2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 #include <linux/time.h>
26 #include <linux/math64.h>
27 #include <linux/export.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <sound/info.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/timer.h>
36 #include "pcm_local.h"
38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
39 #define CREATE_TRACE_POINTS
40 #include "pcm_trace.h"
42 #define trace_hwptr(substream, pos, in_interrupt)
43 #define trace_xrun(substream)
44 #define trace_hw_ptr_error(substream, reason)
45 #define trace_applptr(substream, prev, curr)
48 static int fill_silence_frames(struct snd_pcm_substream
*substream
,
49 snd_pcm_uframes_t off
, snd_pcm_uframes_t frames
);
52 * fill ring buffer with silence
53 * runtime->silence_start: starting pointer to silence area
54 * runtime->silence_filled: size filled with silence
55 * runtime->silence_threshold: threshold from application
56 * runtime->silence_size: maximal size from application
58 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
60 void snd_pcm_playback_silence(struct snd_pcm_substream
*substream
, snd_pcm_uframes_t new_hw_ptr
)
62 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
63 snd_pcm_uframes_t frames
, ofs
, transfer
;
66 if (runtime
->silence_size
< runtime
->boundary
) {
67 snd_pcm_sframes_t noise_dist
, n
;
68 snd_pcm_uframes_t appl_ptr
= READ_ONCE(runtime
->control
->appl_ptr
);
69 if (runtime
->silence_start
!= appl_ptr
) {
70 n
= appl_ptr
- runtime
->silence_start
;
72 n
+= runtime
->boundary
;
73 if ((snd_pcm_uframes_t
)n
< runtime
->silence_filled
)
74 runtime
->silence_filled
-= n
;
76 runtime
->silence_filled
= 0;
77 runtime
->silence_start
= appl_ptr
;
79 if (runtime
->silence_filled
>= runtime
->buffer_size
)
81 noise_dist
= snd_pcm_playback_hw_avail(runtime
) + runtime
->silence_filled
;
82 if (noise_dist
>= (snd_pcm_sframes_t
) runtime
->silence_threshold
)
84 frames
= runtime
->silence_threshold
- noise_dist
;
85 if (frames
> runtime
->silence_size
)
86 frames
= runtime
->silence_size
;
88 if (new_hw_ptr
== ULONG_MAX
) { /* initialization */
89 snd_pcm_sframes_t avail
= snd_pcm_playback_hw_avail(runtime
);
90 if (avail
> runtime
->buffer_size
)
91 avail
= runtime
->buffer_size
;
92 runtime
->silence_filled
= avail
> 0 ? avail
: 0;
93 runtime
->silence_start
= (runtime
->status
->hw_ptr
+
94 runtime
->silence_filled
) %
97 ofs
= runtime
->status
->hw_ptr
;
98 frames
= new_hw_ptr
- ofs
;
99 if ((snd_pcm_sframes_t
)frames
< 0)
100 frames
+= runtime
->boundary
;
101 runtime
->silence_filled
-= frames
;
102 if ((snd_pcm_sframes_t
)runtime
->silence_filled
< 0) {
103 runtime
->silence_filled
= 0;
104 runtime
->silence_start
= new_hw_ptr
;
106 runtime
->silence_start
= ofs
;
109 frames
= runtime
->buffer_size
- runtime
->silence_filled
;
111 if (snd_BUG_ON(frames
> runtime
->buffer_size
))
115 ofs
= runtime
->silence_start
% runtime
->buffer_size
;
117 transfer
= ofs
+ frames
> runtime
->buffer_size
? runtime
->buffer_size
- ofs
: frames
;
118 err
= fill_silence_frames(substream
, ofs
, transfer
);
120 runtime
->silence_filled
+= transfer
;
126 #ifdef CONFIG_SND_DEBUG
127 void snd_pcm_debug_name(struct snd_pcm_substream
*substream
,
128 char *name
, size_t len
)
130 snprintf(name
, len
, "pcmC%dD%d%c:%d",
131 substream
->pcm
->card
->number
,
132 substream
->pcm
->device
,
133 substream
->stream
? 'c' : 'p',
136 EXPORT_SYMBOL(snd_pcm_debug_name
);
139 #define XRUN_DEBUG_BASIC (1<<0)
140 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
141 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
143 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
145 #define xrun_debug(substream, mask) \
146 ((substream)->pstr->xrun_debug & (mask))
148 #define xrun_debug(substream, mask) 0
151 #define dump_stack_on_xrun(substream) do { \
152 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
156 static void xrun(struct snd_pcm_substream
*substream
)
158 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
160 trace_xrun(substream
);
161 if (runtime
->tstamp_mode
== SNDRV_PCM_TSTAMP_ENABLE
)
162 snd_pcm_gettime(runtime
, (struct timespec
*)&runtime
->status
->tstamp
);
163 snd_pcm_stop(substream
, SNDRV_PCM_STATE_XRUN
);
164 if (xrun_debug(substream
, XRUN_DEBUG_BASIC
)) {
166 snd_pcm_debug_name(substream
, name
, sizeof(name
));
167 pcm_warn(substream
->pcm
, "XRUN: %s\n", name
);
168 dump_stack_on_xrun(substream
);
172 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
173 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
175 trace_hw_ptr_error(substream, reason); \
176 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
177 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
178 (in_interrupt) ? 'Q' : 'P', ##args); \
179 dump_stack_on_xrun(substream); \
183 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
185 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
189 int snd_pcm_update_state(struct snd_pcm_substream
*substream
,
190 struct snd_pcm_runtime
*runtime
)
192 snd_pcm_uframes_t avail
;
194 avail
= snd_pcm_avail(substream
);
195 if (avail
> runtime
->avail_max
)
196 runtime
->avail_max
= avail
;
197 if (runtime
->status
->state
== SNDRV_PCM_STATE_DRAINING
) {
198 if (avail
>= runtime
->buffer_size
) {
199 snd_pcm_drain_done(substream
);
203 if (avail
>= runtime
->stop_threshold
) {
208 if (runtime
->twake
) {
209 if (avail
>= runtime
->twake
)
210 wake_up(&runtime
->tsleep
);
211 } else if (avail
>= runtime
->control
->avail_min
)
212 wake_up(&runtime
->sleep
);
216 static void update_audio_tstamp(struct snd_pcm_substream
*substream
,
217 struct timespec
*curr_tstamp
,
218 struct timespec
*audio_tstamp
)
220 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
221 u64 audio_frames
, audio_nsecs
;
222 struct timespec driver_tstamp
;
224 if (runtime
->tstamp_mode
!= SNDRV_PCM_TSTAMP_ENABLE
)
227 if (!(substream
->ops
->get_time_info
) ||
228 (runtime
->audio_tstamp_report
.actual_type
==
229 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT
)) {
232 * provide audio timestamp derived from pointer position
233 * add delay only if requested
236 audio_frames
= runtime
->hw_ptr_wrap
+ runtime
->status
->hw_ptr
;
238 if (runtime
->audio_tstamp_config
.report_delay
) {
239 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
240 audio_frames
-= runtime
->delay
;
242 audio_frames
+= runtime
->delay
;
244 audio_nsecs
= div_u64(audio_frames
* 1000000000LL,
246 *audio_tstamp
= ns_to_timespec(audio_nsecs
);
248 if (!timespec_equal(&runtime
->status
->audio_tstamp
, audio_tstamp
)) {
249 runtime
->status
->audio_tstamp
= *audio_tstamp
;
250 runtime
->status
->tstamp
= *curr_tstamp
;
254 * re-take a driver timestamp to let apps detect if the reference tstamp
255 * read by low-level hardware was provided with a delay
257 snd_pcm_gettime(substream
->runtime
, (struct timespec
*)&driver_tstamp
);
258 runtime
->driver_tstamp
= driver_tstamp
;
261 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream
*substream
,
262 unsigned int in_interrupt
)
264 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
265 snd_pcm_uframes_t pos
;
266 snd_pcm_uframes_t old_hw_ptr
, new_hw_ptr
, hw_base
;
267 snd_pcm_sframes_t hdelta
, delta
;
268 unsigned long jdelta
;
269 unsigned long curr_jiffies
;
270 struct timespec curr_tstamp
;
271 struct timespec audio_tstamp
;
272 int crossed_boundary
= 0;
274 old_hw_ptr
= runtime
->status
->hw_ptr
;
277 * group pointer, time and jiffies reads to allow for more
278 * accurate correlations/corrections.
279 * The values are stored at the end of this routine after
280 * corrections for hw_ptr position
282 pos
= substream
->ops
->pointer(substream
);
283 curr_jiffies
= jiffies
;
284 if (runtime
->tstamp_mode
== SNDRV_PCM_TSTAMP_ENABLE
) {
285 if ((substream
->ops
->get_time_info
) &&
286 (runtime
->audio_tstamp_config
.type_requested
!= SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT
)) {
287 substream
->ops
->get_time_info(substream
, &curr_tstamp
,
289 &runtime
->audio_tstamp_config
,
290 &runtime
->audio_tstamp_report
);
292 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
293 if (runtime
->audio_tstamp_report
.actual_type
== SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT
)
294 snd_pcm_gettime(runtime
, (struct timespec
*)&curr_tstamp
);
296 snd_pcm_gettime(runtime
, (struct timespec
*)&curr_tstamp
);
299 if (pos
== SNDRV_PCM_POS_XRUN
) {
303 if (pos
>= runtime
->buffer_size
) {
304 if (printk_ratelimit()) {
306 snd_pcm_debug_name(substream
, name
, sizeof(name
));
307 pcm_err(substream
->pcm
,
308 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
309 name
, pos
, runtime
->buffer_size
,
310 runtime
->period_size
);
314 pos
-= pos
% runtime
->min_align
;
315 trace_hwptr(substream
, pos
, in_interrupt
);
316 hw_base
= runtime
->hw_ptr_base
;
317 new_hw_ptr
= hw_base
+ pos
;
319 /* we know that one period was processed */
320 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
321 delta
= runtime
->hw_ptr_interrupt
+ runtime
->period_size
;
322 if (delta
> new_hw_ptr
) {
323 /* check for double acknowledged interrupts */
324 hdelta
= curr_jiffies
- runtime
->hw_ptr_jiffies
;
325 if (hdelta
> runtime
->hw_ptr_buffer_jiffies
/2 + 1) {
326 hw_base
+= runtime
->buffer_size
;
327 if (hw_base
>= runtime
->boundary
) {
331 new_hw_ptr
= hw_base
+ pos
;
336 /* new_hw_ptr might be lower than old_hw_ptr in case when */
337 /* pointer crosses the end of the ring buffer */
338 if (new_hw_ptr
< old_hw_ptr
) {
339 hw_base
+= runtime
->buffer_size
;
340 if (hw_base
>= runtime
->boundary
) {
344 new_hw_ptr
= hw_base
+ pos
;
347 delta
= new_hw_ptr
- old_hw_ptr
;
349 delta
+= runtime
->boundary
;
351 if (runtime
->no_period_wakeup
) {
352 snd_pcm_sframes_t xrun_threshold
;
354 * Without regular period interrupts, we have to check
355 * the elapsed time to detect xruns.
357 jdelta
= curr_jiffies
- runtime
->hw_ptr_jiffies
;
358 if (jdelta
< runtime
->hw_ptr_buffer_jiffies
/ 2)
360 hdelta
= jdelta
- delta
* HZ
/ runtime
->rate
;
361 xrun_threshold
= runtime
->hw_ptr_buffer_jiffies
/ 2 + 1;
362 while (hdelta
> xrun_threshold
) {
363 delta
+= runtime
->buffer_size
;
364 hw_base
+= runtime
->buffer_size
;
365 if (hw_base
>= runtime
->boundary
) {
369 new_hw_ptr
= hw_base
+ pos
;
370 hdelta
-= runtime
->hw_ptr_buffer_jiffies
;
375 /* something must be really wrong */
376 if (delta
>= runtime
->buffer_size
+ runtime
->period_size
) {
377 hw_ptr_error(substream
, in_interrupt
, "Unexpected hw_ptr",
378 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
379 substream
->stream
, (long)pos
,
380 (long)new_hw_ptr
, (long)old_hw_ptr
);
384 /* Do jiffies check only in xrun_debug mode */
385 if (!xrun_debug(substream
, XRUN_DEBUG_JIFFIESCHECK
))
386 goto no_jiffies_check
;
388 /* Skip the jiffies check for hardwares with BATCH flag.
389 * Such hardware usually just increases the position at each IRQ,
390 * thus it can't give any strange position.
392 if (runtime
->hw
.info
& SNDRV_PCM_INFO_BATCH
)
393 goto no_jiffies_check
;
395 if (hdelta
< runtime
->delay
)
396 goto no_jiffies_check
;
397 hdelta
-= runtime
->delay
;
398 jdelta
= curr_jiffies
- runtime
->hw_ptr_jiffies
;
399 if (((hdelta
* HZ
) / runtime
->rate
) > jdelta
+ HZ
/100) {
401 (((runtime
->period_size
* HZ
) / runtime
->rate
)
403 /* move new_hw_ptr according jiffies not pos variable */
404 new_hw_ptr
= old_hw_ptr
;
406 /* use loop to avoid checks for delta overflows */
407 /* the delta value is small or zero in most cases */
409 new_hw_ptr
+= runtime
->period_size
;
410 if (new_hw_ptr
>= runtime
->boundary
) {
411 new_hw_ptr
-= runtime
->boundary
;
416 /* align hw_base to buffer_size */
417 hw_ptr_error(substream
, in_interrupt
, "hw_ptr skipping",
418 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
419 (long)pos
, (long)hdelta
,
420 (long)runtime
->period_size
, jdelta
,
421 ((hdelta
* HZ
) / runtime
->rate
), hw_base
,
422 (unsigned long)old_hw_ptr
,
423 (unsigned long)new_hw_ptr
);
424 /* reset values to proper state */
426 hw_base
= new_hw_ptr
- (new_hw_ptr
% runtime
->buffer_size
);
429 if (delta
> runtime
->period_size
+ runtime
->period_size
/ 2) {
430 hw_ptr_error(substream
, in_interrupt
,
432 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
433 substream
->stream
, (long)delta
,
439 if (runtime
->status
->hw_ptr
== new_hw_ptr
) {
440 update_audio_tstamp(substream
, &curr_tstamp
, &audio_tstamp
);
444 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
&&
445 runtime
->silence_size
> 0)
446 snd_pcm_playback_silence(substream
, new_hw_ptr
);
449 delta
= new_hw_ptr
- runtime
->hw_ptr_interrupt
;
451 delta
+= runtime
->boundary
;
452 delta
-= (snd_pcm_uframes_t
)delta
% runtime
->period_size
;
453 runtime
->hw_ptr_interrupt
+= delta
;
454 if (runtime
->hw_ptr_interrupt
>= runtime
->boundary
)
455 runtime
->hw_ptr_interrupt
-= runtime
->boundary
;
457 runtime
->hw_ptr_base
= hw_base
;
458 runtime
->status
->hw_ptr
= new_hw_ptr
;
459 runtime
->hw_ptr_jiffies
= curr_jiffies
;
460 if (crossed_boundary
) {
461 snd_BUG_ON(crossed_boundary
!= 1);
462 runtime
->hw_ptr_wrap
+= runtime
->boundary
;
465 update_audio_tstamp(substream
, &curr_tstamp
, &audio_tstamp
);
467 return snd_pcm_update_state(substream
, runtime
);
470 /* CAUTION: call it with irq disabled */
471 int snd_pcm_update_hw_ptr(struct snd_pcm_substream
*substream
)
473 return snd_pcm_update_hw_ptr0(substream
, 0);
477 * snd_pcm_set_ops - set the PCM operators
478 * @pcm: the pcm instance
479 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
480 * @ops: the operator table
482 * Sets the given PCM operators to the pcm instance.
484 void snd_pcm_set_ops(struct snd_pcm
*pcm
, int direction
,
485 const struct snd_pcm_ops
*ops
)
487 struct snd_pcm_str
*stream
= &pcm
->streams
[direction
];
488 struct snd_pcm_substream
*substream
;
490 for (substream
= stream
->substream
; substream
!= NULL
; substream
= substream
->next
)
491 substream
->ops
= ops
;
493 EXPORT_SYMBOL(snd_pcm_set_ops
);
496 * snd_pcm_sync - set the PCM sync id
497 * @substream: the pcm substream
499 * Sets the PCM sync identifier for the card.
501 void snd_pcm_set_sync(struct snd_pcm_substream
*substream
)
503 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
505 runtime
->sync
.id32
[0] = substream
->pcm
->card
->number
;
506 runtime
->sync
.id32
[1] = -1;
507 runtime
->sync
.id32
[2] = -1;
508 runtime
->sync
.id32
[3] = -1;
510 EXPORT_SYMBOL(snd_pcm_set_sync
);
513 * Standard ioctl routine
516 static inline unsigned int div32(unsigned int a
, unsigned int b
,
527 static inline unsigned int div_down(unsigned int a
, unsigned int b
)
534 static inline unsigned int div_up(unsigned int a
, unsigned int b
)
546 static inline unsigned int mul(unsigned int a
, unsigned int b
)
550 if (div_down(UINT_MAX
, a
) < b
)
555 static inline unsigned int muldiv32(unsigned int a
, unsigned int b
,
556 unsigned int c
, unsigned int *r
)
558 u_int64_t n
= (u_int64_t
) a
* b
;
563 n
= div_u64_rem(n
, c
, r
);
572 * snd_interval_refine - refine the interval value of configurator
573 * @i: the interval value to refine
574 * @v: the interval value to refer to
576 * Refines the interval value with the reference value.
577 * The interval is changed to the range satisfying both intervals.
578 * The interval status (min, max, integer, etc.) are evaluated.
580 * Return: Positive if the value is changed, zero if it's not changed, or a
581 * negative error code.
583 int snd_interval_refine(struct snd_interval
*i
, const struct snd_interval
*v
)
586 if (snd_BUG_ON(snd_interval_empty(i
)))
588 if (i
->min
< v
->min
) {
590 i
->openmin
= v
->openmin
;
592 } else if (i
->min
== v
->min
&& !i
->openmin
&& v
->openmin
) {
596 if (i
->max
> v
->max
) {
598 i
->openmax
= v
->openmax
;
600 } else if (i
->max
== v
->max
&& !i
->openmax
&& v
->openmax
) {
604 if (!i
->integer
&& v
->integer
) {
617 } else if (!i
->openmin
&& !i
->openmax
&& i
->min
== i
->max
)
619 if (snd_interval_checkempty(i
)) {
620 snd_interval_none(i
);
625 EXPORT_SYMBOL(snd_interval_refine
);
627 static int snd_interval_refine_first(struct snd_interval
*i
)
629 if (snd_BUG_ON(snd_interval_empty(i
)))
631 if (snd_interval_single(i
))
634 i
->openmax
= i
->openmin
;
640 static int snd_interval_refine_last(struct snd_interval
*i
)
642 if (snd_BUG_ON(snd_interval_empty(i
)))
644 if (snd_interval_single(i
))
647 i
->openmin
= i
->openmax
;
653 void snd_interval_mul(const struct snd_interval
*a
, const struct snd_interval
*b
, struct snd_interval
*c
)
655 if (a
->empty
|| b
->empty
) {
656 snd_interval_none(c
);
660 c
->min
= mul(a
->min
, b
->min
);
661 c
->openmin
= (a
->openmin
|| b
->openmin
);
662 c
->max
= mul(a
->max
, b
->max
);
663 c
->openmax
= (a
->openmax
|| b
->openmax
);
664 c
->integer
= (a
->integer
&& b
->integer
);
668 * snd_interval_div - refine the interval value with division
675 * Returns non-zero if the value is changed, zero if not changed.
677 void snd_interval_div(const struct snd_interval
*a
, const struct snd_interval
*b
, struct snd_interval
*c
)
680 if (a
->empty
|| b
->empty
) {
681 snd_interval_none(c
);
685 c
->min
= div32(a
->min
, b
->max
, &r
);
686 c
->openmin
= (r
|| a
->openmin
|| b
->openmax
);
688 c
->max
= div32(a
->max
, b
->min
, &r
);
693 c
->openmax
= (a
->openmax
|| b
->openmin
);
702 * snd_interval_muldivk - refine the interval value
705 * @k: divisor (as integer)
710 * Returns non-zero if the value is changed, zero if not changed.
712 void snd_interval_muldivk(const struct snd_interval
*a
, const struct snd_interval
*b
,
713 unsigned int k
, struct snd_interval
*c
)
716 if (a
->empty
|| b
->empty
) {
717 snd_interval_none(c
);
721 c
->min
= muldiv32(a
->min
, b
->min
, k
, &r
);
722 c
->openmin
= (r
|| a
->openmin
|| b
->openmin
);
723 c
->max
= muldiv32(a
->max
, b
->max
, k
, &r
);
728 c
->openmax
= (a
->openmax
|| b
->openmax
);
733 * snd_interval_mulkdiv - refine the interval value
735 * @k: dividend 2 (as integer)
741 * Returns non-zero if the value is changed, zero if not changed.
743 void snd_interval_mulkdiv(const struct snd_interval
*a
, unsigned int k
,
744 const struct snd_interval
*b
, struct snd_interval
*c
)
747 if (a
->empty
|| b
->empty
) {
748 snd_interval_none(c
);
752 c
->min
= muldiv32(a
->min
, k
, b
->max
, &r
);
753 c
->openmin
= (r
|| a
->openmin
|| b
->openmax
);
755 c
->max
= muldiv32(a
->max
, k
, b
->min
, &r
);
760 c
->openmax
= (a
->openmax
|| b
->openmin
);
772 * snd_interval_ratnum - refine the interval value
773 * @i: interval to refine
774 * @rats_count: number of ratnum_t
775 * @rats: ratnum_t array
776 * @nump: pointer to store the resultant numerator
777 * @denp: pointer to store the resultant denominator
779 * Return: Positive if the value is changed, zero if it's not changed, or a
780 * negative error code.
782 int snd_interval_ratnum(struct snd_interval
*i
,
783 unsigned int rats_count
, const struct snd_ratnum
*rats
,
784 unsigned int *nump
, unsigned int *denp
)
786 unsigned int best_num
, best_den
;
789 struct snd_interval t
;
791 unsigned int result_num
, result_den
;
794 best_num
= best_den
= best_diff
= 0;
795 for (k
= 0; k
< rats_count
; ++k
) {
796 unsigned int num
= rats
[k
].num
;
798 unsigned int q
= i
->min
;
802 den
= div_up(num
, q
);
803 if (den
< rats
[k
].den_min
)
805 if (den
> rats
[k
].den_max
)
806 den
= rats
[k
].den_max
;
809 r
= (den
- rats
[k
].den_min
) % rats
[k
].den_step
;
813 diff
= num
- q
* den
;
817 diff
* best_den
< best_diff
* den
) {
827 t
.min
= div_down(best_num
, best_den
);
828 t
.openmin
= !!(best_num
% best_den
);
830 result_num
= best_num
;
831 result_diff
= best_diff
;
832 result_den
= best_den
;
833 best_num
= best_den
= best_diff
= 0;
834 for (k
= 0; k
< rats_count
; ++k
) {
835 unsigned int num
= rats
[k
].num
;
837 unsigned int q
= i
->max
;
843 den
= div_down(num
, q
);
844 if (den
> rats
[k
].den_max
)
846 if (den
< rats
[k
].den_min
)
847 den
= rats
[k
].den_min
;
850 r
= (den
- rats
[k
].den_min
) % rats
[k
].den_step
;
852 den
+= rats
[k
].den_step
- r
;
854 diff
= q
* den
- num
;
858 diff
* best_den
< best_diff
* den
) {
868 t
.max
= div_up(best_num
, best_den
);
869 t
.openmax
= !!(best_num
% best_den
);
871 err
= snd_interval_refine(i
, &t
);
875 if (snd_interval_single(i
)) {
876 if (best_diff
* result_den
< result_diff
* best_den
) {
877 result_num
= best_num
;
878 result_den
= best_den
;
887 EXPORT_SYMBOL(snd_interval_ratnum
);
890 * snd_interval_ratden - refine the interval value
891 * @i: interval to refine
892 * @rats_count: number of struct ratden
893 * @rats: struct ratden array
894 * @nump: pointer to store the resultant numerator
895 * @denp: pointer to store the resultant denominator
897 * Return: Positive if the value is changed, zero if it's not changed, or a
898 * negative error code.
900 static int snd_interval_ratden(struct snd_interval
*i
,
901 unsigned int rats_count
,
902 const struct snd_ratden
*rats
,
903 unsigned int *nump
, unsigned int *denp
)
905 unsigned int best_num
, best_diff
, best_den
;
907 struct snd_interval t
;
910 best_num
= best_den
= best_diff
= 0;
911 for (k
= 0; k
< rats_count
; ++k
) {
913 unsigned int den
= rats
[k
].den
;
914 unsigned int q
= i
->min
;
917 if (num
> rats
[k
].num_max
)
919 if (num
< rats
[k
].num_min
)
920 num
= rats
[k
].num_max
;
923 r
= (num
- rats
[k
].num_min
) % rats
[k
].num_step
;
925 num
+= rats
[k
].num_step
- r
;
927 diff
= num
- q
* den
;
929 diff
* best_den
< best_diff
* den
) {
939 t
.min
= div_down(best_num
, best_den
);
940 t
.openmin
= !!(best_num
% best_den
);
942 best_num
= best_den
= best_diff
= 0;
943 for (k
= 0; k
< rats_count
; ++k
) {
945 unsigned int den
= rats
[k
].den
;
946 unsigned int q
= i
->max
;
949 if (num
< rats
[k
].num_min
)
951 if (num
> rats
[k
].num_max
)
952 num
= rats
[k
].num_max
;
955 r
= (num
- rats
[k
].num_min
) % rats
[k
].num_step
;
959 diff
= q
* den
- num
;
961 diff
* best_den
< best_diff
* den
) {
971 t
.max
= div_up(best_num
, best_den
);
972 t
.openmax
= !!(best_num
% best_den
);
974 err
= snd_interval_refine(i
, &t
);
978 if (snd_interval_single(i
)) {
988 * snd_interval_list - refine the interval value from the list
989 * @i: the interval value to refine
990 * @count: the number of elements in the list
991 * @list: the value list
992 * @mask: the bit-mask to evaluate
994 * Refines the interval value from the list.
995 * When mask is non-zero, only the elements corresponding to bit 1 are
998 * Return: Positive if the value is changed, zero if it's not changed, or a
999 * negative error code.
1001 int snd_interval_list(struct snd_interval
*i
, unsigned int count
,
1002 const unsigned int *list
, unsigned int mask
)
1005 struct snd_interval list_range
;
1011 snd_interval_any(&list_range
);
1012 list_range
.min
= UINT_MAX
;
1014 for (k
= 0; k
< count
; k
++) {
1015 if (mask
&& !(mask
& (1 << k
)))
1017 if (!snd_interval_test(i
, list
[k
]))
1019 list_range
.min
= min(list_range
.min
, list
[k
]);
1020 list_range
.max
= max(list_range
.max
, list
[k
]);
1022 return snd_interval_refine(i
, &list_range
);
1024 EXPORT_SYMBOL(snd_interval_list
);
1027 * snd_interval_ranges - refine the interval value from the list of ranges
1028 * @i: the interval value to refine
1029 * @count: the number of elements in the list of ranges
1030 * @ranges: the ranges list
1031 * @mask: the bit-mask to evaluate
1033 * Refines the interval value from the list of ranges.
1034 * When mask is non-zero, only the elements corresponding to bit 1 are
1037 * Return: Positive if the value is changed, zero if it's not changed, or a
1038 * negative error code.
1040 int snd_interval_ranges(struct snd_interval
*i
, unsigned int count
,
1041 const struct snd_interval
*ranges
, unsigned int mask
)
1044 struct snd_interval range_union
;
1045 struct snd_interval range
;
1048 snd_interval_none(i
);
1051 snd_interval_any(&range_union
);
1052 range_union
.min
= UINT_MAX
;
1053 range_union
.max
= 0;
1054 for (k
= 0; k
< count
; k
++) {
1055 if (mask
&& !(mask
& (1 << k
)))
1057 snd_interval_copy(&range
, &ranges
[k
]);
1058 if (snd_interval_refine(&range
, i
) < 0)
1060 if (snd_interval_empty(&range
))
1063 if (range
.min
< range_union
.min
) {
1064 range_union
.min
= range
.min
;
1065 range_union
.openmin
= 1;
1067 if (range
.min
== range_union
.min
&& !range
.openmin
)
1068 range_union
.openmin
= 0;
1069 if (range
.max
> range_union
.max
) {
1070 range_union
.max
= range
.max
;
1071 range_union
.openmax
= 1;
1073 if (range
.max
== range_union
.max
&& !range
.openmax
)
1074 range_union
.openmax
= 0;
1076 return snd_interval_refine(i
, &range_union
);
1078 EXPORT_SYMBOL(snd_interval_ranges
);
1080 static int snd_interval_step(struct snd_interval
*i
, unsigned int step
)
1085 if (n
!= 0 || i
->openmin
) {
1091 if (n
!= 0 || i
->openmax
) {
1096 if (snd_interval_checkempty(i
)) {
1103 /* Info constraints helpers */
1106 * snd_pcm_hw_rule_add - add the hw-constraint rule
1107 * @runtime: the pcm runtime instance
1108 * @cond: condition bits
1109 * @var: the variable to evaluate
1110 * @func: the evaluation function
1111 * @private: the private data pointer passed to function
1112 * @dep: the dependent variables
1114 * Return: Zero if successful, or a negative error code on failure.
1116 int snd_pcm_hw_rule_add(struct snd_pcm_runtime
*runtime
, unsigned int cond
,
1118 snd_pcm_hw_rule_func_t func
, void *private,
1121 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1122 struct snd_pcm_hw_rule
*c
;
1125 va_start(args
, dep
);
1126 if (constrs
->rules_num
>= constrs
->rules_all
) {
1127 struct snd_pcm_hw_rule
*new;
1128 unsigned int new_rules
= constrs
->rules_all
+ 16;
1129 new = krealloc(constrs
->rules
, new_rules
* sizeof(*c
),
1135 constrs
->rules
= new;
1136 constrs
->rules_all
= new_rules
;
1138 c
= &constrs
->rules
[constrs
->rules_num
];
1142 c
->private = private;
1145 if (snd_BUG_ON(k
>= ARRAY_SIZE(c
->deps
))) {
1152 dep
= va_arg(args
, int);
1154 constrs
->rules_num
++;
1158 EXPORT_SYMBOL(snd_pcm_hw_rule_add
);
1161 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1162 * @runtime: PCM runtime instance
1163 * @var: hw_params variable to apply the mask
1164 * @mask: the bitmap mask
1166 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1168 * Return: Zero if successful, or a negative error code on failure.
1170 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
,
1173 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1174 struct snd_mask
*maskp
= constrs_mask(constrs
, var
);
1175 *maskp
->bits
&= mask
;
1176 memset(maskp
->bits
+ 1, 0, (SNDRV_MASK_MAX
-32) / 8); /* clear rest */
1177 if (*maskp
->bits
== 0)
1183 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1184 * @runtime: PCM runtime instance
1185 * @var: hw_params variable to apply the mask
1186 * @mask: the 64bit bitmap mask
1188 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1190 * Return: Zero if successful, or a negative error code on failure.
1192 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
,
1195 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1196 struct snd_mask
*maskp
= constrs_mask(constrs
, var
);
1197 maskp
->bits
[0] &= (u_int32_t
)mask
;
1198 maskp
->bits
[1] &= (u_int32_t
)(mask
>> 32);
1199 memset(maskp
->bits
+ 2, 0, (SNDRV_MASK_MAX
-64) / 8); /* clear rest */
1200 if (! maskp
->bits
[0] && ! maskp
->bits
[1])
1204 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64
);
1207 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1208 * @runtime: PCM runtime instance
1209 * @var: hw_params variable to apply the integer constraint
1211 * Apply the constraint of integer to an interval parameter.
1213 * Return: Positive if the value is changed, zero if it's not changed, or a
1214 * negative error code.
1216 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
)
1218 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1219 return snd_interval_setinteger(constrs_interval(constrs
, var
));
1221 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer
);
1224 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1225 * @runtime: PCM runtime instance
1226 * @var: hw_params variable to apply the range
1227 * @min: the minimal value
1228 * @max: the maximal value
1230 * Apply the min/max range constraint to an interval parameter.
1232 * Return: Positive if the value is changed, zero if it's not changed, or a
1233 * negative error code.
1235 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime
*runtime
, snd_pcm_hw_param_t var
,
1236 unsigned int min
, unsigned int max
)
1238 struct snd_pcm_hw_constraints
*constrs
= &runtime
->hw_constraints
;
1239 struct snd_interval t
;
1242 t
.openmin
= t
.openmax
= 0;
1244 return snd_interval_refine(constrs_interval(constrs
, var
), &t
);
1246 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax
);
1248 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params
*params
,
1249 struct snd_pcm_hw_rule
*rule
)
1251 struct snd_pcm_hw_constraint_list
*list
= rule
->private;
1252 return snd_interval_list(hw_param_interval(params
, rule
->var
), list
->count
, list
->list
, list
->mask
);
1257 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1258 * @runtime: PCM runtime instance
1259 * @cond: condition bits
1260 * @var: hw_params variable to apply the list constraint
1263 * Apply the list of constraints to an interval parameter.
1265 * Return: Zero if successful, or a negative error code on failure.
1267 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime
*runtime
,
1269 snd_pcm_hw_param_t var
,
1270 const struct snd_pcm_hw_constraint_list
*l
)
1272 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1273 snd_pcm_hw_rule_list
, (void *)l
,
1276 EXPORT_SYMBOL(snd_pcm_hw_constraint_list
);
1278 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params
*params
,
1279 struct snd_pcm_hw_rule
*rule
)
1281 struct snd_pcm_hw_constraint_ranges
*r
= rule
->private;
1282 return snd_interval_ranges(hw_param_interval(params
, rule
->var
),
1283 r
->count
, r
->ranges
, r
->mask
);
1288 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1289 * @runtime: PCM runtime instance
1290 * @cond: condition bits
1291 * @var: hw_params variable to apply the list of range constraints
1294 * Apply the list of range constraints to an interval parameter.
1296 * Return: Zero if successful, or a negative error code on failure.
1298 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime
*runtime
,
1300 snd_pcm_hw_param_t var
,
1301 const struct snd_pcm_hw_constraint_ranges
*r
)
1303 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1304 snd_pcm_hw_rule_ranges
, (void *)r
,
1307 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges
);
1309 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params
*params
,
1310 struct snd_pcm_hw_rule
*rule
)
1312 const struct snd_pcm_hw_constraint_ratnums
*r
= rule
->private;
1313 unsigned int num
= 0, den
= 0;
1315 err
= snd_interval_ratnum(hw_param_interval(params
, rule
->var
),
1316 r
->nrats
, r
->rats
, &num
, &den
);
1317 if (err
>= 0 && den
&& rule
->var
== SNDRV_PCM_HW_PARAM_RATE
) {
1318 params
->rate_num
= num
;
1319 params
->rate_den
= den
;
1325 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1326 * @runtime: PCM runtime instance
1327 * @cond: condition bits
1328 * @var: hw_params variable to apply the ratnums constraint
1329 * @r: struct snd_ratnums constriants
1331 * Return: Zero if successful, or a negative error code on failure.
1333 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime
*runtime
,
1335 snd_pcm_hw_param_t var
,
1336 const struct snd_pcm_hw_constraint_ratnums
*r
)
1338 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1339 snd_pcm_hw_rule_ratnums
, (void *)r
,
1342 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums
);
1344 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params
*params
,
1345 struct snd_pcm_hw_rule
*rule
)
1347 const struct snd_pcm_hw_constraint_ratdens
*r
= rule
->private;
1348 unsigned int num
= 0, den
= 0;
1349 int err
= snd_interval_ratden(hw_param_interval(params
, rule
->var
),
1350 r
->nrats
, r
->rats
, &num
, &den
);
1351 if (err
>= 0 && den
&& rule
->var
== SNDRV_PCM_HW_PARAM_RATE
) {
1352 params
->rate_num
= num
;
1353 params
->rate_den
= den
;
1359 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1360 * @runtime: PCM runtime instance
1361 * @cond: condition bits
1362 * @var: hw_params variable to apply the ratdens constraint
1363 * @r: struct snd_ratdens constriants
1365 * Return: Zero if successful, or a negative error code on failure.
1367 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime
*runtime
,
1369 snd_pcm_hw_param_t var
,
1370 const struct snd_pcm_hw_constraint_ratdens
*r
)
1372 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1373 snd_pcm_hw_rule_ratdens
, (void *)r
,
1376 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens
);
1378 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params
*params
,
1379 struct snd_pcm_hw_rule
*rule
)
1381 unsigned int l
= (unsigned long) rule
->private;
1382 int width
= l
& 0xffff;
1383 unsigned int msbits
= l
>> 16;
1384 const struct snd_interval
*i
=
1385 hw_param_interval_c(params
, SNDRV_PCM_HW_PARAM_SAMPLE_BITS
);
1387 if (!snd_interval_single(i
))
1390 if ((snd_interval_value(i
) == width
) ||
1391 (width
== 0 && snd_interval_value(i
) > msbits
))
1392 params
->msbits
= min_not_zero(params
->msbits
, msbits
);
1398 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1399 * @runtime: PCM runtime instance
1400 * @cond: condition bits
1401 * @width: sample bits width
1402 * @msbits: msbits width
1404 * This constraint will set the number of most significant bits (msbits) if a
1405 * sample format with the specified width has been select. If width is set to 0
1406 * the msbits will be set for any sample format with a width larger than the
1409 * Return: Zero if successful, or a negative error code on failure.
1411 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime
*runtime
,
1414 unsigned int msbits
)
1416 unsigned long l
= (msbits
<< 16) | width
;
1417 return snd_pcm_hw_rule_add(runtime
, cond
, -1,
1418 snd_pcm_hw_rule_msbits
,
1420 SNDRV_PCM_HW_PARAM_SAMPLE_BITS
, -1);
1422 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits
);
1424 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params
*params
,
1425 struct snd_pcm_hw_rule
*rule
)
1427 unsigned long step
= (unsigned long) rule
->private;
1428 return snd_interval_step(hw_param_interval(params
, rule
->var
), step
);
1432 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1433 * @runtime: PCM runtime instance
1434 * @cond: condition bits
1435 * @var: hw_params variable to apply the step constraint
1438 * Return: Zero if successful, or a negative error code on failure.
1440 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime
*runtime
,
1442 snd_pcm_hw_param_t var
,
1445 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1446 snd_pcm_hw_rule_step
, (void *) step
,
1449 EXPORT_SYMBOL(snd_pcm_hw_constraint_step
);
1451 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params
*params
, struct snd_pcm_hw_rule
*rule
)
1453 static unsigned int pow2_sizes
[] = {
1454 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1455 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1456 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1457 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1459 return snd_interval_list(hw_param_interval(params
, rule
->var
),
1460 ARRAY_SIZE(pow2_sizes
), pow2_sizes
, 0);
1464 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1465 * @runtime: PCM runtime instance
1466 * @cond: condition bits
1467 * @var: hw_params variable to apply the power-of-2 constraint
1469 * Return: Zero if successful, or a negative error code on failure.
1471 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime
*runtime
,
1473 snd_pcm_hw_param_t var
)
1475 return snd_pcm_hw_rule_add(runtime
, cond
, var
,
1476 snd_pcm_hw_rule_pow2
, NULL
,
1479 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2
);
1481 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params
*params
,
1482 struct snd_pcm_hw_rule
*rule
)
1484 unsigned int base_rate
= (unsigned int)(uintptr_t)rule
->private;
1485 struct snd_interval
*rate
;
1487 rate
= hw_param_interval(params
, SNDRV_PCM_HW_PARAM_RATE
);
1488 return snd_interval_list(rate
, 1, &base_rate
, 0);
1492 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1493 * @runtime: PCM runtime instance
1494 * @base_rate: the rate at which the hardware does not resample
1496 * Return: Zero if successful, or a negative error code on failure.
1498 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime
*runtime
,
1499 unsigned int base_rate
)
1501 return snd_pcm_hw_rule_add(runtime
, SNDRV_PCM_HW_PARAMS_NORESAMPLE
,
1502 SNDRV_PCM_HW_PARAM_RATE
,
1503 snd_pcm_hw_rule_noresample_func
,
1504 (void *)(uintptr_t)base_rate
,
1505 SNDRV_PCM_HW_PARAM_RATE
, -1);
1507 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample
);
1509 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params
*params
,
1510 snd_pcm_hw_param_t var
)
1512 if (hw_is_mask(var
)) {
1513 snd_mask_any(hw_param_mask(params
, var
));
1514 params
->cmask
|= 1 << var
;
1515 params
->rmask
|= 1 << var
;
1518 if (hw_is_interval(var
)) {
1519 snd_interval_any(hw_param_interval(params
, var
));
1520 params
->cmask
|= 1 << var
;
1521 params
->rmask
|= 1 << var
;
1527 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params
*params
)
1530 memset(params
, 0, sizeof(*params
));
1531 for (k
= SNDRV_PCM_HW_PARAM_FIRST_MASK
; k
<= SNDRV_PCM_HW_PARAM_LAST_MASK
; k
++)
1532 _snd_pcm_hw_param_any(params
, k
);
1533 for (k
= SNDRV_PCM_HW_PARAM_FIRST_INTERVAL
; k
<= SNDRV_PCM_HW_PARAM_LAST_INTERVAL
; k
++)
1534 _snd_pcm_hw_param_any(params
, k
);
1537 EXPORT_SYMBOL(_snd_pcm_hw_params_any
);
1540 * snd_pcm_hw_param_value - return @params field @var value
1541 * @params: the hw_params instance
1542 * @var: parameter to retrieve
1543 * @dir: pointer to the direction (-1,0,1) or %NULL
1545 * Return: The value for field @var if it's fixed in configuration space
1546 * defined by @params. -%EINVAL otherwise.
1548 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params
*params
,
1549 snd_pcm_hw_param_t var
, int *dir
)
1551 if (hw_is_mask(var
)) {
1552 const struct snd_mask
*mask
= hw_param_mask_c(params
, var
);
1553 if (!snd_mask_single(mask
))
1557 return snd_mask_value(mask
);
1559 if (hw_is_interval(var
)) {
1560 const struct snd_interval
*i
= hw_param_interval_c(params
, var
);
1561 if (!snd_interval_single(i
))
1565 return snd_interval_value(i
);
1569 EXPORT_SYMBOL(snd_pcm_hw_param_value
);
1571 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params
*params
,
1572 snd_pcm_hw_param_t var
)
1574 if (hw_is_mask(var
)) {
1575 snd_mask_none(hw_param_mask(params
, var
));
1576 params
->cmask
|= 1 << var
;
1577 params
->rmask
|= 1 << var
;
1578 } else if (hw_is_interval(var
)) {
1579 snd_interval_none(hw_param_interval(params
, var
));
1580 params
->cmask
|= 1 << var
;
1581 params
->rmask
|= 1 << var
;
1586 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty
);
1588 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params
*params
,
1589 snd_pcm_hw_param_t var
)
1592 if (hw_is_mask(var
))
1593 changed
= snd_mask_refine_first(hw_param_mask(params
, var
));
1594 else if (hw_is_interval(var
))
1595 changed
= snd_interval_refine_first(hw_param_interval(params
, var
));
1599 params
->cmask
|= 1 << var
;
1600 params
->rmask
|= 1 << var
;
1607 * snd_pcm_hw_param_first - refine config space and return minimum value
1608 * @pcm: PCM instance
1609 * @params: the hw_params instance
1610 * @var: parameter to retrieve
1611 * @dir: pointer to the direction (-1,0,1) or %NULL
1613 * Inside configuration space defined by @params remove from @var all
1614 * values > minimum. Reduce configuration space accordingly.
1616 * Return: The minimum, or a negative error code on failure.
1618 int snd_pcm_hw_param_first(struct snd_pcm_substream
*pcm
,
1619 struct snd_pcm_hw_params
*params
,
1620 snd_pcm_hw_param_t var
, int *dir
)
1622 int changed
= _snd_pcm_hw_param_first(params
, var
);
1625 if (params
->rmask
) {
1626 int err
= snd_pcm_hw_refine(pcm
, params
);
1630 return snd_pcm_hw_param_value(params
, var
, dir
);
1632 EXPORT_SYMBOL(snd_pcm_hw_param_first
);
1634 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params
*params
,
1635 snd_pcm_hw_param_t var
)
1638 if (hw_is_mask(var
))
1639 changed
= snd_mask_refine_last(hw_param_mask(params
, var
));
1640 else if (hw_is_interval(var
))
1641 changed
= snd_interval_refine_last(hw_param_interval(params
, var
));
1645 params
->cmask
|= 1 << var
;
1646 params
->rmask
|= 1 << var
;
1653 * snd_pcm_hw_param_last - refine config space and return maximum value
1654 * @pcm: PCM instance
1655 * @params: the hw_params instance
1656 * @var: parameter to retrieve
1657 * @dir: pointer to the direction (-1,0,1) or %NULL
1659 * Inside configuration space defined by @params remove from @var all
1660 * values < maximum. Reduce configuration space accordingly.
1662 * Return: The maximum, or a negative error code on failure.
1664 int snd_pcm_hw_param_last(struct snd_pcm_substream
*pcm
,
1665 struct snd_pcm_hw_params
*params
,
1666 snd_pcm_hw_param_t var
, int *dir
)
1668 int changed
= _snd_pcm_hw_param_last(params
, var
);
1671 if (params
->rmask
) {
1672 int err
= snd_pcm_hw_refine(pcm
, params
);
1676 return snd_pcm_hw_param_value(params
, var
, dir
);
1678 EXPORT_SYMBOL(snd_pcm_hw_param_last
);
1680 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream
*substream
,
1683 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1684 unsigned long flags
;
1685 snd_pcm_stream_lock_irqsave(substream
, flags
);
1686 if (snd_pcm_running(substream
) &&
1687 snd_pcm_update_hw_ptr(substream
) >= 0)
1688 runtime
->status
->hw_ptr
%= runtime
->buffer_size
;
1690 runtime
->status
->hw_ptr
= 0;
1691 runtime
->hw_ptr_wrap
= 0;
1693 snd_pcm_stream_unlock_irqrestore(substream
, flags
);
1697 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream
*substream
,
1700 struct snd_pcm_channel_info
*info
= arg
;
1701 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1703 if (!(runtime
->info
& SNDRV_PCM_INFO_MMAP
)) {
1707 width
= snd_pcm_format_physical_width(runtime
->format
);
1711 switch (runtime
->access
) {
1712 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED
:
1713 case SNDRV_PCM_ACCESS_RW_INTERLEAVED
:
1714 info
->first
= info
->channel
* width
;
1715 info
->step
= runtime
->channels
* width
;
1717 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED
:
1718 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED
:
1720 size_t size
= runtime
->dma_bytes
/ runtime
->channels
;
1721 info
->first
= info
->channel
* size
* 8;
1732 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream
*substream
,
1735 struct snd_pcm_hw_params
*params
= arg
;
1736 snd_pcm_format_t format
;
1740 params
->fifo_size
= substream
->runtime
->hw
.fifo_size
;
1741 if (!(substream
->runtime
->hw
.info
& SNDRV_PCM_INFO_FIFO_IN_FRAMES
)) {
1742 format
= params_format(params
);
1743 channels
= params_channels(params
);
1744 frame_size
= snd_pcm_format_size(format
, channels
);
1746 params
->fifo_size
/= (unsigned)frame_size
;
1752 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1753 * @substream: the pcm substream instance
1754 * @cmd: ioctl command
1755 * @arg: ioctl argument
1757 * Processes the generic ioctl commands for PCM.
1758 * Can be passed as the ioctl callback for PCM ops.
1760 * Return: Zero if successful, or a negative error code on failure.
1762 int snd_pcm_lib_ioctl(struct snd_pcm_substream
*substream
,
1763 unsigned int cmd
, void *arg
)
1766 case SNDRV_PCM_IOCTL1_RESET
:
1767 return snd_pcm_lib_ioctl_reset(substream
, arg
);
1768 case SNDRV_PCM_IOCTL1_CHANNEL_INFO
:
1769 return snd_pcm_lib_ioctl_channel_info(substream
, arg
);
1770 case SNDRV_PCM_IOCTL1_FIFO_SIZE
:
1771 return snd_pcm_lib_ioctl_fifo_size(substream
, arg
);
1775 EXPORT_SYMBOL(snd_pcm_lib_ioctl
);
1778 * snd_pcm_period_elapsed - update the pcm status for the next period
1779 * @substream: the pcm substream instance
1781 * This function is called from the interrupt handler when the
1782 * PCM has processed the period size. It will update the current
1783 * pointer, wake up sleepers, etc.
1785 * Even if more than one periods have elapsed since the last call, you
1786 * have to call this only once.
1788 void snd_pcm_period_elapsed(struct snd_pcm_substream
*substream
)
1790 struct snd_pcm_runtime
*runtime
;
1791 unsigned long flags
;
1793 if (PCM_RUNTIME_CHECK(substream
))
1795 runtime
= substream
->runtime
;
1797 snd_pcm_stream_lock_irqsave(substream
, flags
);
1798 if (!snd_pcm_running(substream
) ||
1799 snd_pcm_update_hw_ptr0(substream
, 1) < 0)
1802 #ifdef CONFIG_SND_PCM_TIMER
1803 if (substream
->timer_running
)
1804 snd_timer_interrupt(substream
->timer
, 1);
1807 kill_fasync(&runtime
->fasync
, SIGIO
, POLL_IN
);
1808 snd_pcm_stream_unlock_irqrestore(substream
, flags
);
1810 EXPORT_SYMBOL(snd_pcm_period_elapsed
);
1813 * Wait until avail_min data becomes available
1814 * Returns a negative error code if any error occurs during operation.
1815 * The available space is stored on availp. When err = 0 and avail = 0
1816 * on the capture stream, it indicates the stream is in DRAINING state.
1818 static int wait_for_avail(struct snd_pcm_substream
*substream
,
1819 snd_pcm_uframes_t
*availp
)
1821 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1822 int is_playback
= substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
;
1823 wait_queue_entry_t wait
;
1825 snd_pcm_uframes_t avail
= 0;
1826 long wait_time
, tout
;
1828 init_waitqueue_entry(&wait
, current
);
1829 set_current_state(TASK_INTERRUPTIBLE
);
1830 add_wait_queue(&runtime
->tsleep
, &wait
);
1832 if (runtime
->no_period_wakeup
)
1833 wait_time
= MAX_SCHEDULE_TIMEOUT
;
1836 if (runtime
->rate
) {
1837 long t
= runtime
->period_size
* 2 / runtime
->rate
;
1838 wait_time
= max(t
, wait_time
);
1840 wait_time
= msecs_to_jiffies(wait_time
* 1000);
1844 if (signal_pending(current
)) {
1850 * We need to check if space became available already
1851 * (and thus the wakeup happened already) first to close
1852 * the race of space already having become available.
1853 * This check must happen after been added to the waitqueue
1854 * and having current state be INTERRUPTIBLE.
1856 avail
= snd_pcm_avail(substream
);
1857 if (avail
>= runtime
->twake
)
1859 snd_pcm_stream_unlock_irq(substream
);
1861 tout
= schedule_timeout(wait_time
);
1863 snd_pcm_stream_lock_irq(substream
);
1864 set_current_state(TASK_INTERRUPTIBLE
);
1865 switch (runtime
->status
->state
) {
1866 case SNDRV_PCM_STATE_SUSPENDED
:
1869 case SNDRV_PCM_STATE_XRUN
:
1872 case SNDRV_PCM_STATE_DRAINING
:
1876 avail
= 0; /* indicate draining */
1878 case SNDRV_PCM_STATE_OPEN
:
1879 case SNDRV_PCM_STATE_SETUP
:
1880 case SNDRV_PCM_STATE_DISCONNECTED
:
1883 case SNDRV_PCM_STATE_PAUSED
:
1887 pcm_dbg(substream
->pcm
,
1888 "%s write error (DMA or IRQ trouble?)\n",
1889 is_playback
? "playback" : "capture");
1895 set_current_state(TASK_RUNNING
);
1896 remove_wait_queue(&runtime
->tsleep
, &wait
);
1901 typedef int (*pcm_transfer_f
)(struct snd_pcm_substream
*substream
,
1902 int channel
, unsigned long hwoff
,
1903 void *buf
, unsigned long bytes
);
1905 typedef int (*pcm_copy_f
)(struct snd_pcm_substream
*, snd_pcm_uframes_t
, void *,
1906 snd_pcm_uframes_t
, snd_pcm_uframes_t
, pcm_transfer_f
);
1908 /* calculate the target DMA-buffer position to be written/read */
1909 static void *get_dma_ptr(struct snd_pcm_runtime
*runtime
,
1910 int channel
, unsigned long hwoff
)
1912 return runtime
->dma_area
+ hwoff
+
1913 channel
* (runtime
->dma_bytes
/ runtime
->channels
);
1916 /* default copy_user ops for write; used for both interleaved and non- modes */
1917 static int default_write_copy(struct snd_pcm_substream
*substream
,
1918 int channel
, unsigned long hwoff
,
1919 void *buf
, unsigned long bytes
)
1921 if (copy_from_user(get_dma_ptr(substream
->runtime
, channel
, hwoff
),
1922 (void __user
*)buf
, bytes
))
1927 /* default copy_kernel ops for write */
1928 static int default_write_copy_kernel(struct snd_pcm_substream
*substream
,
1929 int channel
, unsigned long hwoff
,
1930 void *buf
, unsigned long bytes
)
1932 memcpy(get_dma_ptr(substream
->runtime
, channel
, hwoff
), buf
, bytes
);
1936 /* fill silence instead of copy data; called as a transfer helper
1937 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1938 * a NULL buffer is passed
1940 static int fill_silence(struct snd_pcm_substream
*substream
, int channel
,
1941 unsigned long hwoff
, void *buf
, unsigned long bytes
)
1943 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1945 if (substream
->stream
!= SNDRV_PCM_STREAM_PLAYBACK
)
1947 if (substream
->ops
->fill_silence
)
1948 return substream
->ops
->fill_silence(substream
, channel
,
1951 snd_pcm_format_set_silence(runtime
->format
,
1952 get_dma_ptr(runtime
, channel
, hwoff
),
1953 bytes_to_samples(runtime
, bytes
));
1957 /* default copy_user ops for read; used for both interleaved and non- modes */
1958 static int default_read_copy(struct snd_pcm_substream
*substream
,
1959 int channel
, unsigned long hwoff
,
1960 void *buf
, unsigned long bytes
)
1962 if (copy_to_user((void __user
*)buf
,
1963 get_dma_ptr(substream
->runtime
, channel
, hwoff
),
1969 /* default copy_kernel ops for read */
1970 static int default_read_copy_kernel(struct snd_pcm_substream
*substream
,
1971 int channel
, unsigned long hwoff
,
1972 void *buf
, unsigned long bytes
)
1974 memcpy(buf
, get_dma_ptr(substream
->runtime
, channel
, hwoff
), bytes
);
1978 /* call transfer function with the converted pointers and sizes;
1979 * for interleaved mode, it's one shot for all samples
1981 static int interleaved_copy(struct snd_pcm_substream
*substream
,
1982 snd_pcm_uframes_t hwoff
, void *data
,
1983 snd_pcm_uframes_t off
,
1984 snd_pcm_uframes_t frames
,
1985 pcm_transfer_f transfer
)
1987 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1989 /* convert to bytes */
1990 hwoff
= frames_to_bytes(runtime
, hwoff
);
1991 off
= frames_to_bytes(runtime
, off
);
1992 frames
= frames_to_bytes(runtime
, frames
);
1993 return transfer(substream
, 0, hwoff
, data
+ off
, frames
);
1996 /* call transfer function with the converted pointers and sizes for each
1997 * non-interleaved channel; when buffer is NULL, silencing instead of copying
1999 static int noninterleaved_copy(struct snd_pcm_substream
*substream
,
2000 snd_pcm_uframes_t hwoff
, void *data
,
2001 snd_pcm_uframes_t off
,
2002 snd_pcm_uframes_t frames
,
2003 pcm_transfer_f transfer
)
2005 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2006 int channels
= runtime
->channels
;
2010 /* convert to bytes; note that it's not frames_to_bytes() here.
2011 * in non-interleaved mode, we copy for each channel, thus
2012 * each copy is n_samples bytes x channels = whole frames.
2014 off
= samples_to_bytes(runtime
, off
);
2015 frames
= samples_to_bytes(runtime
, frames
);
2016 hwoff
= samples_to_bytes(runtime
, hwoff
);
2017 for (c
= 0; c
< channels
; ++c
, ++bufs
) {
2018 if (!data
|| !*bufs
)
2019 err
= fill_silence(substream
, c
, hwoff
, NULL
, frames
);
2021 err
= transfer(substream
, c
, hwoff
, *bufs
+ off
,
2029 /* fill silence on the given buffer position;
2030 * called from snd_pcm_playback_silence()
2032 static int fill_silence_frames(struct snd_pcm_substream
*substream
,
2033 snd_pcm_uframes_t off
, snd_pcm_uframes_t frames
)
2035 if (substream
->runtime
->access
== SNDRV_PCM_ACCESS_RW_INTERLEAVED
||
2036 substream
->runtime
->access
== SNDRV_PCM_ACCESS_MMAP_INTERLEAVED
)
2037 return interleaved_copy(substream
, off
, NULL
, 0, frames
,
2040 return noninterleaved_copy(substream
, off
, NULL
, 0, frames
,
2044 /* sanity-check for read/write methods */
2045 static int pcm_sanity_check(struct snd_pcm_substream
*substream
)
2047 struct snd_pcm_runtime
*runtime
;
2048 if (PCM_RUNTIME_CHECK(substream
))
2050 runtime
= substream
->runtime
;
2051 if (snd_BUG_ON(!substream
->ops
->copy_user
&& !runtime
->dma_area
))
2053 if (runtime
->status
->state
== SNDRV_PCM_STATE_OPEN
)
2058 static int pcm_accessible_state(struct snd_pcm_runtime
*runtime
)
2060 switch (runtime
->status
->state
) {
2061 case SNDRV_PCM_STATE_PREPARED
:
2062 case SNDRV_PCM_STATE_RUNNING
:
2063 case SNDRV_PCM_STATE_PAUSED
:
2065 case SNDRV_PCM_STATE_XRUN
:
2067 case SNDRV_PCM_STATE_SUSPENDED
:
2074 /* update to the given appl_ptr and call ack callback if needed;
2075 * when an error is returned, take back to the original value
2077 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream
*substream
,
2078 snd_pcm_uframes_t appl_ptr
)
2080 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2081 snd_pcm_uframes_t old_appl_ptr
= runtime
->control
->appl_ptr
;
2084 if (old_appl_ptr
== appl_ptr
)
2087 runtime
->control
->appl_ptr
= appl_ptr
;
2088 if (substream
->ops
->ack
) {
2089 ret
= substream
->ops
->ack(substream
);
2091 runtime
->control
->appl_ptr
= old_appl_ptr
;
2096 trace_applptr(substream
, old_appl_ptr
, appl_ptr
);
2101 /* the common loop for read/write data */
2102 snd_pcm_sframes_t
__snd_pcm_lib_xfer(struct snd_pcm_substream
*substream
,
2103 void *data
, bool interleaved
,
2104 snd_pcm_uframes_t size
, bool in_kernel
)
2106 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2107 snd_pcm_uframes_t xfer
= 0;
2108 snd_pcm_uframes_t offset
= 0;
2109 snd_pcm_uframes_t avail
;
2111 pcm_transfer_f transfer
;
2116 err
= pcm_sanity_check(substream
);
2120 is_playback
= substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
;
2122 if (runtime
->access
!= SNDRV_PCM_ACCESS_RW_INTERLEAVED
&&
2123 runtime
->channels
> 1)
2125 writer
= interleaved_copy
;
2127 if (runtime
->access
!= SNDRV_PCM_ACCESS_RW_NONINTERLEAVED
)
2129 writer
= noninterleaved_copy
;
2134 transfer
= fill_silence
;
2137 } else if (in_kernel
) {
2138 if (substream
->ops
->copy_kernel
)
2139 transfer
= substream
->ops
->copy_kernel
;
2141 transfer
= is_playback
?
2142 default_write_copy_kernel
: default_read_copy_kernel
;
2144 if (substream
->ops
->copy_user
)
2145 transfer
= (pcm_transfer_f
)substream
->ops
->copy_user
;
2147 transfer
= is_playback
?
2148 default_write_copy
: default_read_copy
;
2154 nonblock
= !!(substream
->f_flags
& O_NONBLOCK
);
2156 snd_pcm_stream_lock_irq(substream
);
2157 err
= pcm_accessible_state(runtime
);
2162 runtime
->status
->state
== SNDRV_PCM_STATE_PREPARED
&&
2163 size
>= runtime
->start_threshold
) {
2164 err
= snd_pcm_start(substream
);
2169 runtime
->twake
= runtime
->control
->avail_min
? : 1;
2170 if (runtime
->status
->state
== SNDRV_PCM_STATE_RUNNING
)
2171 snd_pcm_update_hw_ptr(substream
);
2172 avail
= snd_pcm_avail(substream
);
2174 snd_pcm_uframes_t frames
, appl_ptr
, appl_ofs
;
2175 snd_pcm_uframes_t cont
;
2178 runtime
->status
->state
== SNDRV_PCM_STATE_DRAINING
) {
2179 snd_pcm_stop(substream
, SNDRV_PCM_STATE_SETUP
);
2186 runtime
->twake
= min_t(snd_pcm_uframes_t
, size
,
2187 runtime
->control
->avail_min
? : 1);
2188 err
= wait_for_avail(substream
, &avail
);
2192 continue; /* draining */
2194 frames
= size
> avail
? avail
: size
;
2195 appl_ptr
= READ_ONCE(runtime
->control
->appl_ptr
);
2196 appl_ofs
= appl_ptr
% runtime
->buffer_size
;
2197 cont
= runtime
->buffer_size
- appl_ofs
;
2200 if (snd_BUG_ON(!frames
)) {
2202 snd_pcm_stream_unlock_irq(substream
);
2205 snd_pcm_stream_unlock_irq(substream
);
2206 err
= writer(substream
, appl_ofs
, data
, offset
, frames
,
2208 snd_pcm_stream_lock_irq(substream
);
2211 err
= pcm_accessible_state(runtime
);
2215 if (appl_ptr
>= runtime
->boundary
)
2216 appl_ptr
-= runtime
->boundary
;
2217 err
= pcm_lib_apply_appl_ptr(substream
, appl_ptr
);
2226 runtime
->status
->state
== SNDRV_PCM_STATE_PREPARED
&&
2227 snd_pcm_playback_hw_avail(runtime
) >= (snd_pcm_sframes_t
)runtime
->start_threshold
) {
2228 err
= snd_pcm_start(substream
);
2235 if (xfer
> 0 && err
>= 0)
2236 snd_pcm_update_state(substream
, runtime
);
2237 snd_pcm_stream_unlock_irq(substream
);
2238 return xfer
> 0 ? (snd_pcm_sframes_t
)xfer
: err
;
2240 EXPORT_SYMBOL(__snd_pcm_lib_xfer
);
2243 * standard channel mapping helpers
2246 /* default channel maps for multi-channel playbacks, up to 8 channels */
2247 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps
[] = {
2249 .map
= { SNDRV_CHMAP_MONO
} },
2251 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
} },
2253 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2254 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
} },
2256 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2257 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
,
2258 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
} },
2260 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2261 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
,
2262 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
,
2263 SNDRV_CHMAP_SL
, SNDRV_CHMAP_SR
} },
2266 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps
);
2268 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2269 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps
[] = {
2271 .map
= { SNDRV_CHMAP_MONO
} },
2273 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
} },
2275 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2276 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
} },
2278 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2279 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
,
2280 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
} },
2282 .map
= { SNDRV_CHMAP_FL
, SNDRV_CHMAP_FR
,
2283 SNDRV_CHMAP_FC
, SNDRV_CHMAP_LFE
,
2284 SNDRV_CHMAP_RL
, SNDRV_CHMAP_RR
,
2285 SNDRV_CHMAP_SL
, SNDRV_CHMAP_SR
} },
2288 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps
);
2290 static bool valid_chmap_channels(const struct snd_pcm_chmap
*info
, int ch
)
2292 if (ch
> info
->max_channels
)
2294 return !info
->channel_mask
|| (info
->channel_mask
& (1U << ch
));
2297 static int pcm_chmap_ctl_info(struct snd_kcontrol
*kcontrol
,
2298 struct snd_ctl_elem_info
*uinfo
)
2300 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2302 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
2304 uinfo
->count
= info
->max_channels
;
2305 uinfo
->value
.integer
.min
= 0;
2306 uinfo
->value
.integer
.max
= SNDRV_CHMAP_LAST
;
2310 /* get callback for channel map ctl element
2311 * stores the channel position firstly matching with the current channels
2313 static int pcm_chmap_ctl_get(struct snd_kcontrol
*kcontrol
,
2314 struct snd_ctl_elem_value
*ucontrol
)
2316 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2317 unsigned int idx
= snd_ctl_get_ioffidx(kcontrol
, &ucontrol
->id
);
2318 struct snd_pcm_substream
*substream
;
2319 const struct snd_pcm_chmap_elem
*map
;
2323 substream
= snd_pcm_chmap_substream(info
, idx
);
2326 memset(ucontrol
->value
.integer
.value
, 0,
2327 sizeof(ucontrol
->value
.integer
.value
));
2328 if (!substream
->runtime
)
2329 return 0; /* no channels set */
2330 for (map
= info
->chmap
; map
->channels
; map
++) {
2332 if (map
->channels
== substream
->runtime
->channels
&&
2333 valid_chmap_channels(info
, map
->channels
)) {
2334 for (i
= 0; i
< map
->channels
; i
++)
2335 ucontrol
->value
.integer
.value
[i
] = map
->map
[i
];
2342 /* tlv callback for channel map ctl element
2343 * expands the pre-defined channel maps in a form of TLV
2345 static int pcm_chmap_ctl_tlv(struct snd_kcontrol
*kcontrol
, int op_flag
,
2346 unsigned int size
, unsigned int __user
*tlv
)
2348 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2349 const struct snd_pcm_chmap_elem
*map
;
2350 unsigned int __user
*dst
;
2357 if (put_user(SNDRV_CTL_TLVT_CONTAINER
, tlv
))
2361 for (map
= info
->chmap
; map
->channels
; map
++) {
2362 int chs_bytes
= map
->channels
* 4;
2363 if (!valid_chmap_channels(info
, map
->channels
))
2367 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED
, dst
) ||
2368 put_user(chs_bytes
, dst
+ 1))
2373 if (size
< chs_bytes
)
2377 for (c
= 0; c
< map
->channels
; c
++) {
2378 if (put_user(map
->map
[c
], dst
))
2383 if (put_user(count
, tlv
+ 1))
2388 static void pcm_chmap_ctl_private_free(struct snd_kcontrol
*kcontrol
)
2390 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
2391 info
->pcm
->streams
[info
->stream
].chmap_kctl
= NULL
;
2396 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2397 * @pcm: the assigned PCM instance
2398 * @stream: stream direction
2399 * @chmap: channel map elements (for query)
2400 * @max_channels: the max number of channels for the stream
2401 * @private_value: the value passed to each kcontrol's private_value field
2402 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2404 * Create channel-mapping control elements assigned to the given PCM stream(s).
2405 * Return: Zero if successful, or a negative error value.
2407 int snd_pcm_add_chmap_ctls(struct snd_pcm
*pcm
, int stream
,
2408 const struct snd_pcm_chmap_elem
*chmap
,
2410 unsigned long private_value
,
2411 struct snd_pcm_chmap
**info_ret
)
2413 struct snd_pcm_chmap
*info
;
2414 struct snd_kcontrol_new knew
= {
2415 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
2416 .access
= SNDRV_CTL_ELEM_ACCESS_READ
|
2417 SNDRV_CTL_ELEM_ACCESS_TLV_READ
|
2418 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK
,
2419 .info
= pcm_chmap_ctl_info
,
2420 .get
= pcm_chmap_ctl_get
,
2421 .tlv
.c
= pcm_chmap_ctl_tlv
,
2425 if (WARN_ON(pcm
->streams
[stream
].chmap_kctl
))
2427 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
2431 info
->stream
= stream
;
2432 info
->chmap
= chmap
;
2433 info
->max_channels
= max_channels
;
2434 if (stream
== SNDRV_PCM_STREAM_PLAYBACK
)
2435 knew
.name
= "Playback Channel Map";
2437 knew
.name
= "Capture Channel Map";
2438 knew
.device
= pcm
->device
;
2439 knew
.count
= pcm
->streams
[stream
].substream_count
;
2440 knew
.private_value
= private_value
;
2441 info
->kctl
= snd_ctl_new1(&knew
, info
);
2446 info
->kctl
->private_free
= pcm_chmap_ctl_private_free
;
2447 err
= snd_ctl_add(pcm
->card
, info
->kctl
);
2450 pcm
->streams
[stream
].chmap_kctl
= info
->kctl
;
2455 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls
);