pending(struct dma_chan
*chan
)
1082 struct s3c24xx_dma_chan
*s3cchan
= to_s3c24xx_dma_chan(chan
);
1083 unsigned long flags
;
1085 spin_lock_irqsave(&s3cchan
->vc
.lock
, flags
);
1086 if (vchan_issue_pending(&s3cchan
->vc
)) {
1087 if (!s3cchan
->phy
&& s3cchan
->state
!= S3C24XX_DMA_CHAN_WAITING
)
1088 s3c24xx_dma_phy_alloc_and_start(s3cchan
);
1090 spin_unlock_irqrestore(&s3cchan
->vc
.lock
, flags
);
1094 * Bringup and teardown
1098 * Initialise the DMAC memcpy/slave channels.
1099 * Make a local wrapper to hold required data
1101 static int s3c24xx_dma_init_virtual_channels(struct s3c24xx_dma_engine
*s3cdma
,
1102 struct dma_device
*dmadev
, unsigned int channels
, bool slave
)
1104 struct s3c24xx_dma_chan
*chan
;
1107 INIT_LIST_HEAD(&dmadev
->channels
);
1110 * Register as many many memcpy as we have physical channels,
1111 * we won't always be able to use all but the code will have
1112 * to cope with that situation.
1114 for (i
= 0; i
< channels
; i
++) {
1115 chan
= devm_kzalloc(dmadev
->dev
, sizeof(*chan
), GFP_KERNEL
);
1117 dev_err(dmadev
->dev
,
1118 "%s no memory for channel\n", __func__
);
1123 chan
->host
= s3cdma
;
1124 chan
->state
= S3C24XX_DMA_CHAN_IDLE
;
1128 chan
->name
= kasprintf(GFP_KERNEL
, "slave%d", i
);
1132 chan
->name
= kasprintf(GFP_KERNEL
, "memcpy%d", i
);
1136 dev_dbg(dmadev
->dev
,
1137 "initialize virtual channel \"%s\"\n",
1140 chan
->vc
.desc_free
= s3c24xx_dma_desc_free
;
1141 vchan_init(&chan
->vc
, dmadev
);
1143 dev_info(dmadev
->dev
, "initialized %d virtual %s channels\n",
1144 i
, slave
? "slave" : "memcpy");
1148 static void s3c24xx_dma_free_virtual_channels(struct dma_device
*dmadev
)
1150 struct s3c24xx_dma_chan
*chan
= NULL
;
1151 struct s3c24xx_dma_chan
*next
;
1153 list_for_each_entry_safe(chan
,
1154 next
, &dmadev
->channels
, vc
.chan
.device_node
)
1155 list_del(&chan
->vc
.chan
.device_node
);
1158 /* s3c2410, s3c2440 and s3c2442 have a 0x40 stride without separate clocks */
1159 static struct soc_data soc_s3c2410
= {
1161 .has_reqsel
= false,
1162 .has_clocks
= false,
1165 /* s3c2412 and s3c2413 have a 0x40 stride and dmareqsel mechanism */
1166 static struct soc_data soc_s3c2412
= {
1172 /* s3c2443 and following have a 0x100 stride and dmareqsel mechanism */
1173 static struct soc_data soc_s3c2443
= {
1179 static struct platform_device_id s3c24xx_dma_driver_ids
[] = {
1181 .name
= "s3c2410-dma",
1182 .driver_data
= (kernel_ulong_t
)&soc_s3c2410
,
1184 .name
= "s3c2412-dma",
1185 .driver_data
= (kernel_ulong_t
)&soc_s3c2412
,
1187 .name
= "s3c2443-dma",
1188 .driver_data
= (kernel_ulong_t
)&soc_s3c2443
,
1193 static struct soc_data
*s3c24xx_dma_get_soc_data(struct platform_device
*pdev
)
1195 return (struct soc_data
*)
1196 platform_get_device_id(pdev
)->driver_data
;
1199 static int s3c24xx_dma_probe(struct platform_device
*pdev
)
1201 const struct s3c24xx_dma_platdata
*pdata
= dev_get_platdata(&pdev
->dev
);
1202 struct s3c24xx_dma_engine
*s3cdma
;
1203 struct soc_data
*sdata
;
1204 struct resource
*res
;
1209 dev_err(&pdev
->dev
, "platform data missing\n");
1213 /* Basic sanity check */
1214 if (pdata
->num_phy_channels
> MAX_DMA_CHANNELS
) {
1215 dev_err(&pdev
->dev
, "to many dma channels %d, max %d\n",
1216 pdata
->num_phy_channels
, MAX_DMA_CHANNELS
);
1220 sdata
= s3c24xx_dma_get_soc_data(pdev
);
1224 s3cdma
= devm_kzalloc(&pdev
->dev
, sizeof(*s3cdma
), GFP_KERNEL
);
1228 s3cdma
->pdev
= pdev
;
1229 s3cdma
->pdata
= pdata
;
1230 s3cdma
->sdata
= sdata
;
1232 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1233 s3cdma
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
1234 if (IS_ERR(s3cdma
->base
))
1235 return PTR_ERR(s3cdma
->base
);
1237 s3cdma
->phy_chans
= devm_kzalloc(&pdev
->dev
,
1238 sizeof(struct s3c24xx_dma_phy
) *
1239 pdata
->num_phy_channels
,
1241 if (!s3cdma
->phy_chans
)
1244 /* aquire irqs and clocks for all physical channels */
1245 for (i
= 0; i
< pdata
->num_phy_channels
; i
++) {
1246 struct s3c24xx_dma_phy
*phy
= &s3cdma
->phy_chans
[i
];
1250 phy
->base
= s3cdma
->base
+ (i
* sdata
->stride
);
1253 phy
->irq
= platform_get_irq(pdev
, i
);
1255 dev_err(&pdev
->dev
, "failed to get irq %d, err %d\n",
1260 ret
= devm_request_irq(&pdev
->dev
, phy
->irq
, s3c24xx_dma_irq
,
1261 0, pdev
->name
, phy
);
1263 dev_err(&pdev
->dev
, "Unable to request irq for channel %d, error %d\n",
1268 if (sdata
->has_clocks
) {
1269 sprintf(clk_name
, "dma.%d", i
);
1270 phy
->clk
= devm_clk_get(&pdev
->dev
, clk_name
);
1271 if (IS_ERR(phy
->clk
) && sdata
->has_clocks
) {
1272 dev_err(&pdev
->dev
, "unable to aquire clock for channel %d, error %lu",
1273 i
, PTR_ERR(phy
->clk
));
1277 ret
= clk_prepare(phy
->clk
);
1279 dev_err(&pdev
->dev
, "clock for phy %d failed, error %d\n",
1285 spin_lock_init(&phy
->lock
);
1288 dev_dbg(&pdev
->dev
, "physical channel %d is %s\n",
1289 i
, s3c24xx_dma_phy_busy(phy
) ? "BUSY" : "FREE");
1292 /* Initialize memcpy engine */
1293 dma_cap_set(DMA_MEMCPY
, s3cdma
->memcpy
.cap_mask
);
1294 dma_cap_set(DMA_PRIVATE
, s3cdma
->memcpy
.cap_mask
);
1295 s3cdma
->memcpy
.dev
= &pdev
->dev
;
1296 s3cdma
->memcpy
.device_alloc_chan_resources
=
1297 s3c24xx_dma_alloc_chan_resources
;
1298 s3cdma
->memcpy
.device_free_chan_resources
=
1299 s3c24xx_dma_free_chan_resources
;
1300 s3cdma
->memcpy
.device_prep_dma_memcpy
= s3c24xx_dma_prep_memcpy
;
1301 s3cdma
->memcpy
.device_tx_status
= s3c24xx_dma_tx_status
;
1302 s3cdma
->memcpy
.device_issue_pending
= s3c24xx_dma_issue_pending
;
1303 s3cdma
->memcpy
.device_control
= s3c24xx_dma_control
;
1305 /* Initialize slave engine for SoC internal dedicated peripherals */
1306 dma_cap_set(DMA_SLAVE
, s3cdma
->slave
.cap_mask
);
1307 dma_cap_set(DMA_CYCLIC
, s3cdma
->slave
.cap_mask
);
1308 dma_cap_set(DMA_PRIVATE
, s3cdma
->slave
.cap_mask
);
1309 s3cdma
->slave
.dev
= &pdev
->dev
;
1310 s3cdma
->slave
.device_alloc_chan_resources
=
1311 s3c24xx_dma_alloc_chan_resources
;
1312 s3cdma
->slave
.device_free_chan_resources
=
1313 s3c24xx_dma_free_chan_resources
;
1314 s3cdma
->slave
.device_tx_status
= s3c24xx_dma_tx_status
;
1315 s3cdma
->slave
.device_issue_pending
= s3c24xx_dma_issue_pending
;
1316 s3cdma
->slave
.device_prep_slave_sg
= s3c24xx_dma_prep_slave_sg
;
1317 s3cdma
->slave
.device_prep_dma_cyclic
= s3c24xx_dma_prep_dma_cyclic
;
1318 s3cdma
->slave
.device_control
= s3c24xx_dma_control
;
1320 /* Register as many memcpy channels as there are physical channels */
1321 ret
= s3c24xx_dma_init_virtual_channels(s3cdma
, &s3cdma
->memcpy
,
1322 pdata
->num_phy_channels
, false);
1324 dev_warn(&pdev
->dev
,
1325 "%s failed to enumerate memcpy channels - %d\n",
1330 /* Register slave channels */
1331 ret
= s3c24xx_dma_init_virtual_channels(s3cdma
, &s3cdma
->slave
,
1332 pdata
->num_channels
, true);
1334 dev_warn(&pdev
->dev
,
1335 "%s failed to enumerate slave channels - %d\n",
1340 ret
= dma_async_device_register(&s3cdma
->memcpy
);
1342 dev_warn(&pdev
->dev
,
1343 "%s failed to register memcpy as an async device - %d\n",
1345 goto err_memcpy_reg
;
1348 ret
= dma_async_device_register(&s3cdma
->slave
);
1350 dev_warn(&pdev
->dev
,
1351 "%s failed to register slave as an async device - %d\n",
1356 platform_set_drvdata(pdev
, s3cdma
);
1357 dev_info(&pdev
->dev
, "Loaded dma driver with %d physical channels\n",
1358 pdata
->num_phy_channels
);
1363 dma_async_device_unregister(&s3cdma
->memcpy
);
1365 s3c24xx_dma_free_virtual_channels(&s3cdma
->slave
);
1367 s3c24xx_dma_free_virtual_channels(&s3cdma
->memcpy
);
1369 if (sdata
->has_clocks
)
1370 for (i
= 0; i
< pdata
->num_phy_channels
; i
++) {
1371 struct s3c24xx_dma_phy
*phy
= &s3cdma
->phy_chans
[i
];
1373 clk_unprepare(phy
->clk
);
1379 static int s3c24xx_dma_remove(struct platform_device
*pdev
)
1381 const struct s3c24xx_dma_platdata
*pdata
= dev_get_platdata(&pdev
->dev
);
1382 struct s3c24xx_dma_engine
*s3cdma
= platform_get_drvdata(pdev
);
1383 struct soc_data
*sdata
= s3c24xx_dma_get_soc_data(pdev
);
1386 dma_async_device_unregister(&s3cdma
->slave
);
1387 dma_async_device_unregister(&s3cdma
->memcpy
);
1389 s3c24xx_dma_free_virtual_channels(&s3cdma
->slave
);
1390 s3c24xx_dma_free_virtual_channels(&s3cdma
->memcpy
);
1392 if (sdata
->has_clocks
)
1393 for (i
= 0; i
< pdata
->num_phy_channels
; i
++) {
1394 struct s3c24xx_dma_phy
*phy
= &s3cdma
->phy_chans
[i
];
1396 clk_unprepare(phy
->clk
);
1402 static struct platform_driver s3c24xx_dma_driver
= {
1404 .name
= "s3c24xx-dma",
1406 .id_table
= s3c24xx_dma_driver_ids
,
1407 .probe
= s3c24xx_dma_probe
,
1408 .remove
= s3c24xx_dma_remove
,
1411 module_platform_driver(s3c24xx_dma_driver
);
1413 bool s3c24xx_dma_filter(struct dma_chan
*chan
, void *param
)
1415 struct s3c24xx_dma_chan
*s3cchan
;
1417 if (chan
->device
->dev
->driver
!= &s3c24xx_dma_driver
.driver
)
1420 s3cchan
= to_s3c24xx_dma_chan(chan
);
1422 return s3cchan
->id
== (int)param
;
1424 EXPORT_SYMBOL(s3c24xx_dma_filter
);
1426 MODULE_DESCRIPTION("S3C24XX DMA Driver");
1427 MODULE_AUTHOR("Heiko Stuebner");
1428 MODULE_LICENSE("GPL v2");