USB: serial: kobil_sct: add missing version error handling
[linux/fpc-iii.git] / sound / core / pcm_lib.c
blob44b5ae83308215cddd0c027048346e727ff95382
1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 #include <linux/time.h>
26 #include <linux/math64.h>
27 #include <linux/export.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <sound/info.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/timer.h>
36 #include "pcm_local.h"
38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
39 #define CREATE_TRACE_POINTS
40 #include "pcm_trace.h"
41 #else
42 #define trace_hwptr(substream, pos, in_interrupt)
43 #define trace_xrun(substream)
44 #define trace_hw_ptr_error(substream, reason)
45 #define trace_applptr(substream, prev, curr)
46 #endif
48 static int fill_silence_frames(struct snd_pcm_substream *substream,
49 snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
52 * fill ring buffer with silence
53 * runtime->silence_start: starting pointer to silence area
54 * runtime->silence_filled: size filled with silence
55 * runtime->silence_threshold: threshold from application
56 * runtime->silence_size: maximal size from application
58 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
60 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
62 struct snd_pcm_runtime *runtime = substream->runtime;
63 snd_pcm_uframes_t frames, ofs, transfer;
64 int err;
66 if (runtime->silence_size < runtime->boundary) {
67 snd_pcm_sframes_t noise_dist, n;
68 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
69 if (runtime->silence_start != appl_ptr) {
70 n = appl_ptr - runtime->silence_start;
71 if (n < 0)
72 n += runtime->boundary;
73 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
74 runtime->silence_filled -= n;
75 else
76 runtime->silence_filled = 0;
77 runtime->silence_start = appl_ptr;
79 if (runtime->silence_filled >= runtime->buffer_size)
80 return;
81 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
82 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
83 return;
84 frames = runtime->silence_threshold - noise_dist;
85 if (frames > runtime->silence_size)
86 frames = runtime->silence_size;
87 } else {
88 if (new_hw_ptr == ULONG_MAX) { /* initialization */
89 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
90 if (avail > runtime->buffer_size)
91 avail = runtime->buffer_size;
92 runtime->silence_filled = avail > 0 ? avail : 0;
93 runtime->silence_start = (runtime->status->hw_ptr +
94 runtime->silence_filled) %
95 runtime->boundary;
96 } else {
97 ofs = runtime->status->hw_ptr;
98 frames = new_hw_ptr - ofs;
99 if ((snd_pcm_sframes_t)frames < 0)
100 frames += runtime->boundary;
101 runtime->silence_filled -= frames;
102 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
103 runtime->silence_filled = 0;
104 runtime->silence_start = new_hw_ptr;
105 } else {
106 runtime->silence_start = ofs;
109 frames = runtime->buffer_size - runtime->silence_filled;
111 if (snd_BUG_ON(frames > runtime->buffer_size))
112 return;
113 if (frames == 0)
114 return;
115 ofs = runtime->silence_start % runtime->buffer_size;
116 while (frames > 0) {
117 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
118 err = fill_silence_frames(substream, ofs, transfer);
119 snd_BUG_ON(err < 0);
120 runtime->silence_filled += transfer;
121 frames -= transfer;
122 ofs = 0;
126 #ifdef CONFIG_SND_DEBUG
127 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
128 char *name, size_t len)
130 snprintf(name, len, "pcmC%dD%d%c:%d",
131 substream->pcm->card->number,
132 substream->pcm->device,
133 substream->stream ? 'c' : 'p',
134 substream->number);
136 EXPORT_SYMBOL(snd_pcm_debug_name);
137 #endif
139 #define XRUN_DEBUG_BASIC (1<<0)
140 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
141 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
143 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
145 #define xrun_debug(substream, mask) \
146 ((substream)->pstr->xrun_debug & (mask))
147 #else
148 #define xrun_debug(substream, mask) 0
149 #endif
151 #define dump_stack_on_xrun(substream) do { \
152 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
153 dump_stack(); \
154 } while (0)
156 static void xrun(struct snd_pcm_substream *substream)
158 struct snd_pcm_runtime *runtime = substream->runtime;
160 trace_xrun(substream);
161 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
162 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
163 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
164 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
165 char name[16];
166 snd_pcm_debug_name(substream, name, sizeof(name));
167 pcm_warn(substream->pcm, "XRUN: %s\n", name);
168 dump_stack_on_xrun(substream);
172 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
173 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
174 do { \
175 trace_hw_ptr_error(substream, reason); \
176 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
177 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
178 (in_interrupt) ? 'Q' : 'P', ##args); \
179 dump_stack_on_xrun(substream); \
181 } while (0)
183 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
185 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
187 #endif
189 int snd_pcm_update_state(struct snd_pcm_substream *substream,
190 struct snd_pcm_runtime *runtime)
192 snd_pcm_uframes_t avail;
194 avail = snd_pcm_avail(substream);
195 if (avail > runtime->avail_max)
196 runtime->avail_max = avail;
197 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
198 if (avail >= runtime->buffer_size) {
199 snd_pcm_drain_done(substream);
200 return -EPIPE;
202 } else {
203 if (avail >= runtime->stop_threshold) {
204 xrun(substream);
205 return -EPIPE;
208 if (runtime->twake) {
209 if (avail >= runtime->twake)
210 wake_up(&runtime->tsleep);
211 } else if (avail >= runtime->control->avail_min)
212 wake_up(&runtime->sleep);
213 return 0;
216 static void update_audio_tstamp(struct snd_pcm_substream *substream,
217 struct timespec *curr_tstamp,
218 struct timespec *audio_tstamp)
220 struct snd_pcm_runtime *runtime = substream->runtime;
221 u64 audio_frames, audio_nsecs;
222 struct timespec driver_tstamp;
224 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
225 return;
227 if (!(substream->ops->get_time_info) ||
228 (runtime->audio_tstamp_report.actual_type ==
229 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
232 * provide audio timestamp derived from pointer position
233 * add delay only if requested
236 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
238 if (runtime->audio_tstamp_config.report_delay) {
239 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
240 audio_frames -= runtime->delay;
241 else
242 audio_frames += runtime->delay;
244 audio_nsecs = div_u64(audio_frames * 1000000000LL,
245 runtime->rate);
246 *audio_tstamp = ns_to_timespec(audio_nsecs);
248 if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) {
249 runtime->status->audio_tstamp = *audio_tstamp;
250 runtime->status->tstamp = *curr_tstamp;
254 * re-take a driver timestamp to let apps detect if the reference tstamp
255 * read by low-level hardware was provided with a delay
257 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
258 runtime->driver_tstamp = driver_tstamp;
261 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
262 unsigned int in_interrupt)
264 struct snd_pcm_runtime *runtime = substream->runtime;
265 snd_pcm_uframes_t pos;
266 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
267 snd_pcm_sframes_t hdelta, delta;
268 unsigned long jdelta;
269 unsigned long curr_jiffies;
270 struct timespec curr_tstamp;
271 struct timespec audio_tstamp;
272 int crossed_boundary = 0;
274 old_hw_ptr = runtime->status->hw_ptr;
277 * group pointer, time and jiffies reads to allow for more
278 * accurate correlations/corrections.
279 * The values are stored at the end of this routine after
280 * corrections for hw_ptr position
282 pos = substream->ops->pointer(substream);
283 curr_jiffies = jiffies;
284 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
285 if ((substream->ops->get_time_info) &&
286 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
287 substream->ops->get_time_info(substream, &curr_tstamp,
288 &audio_tstamp,
289 &runtime->audio_tstamp_config,
290 &runtime->audio_tstamp_report);
292 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
293 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
294 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
295 } else
296 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
299 if (pos == SNDRV_PCM_POS_XRUN) {
300 xrun(substream);
301 return -EPIPE;
303 if (pos >= runtime->buffer_size) {
304 if (printk_ratelimit()) {
305 char name[16];
306 snd_pcm_debug_name(substream, name, sizeof(name));
307 pcm_err(substream->pcm,
308 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
309 name, pos, runtime->buffer_size,
310 runtime->period_size);
312 pos = 0;
314 pos -= pos % runtime->min_align;
315 trace_hwptr(substream, pos, in_interrupt);
316 hw_base = runtime->hw_ptr_base;
317 new_hw_ptr = hw_base + pos;
318 if (in_interrupt) {
319 /* we know that one period was processed */
320 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
321 delta = runtime->hw_ptr_interrupt + runtime->period_size;
322 if (delta > new_hw_ptr) {
323 /* check for double acknowledged interrupts */
324 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
325 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
326 hw_base += runtime->buffer_size;
327 if (hw_base >= runtime->boundary) {
328 hw_base = 0;
329 crossed_boundary++;
331 new_hw_ptr = hw_base + pos;
332 goto __delta;
336 /* new_hw_ptr might be lower than old_hw_ptr in case when */
337 /* pointer crosses the end of the ring buffer */
338 if (new_hw_ptr < old_hw_ptr) {
339 hw_base += runtime->buffer_size;
340 if (hw_base >= runtime->boundary) {
341 hw_base = 0;
342 crossed_boundary++;
344 new_hw_ptr = hw_base + pos;
346 __delta:
347 delta = new_hw_ptr - old_hw_ptr;
348 if (delta < 0)
349 delta += runtime->boundary;
351 if (runtime->no_period_wakeup) {
352 snd_pcm_sframes_t xrun_threshold;
354 * Without regular period interrupts, we have to check
355 * the elapsed time to detect xruns.
357 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
358 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
359 goto no_delta_check;
360 hdelta = jdelta - delta * HZ / runtime->rate;
361 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
362 while (hdelta > xrun_threshold) {
363 delta += runtime->buffer_size;
364 hw_base += runtime->buffer_size;
365 if (hw_base >= runtime->boundary) {
366 hw_base = 0;
367 crossed_boundary++;
369 new_hw_ptr = hw_base + pos;
370 hdelta -= runtime->hw_ptr_buffer_jiffies;
372 goto no_delta_check;
375 /* something must be really wrong */
376 if (delta >= runtime->buffer_size + runtime->period_size) {
377 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
378 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
379 substream->stream, (long)pos,
380 (long)new_hw_ptr, (long)old_hw_ptr);
381 return 0;
384 /* Do jiffies check only in xrun_debug mode */
385 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
386 goto no_jiffies_check;
388 /* Skip the jiffies check for hardwares with BATCH flag.
389 * Such hardware usually just increases the position at each IRQ,
390 * thus it can't give any strange position.
392 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
393 goto no_jiffies_check;
394 hdelta = delta;
395 if (hdelta < runtime->delay)
396 goto no_jiffies_check;
397 hdelta -= runtime->delay;
398 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
399 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
400 delta = jdelta /
401 (((runtime->period_size * HZ) / runtime->rate)
402 + HZ/100);
403 /* move new_hw_ptr according jiffies not pos variable */
404 new_hw_ptr = old_hw_ptr;
405 hw_base = delta;
406 /* use loop to avoid checks for delta overflows */
407 /* the delta value is small or zero in most cases */
408 while (delta > 0) {
409 new_hw_ptr += runtime->period_size;
410 if (new_hw_ptr >= runtime->boundary) {
411 new_hw_ptr -= runtime->boundary;
412 crossed_boundary--;
414 delta--;
416 /* align hw_base to buffer_size */
417 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
418 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
419 (long)pos, (long)hdelta,
420 (long)runtime->period_size, jdelta,
421 ((hdelta * HZ) / runtime->rate), hw_base,
422 (unsigned long)old_hw_ptr,
423 (unsigned long)new_hw_ptr);
424 /* reset values to proper state */
425 delta = 0;
426 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
428 no_jiffies_check:
429 if (delta > runtime->period_size + runtime->period_size / 2) {
430 hw_ptr_error(substream, in_interrupt,
431 "Lost interrupts?",
432 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
433 substream->stream, (long)delta,
434 (long)new_hw_ptr,
435 (long)old_hw_ptr);
438 no_delta_check:
439 if (runtime->status->hw_ptr == new_hw_ptr) {
440 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
441 return 0;
444 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
445 runtime->silence_size > 0)
446 snd_pcm_playback_silence(substream, new_hw_ptr);
448 if (in_interrupt) {
449 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
450 if (delta < 0)
451 delta += runtime->boundary;
452 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
453 runtime->hw_ptr_interrupt += delta;
454 if (runtime->hw_ptr_interrupt >= runtime->boundary)
455 runtime->hw_ptr_interrupt -= runtime->boundary;
457 runtime->hw_ptr_base = hw_base;
458 runtime->status->hw_ptr = new_hw_ptr;
459 runtime->hw_ptr_jiffies = curr_jiffies;
460 if (crossed_boundary) {
461 snd_BUG_ON(crossed_boundary != 1);
462 runtime->hw_ptr_wrap += runtime->boundary;
465 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
467 return snd_pcm_update_state(substream, runtime);
470 /* CAUTION: call it with irq disabled */
471 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
473 return snd_pcm_update_hw_ptr0(substream, 0);
477 * snd_pcm_set_ops - set the PCM operators
478 * @pcm: the pcm instance
479 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
480 * @ops: the operator table
482 * Sets the given PCM operators to the pcm instance.
484 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
485 const struct snd_pcm_ops *ops)
487 struct snd_pcm_str *stream = &pcm->streams[direction];
488 struct snd_pcm_substream *substream;
490 for (substream = stream->substream; substream != NULL; substream = substream->next)
491 substream->ops = ops;
493 EXPORT_SYMBOL(snd_pcm_set_ops);
496 * snd_pcm_sync - set the PCM sync id
497 * @substream: the pcm substream
499 * Sets the PCM sync identifier for the card.
501 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
503 struct snd_pcm_runtime *runtime = substream->runtime;
505 runtime->sync.id32[0] = substream->pcm->card->number;
506 runtime->sync.id32[1] = -1;
507 runtime->sync.id32[2] = -1;
508 runtime->sync.id32[3] = -1;
510 EXPORT_SYMBOL(snd_pcm_set_sync);
513 * Standard ioctl routine
516 static inline unsigned int div32(unsigned int a, unsigned int b,
517 unsigned int *r)
519 if (b == 0) {
520 *r = 0;
521 return UINT_MAX;
523 *r = a % b;
524 return a / b;
527 static inline unsigned int div_down(unsigned int a, unsigned int b)
529 if (b == 0)
530 return UINT_MAX;
531 return a / b;
534 static inline unsigned int div_up(unsigned int a, unsigned int b)
536 unsigned int r;
537 unsigned int q;
538 if (b == 0)
539 return UINT_MAX;
540 q = div32(a, b, &r);
541 if (r)
542 ++q;
543 return q;
546 static inline unsigned int mul(unsigned int a, unsigned int b)
548 if (a == 0)
549 return 0;
550 if (div_down(UINT_MAX, a) < b)
551 return UINT_MAX;
552 return a * b;
555 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
556 unsigned int c, unsigned int *r)
558 u_int64_t n = (u_int64_t) a * b;
559 if (c == 0) {
560 *r = 0;
561 return UINT_MAX;
563 n = div_u64_rem(n, c, r);
564 if (n >= UINT_MAX) {
565 *r = 0;
566 return UINT_MAX;
568 return n;
572 * snd_interval_refine - refine the interval value of configurator
573 * @i: the interval value to refine
574 * @v: the interval value to refer to
576 * Refines the interval value with the reference value.
577 * The interval is changed to the range satisfying both intervals.
578 * The interval status (min, max, integer, etc.) are evaluated.
580 * Return: Positive if the value is changed, zero if it's not changed, or a
581 * negative error code.
583 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
585 int changed = 0;
586 if (snd_BUG_ON(snd_interval_empty(i)))
587 return -EINVAL;
588 if (i->min < v->min) {
589 i->min = v->min;
590 i->openmin = v->openmin;
591 changed = 1;
592 } else if (i->min == v->min && !i->openmin && v->openmin) {
593 i->openmin = 1;
594 changed = 1;
596 if (i->max > v->max) {
597 i->max = v->max;
598 i->openmax = v->openmax;
599 changed = 1;
600 } else if (i->max == v->max && !i->openmax && v->openmax) {
601 i->openmax = 1;
602 changed = 1;
604 if (!i->integer && v->integer) {
605 i->integer = 1;
606 changed = 1;
608 if (i->integer) {
609 if (i->openmin) {
610 i->min++;
611 i->openmin = 0;
613 if (i->openmax) {
614 i->max--;
615 i->openmax = 0;
617 } else if (!i->openmin && !i->openmax && i->min == i->max)
618 i->integer = 1;
619 if (snd_interval_checkempty(i)) {
620 snd_interval_none(i);
621 return -EINVAL;
623 return changed;
625 EXPORT_SYMBOL(snd_interval_refine);
627 static int snd_interval_refine_first(struct snd_interval *i)
629 if (snd_BUG_ON(snd_interval_empty(i)))
630 return -EINVAL;
631 if (snd_interval_single(i))
632 return 0;
633 i->max = i->min;
634 i->openmax = i->openmin;
635 if (i->openmax)
636 i->max++;
637 return 1;
640 static int snd_interval_refine_last(struct snd_interval *i)
642 if (snd_BUG_ON(snd_interval_empty(i)))
643 return -EINVAL;
644 if (snd_interval_single(i))
645 return 0;
646 i->min = i->max;
647 i->openmin = i->openmax;
648 if (i->openmin)
649 i->min--;
650 return 1;
653 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
655 if (a->empty || b->empty) {
656 snd_interval_none(c);
657 return;
659 c->empty = 0;
660 c->min = mul(a->min, b->min);
661 c->openmin = (a->openmin || b->openmin);
662 c->max = mul(a->max, b->max);
663 c->openmax = (a->openmax || b->openmax);
664 c->integer = (a->integer && b->integer);
668 * snd_interval_div - refine the interval value with division
669 * @a: dividend
670 * @b: divisor
671 * @c: quotient
673 * c = a / b
675 * Returns non-zero if the value is changed, zero if not changed.
677 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
679 unsigned int r;
680 if (a->empty || b->empty) {
681 snd_interval_none(c);
682 return;
684 c->empty = 0;
685 c->min = div32(a->min, b->max, &r);
686 c->openmin = (r || a->openmin || b->openmax);
687 if (b->min > 0) {
688 c->max = div32(a->max, b->min, &r);
689 if (r) {
690 c->max++;
691 c->openmax = 1;
692 } else
693 c->openmax = (a->openmax || b->openmin);
694 } else {
695 c->max = UINT_MAX;
696 c->openmax = 0;
698 c->integer = 0;
702 * snd_interval_muldivk - refine the interval value
703 * @a: dividend 1
704 * @b: dividend 2
705 * @k: divisor (as integer)
706 * @c: result
708 * c = a * b / k
710 * Returns non-zero if the value is changed, zero if not changed.
712 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
713 unsigned int k, struct snd_interval *c)
715 unsigned int r;
716 if (a->empty || b->empty) {
717 snd_interval_none(c);
718 return;
720 c->empty = 0;
721 c->min = muldiv32(a->min, b->min, k, &r);
722 c->openmin = (r || a->openmin || b->openmin);
723 c->max = muldiv32(a->max, b->max, k, &r);
724 if (r) {
725 c->max++;
726 c->openmax = 1;
727 } else
728 c->openmax = (a->openmax || b->openmax);
729 c->integer = 0;
733 * snd_interval_mulkdiv - refine the interval value
734 * @a: dividend 1
735 * @k: dividend 2 (as integer)
736 * @b: divisor
737 * @c: result
739 * c = a * k / b
741 * Returns non-zero if the value is changed, zero if not changed.
743 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
744 const struct snd_interval *b, struct snd_interval *c)
746 unsigned int r;
747 if (a->empty || b->empty) {
748 snd_interval_none(c);
749 return;
751 c->empty = 0;
752 c->min = muldiv32(a->min, k, b->max, &r);
753 c->openmin = (r || a->openmin || b->openmax);
754 if (b->min > 0) {
755 c->max = muldiv32(a->max, k, b->min, &r);
756 if (r) {
757 c->max++;
758 c->openmax = 1;
759 } else
760 c->openmax = (a->openmax || b->openmin);
761 } else {
762 c->max = UINT_MAX;
763 c->openmax = 0;
765 c->integer = 0;
768 /* ---- */
772 * snd_interval_ratnum - refine the interval value
773 * @i: interval to refine
774 * @rats_count: number of ratnum_t
775 * @rats: ratnum_t array
776 * @nump: pointer to store the resultant numerator
777 * @denp: pointer to store the resultant denominator
779 * Return: Positive if the value is changed, zero if it's not changed, or a
780 * negative error code.
782 int snd_interval_ratnum(struct snd_interval *i,
783 unsigned int rats_count, const struct snd_ratnum *rats,
784 unsigned int *nump, unsigned int *denp)
786 unsigned int best_num, best_den;
787 int best_diff;
788 unsigned int k;
789 struct snd_interval t;
790 int err;
791 unsigned int result_num, result_den;
792 int result_diff;
794 best_num = best_den = best_diff = 0;
795 for (k = 0; k < rats_count; ++k) {
796 unsigned int num = rats[k].num;
797 unsigned int den;
798 unsigned int q = i->min;
799 int diff;
800 if (q == 0)
801 q = 1;
802 den = div_up(num, q);
803 if (den < rats[k].den_min)
804 continue;
805 if (den > rats[k].den_max)
806 den = rats[k].den_max;
807 else {
808 unsigned int r;
809 r = (den - rats[k].den_min) % rats[k].den_step;
810 if (r != 0)
811 den -= r;
813 diff = num - q * den;
814 if (diff < 0)
815 diff = -diff;
816 if (best_num == 0 ||
817 diff * best_den < best_diff * den) {
818 best_diff = diff;
819 best_den = den;
820 best_num = num;
823 if (best_den == 0) {
824 i->empty = 1;
825 return -EINVAL;
827 t.min = div_down(best_num, best_den);
828 t.openmin = !!(best_num % best_den);
830 result_num = best_num;
831 result_diff = best_diff;
832 result_den = best_den;
833 best_num = best_den = best_diff = 0;
834 for (k = 0; k < rats_count; ++k) {
835 unsigned int num = rats[k].num;
836 unsigned int den;
837 unsigned int q = i->max;
838 int diff;
839 if (q == 0) {
840 i->empty = 1;
841 return -EINVAL;
843 den = div_down(num, q);
844 if (den > rats[k].den_max)
845 continue;
846 if (den < rats[k].den_min)
847 den = rats[k].den_min;
848 else {
849 unsigned int r;
850 r = (den - rats[k].den_min) % rats[k].den_step;
851 if (r != 0)
852 den += rats[k].den_step - r;
854 diff = q * den - num;
855 if (diff < 0)
856 diff = -diff;
857 if (best_num == 0 ||
858 diff * best_den < best_diff * den) {
859 best_diff = diff;
860 best_den = den;
861 best_num = num;
864 if (best_den == 0) {
865 i->empty = 1;
866 return -EINVAL;
868 t.max = div_up(best_num, best_den);
869 t.openmax = !!(best_num % best_den);
870 t.integer = 0;
871 err = snd_interval_refine(i, &t);
872 if (err < 0)
873 return err;
875 if (snd_interval_single(i)) {
876 if (best_diff * result_den < result_diff * best_den) {
877 result_num = best_num;
878 result_den = best_den;
880 if (nump)
881 *nump = result_num;
882 if (denp)
883 *denp = result_den;
885 return err;
887 EXPORT_SYMBOL(snd_interval_ratnum);
890 * snd_interval_ratden - refine the interval value
891 * @i: interval to refine
892 * @rats_count: number of struct ratden
893 * @rats: struct ratden array
894 * @nump: pointer to store the resultant numerator
895 * @denp: pointer to store the resultant denominator
897 * Return: Positive if the value is changed, zero if it's not changed, or a
898 * negative error code.
900 static int snd_interval_ratden(struct snd_interval *i,
901 unsigned int rats_count,
902 const struct snd_ratden *rats,
903 unsigned int *nump, unsigned int *denp)
905 unsigned int best_num, best_diff, best_den;
906 unsigned int k;
907 struct snd_interval t;
908 int err;
910 best_num = best_den = best_diff = 0;
911 for (k = 0; k < rats_count; ++k) {
912 unsigned int num;
913 unsigned int den = rats[k].den;
914 unsigned int q = i->min;
915 int diff;
916 num = mul(q, den);
917 if (num > rats[k].num_max)
918 continue;
919 if (num < rats[k].num_min)
920 num = rats[k].num_max;
921 else {
922 unsigned int r;
923 r = (num - rats[k].num_min) % rats[k].num_step;
924 if (r != 0)
925 num += rats[k].num_step - r;
927 diff = num - q * den;
928 if (best_num == 0 ||
929 diff * best_den < best_diff * den) {
930 best_diff = diff;
931 best_den = den;
932 best_num = num;
935 if (best_den == 0) {
936 i->empty = 1;
937 return -EINVAL;
939 t.min = div_down(best_num, best_den);
940 t.openmin = !!(best_num % best_den);
942 best_num = best_den = best_diff = 0;
943 for (k = 0; k < rats_count; ++k) {
944 unsigned int num;
945 unsigned int den = rats[k].den;
946 unsigned int q = i->max;
947 int diff;
948 num = mul(q, den);
949 if (num < rats[k].num_min)
950 continue;
951 if (num > rats[k].num_max)
952 num = rats[k].num_max;
953 else {
954 unsigned int r;
955 r = (num - rats[k].num_min) % rats[k].num_step;
956 if (r != 0)
957 num -= r;
959 diff = q * den - num;
960 if (best_num == 0 ||
961 diff * best_den < best_diff * den) {
962 best_diff = diff;
963 best_den = den;
964 best_num = num;
967 if (best_den == 0) {
968 i->empty = 1;
969 return -EINVAL;
971 t.max = div_up(best_num, best_den);
972 t.openmax = !!(best_num % best_den);
973 t.integer = 0;
974 err = snd_interval_refine(i, &t);
975 if (err < 0)
976 return err;
978 if (snd_interval_single(i)) {
979 if (nump)
980 *nump = best_num;
981 if (denp)
982 *denp = best_den;
984 return err;
988 * snd_interval_list - refine the interval value from the list
989 * @i: the interval value to refine
990 * @count: the number of elements in the list
991 * @list: the value list
992 * @mask: the bit-mask to evaluate
994 * Refines the interval value from the list.
995 * When mask is non-zero, only the elements corresponding to bit 1 are
996 * evaluated.
998 * Return: Positive if the value is changed, zero if it's not changed, or a
999 * negative error code.
1001 int snd_interval_list(struct snd_interval *i, unsigned int count,
1002 const unsigned int *list, unsigned int mask)
1004 unsigned int k;
1005 struct snd_interval list_range;
1007 if (!count) {
1008 i->empty = 1;
1009 return -EINVAL;
1011 snd_interval_any(&list_range);
1012 list_range.min = UINT_MAX;
1013 list_range.max = 0;
1014 for (k = 0; k < count; k++) {
1015 if (mask && !(mask & (1 << k)))
1016 continue;
1017 if (!snd_interval_test(i, list[k]))
1018 continue;
1019 list_range.min = min(list_range.min, list[k]);
1020 list_range.max = max(list_range.max, list[k]);
1022 return snd_interval_refine(i, &list_range);
1024 EXPORT_SYMBOL(snd_interval_list);
1027 * snd_interval_ranges - refine the interval value from the list of ranges
1028 * @i: the interval value to refine
1029 * @count: the number of elements in the list of ranges
1030 * @ranges: the ranges list
1031 * @mask: the bit-mask to evaluate
1033 * Refines the interval value from the list of ranges.
1034 * When mask is non-zero, only the elements corresponding to bit 1 are
1035 * evaluated.
1037 * Return: Positive if the value is changed, zero if it's not changed, or a
1038 * negative error code.
1040 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1041 const struct snd_interval *ranges, unsigned int mask)
1043 unsigned int k;
1044 struct snd_interval range_union;
1045 struct snd_interval range;
1047 if (!count) {
1048 snd_interval_none(i);
1049 return -EINVAL;
1051 snd_interval_any(&range_union);
1052 range_union.min = UINT_MAX;
1053 range_union.max = 0;
1054 for (k = 0; k < count; k++) {
1055 if (mask && !(mask & (1 << k)))
1056 continue;
1057 snd_interval_copy(&range, &ranges[k]);
1058 if (snd_interval_refine(&range, i) < 0)
1059 continue;
1060 if (snd_interval_empty(&range))
1061 continue;
1063 if (range.min < range_union.min) {
1064 range_union.min = range.min;
1065 range_union.openmin = 1;
1067 if (range.min == range_union.min && !range.openmin)
1068 range_union.openmin = 0;
1069 if (range.max > range_union.max) {
1070 range_union.max = range.max;
1071 range_union.openmax = 1;
1073 if (range.max == range_union.max && !range.openmax)
1074 range_union.openmax = 0;
1076 return snd_interval_refine(i, &range_union);
1078 EXPORT_SYMBOL(snd_interval_ranges);
1080 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1082 unsigned int n;
1083 int changed = 0;
1084 n = i->min % step;
1085 if (n != 0 || i->openmin) {
1086 i->min += step - n;
1087 i->openmin = 0;
1088 changed = 1;
1090 n = i->max % step;
1091 if (n != 0 || i->openmax) {
1092 i->max -= n;
1093 i->openmax = 0;
1094 changed = 1;
1096 if (snd_interval_checkempty(i)) {
1097 i->empty = 1;
1098 return -EINVAL;
1100 return changed;
1103 /* Info constraints helpers */
1106 * snd_pcm_hw_rule_add - add the hw-constraint rule
1107 * @runtime: the pcm runtime instance
1108 * @cond: condition bits
1109 * @var: the variable to evaluate
1110 * @func: the evaluation function
1111 * @private: the private data pointer passed to function
1112 * @dep: the dependent variables
1114 * Return: Zero if successful, or a negative error code on failure.
1116 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1117 int var,
1118 snd_pcm_hw_rule_func_t func, void *private,
1119 int dep, ...)
1121 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1122 struct snd_pcm_hw_rule *c;
1123 unsigned int k;
1124 va_list args;
1125 va_start(args, dep);
1126 if (constrs->rules_num >= constrs->rules_all) {
1127 struct snd_pcm_hw_rule *new;
1128 unsigned int new_rules = constrs->rules_all + 16;
1129 new = krealloc(constrs->rules, new_rules * sizeof(*c),
1130 GFP_KERNEL);
1131 if (!new) {
1132 va_end(args);
1133 return -ENOMEM;
1135 constrs->rules = new;
1136 constrs->rules_all = new_rules;
1138 c = &constrs->rules[constrs->rules_num];
1139 c->cond = cond;
1140 c->func = func;
1141 c->var = var;
1142 c->private = private;
1143 k = 0;
1144 while (1) {
1145 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1146 va_end(args);
1147 return -EINVAL;
1149 c->deps[k++] = dep;
1150 if (dep < 0)
1151 break;
1152 dep = va_arg(args, int);
1154 constrs->rules_num++;
1155 va_end(args);
1156 return 0;
1158 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1161 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1162 * @runtime: PCM runtime instance
1163 * @var: hw_params variable to apply the mask
1164 * @mask: the bitmap mask
1166 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1168 * Return: Zero if successful, or a negative error code on failure.
1170 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1171 u_int32_t mask)
1173 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1174 struct snd_mask *maskp = constrs_mask(constrs, var);
1175 *maskp->bits &= mask;
1176 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1177 if (*maskp->bits == 0)
1178 return -EINVAL;
1179 return 0;
1183 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1184 * @runtime: PCM runtime instance
1185 * @var: hw_params variable to apply the mask
1186 * @mask: the 64bit bitmap mask
1188 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1190 * Return: Zero if successful, or a negative error code on failure.
1192 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1193 u_int64_t mask)
1195 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1196 struct snd_mask *maskp = constrs_mask(constrs, var);
1197 maskp->bits[0] &= (u_int32_t)mask;
1198 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1199 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1200 if (! maskp->bits[0] && ! maskp->bits[1])
1201 return -EINVAL;
1202 return 0;
1204 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1207 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1208 * @runtime: PCM runtime instance
1209 * @var: hw_params variable to apply the integer constraint
1211 * Apply the constraint of integer to an interval parameter.
1213 * Return: Positive if the value is changed, zero if it's not changed, or a
1214 * negative error code.
1216 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1218 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1219 return snd_interval_setinteger(constrs_interval(constrs, var));
1221 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1224 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1225 * @runtime: PCM runtime instance
1226 * @var: hw_params variable to apply the range
1227 * @min: the minimal value
1228 * @max: the maximal value
1230 * Apply the min/max range constraint to an interval parameter.
1232 * Return: Positive if the value is changed, zero if it's not changed, or a
1233 * negative error code.
1235 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1236 unsigned int min, unsigned int max)
1238 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1239 struct snd_interval t;
1240 t.min = min;
1241 t.max = max;
1242 t.openmin = t.openmax = 0;
1243 t.integer = 0;
1244 return snd_interval_refine(constrs_interval(constrs, var), &t);
1246 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1248 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1249 struct snd_pcm_hw_rule *rule)
1251 struct snd_pcm_hw_constraint_list *list = rule->private;
1252 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1257 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1258 * @runtime: PCM runtime instance
1259 * @cond: condition bits
1260 * @var: hw_params variable to apply the list constraint
1261 * @l: list
1263 * Apply the list of constraints to an interval parameter.
1265 * Return: Zero if successful, or a negative error code on failure.
1267 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1268 unsigned int cond,
1269 snd_pcm_hw_param_t var,
1270 const struct snd_pcm_hw_constraint_list *l)
1272 return snd_pcm_hw_rule_add(runtime, cond, var,
1273 snd_pcm_hw_rule_list, (void *)l,
1274 var, -1);
1276 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1278 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1279 struct snd_pcm_hw_rule *rule)
1281 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1282 return snd_interval_ranges(hw_param_interval(params, rule->var),
1283 r->count, r->ranges, r->mask);
1288 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1289 * @runtime: PCM runtime instance
1290 * @cond: condition bits
1291 * @var: hw_params variable to apply the list of range constraints
1292 * @r: ranges
1294 * Apply the list of range constraints to an interval parameter.
1296 * Return: Zero if successful, or a negative error code on failure.
1298 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1299 unsigned int cond,
1300 snd_pcm_hw_param_t var,
1301 const struct snd_pcm_hw_constraint_ranges *r)
1303 return snd_pcm_hw_rule_add(runtime, cond, var,
1304 snd_pcm_hw_rule_ranges, (void *)r,
1305 var, -1);
1307 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1309 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1310 struct snd_pcm_hw_rule *rule)
1312 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1313 unsigned int num = 0, den = 0;
1314 int err;
1315 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1316 r->nrats, r->rats, &num, &den);
1317 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1318 params->rate_num = num;
1319 params->rate_den = den;
1321 return err;
1325 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1326 * @runtime: PCM runtime instance
1327 * @cond: condition bits
1328 * @var: hw_params variable to apply the ratnums constraint
1329 * @r: struct snd_ratnums constriants
1331 * Return: Zero if successful, or a negative error code on failure.
1333 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1334 unsigned int cond,
1335 snd_pcm_hw_param_t var,
1336 const struct snd_pcm_hw_constraint_ratnums *r)
1338 return snd_pcm_hw_rule_add(runtime, cond, var,
1339 snd_pcm_hw_rule_ratnums, (void *)r,
1340 var, -1);
1342 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1344 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1345 struct snd_pcm_hw_rule *rule)
1347 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1348 unsigned int num = 0, den = 0;
1349 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1350 r->nrats, r->rats, &num, &den);
1351 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1352 params->rate_num = num;
1353 params->rate_den = den;
1355 return err;
1359 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1360 * @runtime: PCM runtime instance
1361 * @cond: condition bits
1362 * @var: hw_params variable to apply the ratdens constraint
1363 * @r: struct snd_ratdens constriants
1365 * Return: Zero if successful, or a negative error code on failure.
1367 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1368 unsigned int cond,
1369 snd_pcm_hw_param_t var,
1370 const struct snd_pcm_hw_constraint_ratdens *r)
1372 return snd_pcm_hw_rule_add(runtime, cond, var,
1373 snd_pcm_hw_rule_ratdens, (void *)r,
1374 var, -1);
1376 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1378 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1379 struct snd_pcm_hw_rule *rule)
1381 unsigned int l = (unsigned long) rule->private;
1382 int width = l & 0xffff;
1383 unsigned int msbits = l >> 16;
1384 const struct snd_interval *i =
1385 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1387 if (!snd_interval_single(i))
1388 return 0;
1390 if ((snd_interval_value(i) == width) ||
1391 (width == 0 && snd_interval_value(i) > msbits))
1392 params->msbits = min_not_zero(params->msbits, msbits);
1394 return 0;
1398 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1399 * @runtime: PCM runtime instance
1400 * @cond: condition bits
1401 * @width: sample bits width
1402 * @msbits: msbits width
1404 * This constraint will set the number of most significant bits (msbits) if a
1405 * sample format with the specified width has been select. If width is set to 0
1406 * the msbits will be set for any sample format with a width larger than the
1407 * specified msbits.
1409 * Return: Zero if successful, or a negative error code on failure.
1411 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1412 unsigned int cond,
1413 unsigned int width,
1414 unsigned int msbits)
1416 unsigned long l = (msbits << 16) | width;
1417 return snd_pcm_hw_rule_add(runtime, cond, -1,
1418 snd_pcm_hw_rule_msbits,
1419 (void*) l,
1420 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1422 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1424 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1425 struct snd_pcm_hw_rule *rule)
1427 unsigned long step = (unsigned long) rule->private;
1428 return snd_interval_step(hw_param_interval(params, rule->var), step);
1432 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1433 * @runtime: PCM runtime instance
1434 * @cond: condition bits
1435 * @var: hw_params variable to apply the step constraint
1436 * @step: step size
1438 * Return: Zero if successful, or a negative error code on failure.
1440 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1441 unsigned int cond,
1442 snd_pcm_hw_param_t var,
1443 unsigned long step)
1445 return snd_pcm_hw_rule_add(runtime, cond, var,
1446 snd_pcm_hw_rule_step, (void *) step,
1447 var, -1);
1449 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1451 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1453 static unsigned int pow2_sizes[] = {
1454 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1455 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1456 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1457 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1459 return snd_interval_list(hw_param_interval(params, rule->var),
1460 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1464 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1465 * @runtime: PCM runtime instance
1466 * @cond: condition bits
1467 * @var: hw_params variable to apply the power-of-2 constraint
1469 * Return: Zero if successful, or a negative error code on failure.
1471 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1472 unsigned int cond,
1473 snd_pcm_hw_param_t var)
1475 return snd_pcm_hw_rule_add(runtime, cond, var,
1476 snd_pcm_hw_rule_pow2, NULL,
1477 var, -1);
1479 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1481 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1482 struct snd_pcm_hw_rule *rule)
1484 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1485 struct snd_interval *rate;
1487 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1488 return snd_interval_list(rate, 1, &base_rate, 0);
1492 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1493 * @runtime: PCM runtime instance
1494 * @base_rate: the rate at which the hardware does not resample
1496 * Return: Zero if successful, or a negative error code on failure.
1498 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1499 unsigned int base_rate)
1501 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1502 SNDRV_PCM_HW_PARAM_RATE,
1503 snd_pcm_hw_rule_noresample_func,
1504 (void *)(uintptr_t)base_rate,
1505 SNDRV_PCM_HW_PARAM_RATE, -1);
1507 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1509 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1510 snd_pcm_hw_param_t var)
1512 if (hw_is_mask(var)) {
1513 snd_mask_any(hw_param_mask(params, var));
1514 params->cmask |= 1 << var;
1515 params->rmask |= 1 << var;
1516 return;
1518 if (hw_is_interval(var)) {
1519 snd_interval_any(hw_param_interval(params, var));
1520 params->cmask |= 1 << var;
1521 params->rmask |= 1 << var;
1522 return;
1524 snd_BUG();
1527 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1529 unsigned int k;
1530 memset(params, 0, sizeof(*params));
1531 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1532 _snd_pcm_hw_param_any(params, k);
1533 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1534 _snd_pcm_hw_param_any(params, k);
1535 params->info = ~0U;
1537 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1540 * snd_pcm_hw_param_value - return @params field @var value
1541 * @params: the hw_params instance
1542 * @var: parameter to retrieve
1543 * @dir: pointer to the direction (-1,0,1) or %NULL
1545 * Return: The value for field @var if it's fixed in configuration space
1546 * defined by @params. -%EINVAL otherwise.
1548 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1549 snd_pcm_hw_param_t var, int *dir)
1551 if (hw_is_mask(var)) {
1552 const struct snd_mask *mask = hw_param_mask_c(params, var);
1553 if (!snd_mask_single(mask))
1554 return -EINVAL;
1555 if (dir)
1556 *dir = 0;
1557 return snd_mask_value(mask);
1559 if (hw_is_interval(var)) {
1560 const struct snd_interval *i = hw_param_interval_c(params, var);
1561 if (!snd_interval_single(i))
1562 return -EINVAL;
1563 if (dir)
1564 *dir = i->openmin;
1565 return snd_interval_value(i);
1567 return -EINVAL;
1569 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1571 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1572 snd_pcm_hw_param_t var)
1574 if (hw_is_mask(var)) {
1575 snd_mask_none(hw_param_mask(params, var));
1576 params->cmask |= 1 << var;
1577 params->rmask |= 1 << var;
1578 } else if (hw_is_interval(var)) {
1579 snd_interval_none(hw_param_interval(params, var));
1580 params->cmask |= 1 << var;
1581 params->rmask |= 1 << var;
1582 } else {
1583 snd_BUG();
1586 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1588 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1589 snd_pcm_hw_param_t var)
1591 int changed;
1592 if (hw_is_mask(var))
1593 changed = snd_mask_refine_first(hw_param_mask(params, var));
1594 else if (hw_is_interval(var))
1595 changed = snd_interval_refine_first(hw_param_interval(params, var));
1596 else
1597 return -EINVAL;
1598 if (changed > 0) {
1599 params->cmask |= 1 << var;
1600 params->rmask |= 1 << var;
1602 return changed;
1607 * snd_pcm_hw_param_first - refine config space and return minimum value
1608 * @pcm: PCM instance
1609 * @params: the hw_params instance
1610 * @var: parameter to retrieve
1611 * @dir: pointer to the direction (-1,0,1) or %NULL
1613 * Inside configuration space defined by @params remove from @var all
1614 * values > minimum. Reduce configuration space accordingly.
1616 * Return: The minimum, or a negative error code on failure.
1618 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1619 struct snd_pcm_hw_params *params,
1620 snd_pcm_hw_param_t var, int *dir)
1622 int changed = _snd_pcm_hw_param_first(params, var);
1623 if (changed < 0)
1624 return changed;
1625 if (params->rmask) {
1626 int err = snd_pcm_hw_refine(pcm, params);
1627 if (err < 0)
1628 return err;
1630 return snd_pcm_hw_param_value(params, var, dir);
1632 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1634 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1635 snd_pcm_hw_param_t var)
1637 int changed;
1638 if (hw_is_mask(var))
1639 changed = snd_mask_refine_last(hw_param_mask(params, var));
1640 else if (hw_is_interval(var))
1641 changed = snd_interval_refine_last(hw_param_interval(params, var));
1642 else
1643 return -EINVAL;
1644 if (changed > 0) {
1645 params->cmask |= 1 << var;
1646 params->rmask |= 1 << var;
1648 return changed;
1653 * snd_pcm_hw_param_last - refine config space and return maximum value
1654 * @pcm: PCM instance
1655 * @params: the hw_params instance
1656 * @var: parameter to retrieve
1657 * @dir: pointer to the direction (-1,0,1) or %NULL
1659 * Inside configuration space defined by @params remove from @var all
1660 * values < maximum. Reduce configuration space accordingly.
1662 * Return: The maximum, or a negative error code on failure.
1664 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1665 struct snd_pcm_hw_params *params,
1666 snd_pcm_hw_param_t var, int *dir)
1668 int changed = _snd_pcm_hw_param_last(params, var);
1669 if (changed < 0)
1670 return changed;
1671 if (params->rmask) {
1672 int err = snd_pcm_hw_refine(pcm, params);
1673 if (err < 0)
1674 return err;
1676 return snd_pcm_hw_param_value(params, var, dir);
1678 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1680 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1681 void *arg)
1683 struct snd_pcm_runtime *runtime = substream->runtime;
1684 unsigned long flags;
1685 snd_pcm_stream_lock_irqsave(substream, flags);
1686 if (snd_pcm_running(substream) &&
1687 snd_pcm_update_hw_ptr(substream) >= 0)
1688 runtime->status->hw_ptr %= runtime->buffer_size;
1689 else {
1690 runtime->status->hw_ptr = 0;
1691 runtime->hw_ptr_wrap = 0;
1693 snd_pcm_stream_unlock_irqrestore(substream, flags);
1694 return 0;
1697 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1698 void *arg)
1700 struct snd_pcm_channel_info *info = arg;
1701 struct snd_pcm_runtime *runtime = substream->runtime;
1702 int width;
1703 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1704 info->offset = -1;
1705 return 0;
1707 width = snd_pcm_format_physical_width(runtime->format);
1708 if (width < 0)
1709 return width;
1710 info->offset = 0;
1711 switch (runtime->access) {
1712 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1713 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1714 info->first = info->channel * width;
1715 info->step = runtime->channels * width;
1716 break;
1717 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1718 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1720 size_t size = runtime->dma_bytes / runtime->channels;
1721 info->first = info->channel * size * 8;
1722 info->step = width;
1723 break;
1725 default:
1726 snd_BUG();
1727 break;
1729 return 0;
1732 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1733 void *arg)
1735 struct snd_pcm_hw_params *params = arg;
1736 snd_pcm_format_t format;
1737 int channels;
1738 ssize_t frame_size;
1740 params->fifo_size = substream->runtime->hw.fifo_size;
1741 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1742 format = params_format(params);
1743 channels = params_channels(params);
1744 frame_size = snd_pcm_format_size(format, channels);
1745 if (frame_size > 0)
1746 params->fifo_size /= (unsigned)frame_size;
1748 return 0;
1752 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1753 * @substream: the pcm substream instance
1754 * @cmd: ioctl command
1755 * @arg: ioctl argument
1757 * Processes the generic ioctl commands for PCM.
1758 * Can be passed as the ioctl callback for PCM ops.
1760 * Return: Zero if successful, or a negative error code on failure.
1762 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1763 unsigned int cmd, void *arg)
1765 switch (cmd) {
1766 case SNDRV_PCM_IOCTL1_RESET:
1767 return snd_pcm_lib_ioctl_reset(substream, arg);
1768 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1769 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1770 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1771 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1773 return -ENXIO;
1775 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1778 * snd_pcm_period_elapsed - update the pcm status for the next period
1779 * @substream: the pcm substream instance
1781 * This function is called from the interrupt handler when the
1782 * PCM has processed the period size. It will update the current
1783 * pointer, wake up sleepers, etc.
1785 * Even if more than one periods have elapsed since the last call, you
1786 * have to call this only once.
1788 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1790 struct snd_pcm_runtime *runtime;
1791 unsigned long flags;
1793 if (PCM_RUNTIME_CHECK(substream))
1794 return;
1795 runtime = substream->runtime;
1797 snd_pcm_stream_lock_irqsave(substream, flags);
1798 if (!snd_pcm_running(substream) ||
1799 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1800 goto _end;
1802 #ifdef CONFIG_SND_PCM_TIMER
1803 if (substream->timer_running)
1804 snd_timer_interrupt(substream->timer, 1);
1805 #endif
1806 _end:
1807 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1808 snd_pcm_stream_unlock_irqrestore(substream, flags);
1810 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1813 * Wait until avail_min data becomes available
1814 * Returns a negative error code if any error occurs during operation.
1815 * The available space is stored on availp. When err = 0 and avail = 0
1816 * on the capture stream, it indicates the stream is in DRAINING state.
1818 static int wait_for_avail(struct snd_pcm_substream *substream,
1819 snd_pcm_uframes_t *availp)
1821 struct snd_pcm_runtime *runtime = substream->runtime;
1822 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1823 wait_queue_entry_t wait;
1824 int err = 0;
1825 snd_pcm_uframes_t avail = 0;
1826 long wait_time, tout;
1828 init_waitqueue_entry(&wait, current);
1829 set_current_state(TASK_INTERRUPTIBLE);
1830 add_wait_queue(&runtime->tsleep, &wait);
1832 if (runtime->no_period_wakeup)
1833 wait_time = MAX_SCHEDULE_TIMEOUT;
1834 else {
1835 wait_time = 10;
1836 if (runtime->rate) {
1837 long t = runtime->period_size * 2 / runtime->rate;
1838 wait_time = max(t, wait_time);
1840 wait_time = msecs_to_jiffies(wait_time * 1000);
1843 for (;;) {
1844 if (signal_pending(current)) {
1845 err = -ERESTARTSYS;
1846 break;
1850 * We need to check if space became available already
1851 * (and thus the wakeup happened already) first to close
1852 * the race of space already having become available.
1853 * This check must happen after been added to the waitqueue
1854 * and having current state be INTERRUPTIBLE.
1856 avail = snd_pcm_avail(substream);
1857 if (avail >= runtime->twake)
1858 break;
1859 snd_pcm_stream_unlock_irq(substream);
1861 tout = schedule_timeout(wait_time);
1863 snd_pcm_stream_lock_irq(substream);
1864 set_current_state(TASK_INTERRUPTIBLE);
1865 switch (runtime->status->state) {
1866 case SNDRV_PCM_STATE_SUSPENDED:
1867 err = -ESTRPIPE;
1868 goto _endloop;
1869 case SNDRV_PCM_STATE_XRUN:
1870 err = -EPIPE;
1871 goto _endloop;
1872 case SNDRV_PCM_STATE_DRAINING:
1873 if (is_playback)
1874 err = -EPIPE;
1875 else
1876 avail = 0; /* indicate draining */
1877 goto _endloop;
1878 case SNDRV_PCM_STATE_OPEN:
1879 case SNDRV_PCM_STATE_SETUP:
1880 case SNDRV_PCM_STATE_DISCONNECTED:
1881 err = -EBADFD;
1882 goto _endloop;
1883 case SNDRV_PCM_STATE_PAUSED:
1884 continue;
1886 if (!tout) {
1887 pcm_dbg(substream->pcm,
1888 "%s write error (DMA or IRQ trouble?)\n",
1889 is_playback ? "playback" : "capture");
1890 err = -EIO;
1891 break;
1894 _endloop:
1895 set_current_state(TASK_RUNNING);
1896 remove_wait_queue(&runtime->tsleep, &wait);
1897 *availp = avail;
1898 return err;
1901 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1902 int channel, unsigned long hwoff,
1903 void *buf, unsigned long bytes);
1905 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1906 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1908 /* calculate the target DMA-buffer position to be written/read */
1909 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1910 int channel, unsigned long hwoff)
1912 return runtime->dma_area + hwoff +
1913 channel * (runtime->dma_bytes / runtime->channels);
1916 /* default copy_user ops for write; used for both interleaved and non- modes */
1917 static int default_write_copy(struct snd_pcm_substream *substream,
1918 int channel, unsigned long hwoff,
1919 void *buf, unsigned long bytes)
1921 if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1922 (void __user *)buf, bytes))
1923 return -EFAULT;
1924 return 0;
1927 /* default copy_kernel ops for write */
1928 static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1929 int channel, unsigned long hwoff,
1930 void *buf, unsigned long bytes)
1932 memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1933 return 0;
1936 /* fill silence instead of copy data; called as a transfer helper
1937 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1938 * a NULL buffer is passed
1940 static int fill_silence(struct snd_pcm_substream *substream, int channel,
1941 unsigned long hwoff, void *buf, unsigned long bytes)
1943 struct snd_pcm_runtime *runtime = substream->runtime;
1945 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1946 return 0;
1947 if (substream->ops->fill_silence)
1948 return substream->ops->fill_silence(substream, channel,
1949 hwoff, bytes);
1951 snd_pcm_format_set_silence(runtime->format,
1952 get_dma_ptr(runtime, channel, hwoff),
1953 bytes_to_samples(runtime, bytes));
1954 return 0;
1957 /* default copy_user ops for read; used for both interleaved and non- modes */
1958 static int default_read_copy(struct snd_pcm_substream *substream,
1959 int channel, unsigned long hwoff,
1960 void *buf, unsigned long bytes)
1962 if (copy_to_user((void __user *)buf,
1963 get_dma_ptr(substream->runtime, channel, hwoff),
1964 bytes))
1965 return -EFAULT;
1966 return 0;
1969 /* default copy_kernel ops for read */
1970 static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1971 int channel, unsigned long hwoff,
1972 void *buf, unsigned long bytes)
1974 memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1975 return 0;
1978 /* call transfer function with the converted pointers and sizes;
1979 * for interleaved mode, it's one shot for all samples
1981 static int interleaved_copy(struct snd_pcm_substream *substream,
1982 snd_pcm_uframes_t hwoff, void *data,
1983 snd_pcm_uframes_t off,
1984 snd_pcm_uframes_t frames,
1985 pcm_transfer_f transfer)
1987 struct snd_pcm_runtime *runtime = substream->runtime;
1989 /* convert to bytes */
1990 hwoff = frames_to_bytes(runtime, hwoff);
1991 off = frames_to_bytes(runtime, off);
1992 frames = frames_to_bytes(runtime, frames);
1993 return transfer(substream, 0, hwoff, data + off, frames);
1996 /* call transfer function with the converted pointers and sizes for each
1997 * non-interleaved channel; when buffer is NULL, silencing instead of copying
1999 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2000 snd_pcm_uframes_t hwoff, void *data,
2001 snd_pcm_uframes_t off,
2002 snd_pcm_uframes_t frames,
2003 pcm_transfer_f transfer)
2005 struct snd_pcm_runtime *runtime = substream->runtime;
2006 int channels = runtime->channels;
2007 void **bufs = data;
2008 int c, err;
2010 /* convert to bytes; note that it's not frames_to_bytes() here.
2011 * in non-interleaved mode, we copy for each channel, thus
2012 * each copy is n_samples bytes x channels = whole frames.
2014 off = samples_to_bytes(runtime, off);
2015 frames = samples_to_bytes(runtime, frames);
2016 hwoff = samples_to_bytes(runtime, hwoff);
2017 for (c = 0; c < channels; ++c, ++bufs) {
2018 if (!data || !*bufs)
2019 err = fill_silence(substream, c, hwoff, NULL, frames);
2020 else
2021 err = transfer(substream, c, hwoff, *bufs + off,
2022 frames);
2023 if (err < 0)
2024 return err;
2026 return 0;
2029 /* fill silence on the given buffer position;
2030 * called from snd_pcm_playback_silence()
2032 static int fill_silence_frames(struct snd_pcm_substream *substream,
2033 snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2035 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2036 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2037 return interleaved_copy(substream, off, NULL, 0, frames,
2038 fill_silence);
2039 else
2040 return noninterleaved_copy(substream, off, NULL, 0, frames,
2041 fill_silence);
2044 /* sanity-check for read/write methods */
2045 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2047 struct snd_pcm_runtime *runtime;
2048 if (PCM_RUNTIME_CHECK(substream))
2049 return -ENXIO;
2050 runtime = substream->runtime;
2051 if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2052 return -EINVAL;
2053 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2054 return -EBADFD;
2055 return 0;
2058 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2060 switch (runtime->status->state) {
2061 case SNDRV_PCM_STATE_PREPARED:
2062 case SNDRV_PCM_STATE_RUNNING:
2063 case SNDRV_PCM_STATE_PAUSED:
2064 return 0;
2065 case SNDRV_PCM_STATE_XRUN:
2066 return -EPIPE;
2067 case SNDRV_PCM_STATE_SUSPENDED:
2068 return -ESTRPIPE;
2069 default:
2070 return -EBADFD;
2074 /* update to the given appl_ptr and call ack callback if needed;
2075 * when an error is returned, take back to the original value
2077 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2078 snd_pcm_uframes_t appl_ptr)
2080 struct snd_pcm_runtime *runtime = substream->runtime;
2081 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2082 int ret;
2084 if (old_appl_ptr == appl_ptr)
2085 return 0;
2087 runtime->control->appl_ptr = appl_ptr;
2088 if (substream->ops->ack) {
2089 ret = substream->ops->ack(substream);
2090 if (ret < 0) {
2091 runtime->control->appl_ptr = old_appl_ptr;
2092 return ret;
2096 trace_applptr(substream, old_appl_ptr, appl_ptr);
2098 return 0;
2101 /* the common loop for read/write data */
2102 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2103 void *data, bool interleaved,
2104 snd_pcm_uframes_t size, bool in_kernel)
2106 struct snd_pcm_runtime *runtime = substream->runtime;
2107 snd_pcm_uframes_t xfer = 0;
2108 snd_pcm_uframes_t offset = 0;
2109 snd_pcm_uframes_t avail;
2110 pcm_copy_f writer;
2111 pcm_transfer_f transfer;
2112 bool nonblock;
2113 bool is_playback;
2114 int err;
2116 err = pcm_sanity_check(substream);
2117 if (err < 0)
2118 return err;
2120 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2121 if (interleaved) {
2122 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2123 runtime->channels > 1)
2124 return -EINVAL;
2125 writer = interleaved_copy;
2126 } else {
2127 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2128 return -EINVAL;
2129 writer = noninterleaved_copy;
2132 if (!data) {
2133 if (is_playback)
2134 transfer = fill_silence;
2135 else
2136 return -EINVAL;
2137 } else if (in_kernel) {
2138 if (substream->ops->copy_kernel)
2139 transfer = substream->ops->copy_kernel;
2140 else
2141 transfer = is_playback ?
2142 default_write_copy_kernel : default_read_copy_kernel;
2143 } else {
2144 if (substream->ops->copy_user)
2145 transfer = (pcm_transfer_f)substream->ops->copy_user;
2146 else
2147 transfer = is_playback ?
2148 default_write_copy : default_read_copy;
2151 if (size == 0)
2152 return 0;
2154 nonblock = !!(substream->f_flags & O_NONBLOCK);
2156 snd_pcm_stream_lock_irq(substream);
2157 err = pcm_accessible_state(runtime);
2158 if (err < 0)
2159 goto _end_unlock;
2161 if (!is_playback &&
2162 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2163 size >= runtime->start_threshold) {
2164 err = snd_pcm_start(substream);
2165 if (err < 0)
2166 goto _end_unlock;
2169 runtime->twake = runtime->control->avail_min ? : 1;
2170 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2171 snd_pcm_update_hw_ptr(substream);
2172 avail = snd_pcm_avail(substream);
2173 while (size > 0) {
2174 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2175 snd_pcm_uframes_t cont;
2176 if (!avail) {
2177 if (!is_playback &&
2178 runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2179 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2180 goto _end_unlock;
2182 if (nonblock) {
2183 err = -EAGAIN;
2184 goto _end_unlock;
2186 runtime->twake = min_t(snd_pcm_uframes_t, size,
2187 runtime->control->avail_min ? : 1);
2188 err = wait_for_avail(substream, &avail);
2189 if (err < 0)
2190 goto _end_unlock;
2191 if (!avail)
2192 continue; /* draining */
2194 frames = size > avail ? avail : size;
2195 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2196 appl_ofs = appl_ptr % runtime->buffer_size;
2197 cont = runtime->buffer_size - appl_ofs;
2198 if (frames > cont)
2199 frames = cont;
2200 if (snd_BUG_ON(!frames)) {
2201 runtime->twake = 0;
2202 snd_pcm_stream_unlock_irq(substream);
2203 return -EINVAL;
2205 snd_pcm_stream_unlock_irq(substream);
2206 err = writer(substream, appl_ofs, data, offset, frames,
2207 transfer);
2208 snd_pcm_stream_lock_irq(substream);
2209 if (err < 0)
2210 goto _end_unlock;
2211 err = pcm_accessible_state(runtime);
2212 if (err < 0)
2213 goto _end_unlock;
2214 appl_ptr += frames;
2215 if (appl_ptr >= runtime->boundary)
2216 appl_ptr -= runtime->boundary;
2217 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2218 if (err < 0)
2219 goto _end_unlock;
2221 offset += frames;
2222 size -= frames;
2223 xfer += frames;
2224 avail -= frames;
2225 if (is_playback &&
2226 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2227 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2228 err = snd_pcm_start(substream);
2229 if (err < 0)
2230 goto _end_unlock;
2233 _end_unlock:
2234 runtime->twake = 0;
2235 if (xfer > 0 && err >= 0)
2236 snd_pcm_update_state(substream, runtime);
2237 snd_pcm_stream_unlock_irq(substream);
2238 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2240 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2243 * standard channel mapping helpers
2246 /* default channel maps for multi-channel playbacks, up to 8 channels */
2247 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2248 { .channels = 1,
2249 .map = { SNDRV_CHMAP_MONO } },
2250 { .channels = 2,
2251 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2252 { .channels = 4,
2253 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2254 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2255 { .channels = 6,
2256 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2257 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2258 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2259 { .channels = 8,
2260 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2261 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2262 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2263 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2266 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2268 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2269 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2270 { .channels = 1,
2271 .map = { SNDRV_CHMAP_MONO } },
2272 { .channels = 2,
2273 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2274 { .channels = 4,
2275 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2276 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2277 { .channels = 6,
2278 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2279 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2280 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2281 { .channels = 8,
2282 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2283 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2284 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2285 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2288 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2290 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2292 if (ch > info->max_channels)
2293 return false;
2294 return !info->channel_mask || (info->channel_mask & (1U << ch));
2297 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2298 struct snd_ctl_elem_info *uinfo)
2300 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2302 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2303 uinfo->count = 0;
2304 uinfo->count = info->max_channels;
2305 uinfo->value.integer.min = 0;
2306 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2307 return 0;
2310 /* get callback for channel map ctl element
2311 * stores the channel position firstly matching with the current channels
2313 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2314 struct snd_ctl_elem_value *ucontrol)
2316 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2317 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2318 struct snd_pcm_substream *substream;
2319 const struct snd_pcm_chmap_elem *map;
2321 if (!info->chmap)
2322 return -EINVAL;
2323 substream = snd_pcm_chmap_substream(info, idx);
2324 if (!substream)
2325 return -ENODEV;
2326 memset(ucontrol->value.integer.value, 0,
2327 sizeof(ucontrol->value.integer.value));
2328 if (!substream->runtime)
2329 return 0; /* no channels set */
2330 for (map = info->chmap; map->channels; map++) {
2331 int i;
2332 if (map->channels == substream->runtime->channels &&
2333 valid_chmap_channels(info, map->channels)) {
2334 for (i = 0; i < map->channels; i++)
2335 ucontrol->value.integer.value[i] = map->map[i];
2336 return 0;
2339 return -EINVAL;
2342 /* tlv callback for channel map ctl element
2343 * expands the pre-defined channel maps in a form of TLV
2345 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2346 unsigned int size, unsigned int __user *tlv)
2348 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2349 const struct snd_pcm_chmap_elem *map;
2350 unsigned int __user *dst;
2351 int c, count = 0;
2353 if (!info->chmap)
2354 return -EINVAL;
2355 if (size < 8)
2356 return -ENOMEM;
2357 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2358 return -EFAULT;
2359 size -= 8;
2360 dst = tlv + 2;
2361 for (map = info->chmap; map->channels; map++) {
2362 int chs_bytes = map->channels * 4;
2363 if (!valid_chmap_channels(info, map->channels))
2364 continue;
2365 if (size < 8)
2366 return -ENOMEM;
2367 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2368 put_user(chs_bytes, dst + 1))
2369 return -EFAULT;
2370 dst += 2;
2371 size -= 8;
2372 count += 8;
2373 if (size < chs_bytes)
2374 return -ENOMEM;
2375 size -= chs_bytes;
2376 count += chs_bytes;
2377 for (c = 0; c < map->channels; c++) {
2378 if (put_user(map->map[c], dst))
2379 return -EFAULT;
2380 dst++;
2383 if (put_user(count, tlv + 1))
2384 return -EFAULT;
2385 return 0;
2388 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2390 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2391 info->pcm->streams[info->stream].chmap_kctl = NULL;
2392 kfree(info);
2396 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2397 * @pcm: the assigned PCM instance
2398 * @stream: stream direction
2399 * @chmap: channel map elements (for query)
2400 * @max_channels: the max number of channels for the stream
2401 * @private_value: the value passed to each kcontrol's private_value field
2402 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2404 * Create channel-mapping control elements assigned to the given PCM stream(s).
2405 * Return: Zero if successful, or a negative error value.
2407 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2408 const struct snd_pcm_chmap_elem *chmap,
2409 int max_channels,
2410 unsigned long private_value,
2411 struct snd_pcm_chmap **info_ret)
2413 struct snd_pcm_chmap *info;
2414 struct snd_kcontrol_new knew = {
2415 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2416 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2417 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2418 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2419 .info = pcm_chmap_ctl_info,
2420 .get = pcm_chmap_ctl_get,
2421 .tlv.c = pcm_chmap_ctl_tlv,
2423 int err;
2425 if (WARN_ON(pcm->streams[stream].chmap_kctl))
2426 return -EBUSY;
2427 info = kzalloc(sizeof(*info), GFP_KERNEL);
2428 if (!info)
2429 return -ENOMEM;
2430 info->pcm = pcm;
2431 info->stream = stream;
2432 info->chmap = chmap;
2433 info->max_channels = max_channels;
2434 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2435 knew.name = "Playback Channel Map";
2436 else
2437 knew.name = "Capture Channel Map";
2438 knew.device = pcm->device;
2439 knew.count = pcm->streams[stream].substream_count;
2440 knew.private_value = private_value;
2441 info->kctl = snd_ctl_new1(&knew, info);
2442 if (!info->kctl) {
2443 kfree(info);
2444 return -ENOMEM;
2446 info->kctl->private_free = pcm_chmap_ctl_private_free;
2447 err = snd_ctl_add(pcm->card, info->kctl);
2448 if (err < 0)
2449 return err;
2450 pcm->streams[stream].chmap_kctl = info->kctl;
2451 if (info_ret)
2452 *info_ret = info;
2453 return 0;
2455 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);