1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2009 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include "net_driver.h"
22 #include "workarounds.h"
24 /**************************************************************************
28 **************************************************************************
31 /* This is set to 16 for a good reason. In summary, if larger than
32 * 16, the descriptor cache holds more than a default socket
33 * buffer's worth of packets (for UDP we can only have at most one
34 * socket buffer's worth outstanding). This combined with the fact
35 * that we only get 1 TX event per descriptor cache means the NIC
38 #define TX_DC_ENTRIES 16
39 #define TX_DC_ENTRIES_ORDER 1
41 #define RX_DC_ENTRIES 64
42 #define RX_DC_ENTRIES_ORDER 3
44 /* RX FIFO XOFF watermark
46 * When the amount of the RX FIFO increases used increases past this
47 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
48 * This also has an effect on RX/TX arbitration
50 int efx_nic_rx_xoff_thresh
= -1;
51 module_param_named(rx_xoff_thresh_bytes
, efx_nic_rx_xoff_thresh
, int, 0644);
52 MODULE_PARM_DESC(rx_xoff_thresh_bytes
, "RX fifo XOFF threshold");
54 /* RX FIFO XON watermark
56 * When the amount of the RX FIFO used decreases below this
57 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
58 * This also has an effect on RX/TX arbitration
60 int efx_nic_rx_xon_thresh
= -1;
61 module_param_named(rx_xon_thresh_bytes
, efx_nic_rx_xon_thresh
, int, 0644);
62 MODULE_PARM_DESC(rx_xon_thresh_bytes
, "RX fifo XON threshold");
64 /* If EFX_MAX_INT_ERRORS internal errors occur within
65 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
68 #define EFX_INT_ERROR_EXPIRE 3600
69 #define EFX_MAX_INT_ERRORS 5
71 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
73 #define EFX_FLUSH_INTERVAL 10
74 #define EFX_FLUSH_POLL_COUNT 100
76 /* Size and alignment of special buffers (4KB) */
77 #define EFX_BUF_SIZE 4096
79 /* Depth of RX flush request fifo */
80 #define EFX_RX_FLUSH_COUNT 4
82 /* Generated event code for efx_generate_test_event() */
83 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
84 (0x00010100 + (_channel)->channel)
86 /* Generated event code for efx_generate_fill_event() */
87 #define EFX_CHANNEL_MAGIC_FILL(_channel) \
88 (0x00010200 + (_channel)->channel)
90 /**************************************************************************
92 * Solarstorm hardware access
94 **************************************************************************/
96 static inline void efx_write_buf_tbl(struct efx_nic
*efx
, efx_qword_t
*value
,
99 efx_sram_writeq(efx
, efx
->membase
+ efx
->type
->buf_tbl_base
,
103 /* Read the current event from the event queue */
104 static inline efx_qword_t
*efx_event(struct efx_channel
*channel
,
107 return (((efx_qword_t
*) (channel
->eventq
.addr
)) + index
);
110 /* See if an event is present
112 * We check both the high and low dword of the event for all ones. We
113 * wrote all ones when we cleared the event, and no valid event can
114 * have all ones in either its high or low dwords. This approach is
115 * robust against reordering.
117 * Note that using a single 64-bit comparison is incorrect; even
118 * though the CPU read will be atomic, the DMA write may not be.
120 static inline int efx_event_present(efx_qword_t
*event
)
122 return (!(EFX_DWORD_IS_ALL_ONES(event
->dword
[0]) |
123 EFX_DWORD_IS_ALL_ONES(event
->dword
[1])));
126 static bool efx_masked_compare_oword(const efx_oword_t
*a
, const efx_oword_t
*b
,
127 const efx_oword_t
*mask
)
129 return ((a
->u64
[0] ^ b
->u64
[0]) & mask
->u64
[0]) ||
130 ((a
->u64
[1] ^ b
->u64
[1]) & mask
->u64
[1]);
133 int efx_nic_test_registers(struct efx_nic
*efx
,
134 const struct efx_nic_register_test
*regs
,
137 unsigned address
= 0, i
, j
;
138 efx_oword_t mask
, imask
, original
, reg
, buf
;
140 /* Falcon should be in loopback to isolate the XMAC from the PHY */
141 WARN_ON(!LOOPBACK_INTERNAL(efx
));
143 for (i
= 0; i
< n_regs
; ++i
) {
144 address
= regs
[i
].address
;
145 mask
= imask
= regs
[i
].mask
;
146 EFX_INVERT_OWORD(imask
);
148 efx_reado(efx
, &original
, address
);
150 /* bit sweep on and off */
151 for (j
= 0; j
< 128; j
++) {
152 if (!EFX_EXTRACT_OWORD32(mask
, j
, j
))
155 /* Test this testable bit can be set in isolation */
156 EFX_AND_OWORD(reg
, original
, mask
);
157 EFX_SET_OWORD32(reg
, j
, j
, 1);
159 efx_writeo(efx
, ®
, address
);
160 efx_reado(efx
, &buf
, address
);
162 if (efx_masked_compare_oword(®
, &buf
, &mask
))
165 /* Test this testable bit can be cleared in isolation */
166 EFX_OR_OWORD(reg
, original
, mask
);
167 EFX_SET_OWORD32(reg
, j
, j
, 0);
169 efx_writeo(efx
, ®
, address
);
170 efx_reado(efx
, &buf
, address
);
172 if (efx_masked_compare_oword(®
, &buf
, &mask
))
176 efx_writeo(efx
, &original
, address
);
182 netif_err(efx
, hw
, efx
->net_dev
,
183 "wrote "EFX_OWORD_FMT
" read "EFX_OWORD_FMT
184 " at address 0x%x mask "EFX_OWORD_FMT
"\n", EFX_OWORD_VAL(reg
),
185 EFX_OWORD_VAL(buf
), address
, EFX_OWORD_VAL(mask
));
189 /**************************************************************************
191 * Special buffer handling
192 * Special buffers are used for event queues and the TX and RX
195 *************************************************************************/
198 * Initialise a special buffer
200 * This will define a buffer (previously allocated via
201 * efx_alloc_special_buffer()) in the buffer table, allowing
202 * it to be used for event queues, descriptor rings etc.
205 efx_init_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
207 efx_qword_t buf_desc
;
212 EFX_BUG_ON_PARANOID(!buffer
->addr
);
214 /* Write buffer descriptors to NIC */
215 for (i
= 0; i
< buffer
->entries
; i
++) {
216 index
= buffer
->index
+ i
;
217 dma_addr
= buffer
->dma_addr
+ (i
* 4096);
218 netif_dbg(efx
, probe
, efx
->net_dev
,
219 "mapping special buffer %d at %llx\n",
220 index
, (unsigned long long)dma_addr
);
221 EFX_POPULATE_QWORD_3(buf_desc
,
222 FRF_AZ_BUF_ADR_REGION
, 0,
223 FRF_AZ_BUF_ADR_FBUF
, dma_addr
>> 12,
224 FRF_AZ_BUF_OWNER_ID_FBUF
, 0);
225 efx_write_buf_tbl(efx
, &buf_desc
, index
);
229 /* Unmaps a buffer and clears the buffer table entries */
231 efx_fini_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
233 efx_oword_t buf_tbl_upd
;
234 unsigned int start
= buffer
->index
;
235 unsigned int end
= (buffer
->index
+ buffer
->entries
- 1);
237 if (!buffer
->entries
)
240 netif_dbg(efx
, hw
, efx
->net_dev
, "unmapping special buffers %d-%d\n",
241 buffer
->index
, buffer
->index
+ buffer
->entries
- 1);
243 EFX_POPULATE_OWORD_4(buf_tbl_upd
,
244 FRF_AZ_BUF_UPD_CMD
, 0,
245 FRF_AZ_BUF_CLR_CMD
, 1,
246 FRF_AZ_BUF_CLR_END_ID
, end
,
247 FRF_AZ_BUF_CLR_START_ID
, start
);
248 efx_writeo(efx
, &buf_tbl_upd
, FR_AZ_BUF_TBL_UPD
);
252 * Allocate a new special buffer
254 * This allocates memory for a new buffer, clears it and allocates a
255 * new buffer ID range. It does not write into the buffer table.
257 * This call will allocate 4KB buffers, since 8KB buffers can't be
258 * used for event queues and descriptor rings.
260 static int efx_alloc_special_buffer(struct efx_nic
*efx
,
261 struct efx_special_buffer
*buffer
,
264 len
= ALIGN(len
, EFX_BUF_SIZE
);
266 buffer
->addr
= pci_alloc_consistent(efx
->pci_dev
, len
,
271 buffer
->entries
= len
/ EFX_BUF_SIZE
;
272 BUG_ON(buffer
->dma_addr
& (EFX_BUF_SIZE
- 1));
274 /* All zeros is a potentially valid event so memset to 0xff */
275 memset(buffer
->addr
, 0xff, len
);
277 /* Select new buffer ID */
278 buffer
->index
= efx
->next_buffer_table
;
279 efx
->next_buffer_table
+= buffer
->entries
;
281 netif_dbg(efx
, probe
, efx
->net_dev
,
282 "allocating special buffers %d-%d at %llx+%x "
283 "(virt %p phys %llx)\n", buffer
->index
,
284 buffer
->index
+ buffer
->entries
- 1,
285 (u64
)buffer
->dma_addr
, len
,
286 buffer
->addr
, (u64
)virt_to_phys(buffer
->addr
));
292 efx_free_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
297 netif_dbg(efx
, hw
, efx
->net_dev
,
298 "deallocating special buffers %d-%d at %llx+%x "
299 "(virt %p phys %llx)\n", buffer
->index
,
300 buffer
->index
+ buffer
->entries
- 1,
301 (u64
)buffer
->dma_addr
, buffer
->len
,
302 buffer
->addr
, (u64
)virt_to_phys(buffer
->addr
));
304 pci_free_consistent(efx
->pci_dev
, buffer
->len
, buffer
->addr
,
310 /**************************************************************************
312 * Generic buffer handling
313 * These buffers are used for interrupt status and MAC stats
315 **************************************************************************/
317 int efx_nic_alloc_buffer(struct efx_nic
*efx
, struct efx_buffer
*buffer
,
320 buffer
->addr
= pci_alloc_consistent(efx
->pci_dev
, len
,
325 memset(buffer
->addr
, 0, len
);
329 void efx_nic_free_buffer(struct efx_nic
*efx
, struct efx_buffer
*buffer
)
332 pci_free_consistent(efx
->pci_dev
, buffer
->len
,
333 buffer
->addr
, buffer
->dma_addr
);
338 /**************************************************************************
342 **************************************************************************/
344 /* Returns a pointer to the specified transmit descriptor in the TX
345 * descriptor queue belonging to the specified channel.
347 static inline efx_qword_t
*
348 efx_tx_desc(struct efx_tx_queue
*tx_queue
, unsigned int index
)
350 return (((efx_qword_t
*) (tx_queue
->txd
.addr
)) + index
);
353 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
354 static inline void efx_notify_tx_desc(struct efx_tx_queue
*tx_queue
)
359 write_ptr
= tx_queue
->write_count
& EFX_TXQ_MASK
;
360 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_TX_DESC_WPTR_DWORD
, write_ptr
);
361 efx_writed_page(tx_queue
->efx
, ®
,
362 FR_AZ_TX_DESC_UPD_DWORD_P0
, tx_queue
->queue
);
366 /* For each entry inserted into the software descriptor ring, create a
367 * descriptor in the hardware TX descriptor ring (in host memory), and
370 void efx_nic_push_buffers(struct efx_tx_queue
*tx_queue
)
373 struct efx_tx_buffer
*buffer
;
377 BUG_ON(tx_queue
->write_count
== tx_queue
->insert_count
);
380 write_ptr
= tx_queue
->write_count
& EFX_TXQ_MASK
;
381 buffer
= &tx_queue
->buffer
[write_ptr
];
382 txd
= efx_tx_desc(tx_queue
, write_ptr
);
383 ++tx_queue
->write_count
;
385 /* Create TX descriptor ring entry */
386 EFX_POPULATE_QWORD_4(*txd
,
387 FSF_AZ_TX_KER_CONT
, buffer
->continuation
,
388 FSF_AZ_TX_KER_BYTE_COUNT
, buffer
->len
,
389 FSF_AZ_TX_KER_BUF_REGION
, 0,
390 FSF_AZ_TX_KER_BUF_ADDR
, buffer
->dma_addr
);
391 } while (tx_queue
->write_count
!= tx_queue
->insert_count
);
393 wmb(); /* Ensure descriptors are written before they are fetched */
394 efx_notify_tx_desc(tx_queue
);
397 /* Allocate hardware resources for a TX queue */
398 int efx_nic_probe_tx(struct efx_tx_queue
*tx_queue
)
400 struct efx_nic
*efx
= tx_queue
->efx
;
401 BUILD_BUG_ON(EFX_TXQ_SIZE
< 512 || EFX_TXQ_SIZE
> 4096 ||
402 EFX_TXQ_SIZE
& EFX_TXQ_MASK
);
403 return efx_alloc_special_buffer(efx
, &tx_queue
->txd
,
404 EFX_TXQ_SIZE
* sizeof(efx_qword_t
));
407 void efx_nic_init_tx(struct efx_tx_queue
*tx_queue
)
409 efx_oword_t tx_desc_ptr
;
410 struct efx_nic
*efx
= tx_queue
->efx
;
412 tx_queue
->flushed
= FLUSH_NONE
;
414 /* Pin TX descriptor ring */
415 efx_init_special_buffer(efx
, &tx_queue
->txd
);
417 /* Push TX descriptor ring to card */
418 EFX_POPULATE_OWORD_10(tx_desc_ptr
,
419 FRF_AZ_TX_DESCQ_EN
, 1,
420 FRF_AZ_TX_ISCSI_DDIG_EN
, 0,
421 FRF_AZ_TX_ISCSI_HDIG_EN
, 0,
422 FRF_AZ_TX_DESCQ_BUF_BASE_ID
, tx_queue
->txd
.index
,
423 FRF_AZ_TX_DESCQ_EVQ_ID
,
424 tx_queue
->channel
->channel
,
425 FRF_AZ_TX_DESCQ_OWNER_ID
, 0,
426 FRF_AZ_TX_DESCQ_LABEL
, tx_queue
->queue
,
427 FRF_AZ_TX_DESCQ_SIZE
,
428 __ffs(tx_queue
->txd
.entries
),
429 FRF_AZ_TX_DESCQ_TYPE
, 0,
430 FRF_BZ_TX_NON_IP_DROP_DIS
, 1);
432 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
433 int csum
= tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
;
434 EFX_SET_OWORD_FIELD(tx_desc_ptr
, FRF_BZ_TX_IP_CHKSM_DIS
, !csum
);
435 EFX_SET_OWORD_FIELD(tx_desc_ptr
, FRF_BZ_TX_TCP_CHKSM_DIS
,
439 efx_writeo_table(efx
, &tx_desc_ptr
, efx
->type
->txd_ptr_tbl_base
,
442 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
) {
445 /* Only 128 bits in this register */
446 BUILD_BUG_ON(EFX_MAX_TX_QUEUES
> 128);
448 efx_reado(efx
, ®
, FR_AA_TX_CHKSM_CFG
);
449 if (tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
)
450 clear_bit_le(tx_queue
->queue
, (void *)®
);
452 set_bit_le(tx_queue
->queue
, (void *)®
);
453 efx_writeo(efx
, ®
, FR_AA_TX_CHKSM_CFG
);
457 static void efx_flush_tx_queue(struct efx_tx_queue
*tx_queue
)
459 struct efx_nic
*efx
= tx_queue
->efx
;
460 efx_oword_t tx_flush_descq
;
462 tx_queue
->flushed
= FLUSH_PENDING
;
464 /* Post a flush command */
465 EFX_POPULATE_OWORD_2(tx_flush_descq
,
466 FRF_AZ_TX_FLUSH_DESCQ_CMD
, 1,
467 FRF_AZ_TX_FLUSH_DESCQ
, tx_queue
->queue
);
468 efx_writeo(efx
, &tx_flush_descq
, FR_AZ_TX_FLUSH_DESCQ
);
471 void efx_nic_fini_tx(struct efx_tx_queue
*tx_queue
)
473 struct efx_nic
*efx
= tx_queue
->efx
;
474 efx_oword_t tx_desc_ptr
;
476 /* The queue should have been flushed */
477 WARN_ON(tx_queue
->flushed
!= FLUSH_DONE
);
479 /* Remove TX descriptor ring from card */
480 EFX_ZERO_OWORD(tx_desc_ptr
);
481 efx_writeo_table(efx
, &tx_desc_ptr
, efx
->type
->txd_ptr_tbl_base
,
484 /* Unpin TX descriptor ring */
485 efx_fini_special_buffer(efx
, &tx_queue
->txd
);
488 /* Free buffers backing TX queue */
489 void efx_nic_remove_tx(struct efx_tx_queue
*tx_queue
)
491 efx_free_special_buffer(tx_queue
->efx
, &tx_queue
->txd
);
494 /**************************************************************************
498 **************************************************************************/
500 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
501 static inline efx_qword_t
*
502 efx_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned int index
)
504 return (((efx_qword_t
*) (rx_queue
->rxd
.addr
)) + index
);
507 /* This creates an entry in the RX descriptor queue */
509 efx_build_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned index
)
511 struct efx_rx_buffer
*rx_buf
;
514 rxd
= efx_rx_desc(rx_queue
, index
);
515 rx_buf
= efx_rx_buffer(rx_queue
, index
);
516 EFX_POPULATE_QWORD_3(*rxd
,
517 FSF_AZ_RX_KER_BUF_SIZE
,
519 rx_queue
->efx
->type
->rx_buffer_padding
,
520 FSF_AZ_RX_KER_BUF_REGION
, 0,
521 FSF_AZ_RX_KER_BUF_ADDR
, rx_buf
->dma_addr
);
524 /* This writes to the RX_DESC_WPTR register for the specified receive
527 void efx_nic_notify_rx_desc(struct efx_rx_queue
*rx_queue
)
532 while (rx_queue
->notified_count
!= rx_queue
->added_count
) {
533 efx_build_rx_desc(rx_queue
,
534 rx_queue
->notified_count
&
536 ++rx_queue
->notified_count
;
540 write_ptr
= rx_queue
->added_count
& EFX_RXQ_MASK
;
541 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_RX_DESC_WPTR_DWORD
, write_ptr
);
542 efx_writed_page(rx_queue
->efx
, ®
,
543 FR_AZ_RX_DESC_UPD_DWORD_P0
, rx_queue
->queue
);
546 int efx_nic_probe_rx(struct efx_rx_queue
*rx_queue
)
548 struct efx_nic
*efx
= rx_queue
->efx
;
549 BUILD_BUG_ON(EFX_RXQ_SIZE
< 512 || EFX_RXQ_SIZE
> 4096 ||
550 EFX_RXQ_SIZE
& EFX_RXQ_MASK
);
551 return efx_alloc_special_buffer(efx
, &rx_queue
->rxd
,
552 EFX_RXQ_SIZE
* sizeof(efx_qword_t
));
555 void efx_nic_init_rx(struct efx_rx_queue
*rx_queue
)
557 efx_oword_t rx_desc_ptr
;
558 struct efx_nic
*efx
= rx_queue
->efx
;
559 bool is_b0
= efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
;
560 bool iscsi_digest_en
= is_b0
;
562 netif_dbg(efx
, hw
, efx
->net_dev
,
563 "RX queue %d ring in special buffers %d-%d\n",
564 rx_queue
->queue
, rx_queue
->rxd
.index
,
565 rx_queue
->rxd
.index
+ rx_queue
->rxd
.entries
- 1);
567 rx_queue
->flushed
= FLUSH_NONE
;
569 /* Pin RX descriptor ring */
570 efx_init_special_buffer(efx
, &rx_queue
->rxd
);
572 /* Push RX descriptor ring to card */
573 EFX_POPULATE_OWORD_10(rx_desc_ptr
,
574 FRF_AZ_RX_ISCSI_DDIG_EN
, iscsi_digest_en
,
575 FRF_AZ_RX_ISCSI_HDIG_EN
, iscsi_digest_en
,
576 FRF_AZ_RX_DESCQ_BUF_BASE_ID
, rx_queue
->rxd
.index
,
577 FRF_AZ_RX_DESCQ_EVQ_ID
,
578 rx_queue
->channel
->channel
,
579 FRF_AZ_RX_DESCQ_OWNER_ID
, 0,
580 FRF_AZ_RX_DESCQ_LABEL
, rx_queue
->queue
,
581 FRF_AZ_RX_DESCQ_SIZE
,
582 __ffs(rx_queue
->rxd
.entries
),
583 FRF_AZ_RX_DESCQ_TYPE
, 0 /* kernel queue */ ,
584 /* For >=B0 this is scatter so disable */
585 FRF_AZ_RX_DESCQ_JUMBO
, !is_b0
,
586 FRF_AZ_RX_DESCQ_EN
, 1);
587 efx_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
591 static void efx_flush_rx_queue(struct efx_rx_queue
*rx_queue
)
593 struct efx_nic
*efx
= rx_queue
->efx
;
594 efx_oword_t rx_flush_descq
;
596 rx_queue
->flushed
= FLUSH_PENDING
;
598 /* Post a flush command */
599 EFX_POPULATE_OWORD_2(rx_flush_descq
,
600 FRF_AZ_RX_FLUSH_DESCQ_CMD
, 1,
601 FRF_AZ_RX_FLUSH_DESCQ
, rx_queue
->queue
);
602 efx_writeo(efx
, &rx_flush_descq
, FR_AZ_RX_FLUSH_DESCQ
);
605 void efx_nic_fini_rx(struct efx_rx_queue
*rx_queue
)
607 efx_oword_t rx_desc_ptr
;
608 struct efx_nic
*efx
= rx_queue
->efx
;
610 /* The queue should already have been flushed */
611 WARN_ON(rx_queue
->flushed
!= FLUSH_DONE
);
613 /* Remove RX descriptor ring from card */
614 EFX_ZERO_OWORD(rx_desc_ptr
);
615 efx_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
618 /* Unpin RX descriptor ring */
619 efx_fini_special_buffer(efx
, &rx_queue
->rxd
);
622 /* Free buffers backing RX queue */
623 void efx_nic_remove_rx(struct efx_rx_queue
*rx_queue
)
625 efx_free_special_buffer(rx_queue
->efx
, &rx_queue
->rxd
);
628 /**************************************************************************
630 * Event queue processing
631 * Event queues are processed by per-channel tasklets.
633 **************************************************************************/
635 /* Update a channel's event queue's read pointer (RPTR) register
637 * This writes the EVQ_RPTR_REG register for the specified channel's
640 void efx_nic_eventq_read_ack(struct efx_channel
*channel
)
643 struct efx_nic
*efx
= channel
->efx
;
645 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_EVQ_RPTR
, channel
->eventq_read_ptr
);
646 efx_writed_table(efx
, ®
, efx
->type
->evq_rptr_tbl_base
,
650 /* Use HW to insert a SW defined event */
651 void efx_generate_event(struct efx_channel
*channel
, efx_qword_t
*event
)
653 efx_oword_t drv_ev_reg
;
655 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN
!= 0 ||
656 FRF_AZ_DRV_EV_DATA_WIDTH
!= 64);
657 drv_ev_reg
.u32
[0] = event
->u32
[0];
658 drv_ev_reg
.u32
[1] = event
->u32
[1];
659 drv_ev_reg
.u32
[2] = 0;
660 drv_ev_reg
.u32
[3] = 0;
661 EFX_SET_OWORD_FIELD(drv_ev_reg
, FRF_AZ_DRV_EV_QID
, channel
->channel
);
662 efx_writeo(channel
->efx
, &drv_ev_reg
, FR_AZ_DRV_EV
);
665 /* Handle a transmit completion event
667 * The NIC batches TX completion events; the message we receive is of
668 * the form "complete all TX events up to this index".
671 efx_handle_tx_event(struct efx_channel
*channel
, efx_qword_t
*event
)
673 unsigned int tx_ev_desc_ptr
;
674 unsigned int tx_ev_q_label
;
675 struct efx_tx_queue
*tx_queue
;
676 struct efx_nic
*efx
= channel
->efx
;
679 if (likely(EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_COMP
))) {
680 /* Transmit completion */
681 tx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_DESC_PTR
);
682 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
683 tx_queue
= &efx
->tx_queue
[tx_ev_q_label
];
684 tx_packets
= ((tx_ev_desc_ptr
- tx_queue
->read_count
) &
686 channel
->irq_mod_score
+= tx_packets
;
687 efx_xmit_done(tx_queue
, tx_ev_desc_ptr
);
688 } else if (EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_WQ_FF_FULL
)) {
689 /* Rewrite the FIFO write pointer */
690 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
691 tx_queue
= &efx
->tx_queue
[tx_ev_q_label
];
693 if (efx_dev_registered(efx
))
694 netif_tx_lock(efx
->net_dev
);
695 efx_notify_tx_desc(tx_queue
);
696 if (efx_dev_registered(efx
))
697 netif_tx_unlock(efx
->net_dev
);
698 } else if (EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_PKT_ERR
) &&
699 EFX_WORKAROUND_10727(efx
)) {
700 efx_schedule_reset(efx
, RESET_TYPE_TX_DESC_FETCH
);
702 netif_err(efx
, tx_err
, efx
->net_dev
,
703 "channel %d unexpected TX event "
704 EFX_QWORD_FMT
"\n", channel
->channel
,
705 EFX_QWORD_VAL(*event
));
711 /* Detect errors included in the rx_evt_pkt_ok bit. */
712 static void efx_handle_rx_not_ok(struct efx_rx_queue
*rx_queue
,
713 const efx_qword_t
*event
,
717 struct efx_nic
*efx
= rx_queue
->efx
;
718 bool rx_ev_buf_owner_id_err
, rx_ev_ip_hdr_chksum_err
;
719 bool rx_ev_tcp_udp_chksum_err
, rx_ev_eth_crc_err
;
720 bool rx_ev_frm_trunc
, rx_ev_drib_nib
, rx_ev_tobe_disc
;
721 bool rx_ev_other_err
, rx_ev_pause_frm
;
722 bool rx_ev_hdr_type
, rx_ev_mcast_pkt
;
723 unsigned rx_ev_pkt_type
;
725 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
726 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
727 rx_ev_tobe_disc
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_TOBE_DISC
);
728 rx_ev_pkt_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_TYPE
);
729 rx_ev_buf_owner_id_err
= EFX_QWORD_FIELD(*event
,
730 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR
);
731 rx_ev_ip_hdr_chksum_err
= EFX_QWORD_FIELD(*event
,
732 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR
);
733 rx_ev_tcp_udp_chksum_err
= EFX_QWORD_FIELD(*event
,
734 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR
);
735 rx_ev_eth_crc_err
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_ETH_CRC_ERR
);
736 rx_ev_frm_trunc
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_FRM_TRUNC
);
737 rx_ev_drib_nib
= ((efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) ?
738 0 : EFX_QWORD_FIELD(*event
, FSF_AA_RX_EV_DRIB_NIB
));
739 rx_ev_pause_frm
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PAUSE_FRM_ERR
);
741 /* Every error apart from tobe_disc and pause_frm */
742 rx_ev_other_err
= (rx_ev_drib_nib
| rx_ev_tcp_udp_chksum_err
|
743 rx_ev_buf_owner_id_err
| rx_ev_eth_crc_err
|
744 rx_ev_frm_trunc
| rx_ev_ip_hdr_chksum_err
);
746 /* Count errors that are not in MAC stats. Ignore expected
747 * checksum errors during self-test. */
749 ++rx_queue
->channel
->n_rx_frm_trunc
;
750 else if (rx_ev_tobe_disc
)
751 ++rx_queue
->channel
->n_rx_tobe_disc
;
752 else if (!efx
->loopback_selftest
) {
753 if (rx_ev_ip_hdr_chksum_err
)
754 ++rx_queue
->channel
->n_rx_ip_hdr_chksum_err
;
755 else if (rx_ev_tcp_udp_chksum_err
)
756 ++rx_queue
->channel
->n_rx_tcp_udp_chksum_err
;
759 /* The frame must be discarded if any of these are true. */
760 *discard
= (rx_ev_eth_crc_err
| rx_ev_frm_trunc
| rx_ev_drib_nib
|
761 rx_ev_tobe_disc
| rx_ev_pause_frm
);
763 /* TOBE_DISC is expected on unicast mismatches; don't print out an
764 * error message. FRM_TRUNC indicates RXDP dropped the packet due
765 * to a FIFO overflow.
767 #ifdef EFX_ENABLE_DEBUG
768 if (rx_ev_other_err
&& net_ratelimit()) {
769 netif_dbg(efx
, rx_err
, efx
->net_dev
,
770 " RX queue %d unexpected RX event "
771 EFX_QWORD_FMT
"%s%s%s%s%s%s%s%s\n",
772 rx_queue
->queue
, EFX_QWORD_VAL(*event
),
773 rx_ev_buf_owner_id_err
? " [OWNER_ID_ERR]" : "",
774 rx_ev_ip_hdr_chksum_err
?
775 " [IP_HDR_CHKSUM_ERR]" : "",
776 rx_ev_tcp_udp_chksum_err
?
777 " [TCP_UDP_CHKSUM_ERR]" : "",
778 rx_ev_eth_crc_err
? " [ETH_CRC_ERR]" : "",
779 rx_ev_frm_trunc
? " [FRM_TRUNC]" : "",
780 rx_ev_drib_nib
? " [DRIB_NIB]" : "",
781 rx_ev_tobe_disc
? " [TOBE_DISC]" : "",
782 rx_ev_pause_frm
? " [PAUSE]" : "");
787 /* Handle receive events that are not in-order. */
789 efx_handle_rx_bad_index(struct efx_rx_queue
*rx_queue
, unsigned index
)
791 struct efx_nic
*efx
= rx_queue
->efx
;
792 unsigned expected
, dropped
;
794 expected
= rx_queue
->removed_count
& EFX_RXQ_MASK
;
795 dropped
= (index
- expected
) & EFX_RXQ_MASK
;
796 netif_info(efx
, rx_err
, efx
->net_dev
,
797 "dropped %d events (index=%d expected=%d)\n",
798 dropped
, index
, expected
);
800 efx_schedule_reset(efx
, EFX_WORKAROUND_5676(efx
) ?
801 RESET_TYPE_RX_RECOVERY
: RESET_TYPE_DISABLE
);
804 /* Handle a packet received event
806 * The NIC gives a "discard" flag if it's a unicast packet with the
807 * wrong destination address
808 * Also "is multicast" and "matches multicast filter" flags can be used to
809 * discard non-matching multicast packets.
812 efx_handle_rx_event(struct efx_channel
*channel
, const efx_qword_t
*event
)
814 unsigned int rx_ev_desc_ptr
, rx_ev_byte_cnt
;
815 unsigned int rx_ev_hdr_type
, rx_ev_mcast_pkt
;
816 unsigned expected_ptr
;
817 bool rx_ev_pkt_ok
, discard
= false, checksummed
;
818 struct efx_rx_queue
*rx_queue
;
819 struct efx_nic
*efx
= channel
->efx
;
821 /* Basic packet information */
822 rx_ev_byte_cnt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_BYTE_CNT
);
823 rx_ev_pkt_ok
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_OK
);
824 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
825 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_JUMBO_CONT
));
826 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_SOP
) != 1);
827 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_Q_LABEL
) !=
830 rx_queue
= &efx
->rx_queue
[channel
->channel
];
832 rx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_DESC_PTR
);
833 expected_ptr
= rx_queue
->removed_count
& EFX_RXQ_MASK
;
834 if (unlikely(rx_ev_desc_ptr
!= expected_ptr
))
835 efx_handle_rx_bad_index(rx_queue
, rx_ev_desc_ptr
);
837 if (likely(rx_ev_pkt_ok
)) {
838 /* If packet is marked as OK and packet type is TCP/IP or
839 * UDP/IP, then we can rely on the hardware checksum.
842 likely(efx
->rx_checksum_enabled
) &&
843 (rx_ev_hdr_type
== FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP
||
844 rx_ev_hdr_type
== FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP
);
846 efx_handle_rx_not_ok(rx_queue
, event
, &rx_ev_pkt_ok
, &discard
);
850 /* Detect multicast packets that didn't match the filter */
851 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
852 if (rx_ev_mcast_pkt
) {
853 unsigned int rx_ev_mcast_hash_match
=
854 EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_HASH_MATCH
);
856 if (unlikely(!rx_ev_mcast_hash_match
)) {
857 ++channel
->n_rx_mcast_mismatch
;
862 channel
->irq_mod_score
+= 2;
864 /* Handle received packet */
865 efx_rx_packet(rx_queue
, rx_ev_desc_ptr
, rx_ev_byte_cnt
,
866 checksummed
, discard
);
870 efx_handle_generated_event(struct efx_channel
*channel
, efx_qword_t
*event
)
872 struct efx_nic
*efx
= channel
->efx
;
875 code
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRV_GEN_EV_MAGIC
);
876 if (code
== EFX_CHANNEL_MAGIC_TEST(channel
))
877 ++channel
->magic_count
;
878 else if (code
== EFX_CHANNEL_MAGIC_FILL(channel
))
879 /* The queue must be empty, so we won't receive any rx
880 * events, so efx_process_channel() won't refill the
881 * queue. Refill it here */
882 efx_fast_push_rx_descriptors(&efx
->rx_queue
[channel
->channel
]);
884 netif_dbg(efx
, hw
, efx
->net_dev
, "channel %d received "
885 "generated event "EFX_QWORD_FMT
"\n",
886 channel
->channel
, EFX_QWORD_VAL(*event
));
889 /* Global events are basically PHY events */
891 efx_handle_global_event(struct efx_channel
*channel
, efx_qword_t
*event
)
893 struct efx_nic
*efx
= channel
->efx
;
894 bool handled
= false;
896 if (EFX_QWORD_FIELD(*event
, FSF_AB_GLB_EV_G_PHY0_INTR
) ||
897 EFX_QWORD_FIELD(*event
, FSF_AB_GLB_EV_XG_PHY0_INTR
) ||
898 EFX_QWORD_FIELD(*event
, FSF_AB_GLB_EV_XFP_PHY0_INTR
)) {
903 if ((efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) &&
904 EFX_QWORD_FIELD(*event
, FSF_BB_GLB_EV_XG_MGT_INTR
)) {
905 efx
->xmac_poll_required
= true;
909 if (efx_nic_rev(efx
) <= EFX_REV_FALCON_A1
?
910 EFX_QWORD_FIELD(*event
, FSF_AA_GLB_EV_RX_RECOVERY
) :
911 EFX_QWORD_FIELD(*event
, FSF_BB_GLB_EV_RX_RECOVERY
)) {
912 netif_err(efx
, rx_err
, efx
->net_dev
,
913 "channel %d seen global RX_RESET event. Resetting.\n",
916 atomic_inc(&efx
->rx_reset
);
917 efx_schedule_reset(efx
, EFX_WORKAROUND_6555(efx
) ?
918 RESET_TYPE_RX_RECOVERY
: RESET_TYPE_DISABLE
);
923 netif_err(efx
, hw
, efx
->net_dev
,
924 "channel %d unknown global event "
925 EFX_QWORD_FMT
"\n", channel
->channel
,
926 EFX_QWORD_VAL(*event
));
930 efx_handle_driver_event(struct efx_channel
*channel
, efx_qword_t
*event
)
932 struct efx_nic
*efx
= channel
->efx
;
933 unsigned int ev_sub_code
;
934 unsigned int ev_sub_data
;
936 ev_sub_code
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBCODE
);
937 ev_sub_data
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBDATA
);
939 switch (ev_sub_code
) {
940 case FSE_AZ_TX_DESCQ_FLS_DONE_EV
:
941 netif_vdbg(efx
, hw
, efx
->net_dev
, "channel %d TXQ %d flushed\n",
942 channel
->channel
, ev_sub_data
);
944 case FSE_AZ_RX_DESCQ_FLS_DONE_EV
:
945 netif_vdbg(efx
, hw
, efx
->net_dev
, "channel %d RXQ %d flushed\n",
946 channel
->channel
, ev_sub_data
);
948 case FSE_AZ_EVQ_INIT_DONE_EV
:
949 netif_dbg(efx
, hw
, efx
->net_dev
,
950 "channel %d EVQ %d initialised\n",
951 channel
->channel
, ev_sub_data
);
953 case FSE_AZ_SRM_UPD_DONE_EV
:
954 netif_vdbg(efx
, hw
, efx
->net_dev
,
955 "channel %d SRAM update done\n", channel
->channel
);
957 case FSE_AZ_WAKE_UP_EV
:
958 netif_vdbg(efx
, hw
, efx
->net_dev
,
959 "channel %d RXQ %d wakeup event\n",
960 channel
->channel
, ev_sub_data
);
962 case FSE_AZ_TIMER_EV
:
963 netif_vdbg(efx
, hw
, efx
->net_dev
,
964 "channel %d RX queue %d timer expired\n",
965 channel
->channel
, ev_sub_data
);
967 case FSE_AA_RX_RECOVER_EV
:
968 netif_err(efx
, rx_err
, efx
->net_dev
,
969 "channel %d seen DRIVER RX_RESET event. "
970 "Resetting.\n", channel
->channel
);
971 atomic_inc(&efx
->rx_reset
);
972 efx_schedule_reset(efx
,
973 EFX_WORKAROUND_6555(efx
) ?
974 RESET_TYPE_RX_RECOVERY
:
977 case FSE_BZ_RX_DSC_ERROR_EV
:
978 netif_err(efx
, rx_err
, efx
->net_dev
,
979 "RX DMA Q %d reports descriptor fetch error."
980 " RX Q %d is disabled.\n", ev_sub_data
, ev_sub_data
);
981 efx_schedule_reset(efx
, RESET_TYPE_RX_DESC_FETCH
);
983 case FSE_BZ_TX_DSC_ERROR_EV
:
984 netif_err(efx
, tx_err
, efx
->net_dev
,
985 "TX DMA Q %d reports descriptor fetch error."
986 " TX Q %d is disabled.\n", ev_sub_data
, ev_sub_data
);
987 efx_schedule_reset(efx
, RESET_TYPE_TX_DESC_FETCH
);
990 netif_vdbg(efx
, hw
, efx
->net_dev
,
991 "channel %d unknown driver event code %d "
992 "data %04x\n", channel
->channel
, ev_sub_code
,
998 int efx_nic_process_eventq(struct efx_channel
*channel
, int budget
)
1000 unsigned int read_ptr
;
1001 efx_qword_t event
, *p_event
;
1006 read_ptr
= channel
->eventq_read_ptr
;
1009 p_event
= efx_event(channel
, read_ptr
);
1012 if (!efx_event_present(&event
))
1016 netif_vdbg(channel
->efx
, intr
, channel
->efx
->net_dev
,
1017 "channel %d event is "EFX_QWORD_FMT
"\n",
1018 channel
->channel
, EFX_QWORD_VAL(event
));
1020 /* Clear this event by marking it all ones */
1021 EFX_SET_QWORD(*p_event
);
1023 /* Increment read pointer */
1024 read_ptr
= (read_ptr
+ 1) & EFX_EVQ_MASK
;
1026 ev_code
= EFX_QWORD_FIELD(event
, FSF_AZ_EV_CODE
);
1029 case FSE_AZ_EV_CODE_RX_EV
:
1030 efx_handle_rx_event(channel
, &event
);
1031 if (++spent
== budget
)
1034 case FSE_AZ_EV_CODE_TX_EV
:
1035 tx_packets
+= efx_handle_tx_event(channel
, &event
);
1036 if (tx_packets
>= EFX_TXQ_SIZE
) {
1041 case FSE_AZ_EV_CODE_DRV_GEN_EV
:
1042 efx_handle_generated_event(channel
, &event
);
1044 case FSE_AZ_EV_CODE_GLOBAL_EV
:
1045 efx_handle_global_event(channel
, &event
);
1047 case FSE_AZ_EV_CODE_DRIVER_EV
:
1048 efx_handle_driver_event(channel
, &event
);
1050 case FSE_CZ_EV_CODE_MCDI_EV
:
1051 efx_mcdi_process_event(channel
, &event
);
1054 netif_err(channel
->efx
, hw
, channel
->efx
->net_dev
,
1055 "channel %d unknown event type %d (data "
1056 EFX_QWORD_FMT
")\n", channel
->channel
,
1057 ev_code
, EFX_QWORD_VAL(event
));
1062 channel
->eventq_read_ptr
= read_ptr
;
1067 /* Allocate buffer table entries for event queue */
1068 int efx_nic_probe_eventq(struct efx_channel
*channel
)
1070 struct efx_nic
*efx
= channel
->efx
;
1071 BUILD_BUG_ON(EFX_EVQ_SIZE
< 512 || EFX_EVQ_SIZE
> 32768 ||
1072 EFX_EVQ_SIZE
& EFX_EVQ_MASK
);
1073 return efx_alloc_special_buffer(efx
, &channel
->eventq
,
1074 EFX_EVQ_SIZE
* sizeof(efx_qword_t
));
1077 void efx_nic_init_eventq(struct efx_channel
*channel
)
1080 struct efx_nic
*efx
= channel
->efx
;
1082 netif_dbg(efx
, hw
, efx
->net_dev
,
1083 "channel %d event queue in special buffers %d-%d\n",
1084 channel
->channel
, channel
->eventq
.index
,
1085 channel
->eventq
.index
+ channel
->eventq
.entries
- 1);
1087 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
) {
1088 EFX_POPULATE_OWORD_3(reg
,
1089 FRF_CZ_TIMER_Q_EN
, 1,
1090 FRF_CZ_HOST_NOTIFY_MODE
, 0,
1091 FRF_CZ_TIMER_MODE
, FFE_CZ_TIMER_MODE_DIS
);
1092 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
, channel
->channel
);
1095 /* Pin event queue buffer */
1096 efx_init_special_buffer(efx
, &channel
->eventq
);
1098 /* Fill event queue with all ones (i.e. empty events) */
1099 memset(channel
->eventq
.addr
, 0xff, channel
->eventq
.len
);
1101 /* Push event queue to card */
1102 EFX_POPULATE_OWORD_3(reg
,
1104 FRF_AZ_EVQ_SIZE
, __ffs(channel
->eventq
.entries
),
1105 FRF_AZ_EVQ_BUF_BASE_ID
, channel
->eventq
.index
);
1106 efx_writeo_table(efx
, ®
, efx
->type
->evq_ptr_tbl_base
,
1109 efx
->type
->push_irq_moderation(channel
);
1112 void efx_nic_fini_eventq(struct efx_channel
*channel
)
1115 struct efx_nic
*efx
= channel
->efx
;
1117 /* Remove event queue from card */
1118 EFX_ZERO_OWORD(reg
);
1119 efx_writeo_table(efx
, ®
, efx
->type
->evq_ptr_tbl_base
,
1121 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
)
1122 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
, channel
->channel
);
1124 /* Unpin event queue */
1125 efx_fini_special_buffer(efx
, &channel
->eventq
);
1128 /* Free buffers backing event queue */
1129 void efx_nic_remove_eventq(struct efx_channel
*channel
)
1131 efx_free_special_buffer(channel
->efx
, &channel
->eventq
);
1135 void efx_nic_generate_test_event(struct efx_channel
*channel
)
1137 unsigned int magic
= EFX_CHANNEL_MAGIC_TEST(channel
);
1138 efx_qword_t test_event
;
1140 EFX_POPULATE_QWORD_2(test_event
, FSF_AZ_EV_CODE
,
1141 FSE_AZ_EV_CODE_DRV_GEN_EV
,
1142 FSF_AZ_DRV_GEN_EV_MAGIC
, magic
);
1143 efx_generate_event(channel
, &test_event
);
1146 void efx_nic_generate_fill_event(struct efx_channel
*channel
)
1148 unsigned int magic
= EFX_CHANNEL_MAGIC_FILL(channel
);
1149 efx_qword_t test_event
;
1151 EFX_POPULATE_QWORD_2(test_event
, FSF_AZ_EV_CODE
,
1152 FSE_AZ_EV_CODE_DRV_GEN_EV
,
1153 FSF_AZ_DRV_GEN_EV_MAGIC
, magic
);
1154 efx_generate_event(channel
, &test_event
);
1157 /**************************************************************************
1161 **************************************************************************/
1164 static void efx_poll_flush_events(struct efx_nic
*efx
)
1166 struct efx_channel
*channel
= &efx
->channel
[0];
1167 struct efx_tx_queue
*tx_queue
;
1168 struct efx_rx_queue
*rx_queue
;
1169 unsigned int read_ptr
= channel
->eventq_read_ptr
;
1170 unsigned int end_ptr
= (read_ptr
- 1) & EFX_EVQ_MASK
;
1173 efx_qword_t
*event
= efx_event(channel
, read_ptr
);
1174 int ev_code
, ev_sub_code
, ev_queue
;
1177 if (!efx_event_present(event
))
1180 ev_code
= EFX_QWORD_FIELD(*event
, FSF_AZ_EV_CODE
);
1181 ev_sub_code
= EFX_QWORD_FIELD(*event
,
1182 FSF_AZ_DRIVER_EV_SUBCODE
);
1183 if (ev_code
== FSE_AZ_EV_CODE_DRIVER_EV
&&
1184 ev_sub_code
== FSE_AZ_TX_DESCQ_FLS_DONE_EV
) {
1185 ev_queue
= EFX_QWORD_FIELD(*event
,
1186 FSF_AZ_DRIVER_EV_SUBDATA
);
1187 if (ev_queue
< EFX_TXQ_TYPES
* efx
->n_tx_channels
) {
1188 tx_queue
= efx
->tx_queue
+ ev_queue
;
1189 tx_queue
->flushed
= FLUSH_DONE
;
1191 } else if (ev_code
== FSE_AZ_EV_CODE_DRIVER_EV
&&
1192 ev_sub_code
== FSE_AZ_RX_DESCQ_FLS_DONE_EV
) {
1193 ev_queue
= EFX_QWORD_FIELD(
1194 *event
, FSF_AZ_DRIVER_EV_RX_DESCQ_ID
);
1195 ev_failed
= EFX_QWORD_FIELD(
1196 *event
, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL
);
1197 if (ev_queue
< efx
->n_rx_channels
) {
1198 rx_queue
= efx
->rx_queue
+ ev_queue
;
1200 ev_failed
? FLUSH_FAILED
: FLUSH_DONE
;
1204 /* We're about to destroy the queue anyway, so
1205 * it's ok to throw away every non-flush event */
1206 EFX_SET_QWORD(*event
);
1208 read_ptr
= (read_ptr
+ 1) & EFX_EVQ_MASK
;
1209 } while (read_ptr
!= end_ptr
);
1211 channel
->eventq_read_ptr
= read_ptr
;
1214 /* Handle tx and rx flushes at the same time, since they run in
1215 * parallel in the hardware and there's no reason for us to
1217 int efx_nic_flush_queues(struct efx_nic
*efx
)
1219 struct efx_rx_queue
*rx_queue
;
1220 struct efx_tx_queue
*tx_queue
;
1221 int i
, tx_pending
, rx_pending
;
1223 /* If necessary prepare the hardware for flushing */
1224 efx
->type
->prepare_flush(efx
);
1226 /* Flush all tx queues in parallel */
1227 efx_for_each_tx_queue(tx_queue
, efx
)
1228 efx_flush_tx_queue(tx_queue
);
1230 /* The hardware supports four concurrent rx flushes, each of which may
1231 * need to be retried if there is an outstanding descriptor fetch */
1232 for (i
= 0; i
< EFX_FLUSH_POLL_COUNT
; ++i
) {
1233 rx_pending
= tx_pending
= 0;
1234 efx_for_each_rx_queue(rx_queue
, efx
) {
1235 if (rx_queue
->flushed
== FLUSH_PENDING
)
1238 efx_for_each_rx_queue(rx_queue
, efx
) {
1239 if (rx_pending
== EFX_RX_FLUSH_COUNT
)
1241 if (rx_queue
->flushed
== FLUSH_FAILED
||
1242 rx_queue
->flushed
== FLUSH_NONE
) {
1243 efx_flush_rx_queue(rx_queue
);
1247 efx_for_each_tx_queue(tx_queue
, efx
) {
1248 if (tx_queue
->flushed
!= FLUSH_DONE
)
1252 if (rx_pending
== 0 && tx_pending
== 0)
1255 msleep(EFX_FLUSH_INTERVAL
);
1256 efx_poll_flush_events(efx
);
1259 /* Mark the queues as all flushed. We're going to return failure
1260 * leading to a reset, or fake up success anyway */
1261 efx_for_each_tx_queue(tx_queue
, efx
) {
1262 if (tx_queue
->flushed
!= FLUSH_DONE
)
1263 netif_err(efx
, hw
, efx
->net_dev
,
1264 "tx queue %d flush command timed out\n",
1266 tx_queue
->flushed
= FLUSH_DONE
;
1268 efx_for_each_rx_queue(rx_queue
, efx
) {
1269 if (rx_queue
->flushed
!= FLUSH_DONE
)
1270 netif_err(efx
, hw
, efx
->net_dev
,
1271 "rx queue %d flush command timed out\n",
1273 rx_queue
->flushed
= FLUSH_DONE
;
1279 /**************************************************************************
1281 * Hardware interrupts
1282 * The hardware interrupt handler does very little work; all the event
1283 * queue processing is carried out by per-channel tasklets.
1285 **************************************************************************/
1287 /* Enable/disable/generate interrupts */
1288 static inline void efx_nic_interrupts(struct efx_nic
*efx
,
1289 bool enabled
, bool force
)
1291 efx_oword_t int_en_reg_ker
;
1293 EFX_POPULATE_OWORD_3(int_en_reg_ker
,
1294 FRF_AZ_KER_INT_LEVE_SEL
, efx
->fatal_irq_level
,
1295 FRF_AZ_KER_INT_KER
, force
,
1296 FRF_AZ_DRV_INT_EN_KER
, enabled
);
1297 efx_writeo(efx
, &int_en_reg_ker
, FR_AZ_INT_EN_KER
);
1300 void efx_nic_enable_interrupts(struct efx_nic
*efx
)
1302 struct efx_channel
*channel
;
1304 EFX_ZERO_OWORD(*((efx_oword_t
*) efx
->irq_status
.addr
));
1305 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1307 /* Enable interrupts */
1308 efx_nic_interrupts(efx
, true, false);
1310 /* Force processing of all the channels to get the EVQ RPTRs up to
1312 efx_for_each_channel(channel
, efx
)
1313 efx_schedule_channel(channel
);
1316 void efx_nic_disable_interrupts(struct efx_nic
*efx
)
1318 /* Disable interrupts */
1319 efx_nic_interrupts(efx
, false, false);
1322 /* Generate a test interrupt
1323 * Interrupt must already have been enabled, otherwise nasty things
1326 void efx_nic_generate_interrupt(struct efx_nic
*efx
)
1328 efx_nic_interrupts(efx
, true, true);
1331 /* Process a fatal interrupt
1332 * Disable bus mastering ASAP and schedule a reset
1334 irqreturn_t
efx_nic_fatal_interrupt(struct efx_nic
*efx
)
1336 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1337 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1338 efx_oword_t fatal_intr
;
1339 int error
, mem_perr
;
1341 efx_reado(efx
, &fatal_intr
, FR_AZ_FATAL_INTR_KER
);
1342 error
= EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_FATAL_INTR
);
1344 netif_err(efx
, hw
, efx
->net_dev
, "SYSTEM ERROR "EFX_OWORD_FMT
" status "
1345 EFX_OWORD_FMT
": %s\n", EFX_OWORD_VAL(*int_ker
),
1346 EFX_OWORD_VAL(fatal_intr
),
1347 error
? "disabling bus mastering" : "no recognised error");
1349 /* If this is a memory parity error dump which blocks are offending */
1350 mem_perr
= (EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_MEM_PERR_INT_KER
) ||
1351 EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_SRM_PERR_INT_KER
));
1354 efx_reado(efx
, ®
, FR_AZ_MEM_STAT
);
1355 netif_err(efx
, hw
, efx
->net_dev
,
1356 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT
"\n",
1357 EFX_OWORD_VAL(reg
));
1360 /* Disable both devices */
1361 pci_clear_master(efx
->pci_dev
);
1362 if (efx_nic_is_dual_func(efx
))
1363 pci_clear_master(nic_data
->pci_dev2
);
1364 efx_nic_disable_interrupts(efx
);
1366 /* Count errors and reset or disable the NIC accordingly */
1367 if (efx
->int_error_count
== 0 ||
1368 time_after(jiffies
, efx
->int_error_expire
)) {
1369 efx
->int_error_count
= 0;
1370 efx
->int_error_expire
=
1371 jiffies
+ EFX_INT_ERROR_EXPIRE
* HZ
;
1373 if (++efx
->int_error_count
< EFX_MAX_INT_ERRORS
) {
1374 netif_err(efx
, hw
, efx
->net_dev
,
1375 "SYSTEM ERROR - reset scheduled\n");
1376 efx_schedule_reset(efx
, RESET_TYPE_INT_ERROR
);
1378 netif_err(efx
, hw
, efx
->net_dev
,
1379 "SYSTEM ERROR - max number of errors seen."
1380 "NIC will be disabled\n");
1381 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1387 /* Handle a legacy interrupt
1388 * Acknowledges the interrupt and schedule event queue processing.
1390 static irqreturn_t
efx_legacy_interrupt(int irq
, void *dev_id
)
1392 struct efx_nic
*efx
= dev_id
;
1393 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1394 irqreturn_t result
= IRQ_NONE
;
1395 struct efx_channel
*channel
;
1400 /* Read the ISR which also ACKs the interrupts */
1401 efx_readd(efx
, ®
, FR_BZ_INT_ISR0
);
1402 queues
= EFX_EXTRACT_DWORD(reg
, 0, 31);
1404 /* Check to see if we have a serious error condition */
1405 if (queues
& (1U << efx
->fatal_irq_level
)) {
1406 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1407 if (unlikely(syserr
))
1408 return efx_nic_fatal_interrupt(efx
);
1412 if (EFX_WORKAROUND_15783(efx
))
1413 efx
->irq_zero_count
= 0;
1415 /* Schedule processing of any interrupting queues */
1416 efx_for_each_channel(channel
, efx
) {
1418 efx_schedule_channel(channel
);
1421 result
= IRQ_HANDLED
;
1423 } else if (EFX_WORKAROUND_15783(efx
)) {
1426 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1427 * because this might be a shared interrupt. */
1428 if (efx
->irq_zero_count
++ == 0)
1429 result
= IRQ_HANDLED
;
1431 /* Ensure we schedule or rearm all event queues */
1432 efx_for_each_channel(channel
, efx
) {
1433 event
= efx_event(channel
, channel
->eventq_read_ptr
);
1434 if (efx_event_present(event
))
1435 efx_schedule_channel(channel
);
1437 efx_nic_eventq_read_ack(channel
);
1441 if (result
== IRQ_HANDLED
) {
1442 efx
->last_irq_cpu
= raw_smp_processor_id();
1443 netif_vdbg(efx
, intr
, efx
->net_dev
,
1444 "IRQ %d on CPU %d status " EFX_DWORD_FMT
"\n",
1445 irq
, raw_smp_processor_id(), EFX_DWORD_VAL(reg
));
1451 /* Handle an MSI interrupt
1453 * Handle an MSI hardware interrupt. This routine schedules event
1454 * queue processing. No interrupt acknowledgement cycle is necessary.
1455 * Also, we never need to check that the interrupt is for us, since
1456 * MSI interrupts cannot be shared.
1458 static irqreturn_t
efx_msi_interrupt(int irq
, void *dev_id
)
1460 struct efx_channel
*channel
= dev_id
;
1461 struct efx_nic
*efx
= channel
->efx
;
1462 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1465 efx
->last_irq_cpu
= raw_smp_processor_id();
1466 netif_vdbg(efx
, intr
, efx
->net_dev
,
1467 "IRQ %d on CPU %d status " EFX_OWORD_FMT
"\n",
1468 irq
, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker
));
1470 /* Check to see if we have a serious error condition */
1471 if (channel
->channel
== efx
->fatal_irq_level
) {
1472 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1473 if (unlikely(syserr
))
1474 return efx_nic_fatal_interrupt(efx
);
1477 /* Schedule processing of the channel */
1478 efx_schedule_channel(channel
);
1484 /* Setup RSS indirection table.
1485 * This maps from the hash value of the packet to RXQ
1487 void efx_nic_push_rx_indir_table(struct efx_nic
*efx
)
1492 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
)
1495 BUILD_BUG_ON(ARRAY_SIZE(efx
->rx_indir_table
) !=
1496 FR_BZ_RX_INDIRECTION_TBL_ROWS
);
1498 for (i
= 0; i
< FR_BZ_RX_INDIRECTION_TBL_ROWS
; i
++) {
1499 EFX_POPULATE_DWORD_1(dword
, FRF_BZ_IT_QUEUE
,
1500 efx
->rx_indir_table
[i
]);
1501 efx_writed_table(efx
, &dword
, FR_BZ_RX_INDIRECTION_TBL
, i
);
1505 /* Hook interrupt handler(s)
1506 * Try MSI and then legacy interrupts.
1508 int efx_nic_init_interrupt(struct efx_nic
*efx
)
1510 struct efx_channel
*channel
;
1513 if (!EFX_INT_MODE_USE_MSI(efx
)) {
1514 irq_handler_t handler
;
1515 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1516 handler
= efx_legacy_interrupt
;
1518 handler
= falcon_legacy_interrupt_a1
;
1520 rc
= request_irq(efx
->legacy_irq
, handler
, IRQF_SHARED
,
1523 netif_err(efx
, drv
, efx
->net_dev
,
1524 "failed to hook legacy IRQ %d\n",
1531 /* Hook MSI or MSI-X interrupt */
1532 efx_for_each_channel(channel
, efx
) {
1533 rc
= request_irq(channel
->irq
, efx_msi_interrupt
,
1534 IRQF_PROBE_SHARED
, /* Not shared */
1535 channel
->name
, channel
);
1537 netif_err(efx
, drv
, efx
->net_dev
,
1538 "failed to hook IRQ %d\n", channel
->irq
);
1546 efx_for_each_channel(channel
, efx
)
1547 free_irq(channel
->irq
, channel
);
1552 void efx_nic_fini_interrupt(struct efx_nic
*efx
)
1554 struct efx_channel
*channel
;
1557 /* Disable MSI/MSI-X interrupts */
1558 efx_for_each_channel(channel
, efx
) {
1560 free_irq(channel
->irq
, channel
);
1563 /* ACK legacy interrupt */
1564 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1565 efx_reado(efx
, ®
, FR_BZ_INT_ISR0
);
1567 falcon_irq_ack_a1(efx
);
1569 /* Disable legacy interrupt */
1570 if (efx
->legacy_irq
)
1571 free_irq(efx
->legacy_irq
, efx
);
1574 u32
efx_nic_fpga_ver(struct efx_nic
*efx
)
1576 efx_oword_t altera_build
;
1577 efx_reado(efx
, &altera_build
, FR_AZ_ALTERA_BUILD
);
1578 return EFX_OWORD_FIELD(altera_build
, FRF_AZ_ALTERA_BUILD_VER
);
1581 void efx_nic_init_common(struct efx_nic
*efx
)
1585 /* Set positions of descriptor caches in SRAM. */
1586 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_TX_DC_BASE_ADR
,
1587 efx
->type
->tx_dc_base
/ 8);
1588 efx_writeo(efx
, &temp
, FR_AZ_SRM_TX_DC_CFG
);
1589 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_RX_DC_BASE_ADR
,
1590 efx
->type
->rx_dc_base
/ 8);
1591 efx_writeo(efx
, &temp
, FR_AZ_SRM_RX_DC_CFG
);
1593 /* Set TX descriptor cache size. */
1594 BUILD_BUG_ON(TX_DC_ENTRIES
!= (8 << TX_DC_ENTRIES_ORDER
));
1595 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_TX_DC_SIZE
, TX_DC_ENTRIES_ORDER
);
1596 efx_writeo(efx
, &temp
, FR_AZ_TX_DC_CFG
);
1598 /* Set RX descriptor cache size. Set low watermark to size-8, as
1599 * this allows most efficient prefetching.
1601 BUILD_BUG_ON(RX_DC_ENTRIES
!= (8 << RX_DC_ENTRIES_ORDER
));
1602 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_SIZE
, RX_DC_ENTRIES_ORDER
);
1603 efx_writeo(efx
, &temp
, FR_AZ_RX_DC_CFG
);
1604 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_PF_LWM
, RX_DC_ENTRIES
- 8);
1605 efx_writeo(efx
, &temp
, FR_AZ_RX_DC_PF_WM
);
1607 /* Program INT_KER address */
1608 EFX_POPULATE_OWORD_2(temp
,
1609 FRF_AZ_NORM_INT_VEC_DIS_KER
,
1610 EFX_INT_MODE_USE_MSI(efx
),
1611 FRF_AZ_INT_ADR_KER
, efx
->irq_status
.dma_addr
);
1612 efx_writeo(efx
, &temp
, FR_AZ_INT_ADR_KER
);
1614 if (EFX_WORKAROUND_17213(efx
) && !EFX_INT_MODE_USE_MSI(efx
))
1615 /* Use an interrupt level unused by event queues */
1616 efx
->fatal_irq_level
= 0x1f;
1618 /* Use a valid MSI-X vector */
1619 efx
->fatal_irq_level
= 0;
1621 /* Enable all the genuinely fatal interrupts. (They are still
1622 * masked by the overall interrupt mask, controlled by
1623 * falcon_interrupts()).
1625 * Note: All other fatal interrupts are enabled
1627 EFX_POPULATE_OWORD_3(temp
,
1628 FRF_AZ_ILL_ADR_INT_KER_EN
, 1,
1629 FRF_AZ_RBUF_OWN_INT_KER_EN
, 1,
1630 FRF_AZ_TBUF_OWN_INT_KER_EN
, 1);
1631 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
)
1632 EFX_SET_OWORD_FIELD(temp
, FRF_CZ_SRAM_PERR_INT_P_KER_EN
, 1);
1633 EFX_INVERT_OWORD(temp
);
1634 efx_writeo(efx
, &temp
, FR_AZ_FATAL_INTR_KER
);
1636 efx_nic_push_rx_indir_table(efx
);
1638 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1639 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1641 efx_reado(efx
, &temp
, FR_AZ_TX_RESERVED
);
1642 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER
, 0xfe);
1643 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER_EN
, 1);
1644 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_ONE_PKT_PER_Q
, 1);
1645 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PUSH_EN
, 0);
1646 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_DIS_NON_IP_EV
, 1);
1647 /* Enable SW_EV to inherit in char driver - assume harmless here */
1648 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_SOFT_EVT_EN
, 1);
1649 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1650 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_THRESHOLD
, 2);
1651 /* Disable hardware watchdog which can misfire */
1652 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_WD_TMR
, 0x3fffff);
1653 /* Squash TX of packets of 16 bytes or less */
1654 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1655 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TX_FLUSH_MIN_LEN_EN
, 1);
1656 efx_writeo(efx
, &temp
, FR_AZ_TX_RESERVED
);
1661 #define REGISTER_REVISION_A 1
1662 #define REGISTER_REVISION_B 2
1663 #define REGISTER_REVISION_C 3
1664 #define REGISTER_REVISION_Z 3 /* latest revision */
1666 struct efx_nic_reg
{
1668 u32 min_revision
:2, max_revision
:2;
1671 #define REGISTER(name, min_rev, max_rev) { \
1672 FR_ ## min_rev ## max_rev ## _ ## name, \
1673 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
1675 #define REGISTER_AA(name) REGISTER(name, A, A)
1676 #define REGISTER_AB(name) REGISTER(name, A, B)
1677 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1678 #define REGISTER_BB(name) REGISTER(name, B, B)
1679 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1680 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1682 static const struct efx_nic_reg efx_nic_regs
[] = {
1683 REGISTER_AZ(ADR_REGION
),
1684 REGISTER_AZ(INT_EN_KER
),
1685 REGISTER_BZ(INT_EN_CHAR
),
1686 REGISTER_AZ(INT_ADR_KER
),
1687 REGISTER_BZ(INT_ADR_CHAR
),
1688 /* INT_ACK_KER is WO */
1689 /* INT_ISR0 is RC */
1690 REGISTER_AZ(HW_INIT
),
1691 REGISTER_CZ(USR_EV_CFG
),
1692 REGISTER_AB(EE_SPI_HCMD
),
1693 REGISTER_AB(EE_SPI_HADR
),
1694 REGISTER_AB(EE_SPI_HDATA
),
1695 REGISTER_AB(EE_BASE_PAGE
),
1696 REGISTER_AB(EE_VPD_CFG0
),
1697 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1698 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1699 /* PCIE_CORE_INDIRECT is indirect */
1700 REGISTER_AB(NIC_STAT
),
1701 REGISTER_AB(GPIO_CTL
),
1702 REGISTER_AB(GLB_CTL
),
1703 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1704 REGISTER_BZ(DP_CTRL
),
1705 REGISTER_AZ(MEM_STAT
),
1706 REGISTER_AZ(CS_DEBUG
),
1707 REGISTER_AZ(ALTERA_BUILD
),
1708 REGISTER_AZ(CSR_SPARE
),
1709 REGISTER_AB(PCIE_SD_CTL0123
),
1710 REGISTER_AB(PCIE_SD_CTL45
),
1711 REGISTER_AB(PCIE_PCS_CTL_STAT
),
1712 /* DEBUG_DATA_OUT is not used */
1714 REGISTER_AZ(EVQ_CTL
),
1715 REGISTER_AZ(EVQ_CNT1
),
1716 REGISTER_AZ(EVQ_CNT2
),
1717 REGISTER_AZ(BUF_TBL_CFG
),
1718 REGISTER_AZ(SRM_RX_DC_CFG
),
1719 REGISTER_AZ(SRM_TX_DC_CFG
),
1720 REGISTER_AZ(SRM_CFG
),
1721 /* BUF_TBL_UPD is WO */
1722 REGISTER_AZ(SRM_UPD_EVQ
),
1723 REGISTER_AZ(SRAM_PARITY
),
1724 REGISTER_AZ(RX_CFG
),
1725 REGISTER_BZ(RX_FILTER_CTL
),
1726 /* RX_FLUSH_DESCQ is WO */
1727 REGISTER_AZ(RX_DC_CFG
),
1728 REGISTER_AZ(RX_DC_PF_WM
),
1729 REGISTER_BZ(RX_RSS_TKEY
),
1730 /* RX_NODESC_DROP is RC */
1731 REGISTER_AA(RX_SELF_RST
),
1732 /* RX_DEBUG, RX_PUSH_DROP are not used */
1733 REGISTER_CZ(RX_RSS_IPV6_REG1
),
1734 REGISTER_CZ(RX_RSS_IPV6_REG2
),
1735 REGISTER_CZ(RX_RSS_IPV6_REG3
),
1736 /* TX_FLUSH_DESCQ is WO */
1737 REGISTER_AZ(TX_DC_CFG
),
1738 REGISTER_AA(TX_CHKSM_CFG
),
1739 REGISTER_AZ(TX_CFG
),
1740 /* TX_PUSH_DROP is not used */
1741 REGISTER_AZ(TX_RESERVED
),
1742 REGISTER_BZ(TX_PACE
),
1743 /* TX_PACE_DROP_QID is RC */
1744 REGISTER_BB(TX_VLAN
),
1745 REGISTER_BZ(TX_IPFIL_PORTEN
),
1746 REGISTER_AB(MD_TXD
),
1747 REGISTER_AB(MD_RXD
),
1749 REGISTER_AB(MD_PHY_ADR
),
1752 REGISTER_AB(MAC_STAT_DMA
),
1753 REGISTER_AB(MAC_CTRL
),
1754 REGISTER_BB(GEN_MODE
),
1755 REGISTER_AB(MAC_MC_HASH_REG0
),
1756 REGISTER_AB(MAC_MC_HASH_REG1
),
1757 REGISTER_AB(GM_CFG1
),
1758 REGISTER_AB(GM_CFG2
),
1759 /* GM_IPG and GM_HD are not used */
1760 REGISTER_AB(GM_MAX_FLEN
),
1761 /* GM_TEST is not used */
1762 REGISTER_AB(GM_ADR1
),
1763 REGISTER_AB(GM_ADR2
),
1764 REGISTER_AB(GMF_CFG0
),
1765 REGISTER_AB(GMF_CFG1
),
1766 REGISTER_AB(GMF_CFG2
),
1767 REGISTER_AB(GMF_CFG3
),
1768 REGISTER_AB(GMF_CFG4
),
1769 REGISTER_AB(GMF_CFG5
),
1770 REGISTER_BB(TX_SRC_MAC_CTL
),
1771 REGISTER_AB(XM_ADR_LO
),
1772 REGISTER_AB(XM_ADR_HI
),
1773 REGISTER_AB(XM_GLB_CFG
),
1774 REGISTER_AB(XM_TX_CFG
),
1775 REGISTER_AB(XM_RX_CFG
),
1776 REGISTER_AB(XM_MGT_INT_MASK
),
1778 REGISTER_AB(XM_PAUSE_TIME
),
1779 REGISTER_AB(XM_TX_PARAM
),
1780 REGISTER_AB(XM_RX_PARAM
),
1781 /* XM_MGT_INT_MSK (note no 'A') is RC */
1782 REGISTER_AB(XX_PWR_RST
),
1783 REGISTER_AB(XX_SD_CTL
),
1784 REGISTER_AB(XX_TXDRV_CTL
),
1785 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1786 /* XX_CORE_STAT is partly RC */
1789 struct efx_nic_reg_table
{
1791 u32 min_revision
:2, max_revision
:2;
1792 u32 step
:6, rows
:21;
1795 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1797 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
1800 #define REGISTER_TABLE(name, min_rev, max_rev) \
1801 REGISTER_TABLE_DIMENSIONS( \
1802 name, FR_ ## min_rev ## max_rev ## _ ## name, \
1804 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
1805 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1806 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1807 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1808 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1809 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1810 #define REGISTER_TABLE_BB_CZ(name) \
1811 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
1812 FR_BZ_ ## name ## _STEP, \
1813 FR_BB_ ## name ## _ROWS), \
1814 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
1815 FR_BZ_ ## name ## _STEP, \
1816 FR_CZ_ ## name ## _ROWS)
1817 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1819 static const struct efx_nic_reg_table efx_nic_reg_tables
[] = {
1820 /* DRIVER is not used */
1821 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1822 REGISTER_TABLE_BB(TX_IPFIL_TBL
),
1823 REGISTER_TABLE_BB(TX_SRC_MAC_TBL
),
1824 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER
),
1825 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL
),
1826 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER
),
1827 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL
),
1828 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER
),
1829 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL
),
1830 /* The register buffer is allocated with slab, so we can't
1831 * reasonably read all of the buffer table (up to 8MB!).
1832 * However this driver will only use a few entries. Reading
1833 * 1K entries allows for some expansion of queue count and
1834 * size before we need to change the version. */
1835 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER
, FR_AA_BUF_FULL_TBL_KER
,
1837 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL
, FR_BZ_BUF_FULL_TBL
,
1839 /* RX_FILTER_TBL{0,1} is huge and not used by this driver */
1840 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0
),
1841 REGISTER_TABLE_BB_CZ(TIMER_TBL
),
1842 REGISTER_TABLE_BB_CZ(TX_PACE_TBL
),
1843 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL
),
1844 /* TX_FILTER_TBL0 is huge and not used by this driver */
1845 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0
),
1846 REGISTER_TABLE_CZ(MC_TREG_SMEM
),
1847 /* MSIX_PBA_TABLE is not mapped */
1848 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
1851 size_t efx_nic_get_regs_len(struct efx_nic
*efx
)
1853 const struct efx_nic_reg
*reg
;
1854 const struct efx_nic_reg_table
*table
;
1857 for (reg
= efx_nic_regs
;
1858 reg
< efx_nic_regs
+ ARRAY_SIZE(efx_nic_regs
);
1860 if (efx
->type
->revision
>= reg
->min_revision
&&
1861 efx
->type
->revision
<= reg
->max_revision
)
1862 len
+= sizeof(efx_oword_t
);
1864 for (table
= efx_nic_reg_tables
;
1865 table
< efx_nic_reg_tables
+ ARRAY_SIZE(efx_nic_reg_tables
);
1867 if (efx
->type
->revision
>= table
->min_revision
&&
1868 efx
->type
->revision
<= table
->max_revision
)
1869 len
+= table
->rows
* min_t(size_t, table
->step
, 16);
1874 void efx_nic_get_regs(struct efx_nic
*efx
, void *buf
)
1876 const struct efx_nic_reg
*reg
;
1877 const struct efx_nic_reg_table
*table
;
1879 for (reg
= efx_nic_regs
;
1880 reg
< efx_nic_regs
+ ARRAY_SIZE(efx_nic_regs
);
1882 if (efx
->type
->revision
>= reg
->min_revision
&&
1883 efx
->type
->revision
<= reg
->max_revision
) {
1884 efx_reado(efx
, (efx_oword_t
*)buf
, reg
->offset
);
1885 buf
+= sizeof(efx_oword_t
);
1889 for (table
= efx_nic_reg_tables
;
1890 table
< efx_nic_reg_tables
+ ARRAY_SIZE(efx_nic_reg_tables
);
1894 if (!(efx
->type
->revision
>= table
->min_revision
&&
1895 efx
->type
->revision
<= table
->max_revision
))
1898 size
= min_t(size_t, table
->step
, 16);
1900 for (i
= 0; i
< table
->rows
; i
++) {
1901 switch (table
->step
) {
1902 case 4: /* 32-bit register or SRAM */
1903 efx_readd_table(efx
, buf
, table
->offset
, i
);
1905 case 8: /* 64-bit SRAM */
1907 efx
->membase
+ table
->offset
,
1910 case 16: /* 128-bit register */
1911 efx_reado_table(efx
, buf
, table
->offset
, i
);
1913 case 32: /* 128-bit register, interleaved */
1914 efx_reado_table(efx
, buf
, table
->offset
, 2 * i
);