2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/if_ether.h>
14 #include <linux/etherdevice.h>
15 #include <linux/list.h>
16 #include <linux/rcupdate.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <asm/unaligned.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "debugfs_key.h"
30 * DOC: Key handling basics
32 * Key handling in mac80211 is done based on per-interface (sub_if_data)
33 * keys and per-station keys. Since each station belongs to an interface,
34 * each station key also belongs to that interface.
36 * Hardware acceleration is done on a best-effort basis for algorithms
37 * that are implemented in software, for each key the hardware is asked
38 * to enable that key for offloading but if it cannot do that the key is
39 * simply kept for software encryption (unless it is for an algorithm
40 * that isn't implemented in software).
41 * There is currently no way of knowing whether a key is handled in SW
42 * or HW except by looking into debugfs.
44 * All key management is internally protected by a mutex. Within all
45 * other parts of mac80211, key references are, just as STA structure
46 * references, protected by RCU. Note, however, that some things are
47 * unprotected, namely the key->sta dereferences within the hardware
48 * acceleration functions. This means that sta_info_destroy() must
49 * remove the key which waits for an RCU grace period.
52 static const u8 bcast_addr
[ETH_ALEN
] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
54 static void assert_key_lock(struct ieee80211_local
*local
)
56 lockdep_assert_held(&local
->key_mtx
);
59 static void increment_tailroom_need_count(struct ieee80211_sub_if_data
*sdata
)
62 * When this count is zero, SKB resizing for allocating tailroom
63 * for IV or MMIC is skipped. But, this check has created two race
64 * cases in xmit path while transiting from zero count to one:
66 * 1. SKB resize was skipped because no key was added but just before
67 * the xmit key is added and SW encryption kicks off.
69 * 2. SKB resize was skipped because all the keys were hw planted but
70 * just before xmit one of the key is deleted and SW encryption kicks
73 * In both the above case SW encryption will find not enough space for
74 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
76 * Solution has been explained at
77 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
80 if (!sdata
->crypto_tx_tailroom_needed_cnt
++) {
82 * Flush all XMIT packets currently using HW encryption or no
83 * encryption at all if the count transition is from 0 -> 1.
89 static int ieee80211_key_enable_hw_accel(struct ieee80211_key
*key
)
91 struct ieee80211_sub_if_data
*sdata
;
97 if (key
->flags
& KEY_FLAG_TAINTED
)
100 if (!key
->local
->ops
->set_key
)
101 goto out_unsupported
;
103 assert_key_lock(key
->local
);
108 * If this is a per-STA GTK, check if it
109 * is supported; if not, return.
111 if (sta
&& !(key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
) &&
112 !(key
->local
->hw
.flags
& IEEE80211_HW_SUPPORTS_PER_STA_GTK
))
113 goto out_unsupported
;
115 if (sta
&& !sta
->uploaded
)
116 goto out_unsupported
;
119 if (sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
) {
121 * The driver doesn't know anything about VLAN interfaces.
122 * Hence, don't send GTKs for VLAN interfaces to the driver.
124 if (!(key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
))
125 goto out_unsupported
;
128 ret
= drv_set_key(key
->local
, SET_KEY
, sdata
,
129 sta
? &sta
->sta
: NULL
, &key
->conf
);
132 key
->flags
|= KEY_FLAG_UPLOADED_TO_HARDWARE
;
134 if (!(key
->conf
.flags
& IEEE80211_KEY_FLAG_GENERATE_MMIC
))
135 sdata
->crypto_tx_tailroom_needed_cnt
--;
137 WARN_ON((key
->conf
.flags
& IEEE80211_KEY_FLAG_PUT_IV_SPACE
) &&
138 (key
->conf
.flags
& IEEE80211_KEY_FLAG_GENERATE_IV
));
143 if (ret
!= -ENOSPC
&& ret
!= -EOPNOTSUPP
)
145 "failed to set key (%d, %pM) to hardware (%d)\n",
147 sta
? sta
->sta
.addr
: bcast_addr
, ret
);
150 switch (key
->conf
.cipher
) {
151 case WLAN_CIPHER_SUITE_WEP40
:
152 case WLAN_CIPHER_SUITE_WEP104
:
153 case WLAN_CIPHER_SUITE_TKIP
:
154 case WLAN_CIPHER_SUITE_CCMP
:
155 case WLAN_CIPHER_SUITE_AES_CMAC
:
156 /* all of these we can do in software */
163 static void ieee80211_key_disable_hw_accel(struct ieee80211_key
*key
)
165 struct ieee80211_sub_if_data
*sdata
;
166 struct sta_info
*sta
;
171 if (!key
|| !key
->local
->ops
->set_key
)
174 assert_key_lock(key
->local
);
176 if (!(key
->flags
& KEY_FLAG_UPLOADED_TO_HARDWARE
))
182 if (!(key
->conf
.flags
& IEEE80211_KEY_FLAG_GENERATE_MMIC
))
183 increment_tailroom_need_count(sdata
);
185 ret
= drv_set_key(key
->local
, DISABLE_KEY
, sdata
,
186 sta
? &sta
->sta
: NULL
, &key
->conf
);
190 "failed to remove key (%d, %pM) from hardware (%d)\n",
192 sta
? sta
->sta
.addr
: bcast_addr
, ret
);
194 key
->flags
&= ~KEY_FLAG_UPLOADED_TO_HARDWARE
;
197 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data
*sdata
,
198 int idx
, bool uni
, bool multi
)
200 struct ieee80211_key
*key
= NULL
;
202 assert_key_lock(sdata
->local
);
204 if (idx
>= 0 && idx
< NUM_DEFAULT_KEYS
)
205 key
= key_mtx_dereference(sdata
->local
, sdata
->keys
[idx
]);
208 rcu_assign_pointer(sdata
->default_unicast_key
, key
);
209 drv_set_default_unicast_key(sdata
->local
, sdata
, idx
);
213 rcu_assign_pointer(sdata
->default_multicast_key
, key
);
215 ieee80211_debugfs_key_update_default(sdata
);
218 void ieee80211_set_default_key(struct ieee80211_sub_if_data
*sdata
, int idx
,
219 bool uni
, bool multi
)
221 mutex_lock(&sdata
->local
->key_mtx
);
222 __ieee80211_set_default_key(sdata
, idx
, uni
, multi
);
223 mutex_unlock(&sdata
->local
->key_mtx
);
227 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data
*sdata
, int idx
)
229 struct ieee80211_key
*key
= NULL
;
231 assert_key_lock(sdata
->local
);
233 if (idx
>= NUM_DEFAULT_KEYS
&&
234 idx
< NUM_DEFAULT_KEYS
+ NUM_DEFAULT_MGMT_KEYS
)
235 key
= key_mtx_dereference(sdata
->local
, sdata
->keys
[idx
]);
237 rcu_assign_pointer(sdata
->default_mgmt_key
, key
);
239 ieee80211_debugfs_key_update_default(sdata
);
242 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data
*sdata
,
245 mutex_lock(&sdata
->local
->key_mtx
);
246 __ieee80211_set_default_mgmt_key(sdata
, idx
);
247 mutex_unlock(&sdata
->local
->key_mtx
);
251 static void ieee80211_key_replace(struct ieee80211_sub_if_data
*sdata
,
252 struct sta_info
*sta
,
254 struct ieee80211_key
*old
,
255 struct ieee80211_key
*new)
258 bool defunikey
, defmultikey
, defmgmtkey
;
260 /* caller must provide at least one old/new */
261 if (WARN_ON(!new && !old
))
265 list_add_tail(&new->list
, &sdata
->key_list
);
267 WARN_ON(new && old
&& new->conf
.keyidx
!= old
->conf
.keyidx
);
270 idx
= old
->conf
.keyidx
;
272 idx
= new->conf
.keyidx
;
276 rcu_assign_pointer(sta
->ptk
[idx
], new);
279 rcu_assign_pointer(sta
->gtk
[idx
], new);
284 old
== key_mtx_dereference(sdata
->local
,
285 sdata
->default_unicast_key
);
287 old
== key_mtx_dereference(sdata
->local
,
288 sdata
->default_multicast_key
);
290 old
== key_mtx_dereference(sdata
->local
,
291 sdata
->default_mgmt_key
);
293 if (defunikey
&& !new)
294 __ieee80211_set_default_key(sdata
, -1, true, false);
295 if (defmultikey
&& !new)
296 __ieee80211_set_default_key(sdata
, -1, false, true);
297 if (defmgmtkey
&& !new)
298 __ieee80211_set_default_mgmt_key(sdata
, -1);
300 rcu_assign_pointer(sdata
->keys
[idx
], new);
301 if (defunikey
&& new)
302 __ieee80211_set_default_key(sdata
, new->conf
.keyidx
,
304 if (defmultikey
&& new)
305 __ieee80211_set_default_key(sdata
, new->conf
.keyidx
,
307 if (defmgmtkey
&& new)
308 __ieee80211_set_default_mgmt_key(sdata
,
313 list_del(&old
->list
);
316 struct ieee80211_key
*
317 ieee80211_key_alloc(u32 cipher
, int idx
, size_t key_len
,
319 size_t seq_len
, const u8
*seq
,
320 const struct ieee80211_cipher_scheme
*cs
)
322 struct ieee80211_key
*key
;
325 if (WARN_ON(idx
< 0 || idx
>= NUM_DEFAULT_KEYS
+ NUM_DEFAULT_MGMT_KEYS
))
326 return ERR_PTR(-EINVAL
);
328 key
= kzalloc(sizeof(struct ieee80211_key
) + key_len
, GFP_KERNEL
);
330 return ERR_PTR(-ENOMEM
);
333 * Default to software encryption; we'll later upload the
334 * key to the hardware if possible.
339 key
->conf
.cipher
= cipher
;
340 key
->conf
.keyidx
= idx
;
341 key
->conf
.keylen
= key_len
;
343 case WLAN_CIPHER_SUITE_WEP40
:
344 case WLAN_CIPHER_SUITE_WEP104
:
345 key
->conf
.iv_len
= IEEE80211_WEP_IV_LEN
;
346 key
->conf
.icv_len
= IEEE80211_WEP_ICV_LEN
;
348 case WLAN_CIPHER_SUITE_TKIP
:
349 key
->conf
.iv_len
= IEEE80211_TKIP_IV_LEN
;
350 key
->conf
.icv_len
= IEEE80211_TKIP_ICV_LEN
;
352 for (i
= 0; i
< IEEE80211_NUM_TIDS
; i
++) {
353 key
->u
.tkip
.rx
[i
].iv32
=
354 get_unaligned_le32(&seq
[2]);
355 key
->u
.tkip
.rx
[i
].iv16
=
356 get_unaligned_le16(seq
);
359 spin_lock_init(&key
->u
.tkip
.txlock
);
361 case WLAN_CIPHER_SUITE_CCMP
:
362 key
->conf
.iv_len
= IEEE80211_CCMP_HDR_LEN
;
363 key
->conf
.icv_len
= IEEE80211_CCMP_MIC_LEN
;
365 for (i
= 0; i
< IEEE80211_NUM_TIDS
+ 1; i
++)
366 for (j
= 0; j
< IEEE80211_CCMP_PN_LEN
; j
++)
367 key
->u
.ccmp
.rx_pn
[i
][j
] =
368 seq
[IEEE80211_CCMP_PN_LEN
- j
- 1];
371 * Initialize AES key state here as an optimization so that
372 * it does not need to be initialized for every packet.
374 key
->u
.ccmp
.tfm
= ieee80211_aes_key_setup_encrypt(key_data
);
375 if (IS_ERR(key
->u
.ccmp
.tfm
)) {
376 err
= PTR_ERR(key
->u
.ccmp
.tfm
);
381 case WLAN_CIPHER_SUITE_AES_CMAC
:
382 key
->conf
.iv_len
= 0;
383 key
->conf
.icv_len
= sizeof(struct ieee80211_mmie
);
385 for (j
= 0; j
< IEEE80211_CMAC_PN_LEN
; j
++)
386 key
->u
.aes_cmac
.rx_pn
[j
] =
387 seq
[IEEE80211_CMAC_PN_LEN
- j
- 1];
389 * Initialize AES key state here as an optimization so that
390 * it does not need to be initialized for every packet.
392 key
->u
.aes_cmac
.tfm
=
393 ieee80211_aes_cmac_key_setup(key_data
);
394 if (IS_ERR(key
->u
.aes_cmac
.tfm
)) {
395 err
= PTR_ERR(key
->u
.aes_cmac
.tfm
);
402 size_t len
= (seq_len
> MAX_PN_LEN
) ?
403 MAX_PN_LEN
: seq_len
;
405 key
->conf
.iv_len
= cs
->hdr_len
;
406 key
->conf
.icv_len
= cs
->mic_len
;
407 for (i
= 0; i
< IEEE80211_NUM_TIDS
+ 1; i
++)
408 for (j
= 0; j
< len
; j
++)
409 key
->u
.gen
.rx_pn
[i
][j
] =
413 memcpy(key
->conf
.key
, key_data
, key_len
);
414 INIT_LIST_HEAD(&key
->list
);
419 static void ieee80211_key_free_common(struct ieee80211_key
*key
)
421 if (key
->conf
.cipher
== WLAN_CIPHER_SUITE_CCMP
)
422 ieee80211_aes_key_free(key
->u
.ccmp
.tfm
);
423 if (key
->conf
.cipher
== WLAN_CIPHER_SUITE_AES_CMAC
)
424 ieee80211_aes_cmac_key_free(key
->u
.aes_cmac
.tfm
);
428 static void __ieee80211_key_destroy(struct ieee80211_key
*key
,
432 ieee80211_key_disable_hw_accel(key
);
435 struct ieee80211_sub_if_data
*sdata
= key
->sdata
;
437 ieee80211_debugfs_key_remove(key
);
439 if (delay_tailroom
) {
440 /* see ieee80211_delayed_tailroom_dec */
441 sdata
->crypto_tx_tailroom_pending_dec
++;
442 schedule_delayed_work(&sdata
->dec_tailroom_needed_wk
,
445 sdata
->crypto_tx_tailroom_needed_cnt
--;
449 ieee80211_key_free_common(key
);
452 static void ieee80211_key_destroy(struct ieee80211_key
*key
,
459 * Synchronize so the TX path can no longer be using
460 * this key before we free/remove it.
464 __ieee80211_key_destroy(key
, delay_tailroom
);
467 void ieee80211_key_free_unused(struct ieee80211_key
*key
)
469 WARN_ON(key
->sdata
|| key
->local
);
470 ieee80211_key_free_common(key
);
473 int ieee80211_key_link(struct ieee80211_key
*key
,
474 struct ieee80211_sub_if_data
*sdata
,
475 struct sta_info
*sta
)
477 struct ieee80211_local
*local
= sdata
->local
;
478 struct ieee80211_key
*old_key
;
482 pairwise
= key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
;
483 idx
= key
->conf
.keyidx
;
484 key
->local
= sdata
->local
;
488 mutex_lock(&sdata
->local
->key_mtx
);
491 old_key
= key_mtx_dereference(sdata
->local
, sta
->ptk
[idx
]);
493 old_key
= key_mtx_dereference(sdata
->local
, sta
->gtk
[idx
]);
495 old_key
= key_mtx_dereference(sdata
->local
, sdata
->keys
[idx
]);
497 increment_tailroom_need_count(sdata
);
499 ieee80211_key_replace(sdata
, sta
, pairwise
, old_key
, key
);
500 ieee80211_key_destroy(old_key
, true);
502 ieee80211_debugfs_key_add(key
);
504 if (!local
->wowlan
) {
505 ret
= ieee80211_key_enable_hw_accel(key
);
507 ieee80211_key_free(key
, true);
512 mutex_unlock(&sdata
->local
->key_mtx
);
517 void ieee80211_key_free(struct ieee80211_key
*key
, bool delay_tailroom
)
523 * Replace key with nothingness if it was ever used.
526 ieee80211_key_replace(key
->sdata
, key
->sta
,
527 key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
,
529 ieee80211_key_destroy(key
, delay_tailroom
);
532 void ieee80211_enable_keys(struct ieee80211_sub_if_data
*sdata
)
534 struct ieee80211_key
*key
;
538 if (WARN_ON(!ieee80211_sdata_running(sdata
)))
541 mutex_lock(&sdata
->local
->key_mtx
);
543 sdata
->crypto_tx_tailroom_needed_cnt
= 0;
545 list_for_each_entry(key
, &sdata
->key_list
, list
) {
546 increment_tailroom_need_count(sdata
);
547 ieee80211_key_enable_hw_accel(key
);
550 mutex_unlock(&sdata
->local
->key_mtx
);
553 void ieee80211_iter_keys(struct ieee80211_hw
*hw
,
554 struct ieee80211_vif
*vif
,
555 void (*iter
)(struct ieee80211_hw
*hw
,
556 struct ieee80211_vif
*vif
,
557 struct ieee80211_sta
*sta
,
558 struct ieee80211_key_conf
*key
,
562 struct ieee80211_local
*local
= hw_to_local(hw
);
563 struct ieee80211_key
*key
, *tmp
;
564 struct ieee80211_sub_if_data
*sdata
;
568 mutex_lock(&local
->key_mtx
);
570 sdata
= vif_to_sdata(vif
);
571 list_for_each_entry_safe(key
, tmp
, &sdata
->key_list
, list
)
572 iter(hw
, &sdata
->vif
,
573 key
->sta
? &key
->sta
->sta
: NULL
,
574 &key
->conf
, iter_data
);
576 list_for_each_entry(sdata
, &local
->interfaces
, list
)
577 list_for_each_entry_safe(key
, tmp
,
578 &sdata
->key_list
, list
)
579 iter(hw
, &sdata
->vif
,
580 key
->sta
? &key
->sta
->sta
: NULL
,
581 &key
->conf
, iter_data
);
583 mutex_unlock(&local
->key_mtx
);
585 EXPORT_SYMBOL(ieee80211_iter_keys
);
587 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data
*sdata
,
588 struct list_head
*keys
)
590 struct ieee80211_key
*key
, *tmp
;
592 sdata
->crypto_tx_tailroom_needed_cnt
-=
593 sdata
->crypto_tx_tailroom_pending_dec
;
594 sdata
->crypto_tx_tailroom_pending_dec
= 0;
596 ieee80211_debugfs_key_remove_mgmt_default(sdata
);
598 list_for_each_entry_safe(key
, tmp
, &sdata
->key_list
, list
) {
599 ieee80211_key_replace(key
->sdata
, key
->sta
,
600 key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
,
602 list_add_tail(&key
->list
, keys
);
605 ieee80211_debugfs_key_update_default(sdata
);
608 void ieee80211_free_keys(struct ieee80211_sub_if_data
*sdata
,
609 bool force_synchronize
)
611 struct ieee80211_local
*local
= sdata
->local
;
612 struct ieee80211_sub_if_data
*vlan
;
613 struct ieee80211_key
*key
, *tmp
;
616 cancel_delayed_work_sync(&sdata
->dec_tailroom_needed_wk
);
618 mutex_lock(&local
->key_mtx
);
620 ieee80211_free_keys_iface(sdata
, &keys
);
622 if (sdata
->vif
.type
== NL80211_IFTYPE_AP
) {
623 list_for_each_entry(vlan
, &sdata
->u
.ap
.vlans
, u
.vlan
.list
)
624 ieee80211_free_keys_iface(vlan
, &keys
);
627 if (!list_empty(&keys
) || force_synchronize
)
629 list_for_each_entry_safe(key
, tmp
, &keys
, list
)
630 __ieee80211_key_destroy(key
, false);
632 WARN_ON_ONCE(sdata
->crypto_tx_tailroom_needed_cnt
||
633 sdata
->crypto_tx_tailroom_pending_dec
);
634 if (sdata
->vif
.type
== NL80211_IFTYPE_AP
) {
635 list_for_each_entry(vlan
, &sdata
->u
.ap
.vlans
, u
.vlan
.list
)
636 WARN_ON_ONCE(vlan
->crypto_tx_tailroom_needed_cnt
||
637 vlan
->crypto_tx_tailroom_pending_dec
);
640 mutex_unlock(&local
->key_mtx
);
643 void ieee80211_free_sta_keys(struct ieee80211_local
*local
,
644 struct sta_info
*sta
)
646 struct ieee80211_key
*key
;
649 mutex_lock(&local
->key_mtx
);
650 for (i
= 0; i
< NUM_DEFAULT_KEYS
; i
++) {
651 key
= key_mtx_dereference(local
, sta
->gtk
[i
]);
654 ieee80211_key_replace(key
->sdata
, key
->sta
,
655 key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
,
657 __ieee80211_key_destroy(key
, true);
660 for (i
= 0; i
< NUM_DEFAULT_KEYS
; i
++) {
661 key
= key_mtx_dereference(local
, sta
->ptk
[i
]);
664 ieee80211_key_replace(key
->sdata
, key
->sta
,
665 key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
,
667 __ieee80211_key_destroy(key
, true);
670 mutex_unlock(&local
->key_mtx
);
673 void ieee80211_delayed_tailroom_dec(struct work_struct
*wk
)
675 struct ieee80211_sub_if_data
*sdata
;
677 sdata
= container_of(wk
, struct ieee80211_sub_if_data
,
678 dec_tailroom_needed_wk
.work
);
681 * The reason for the delayed tailroom needed decrementing is to
682 * make roaming faster: during roaming, all keys are first deleted
683 * and then new keys are installed. The first new key causes the
684 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
685 * the cost of synchronize_net() (which can be slow). Avoid this
686 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
687 * key removal for a while, so if we roam the value is larger than
688 * zero and no 0->1 transition happens.
690 * The cost is that if the AP switching was from an AP with keys
691 * to one without, we still allocate tailroom while it would no
692 * longer be needed. However, in the typical (fast) roaming case
693 * within an ESS this usually won't happen.
696 mutex_lock(&sdata
->local
->key_mtx
);
697 sdata
->crypto_tx_tailroom_needed_cnt
-=
698 sdata
->crypto_tx_tailroom_pending_dec
;
699 sdata
->crypto_tx_tailroom_pending_dec
= 0;
700 mutex_unlock(&sdata
->local
->key_mtx
);
703 void ieee80211_gtk_rekey_notify(struct ieee80211_vif
*vif
, const u8
*bssid
,
704 const u8
*replay_ctr
, gfp_t gfp
)
706 struct ieee80211_sub_if_data
*sdata
= vif_to_sdata(vif
);
708 trace_api_gtk_rekey_notify(sdata
, bssid
, replay_ctr
);
710 cfg80211_gtk_rekey_notify(sdata
->dev
, bssid
, replay_ctr
, gfp
);
712 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify
);
714 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf
*keyconf
,
715 struct ieee80211_key_seq
*seq
)
717 struct ieee80211_key
*key
;
720 if (WARN_ON(!(keyconf
->flags
& IEEE80211_KEY_FLAG_GENERATE_IV
)))
723 key
= container_of(keyconf
, struct ieee80211_key
, conf
);
725 switch (key
->conf
.cipher
) {
726 case WLAN_CIPHER_SUITE_TKIP
:
727 seq
->tkip
.iv32
= key
->u
.tkip
.tx
.iv32
;
728 seq
->tkip
.iv16
= key
->u
.tkip
.tx
.iv16
;
730 case WLAN_CIPHER_SUITE_CCMP
:
731 pn64
= atomic64_read(&key
->u
.ccmp
.tx_pn
);
732 seq
->ccmp
.pn
[5] = pn64
;
733 seq
->ccmp
.pn
[4] = pn64
>> 8;
734 seq
->ccmp
.pn
[3] = pn64
>> 16;
735 seq
->ccmp
.pn
[2] = pn64
>> 24;
736 seq
->ccmp
.pn
[1] = pn64
>> 32;
737 seq
->ccmp
.pn
[0] = pn64
>> 40;
739 case WLAN_CIPHER_SUITE_AES_CMAC
:
740 pn64
= atomic64_read(&key
->u
.aes_cmac
.tx_pn
);
741 seq
->ccmp
.pn
[5] = pn64
;
742 seq
->ccmp
.pn
[4] = pn64
>> 8;
743 seq
->ccmp
.pn
[3] = pn64
>> 16;
744 seq
->ccmp
.pn
[2] = pn64
>> 24;
745 seq
->ccmp
.pn
[1] = pn64
>> 32;
746 seq
->ccmp
.pn
[0] = pn64
>> 40;
752 EXPORT_SYMBOL(ieee80211_get_key_tx_seq
);
754 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf
*keyconf
,
755 int tid
, struct ieee80211_key_seq
*seq
)
757 struct ieee80211_key
*key
;
760 key
= container_of(keyconf
, struct ieee80211_key
, conf
);
762 switch (key
->conf
.cipher
) {
763 case WLAN_CIPHER_SUITE_TKIP
:
764 if (WARN_ON(tid
< 0 || tid
>= IEEE80211_NUM_TIDS
))
766 seq
->tkip
.iv32
= key
->u
.tkip
.rx
[tid
].iv32
;
767 seq
->tkip
.iv16
= key
->u
.tkip
.rx
[tid
].iv16
;
769 case WLAN_CIPHER_SUITE_CCMP
:
770 if (WARN_ON(tid
< -1 || tid
>= IEEE80211_NUM_TIDS
))
773 pn
= key
->u
.ccmp
.rx_pn
[IEEE80211_NUM_TIDS
];
775 pn
= key
->u
.ccmp
.rx_pn
[tid
];
776 memcpy(seq
->ccmp
.pn
, pn
, IEEE80211_CCMP_PN_LEN
);
778 case WLAN_CIPHER_SUITE_AES_CMAC
:
779 if (WARN_ON(tid
!= 0))
781 pn
= key
->u
.aes_cmac
.rx_pn
;
782 memcpy(seq
->aes_cmac
.pn
, pn
, IEEE80211_CMAC_PN_LEN
);
786 EXPORT_SYMBOL(ieee80211_get_key_rx_seq
);
788 void ieee80211_set_key_tx_seq(struct ieee80211_key_conf
*keyconf
,
789 struct ieee80211_key_seq
*seq
)
791 struct ieee80211_key
*key
;
794 key
= container_of(keyconf
, struct ieee80211_key
, conf
);
796 switch (key
->conf
.cipher
) {
797 case WLAN_CIPHER_SUITE_TKIP
:
798 key
->u
.tkip
.tx
.iv32
= seq
->tkip
.iv32
;
799 key
->u
.tkip
.tx
.iv16
= seq
->tkip
.iv16
;
801 case WLAN_CIPHER_SUITE_CCMP
:
802 pn64
= (u64
)seq
->ccmp
.pn
[5] |
803 ((u64
)seq
->ccmp
.pn
[4] << 8) |
804 ((u64
)seq
->ccmp
.pn
[3] << 16) |
805 ((u64
)seq
->ccmp
.pn
[2] << 24) |
806 ((u64
)seq
->ccmp
.pn
[1] << 32) |
807 ((u64
)seq
->ccmp
.pn
[0] << 40);
808 atomic64_set(&key
->u
.ccmp
.tx_pn
, pn64
);
810 case WLAN_CIPHER_SUITE_AES_CMAC
:
811 pn64
= (u64
)seq
->aes_cmac
.pn
[5] |
812 ((u64
)seq
->aes_cmac
.pn
[4] << 8) |
813 ((u64
)seq
->aes_cmac
.pn
[3] << 16) |
814 ((u64
)seq
->aes_cmac
.pn
[2] << 24) |
815 ((u64
)seq
->aes_cmac
.pn
[1] << 32) |
816 ((u64
)seq
->aes_cmac
.pn
[0] << 40);
817 atomic64_set(&key
->u
.aes_cmac
.tx_pn
, pn64
);
824 EXPORT_SYMBOL_GPL(ieee80211_set_key_tx_seq
);
826 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf
*keyconf
,
827 int tid
, struct ieee80211_key_seq
*seq
)
829 struct ieee80211_key
*key
;
832 key
= container_of(keyconf
, struct ieee80211_key
, conf
);
834 switch (key
->conf
.cipher
) {
835 case WLAN_CIPHER_SUITE_TKIP
:
836 if (WARN_ON(tid
< 0 || tid
>= IEEE80211_NUM_TIDS
))
838 key
->u
.tkip
.rx
[tid
].iv32
= seq
->tkip
.iv32
;
839 key
->u
.tkip
.rx
[tid
].iv16
= seq
->tkip
.iv16
;
841 case WLAN_CIPHER_SUITE_CCMP
:
842 if (WARN_ON(tid
< -1 || tid
>= IEEE80211_NUM_TIDS
))
845 pn
= key
->u
.ccmp
.rx_pn
[IEEE80211_NUM_TIDS
];
847 pn
= key
->u
.ccmp
.rx_pn
[tid
];
848 memcpy(pn
, seq
->ccmp
.pn
, IEEE80211_CCMP_PN_LEN
);
850 case WLAN_CIPHER_SUITE_AES_CMAC
:
851 if (WARN_ON(tid
!= 0))
853 pn
= key
->u
.aes_cmac
.rx_pn
;
854 memcpy(pn
, seq
->aes_cmac
.pn
, IEEE80211_CMAC_PN_LEN
);
861 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq
);
863 void ieee80211_remove_key(struct ieee80211_key_conf
*keyconf
)
865 struct ieee80211_key
*key
;
867 key
= container_of(keyconf
, struct ieee80211_key
, conf
);
869 assert_key_lock(key
->local
);
872 * if key was uploaded, we assume the driver will/has remove(d)
873 * it, so adjust bookkeeping accordingly
875 if (key
->flags
& KEY_FLAG_UPLOADED_TO_HARDWARE
) {
876 key
->flags
&= ~KEY_FLAG_UPLOADED_TO_HARDWARE
;
878 if (!(key
->conf
.flags
& IEEE80211_KEY_FLAG_GENERATE_MMIC
))
879 increment_tailroom_need_count(key
->sdata
);
882 ieee80211_key_free(key
, false);
884 EXPORT_SYMBOL_GPL(ieee80211_remove_key
);
886 struct ieee80211_key_conf
*
887 ieee80211_gtk_rekey_add(struct ieee80211_vif
*vif
,
888 struct ieee80211_key_conf
*keyconf
)
890 struct ieee80211_sub_if_data
*sdata
= vif_to_sdata(vif
);
891 struct ieee80211_local
*local
= sdata
->local
;
892 struct ieee80211_key
*key
;
895 if (WARN_ON(!local
->wowlan
))
896 return ERR_PTR(-EINVAL
);
898 if (WARN_ON(vif
->type
!= NL80211_IFTYPE_STATION
))
899 return ERR_PTR(-EINVAL
);
901 key
= ieee80211_key_alloc(keyconf
->cipher
, keyconf
->keyidx
,
902 keyconf
->keylen
, keyconf
->key
,
905 return ERR_CAST(key
);
907 if (sdata
->u
.mgd
.mfp
!= IEEE80211_MFP_DISABLED
)
908 key
->conf
.flags
|= IEEE80211_KEY_FLAG_RX_MGMT
;
910 err
= ieee80211_key_link(key
, sdata
, NULL
);
916 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add
);