hostfs: hostfs_file_open: Fix a fd leak in hostfs_file_open
[linux/fpc-iii.git] / fs / btrfs / file.c
blob30982bbd31c30c2b154836b0f51b94c37e22923c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43 #include "qgroup.h"
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
47 * when auto defrag is enabled we
48 * queue up these defrag structs to remember which
49 * inodes need defragging passes
51 struct inode_defrag {
52 struct rb_node rb_node;
53 /* objectid */
54 u64 ino;
56 * transid where the defrag was added, we search for
57 * extents newer than this
59 u64 transid;
61 /* root objectid */
62 u64 root;
64 /* last offset we were able to defrag */
65 u64 last_offset;
67 /* if we've wrapped around back to zero once already */
68 int cycled;
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 struct inode_defrag *defrag2)
74 if (defrag1->root > defrag2->root)
75 return 1;
76 else if (defrag1->root < defrag2->root)
77 return -1;
78 else if (defrag1->ino > defrag2->ino)
79 return 1;
80 else if (defrag1->ino < defrag2->ino)
81 return -1;
82 else
83 return 0;
86 /* pop a record for an inode into the defrag tree. The lock
87 * must be held already
89 * If you're inserting a record for an older transid than an
90 * existing record, the transid already in the tree is lowered
92 * If an existing record is found the defrag item you
93 * pass in is freed
95 static int __btrfs_add_inode_defrag(struct inode *inode,
96 struct inode_defrag *defrag)
98 struct btrfs_root *root = BTRFS_I(inode)->root;
99 struct inode_defrag *entry;
100 struct rb_node **p;
101 struct rb_node *parent = NULL;
102 int ret;
104 p = &root->fs_info->defrag_inodes.rb_node;
105 while (*p) {
106 parent = *p;
107 entry = rb_entry(parent, struct inode_defrag, rb_node);
109 ret = __compare_inode_defrag(defrag, entry);
110 if (ret < 0)
111 p = &parent->rb_left;
112 else if (ret > 0)
113 p = &parent->rb_right;
114 else {
115 /* if we're reinserting an entry for
116 * an old defrag run, make sure to
117 * lower the transid of our existing record
119 if (defrag->transid < entry->transid)
120 entry->transid = defrag->transid;
121 if (defrag->last_offset > entry->last_offset)
122 entry->last_offset = defrag->last_offset;
123 return -EEXIST;
126 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
127 rb_link_node(&defrag->rb_node, parent, p);
128 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
129 return 0;
132 static inline int __need_auto_defrag(struct btrfs_root *root)
134 if (!btrfs_test_opt(root, AUTO_DEFRAG))
135 return 0;
137 if (btrfs_fs_closing(root->fs_info))
138 return 0;
140 return 1;
144 * insert a defrag record for this inode if auto defrag is
145 * enabled
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 struct inode *inode)
150 struct btrfs_root *root = BTRFS_I(inode)->root;
151 struct inode_defrag *defrag;
152 u64 transid;
153 int ret;
155 if (!__need_auto_defrag(root))
156 return 0;
158 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
159 return 0;
161 if (trans)
162 transid = trans->transid;
163 else
164 transid = BTRFS_I(inode)->root->last_trans;
166 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
167 if (!defrag)
168 return -ENOMEM;
170 defrag->ino = btrfs_ino(inode);
171 defrag->transid = transid;
172 defrag->root = root->root_key.objectid;
174 spin_lock(&root->fs_info->defrag_inodes_lock);
175 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
177 * If we set IN_DEFRAG flag and evict the inode from memory,
178 * and then re-read this inode, this new inode doesn't have
179 * IN_DEFRAG flag. At the case, we may find the existed defrag.
181 ret = __btrfs_add_inode_defrag(inode, defrag);
182 if (ret)
183 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184 } else {
185 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
187 spin_unlock(&root->fs_info->defrag_inodes_lock);
188 return 0;
192 * Requeue the defrag object. If there is a defrag object that points to
193 * the same inode in the tree, we will merge them together (by
194 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
196 static void btrfs_requeue_inode_defrag(struct inode *inode,
197 struct inode_defrag *defrag)
199 struct btrfs_root *root = BTRFS_I(inode)->root;
200 int ret;
202 if (!__need_auto_defrag(root))
203 goto out;
206 * Here we don't check the IN_DEFRAG flag, because we need merge
207 * them together.
209 spin_lock(&root->fs_info->defrag_inodes_lock);
210 ret = __btrfs_add_inode_defrag(inode, defrag);
211 spin_unlock(&root->fs_info->defrag_inodes_lock);
212 if (ret)
213 goto out;
214 return;
215 out:
216 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
220 * pick the defragable inode that we want, if it doesn't exist, we will get
221 * the next one.
223 static struct inode_defrag *
224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
226 struct inode_defrag *entry = NULL;
227 struct inode_defrag tmp;
228 struct rb_node *p;
229 struct rb_node *parent = NULL;
230 int ret;
232 tmp.ino = ino;
233 tmp.root = root;
235 spin_lock(&fs_info->defrag_inodes_lock);
236 p = fs_info->defrag_inodes.rb_node;
237 while (p) {
238 parent = p;
239 entry = rb_entry(parent, struct inode_defrag, rb_node);
241 ret = __compare_inode_defrag(&tmp, entry);
242 if (ret < 0)
243 p = parent->rb_left;
244 else if (ret > 0)
245 p = parent->rb_right;
246 else
247 goto out;
250 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
251 parent = rb_next(parent);
252 if (parent)
253 entry = rb_entry(parent, struct inode_defrag, rb_node);
254 else
255 entry = NULL;
257 out:
258 if (entry)
259 rb_erase(parent, &fs_info->defrag_inodes);
260 spin_unlock(&fs_info->defrag_inodes_lock);
261 return entry;
264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
266 struct inode_defrag *defrag;
267 struct rb_node *node;
269 spin_lock(&fs_info->defrag_inodes_lock);
270 node = rb_first(&fs_info->defrag_inodes);
271 while (node) {
272 rb_erase(node, &fs_info->defrag_inodes);
273 defrag = rb_entry(node, struct inode_defrag, rb_node);
274 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
276 if (need_resched()) {
277 spin_unlock(&fs_info->defrag_inodes_lock);
278 cond_resched();
279 spin_lock(&fs_info->defrag_inodes_lock);
282 node = rb_first(&fs_info->defrag_inodes);
284 spin_unlock(&fs_info->defrag_inodes_lock);
287 #define BTRFS_DEFRAG_BATCH 1024
289 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
290 struct inode_defrag *defrag)
292 struct btrfs_root *inode_root;
293 struct inode *inode;
294 struct btrfs_key key;
295 struct btrfs_ioctl_defrag_range_args range;
296 int num_defrag;
297 int index;
298 int ret;
300 /* get the inode */
301 key.objectid = defrag->root;
302 key.type = BTRFS_ROOT_ITEM_KEY;
303 key.offset = (u64)-1;
305 index = srcu_read_lock(&fs_info->subvol_srcu);
307 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
308 if (IS_ERR(inode_root)) {
309 ret = PTR_ERR(inode_root);
310 goto cleanup;
313 key.objectid = defrag->ino;
314 key.type = BTRFS_INODE_ITEM_KEY;
315 key.offset = 0;
316 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
317 if (IS_ERR(inode)) {
318 ret = PTR_ERR(inode);
319 goto cleanup;
321 srcu_read_unlock(&fs_info->subvol_srcu, index);
323 /* do a chunk of defrag */
324 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
325 memset(&range, 0, sizeof(range));
326 range.len = (u64)-1;
327 range.start = defrag->last_offset;
329 sb_start_write(fs_info->sb);
330 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
331 BTRFS_DEFRAG_BATCH);
332 sb_end_write(fs_info->sb);
334 * if we filled the whole defrag batch, there
335 * must be more work to do. Queue this defrag
336 * again
338 if (num_defrag == BTRFS_DEFRAG_BATCH) {
339 defrag->last_offset = range.start;
340 btrfs_requeue_inode_defrag(inode, defrag);
341 } else if (defrag->last_offset && !defrag->cycled) {
343 * we didn't fill our defrag batch, but
344 * we didn't start at zero. Make sure we loop
345 * around to the start of the file.
347 defrag->last_offset = 0;
348 defrag->cycled = 1;
349 btrfs_requeue_inode_defrag(inode, defrag);
350 } else {
351 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
354 iput(inode);
355 return 0;
356 cleanup:
357 srcu_read_unlock(&fs_info->subvol_srcu, index);
358 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
359 return ret;
363 * run through the list of inodes in the FS that need
364 * defragging
366 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
368 struct inode_defrag *defrag;
369 u64 first_ino = 0;
370 u64 root_objectid = 0;
372 atomic_inc(&fs_info->defrag_running);
373 while (1) {
374 /* Pause the auto defragger. */
375 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
376 &fs_info->fs_state))
377 break;
379 if (!__need_auto_defrag(fs_info->tree_root))
380 break;
382 /* find an inode to defrag */
383 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
384 first_ino);
385 if (!defrag) {
386 if (root_objectid || first_ino) {
387 root_objectid = 0;
388 first_ino = 0;
389 continue;
390 } else {
391 break;
395 first_ino = defrag->ino + 1;
396 root_objectid = defrag->root;
398 __btrfs_run_defrag_inode(fs_info, defrag);
400 atomic_dec(&fs_info->defrag_running);
403 * during unmount, we use the transaction_wait queue to
404 * wait for the defragger to stop
406 wake_up(&fs_info->transaction_wait);
407 return 0;
410 /* simple helper to fault in pages and copy. This should go away
411 * and be replaced with calls into generic code.
413 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
414 size_t write_bytes,
415 struct page **prepared_pages,
416 struct iov_iter *i)
418 size_t copied = 0;
419 size_t total_copied = 0;
420 int pg = 0;
421 int offset = pos & (PAGE_CACHE_SIZE - 1);
423 while (write_bytes > 0) {
424 size_t count = min_t(size_t,
425 PAGE_CACHE_SIZE - offset, write_bytes);
426 struct page *page = prepared_pages[pg];
428 * Copy data from userspace to the current page
430 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
432 /* Flush processor's dcache for this page */
433 flush_dcache_page(page);
436 * if we get a partial write, we can end up with
437 * partially up to date pages. These add
438 * a lot of complexity, so make sure they don't
439 * happen by forcing this copy to be retried.
441 * The rest of the btrfs_file_write code will fall
442 * back to page at a time copies after we return 0.
444 if (!PageUptodate(page) && copied < count)
445 copied = 0;
447 iov_iter_advance(i, copied);
448 write_bytes -= copied;
449 total_copied += copied;
451 /* Return to btrfs_file_write_iter to fault page */
452 if (unlikely(copied == 0))
453 break;
455 if (copied < PAGE_CACHE_SIZE - offset) {
456 offset += copied;
457 } else {
458 pg++;
459 offset = 0;
462 return total_copied;
466 * unlocks pages after btrfs_file_write is done with them
468 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
470 size_t i;
471 for (i = 0; i < num_pages; i++) {
472 /* page checked is some magic around finding pages that
473 * have been modified without going through btrfs_set_page_dirty
474 * clear it here. There should be no need to mark the pages
475 * accessed as prepare_pages should have marked them accessed
476 * in prepare_pages via find_or_create_page()
478 ClearPageChecked(pages[i]);
479 unlock_page(pages[i]);
480 page_cache_release(pages[i]);
485 * after copy_from_user, pages need to be dirtied and we need to make
486 * sure holes are created between the current EOF and the start of
487 * any next extents (if required).
489 * this also makes the decision about creating an inline extent vs
490 * doing real data extents, marking pages dirty and delalloc as required.
492 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
493 struct page **pages, size_t num_pages,
494 loff_t pos, size_t write_bytes,
495 struct extent_state **cached)
497 int err = 0;
498 int i;
499 u64 num_bytes;
500 u64 start_pos;
501 u64 end_of_last_block;
502 u64 end_pos = pos + write_bytes;
503 loff_t isize = i_size_read(inode);
505 start_pos = pos & ~((u64)root->sectorsize - 1);
506 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
508 end_of_last_block = start_pos + num_bytes - 1;
509 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
510 cached);
511 if (err)
512 return err;
514 for (i = 0; i < num_pages; i++) {
515 struct page *p = pages[i];
516 SetPageUptodate(p);
517 ClearPageChecked(p);
518 set_page_dirty(p);
522 * we've only changed i_size in ram, and we haven't updated
523 * the disk i_size. There is no need to log the inode
524 * at this time.
526 if (end_pos > isize)
527 i_size_write(inode, end_pos);
528 return 0;
532 * this drops all the extents in the cache that intersect the range
533 * [start, end]. Existing extents are split as required.
535 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
536 int skip_pinned)
538 struct extent_map *em;
539 struct extent_map *split = NULL;
540 struct extent_map *split2 = NULL;
541 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
542 u64 len = end - start + 1;
543 u64 gen;
544 int ret;
545 int testend = 1;
546 unsigned long flags;
547 int compressed = 0;
548 bool modified;
550 WARN_ON(end < start);
551 if (end == (u64)-1) {
552 len = (u64)-1;
553 testend = 0;
555 while (1) {
556 int no_splits = 0;
558 modified = false;
559 if (!split)
560 split = alloc_extent_map();
561 if (!split2)
562 split2 = alloc_extent_map();
563 if (!split || !split2)
564 no_splits = 1;
566 write_lock(&em_tree->lock);
567 em = lookup_extent_mapping(em_tree, start, len);
568 if (!em) {
569 write_unlock(&em_tree->lock);
570 break;
572 flags = em->flags;
573 gen = em->generation;
574 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
575 if (testend && em->start + em->len >= start + len) {
576 free_extent_map(em);
577 write_unlock(&em_tree->lock);
578 break;
580 start = em->start + em->len;
581 if (testend)
582 len = start + len - (em->start + em->len);
583 free_extent_map(em);
584 write_unlock(&em_tree->lock);
585 continue;
587 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
588 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
589 clear_bit(EXTENT_FLAG_LOGGING, &flags);
590 modified = !list_empty(&em->list);
591 if (no_splits)
592 goto next;
594 if (em->start < start) {
595 split->start = em->start;
596 split->len = start - em->start;
598 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
599 split->orig_start = em->orig_start;
600 split->block_start = em->block_start;
602 if (compressed)
603 split->block_len = em->block_len;
604 else
605 split->block_len = split->len;
606 split->orig_block_len = max(split->block_len,
607 em->orig_block_len);
608 split->ram_bytes = em->ram_bytes;
609 } else {
610 split->orig_start = split->start;
611 split->block_len = 0;
612 split->block_start = em->block_start;
613 split->orig_block_len = 0;
614 split->ram_bytes = split->len;
617 split->generation = gen;
618 split->bdev = em->bdev;
619 split->flags = flags;
620 split->compress_type = em->compress_type;
621 replace_extent_mapping(em_tree, em, split, modified);
622 free_extent_map(split);
623 split = split2;
624 split2 = NULL;
626 if (testend && em->start + em->len > start + len) {
627 u64 diff = start + len - em->start;
629 split->start = start + len;
630 split->len = em->start + em->len - (start + len);
631 split->bdev = em->bdev;
632 split->flags = flags;
633 split->compress_type = em->compress_type;
634 split->generation = gen;
636 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
637 split->orig_block_len = max(em->block_len,
638 em->orig_block_len);
640 split->ram_bytes = em->ram_bytes;
641 if (compressed) {
642 split->block_len = em->block_len;
643 split->block_start = em->block_start;
644 split->orig_start = em->orig_start;
645 } else {
646 split->block_len = split->len;
647 split->block_start = em->block_start
648 + diff;
649 split->orig_start = em->orig_start;
651 } else {
652 split->ram_bytes = split->len;
653 split->orig_start = split->start;
654 split->block_len = 0;
655 split->block_start = em->block_start;
656 split->orig_block_len = 0;
659 if (extent_map_in_tree(em)) {
660 replace_extent_mapping(em_tree, em, split,
661 modified);
662 } else {
663 ret = add_extent_mapping(em_tree, split,
664 modified);
665 ASSERT(ret == 0); /* Logic error */
667 free_extent_map(split);
668 split = NULL;
670 next:
671 if (extent_map_in_tree(em))
672 remove_extent_mapping(em_tree, em);
673 write_unlock(&em_tree->lock);
675 /* once for us */
676 free_extent_map(em);
677 /* once for the tree*/
678 free_extent_map(em);
680 if (split)
681 free_extent_map(split);
682 if (split2)
683 free_extent_map(split2);
687 * this is very complex, but the basic idea is to drop all extents
688 * in the range start - end. hint_block is filled in with a block number
689 * that would be a good hint to the block allocator for this file.
691 * If an extent intersects the range but is not entirely inside the range
692 * it is either truncated or split. Anything entirely inside the range
693 * is deleted from the tree.
695 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
696 struct btrfs_root *root, struct inode *inode,
697 struct btrfs_path *path, u64 start, u64 end,
698 u64 *drop_end, int drop_cache,
699 int replace_extent,
700 u32 extent_item_size,
701 int *key_inserted)
703 struct extent_buffer *leaf;
704 struct btrfs_file_extent_item *fi;
705 struct btrfs_key key;
706 struct btrfs_key new_key;
707 u64 ino = btrfs_ino(inode);
708 u64 search_start = start;
709 u64 disk_bytenr = 0;
710 u64 num_bytes = 0;
711 u64 extent_offset = 0;
712 u64 extent_end = 0;
713 int del_nr = 0;
714 int del_slot = 0;
715 int extent_type;
716 int recow;
717 int ret;
718 int modify_tree = -1;
719 int update_refs;
720 int found = 0;
721 int leafs_visited = 0;
723 if (drop_cache)
724 btrfs_drop_extent_cache(inode, start, end - 1, 0);
726 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
727 modify_tree = 0;
729 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
730 root == root->fs_info->tree_root);
731 while (1) {
732 recow = 0;
733 ret = btrfs_lookup_file_extent(trans, root, path, ino,
734 search_start, modify_tree);
735 if (ret < 0)
736 break;
737 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
738 leaf = path->nodes[0];
739 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
740 if (key.objectid == ino &&
741 key.type == BTRFS_EXTENT_DATA_KEY)
742 path->slots[0]--;
744 ret = 0;
745 leafs_visited++;
746 next_slot:
747 leaf = path->nodes[0];
748 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
749 BUG_ON(del_nr > 0);
750 ret = btrfs_next_leaf(root, path);
751 if (ret < 0)
752 break;
753 if (ret > 0) {
754 ret = 0;
755 break;
757 leafs_visited++;
758 leaf = path->nodes[0];
759 recow = 1;
762 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
763 if (key.objectid > ino ||
764 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
765 break;
767 fi = btrfs_item_ptr(leaf, path->slots[0],
768 struct btrfs_file_extent_item);
769 extent_type = btrfs_file_extent_type(leaf, fi);
771 if (extent_type == BTRFS_FILE_EXTENT_REG ||
772 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
773 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
774 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
775 extent_offset = btrfs_file_extent_offset(leaf, fi);
776 extent_end = key.offset +
777 btrfs_file_extent_num_bytes(leaf, fi);
778 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
779 extent_end = key.offset +
780 btrfs_file_extent_inline_len(leaf,
781 path->slots[0], fi);
782 } else {
783 WARN_ON(1);
784 extent_end = search_start;
788 * Don't skip extent items representing 0 byte lengths. They
789 * used to be created (bug) if while punching holes we hit
790 * -ENOSPC condition. So if we find one here, just ensure we
791 * delete it, otherwise we would insert a new file extent item
792 * with the same key (offset) as that 0 bytes length file
793 * extent item in the call to setup_items_for_insert() later
794 * in this function.
796 if (extent_end == key.offset && extent_end >= search_start)
797 goto delete_extent_item;
799 if (extent_end <= search_start) {
800 path->slots[0]++;
801 goto next_slot;
804 found = 1;
805 search_start = max(key.offset, start);
806 if (recow || !modify_tree) {
807 modify_tree = -1;
808 btrfs_release_path(path);
809 continue;
813 * | - range to drop - |
814 * | -------- extent -------- |
816 if (start > key.offset && end < extent_end) {
817 BUG_ON(del_nr > 0);
818 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
819 ret = -EOPNOTSUPP;
820 break;
823 memcpy(&new_key, &key, sizeof(new_key));
824 new_key.offset = start;
825 ret = btrfs_duplicate_item(trans, root, path,
826 &new_key);
827 if (ret == -EAGAIN) {
828 btrfs_release_path(path);
829 continue;
831 if (ret < 0)
832 break;
834 leaf = path->nodes[0];
835 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
836 struct btrfs_file_extent_item);
837 btrfs_set_file_extent_num_bytes(leaf, fi,
838 start - key.offset);
840 fi = btrfs_item_ptr(leaf, path->slots[0],
841 struct btrfs_file_extent_item);
843 extent_offset += start - key.offset;
844 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
845 btrfs_set_file_extent_num_bytes(leaf, fi,
846 extent_end - start);
847 btrfs_mark_buffer_dirty(leaf);
849 if (update_refs && disk_bytenr > 0) {
850 ret = btrfs_inc_extent_ref(trans, root,
851 disk_bytenr, num_bytes, 0,
852 root->root_key.objectid,
853 new_key.objectid,
854 start - extent_offset, 1);
855 BUG_ON(ret); /* -ENOMEM */
857 key.offset = start;
860 * | ---- range to drop ----- |
861 * | -------- extent -------- |
863 if (start <= key.offset && end < extent_end) {
864 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
865 ret = -EOPNOTSUPP;
866 break;
869 memcpy(&new_key, &key, sizeof(new_key));
870 new_key.offset = end;
871 btrfs_set_item_key_safe(root, path, &new_key);
873 extent_offset += end - key.offset;
874 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
875 btrfs_set_file_extent_num_bytes(leaf, fi,
876 extent_end - end);
877 btrfs_mark_buffer_dirty(leaf);
878 if (update_refs && disk_bytenr > 0)
879 inode_sub_bytes(inode, end - key.offset);
880 break;
883 search_start = extent_end;
885 * | ---- range to drop ----- |
886 * | -------- extent -------- |
888 if (start > key.offset && end >= extent_end) {
889 BUG_ON(del_nr > 0);
890 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
891 ret = -EOPNOTSUPP;
892 break;
895 btrfs_set_file_extent_num_bytes(leaf, fi,
896 start - key.offset);
897 btrfs_mark_buffer_dirty(leaf);
898 if (update_refs && disk_bytenr > 0)
899 inode_sub_bytes(inode, extent_end - start);
900 if (end == extent_end)
901 break;
903 path->slots[0]++;
904 goto next_slot;
908 * | ---- range to drop ----- |
909 * | ------ extent ------ |
911 if (start <= key.offset && end >= extent_end) {
912 delete_extent_item:
913 if (del_nr == 0) {
914 del_slot = path->slots[0];
915 del_nr = 1;
916 } else {
917 BUG_ON(del_slot + del_nr != path->slots[0]);
918 del_nr++;
921 if (update_refs &&
922 extent_type == BTRFS_FILE_EXTENT_INLINE) {
923 inode_sub_bytes(inode,
924 extent_end - key.offset);
925 extent_end = ALIGN(extent_end,
926 root->sectorsize);
927 } else if (update_refs && disk_bytenr > 0) {
928 ret = btrfs_free_extent(trans, root,
929 disk_bytenr, num_bytes, 0,
930 root->root_key.objectid,
931 key.objectid, key.offset -
932 extent_offset, 0);
933 BUG_ON(ret); /* -ENOMEM */
934 inode_sub_bytes(inode,
935 extent_end - key.offset);
938 if (end == extent_end)
939 break;
941 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
942 path->slots[0]++;
943 goto next_slot;
946 ret = btrfs_del_items(trans, root, path, del_slot,
947 del_nr);
948 if (ret) {
949 btrfs_abort_transaction(trans, root, ret);
950 break;
953 del_nr = 0;
954 del_slot = 0;
956 btrfs_release_path(path);
957 continue;
960 BUG_ON(1);
963 if (!ret && del_nr > 0) {
965 * Set path->slots[0] to first slot, so that after the delete
966 * if items are move off from our leaf to its immediate left or
967 * right neighbor leafs, we end up with a correct and adjusted
968 * path->slots[0] for our insertion (if replace_extent != 0).
970 path->slots[0] = del_slot;
971 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
972 if (ret)
973 btrfs_abort_transaction(trans, root, ret);
976 leaf = path->nodes[0];
978 * If btrfs_del_items() was called, it might have deleted a leaf, in
979 * which case it unlocked our path, so check path->locks[0] matches a
980 * write lock.
982 if (!ret && replace_extent && leafs_visited == 1 &&
983 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
984 path->locks[0] == BTRFS_WRITE_LOCK) &&
985 btrfs_leaf_free_space(root, leaf) >=
986 sizeof(struct btrfs_item) + extent_item_size) {
988 key.objectid = ino;
989 key.type = BTRFS_EXTENT_DATA_KEY;
990 key.offset = start;
991 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
992 struct btrfs_key slot_key;
994 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
995 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
996 path->slots[0]++;
998 setup_items_for_insert(root, path, &key,
999 &extent_item_size,
1000 extent_item_size,
1001 sizeof(struct btrfs_item) +
1002 extent_item_size, 1);
1003 *key_inserted = 1;
1006 if (!replace_extent || !(*key_inserted))
1007 btrfs_release_path(path);
1008 if (drop_end)
1009 *drop_end = found ? min(end, extent_end) : end;
1010 return ret;
1013 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1014 struct btrfs_root *root, struct inode *inode, u64 start,
1015 u64 end, int drop_cache)
1017 struct btrfs_path *path;
1018 int ret;
1020 path = btrfs_alloc_path();
1021 if (!path)
1022 return -ENOMEM;
1023 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1024 drop_cache, 0, 0, NULL);
1025 btrfs_free_path(path);
1026 return ret;
1029 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1030 u64 objectid, u64 bytenr, u64 orig_offset,
1031 u64 *start, u64 *end)
1033 struct btrfs_file_extent_item *fi;
1034 struct btrfs_key key;
1035 u64 extent_end;
1037 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1038 return 0;
1040 btrfs_item_key_to_cpu(leaf, &key, slot);
1041 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1042 return 0;
1044 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1045 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1046 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1047 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1048 btrfs_file_extent_compression(leaf, fi) ||
1049 btrfs_file_extent_encryption(leaf, fi) ||
1050 btrfs_file_extent_other_encoding(leaf, fi))
1051 return 0;
1053 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1054 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1055 return 0;
1057 *start = key.offset;
1058 *end = extent_end;
1059 return 1;
1063 * Mark extent in the range start - end as written.
1065 * This changes extent type from 'pre-allocated' to 'regular'. If only
1066 * part of extent is marked as written, the extent will be split into
1067 * two or three.
1069 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1070 struct inode *inode, u64 start, u64 end)
1072 struct btrfs_root *root = BTRFS_I(inode)->root;
1073 struct extent_buffer *leaf;
1074 struct btrfs_path *path;
1075 struct btrfs_file_extent_item *fi;
1076 struct btrfs_key key;
1077 struct btrfs_key new_key;
1078 u64 bytenr;
1079 u64 num_bytes;
1080 u64 extent_end;
1081 u64 orig_offset;
1082 u64 other_start;
1083 u64 other_end;
1084 u64 split;
1085 int del_nr = 0;
1086 int del_slot = 0;
1087 int recow;
1088 int ret;
1089 u64 ino = btrfs_ino(inode);
1091 path = btrfs_alloc_path();
1092 if (!path)
1093 return -ENOMEM;
1094 again:
1095 recow = 0;
1096 split = start;
1097 key.objectid = ino;
1098 key.type = BTRFS_EXTENT_DATA_KEY;
1099 key.offset = split;
1101 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1102 if (ret < 0)
1103 goto out;
1104 if (ret > 0 && path->slots[0] > 0)
1105 path->slots[0]--;
1107 leaf = path->nodes[0];
1108 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1109 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1110 fi = btrfs_item_ptr(leaf, path->slots[0],
1111 struct btrfs_file_extent_item);
1112 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1113 BTRFS_FILE_EXTENT_PREALLOC);
1114 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1115 BUG_ON(key.offset > start || extent_end < end);
1117 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1118 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1119 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1120 memcpy(&new_key, &key, sizeof(new_key));
1122 if (start == key.offset && end < extent_end) {
1123 other_start = 0;
1124 other_end = start;
1125 if (extent_mergeable(leaf, path->slots[0] - 1,
1126 ino, bytenr, orig_offset,
1127 &other_start, &other_end)) {
1128 new_key.offset = end;
1129 btrfs_set_item_key_safe(root, path, &new_key);
1130 fi = btrfs_item_ptr(leaf, path->slots[0],
1131 struct btrfs_file_extent_item);
1132 btrfs_set_file_extent_generation(leaf, fi,
1133 trans->transid);
1134 btrfs_set_file_extent_num_bytes(leaf, fi,
1135 extent_end - end);
1136 btrfs_set_file_extent_offset(leaf, fi,
1137 end - orig_offset);
1138 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1139 struct btrfs_file_extent_item);
1140 btrfs_set_file_extent_generation(leaf, fi,
1141 trans->transid);
1142 btrfs_set_file_extent_num_bytes(leaf, fi,
1143 end - other_start);
1144 btrfs_mark_buffer_dirty(leaf);
1145 goto out;
1149 if (start > key.offset && end == extent_end) {
1150 other_start = end;
1151 other_end = 0;
1152 if (extent_mergeable(leaf, path->slots[0] + 1,
1153 ino, bytenr, orig_offset,
1154 &other_start, &other_end)) {
1155 fi = btrfs_item_ptr(leaf, path->slots[0],
1156 struct btrfs_file_extent_item);
1157 btrfs_set_file_extent_num_bytes(leaf, fi,
1158 start - key.offset);
1159 btrfs_set_file_extent_generation(leaf, fi,
1160 trans->transid);
1161 path->slots[0]++;
1162 new_key.offset = start;
1163 btrfs_set_item_key_safe(root, path, &new_key);
1165 fi = btrfs_item_ptr(leaf, path->slots[0],
1166 struct btrfs_file_extent_item);
1167 btrfs_set_file_extent_generation(leaf, fi,
1168 trans->transid);
1169 btrfs_set_file_extent_num_bytes(leaf, fi,
1170 other_end - start);
1171 btrfs_set_file_extent_offset(leaf, fi,
1172 start - orig_offset);
1173 btrfs_mark_buffer_dirty(leaf);
1174 goto out;
1178 while (start > key.offset || end < extent_end) {
1179 if (key.offset == start)
1180 split = end;
1182 new_key.offset = split;
1183 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1184 if (ret == -EAGAIN) {
1185 btrfs_release_path(path);
1186 goto again;
1188 if (ret < 0) {
1189 btrfs_abort_transaction(trans, root, ret);
1190 goto out;
1193 leaf = path->nodes[0];
1194 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1195 struct btrfs_file_extent_item);
1196 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1197 btrfs_set_file_extent_num_bytes(leaf, fi,
1198 split - key.offset);
1200 fi = btrfs_item_ptr(leaf, path->slots[0],
1201 struct btrfs_file_extent_item);
1203 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1204 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1205 btrfs_set_file_extent_num_bytes(leaf, fi,
1206 extent_end - split);
1207 btrfs_mark_buffer_dirty(leaf);
1209 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1210 root->root_key.objectid,
1211 ino, orig_offset, 1);
1212 BUG_ON(ret); /* -ENOMEM */
1214 if (split == start) {
1215 key.offset = start;
1216 } else {
1217 BUG_ON(start != key.offset);
1218 path->slots[0]--;
1219 extent_end = end;
1221 recow = 1;
1224 other_start = end;
1225 other_end = 0;
1226 if (extent_mergeable(leaf, path->slots[0] + 1,
1227 ino, bytenr, orig_offset,
1228 &other_start, &other_end)) {
1229 if (recow) {
1230 btrfs_release_path(path);
1231 goto again;
1233 extent_end = other_end;
1234 del_slot = path->slots[0] + 1;
1235 del_nr++;
1236 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1237 0, root->root_key.objectid,
1238 ino, orig_offset, 0);
1239 BUG_ON(ret); /* -ENOMEM */
1241 other_start = 0;
1242 other_end = start;
1243 if (extent_mergeable(leaf, path->slots[0] - 1,
1244 ino, bytenr, orig_offset,
1245 &other_start, &other_end)) {
1246 if (recow) {
1247 btrfs_release_path(path);
1248 goto again;
1250 key.offset = other_start;
1251 del_slot = path->slots[0];
1252 del_nr++;
1253 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1254 0, root->root_key.objectid,
1255 ino, orig_offset, 0);
1256 BUG_ON(ret); /* -ENOMEM */
1258 if (del_nr == 0) {
1259 fi = btrfs_item_ptr(leaf, path->slots[0],
1260 struct btrfs_file_extent_item);
1261 btrfs_set_file_extent_type(leaf, fi,
1262 BTRFS_FILE_EXTENT_REG);
1263 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1264 btrfs_mark_buffer_dirty(leaf);
1265 } else {
1266 fi = btrfs_item_ptr(leaf, del_slot - 1,
1267 struct btrfs_file_extent_item);
1268 btrfs_set_file_extent_type(leaf, fi,
1269 BTRFS_FILE_EXTENT_REG);
1270 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1271 btrfs_set_file_extent_num_bytes(leaf, fi,
1272 extent_end - key.offset);
1273 btrfs_mark_buffer_dirty(leaf);
1275 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1276 if (ret < 0) {
1277 btrfs_abort_transaction(trans, root, ret);
1278 goto out;
1281 out:
1282 btrfs_free_path(path);
1283 return 0;
1287 * on error we return an unlocked page and the error value
1288 * on success we return a locked page and 0
1290 static int prepare_uptodate_page(struct page *page, u64 pos,
1291 bool force_uptodate)
1293 int ret = 0;
1295 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1296 !PageUptodate(page)) {
1297 ret = btrfs_readpage(NULL, page);
1298 if (ret)
1299 return ret;
1300 lock_page(page);
1301 if (!PageUptodate(page)) {
1302 unlock_page(page);
1303 return -EIO;
1306 return 0;
1310 * this just gets pages into the page cache and locks them down.
1312 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1313 size_t num_pages, loff_t pos,
1314 size_t write_bytes, bool force_uptodate)
1316 int i;
1317 unsigned long index = pos >> PAGE_CACHE_SHIFT;
1318 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1319 int err = 0;
1320 int faili;
1322 for (i = 0; i < num_pages; i++) {
1323 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1324 mask | __GFP_WRITE);
1325 if (!pages[i]) {
1326 faili = i - 1;
1327 err = -ENOMEM;
1328 goto fail;
1331 if (i == 0)
1332 err = prepare_uptodate_page(pages[i], pos,
1333 force_uptodate);
1334 if (i == num_pages - 1)
1335 err = prepare_uptodate_page(pages[i],
1336 pos + write_bytes, false);
1337 if (err) {
1338 page_cache_release(pages[i]);
1339 faili = i - 1;
1340 goto fail;
1342 wait_on_page_writeback(pages[i]);
1345 return 0;
1346 fail:
1347 while (faili >= 0) {
1348 unlock_page(pages[faili]);
1349 page_cache_release(pages[faili]);
1350 faili--;
1352 return err;
1357 * This function locks the extent and properly waits for data=ordered extents
1358 * to finish before allowing the pages to be modified if need.
1360 * The return value:
1361 * 1 - the extent is locked
1362 * 0 - the extent is not locked, and everything is OK
1363 * -EAGAIN - need re-prepare the pages
1364 * the other < 0 number - Something wrong happens
1366 static noinline int
1367 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1368 size_t num_pages, loff_t pos,
1369 u64 *lockstart, u64 *lockend,
1370 struct extent_state **cached_state)
1372 u64 start_pos;
1373 u64 last_pos;
1374 int i;
1375 int ret = 0;
1377 start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1378 last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1380 if (start_pos < inode->i_size) {
1381 struct btrfs_ordered_extent *ordered;
1382 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1383 start_pos, last_pos, 0, cached_state);
1384 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1385 last_pos - start_pos + 1);
1386 if (ordered &&
1387 ordered->file_offset + ordered->len > start_pos &&
1388 ordered->file_offset <= last_pos) {
1389 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1390 start_pos, last_pos,
1391 cached_state, GFP_NOFS);
1392 for (i = 0; i < num_pages; i++) {
1393 unlock_page(pages[i]);
1394 page_cache_release(pages[i]);
1396 btrfs_start_ordered_extent(inode, ordered, 1);
1397 btrfs_put_ordered_extent(ordered);
1398 return -EAGAIN;
1400 if (ordered)
1401 btrfs_put_ordered_extent(ordered);
1403 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1404 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1405 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1406 0, 0, cached_state, GFP_NOFS);
1407 *lockstart = start_pos;
1408 *lockend = last_pos;
1409 ret = 1;
1412 for (i = 0; i < num_pages; i++) {
1413 if (clear_page_dirty_for_io(pages[i]))
1414 account_page_redirty(pages[i]);
1415 set_page_extent_mapped(pages[i]);
1416 WARN_ON(!PageLocked(pages[i]));
1419 return ret;
1422 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1423 size_t *write_bytes)
1425 struct btrfs_root *root = BTRFS_I(inode)->root;
1426 struct btrfs_ordered_extent *ordered;
1427 u64 lockstart, lockend;
1428 u64 num_bytes;
1429 int ret;
1431 ret = btrfs_start_write_no_snapshoting(root);
1432 if (!ret)
1433 return -ENOSPC;
1435 lockstart = round_down(pos, root->sectorsize);
1436 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1438 while (1) {
1439 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1440 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1441 lockend - lockstart + 1);
1442 if (!ordered) {
1443 break;
1445 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1446 btrfs_start_ordered_extent(inode, ordered, 1);
1447 btrfs_put_ordered_extent(ordered);
1450 num_bytes = lockend - lockstart + 1;
1451 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1452 if (ret <= 0) {
1453 ret = 0;
1454 btrfs_end_write_no_snapshoting(root);
1455 } else {
1456 *write_bytes = min_t(size_t, *write_bytes ,
1457 num_bytes - pos + lockstart);
1460 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1462 return ret;
1465 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1466 struct iov_iter *i,
1467 loff_t pos)
1469 struct inode *inode = file_inode(file);
1470 struct btrfs_root *root = BTRFS_I(inode)->root;
1471 struct page **pages = NULL;
1472 struct extent_state *cached_state = NULL;
1473 u64 release_bytes = 0;
1474 u64 lockstart;
1475 u64 lockend;
1476 unsigned long first_index;
1477 size_t num_written = 0;
1478 int nrptrs;
1479 int ret = 0;
1480 bool only_release_metadata = false;
1481 bool force_page_uptodate = false;
1482 bool need_unlock;
1484 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_CACHE_SIZE),
1485 PAGE_CACHE_SIZE / (sizeof(struct page *)));
1486 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1487 nrptrs = max(nrptrs, 8);
1488 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1489 if (!pages)
1490 return -ENOMEM;
1492 first_index = pos >> PAGE_CACHE_SHIFT;
1494 while (iov_iter_count(i) > 0) {
1495 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1496 size_t write_bytes = min(iov_iter_count(i),
1497 nrptrs * (size_t)PAGE_CACHE_SIZE -
1498 offset);
1499 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1500 PAGE_CACHE_SIZE);
1501 size_t reserve_bytes;
1502 size_t dirty_pages;
1503 size_t copied;
1505 WARN_ON(num_pages > nrptrs);
1508 * Fault pages before locking them in prepare_pages
1509 * to avoid recursive lock
1511 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1512 ret = -EFAULT;
1513 break;
1516 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1517 ret = btrfs_check_data_free_space(inode, reserve_bytes);
1518 if (ret == -ENOSPC &&
1519 (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1520 BTRFS_INODE_PREALLOC))) {
1521 ret = check_can_nocow(inode, pos, &write_bytes);
1522 if (ret > 0) {
1523 only_release_metadata = true;
1525 * our prealloc extent may be smaller than
1526 * write_bytes, so scale down.
1528 num_pages = DIV_ROUND_UP(write_bytes + offset,
1529 PAGE_CACHE_SIZE);
1530 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1531 ret = 0;
1532 } else {
1533 ret = -ENOSPC;
1537 if (ret)
1538 break;
1540 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1541 if (ret) {
1542 if (!only_release_metadata)
1543 btrfs_free_reserved_data_space(inode,
1544 reserve_bytes);
1545 else
1546 btrfs_end_write_no_snapshoting(root);
1547 break;
1550 release_bytes = reserve_bytes;
1551 need_unlock = false;
1552 again:
1554 * This is going to setup the pages array with the number of
1555 * pages we want, so we don't really need to worry about the
1556 * contents of pages from loop to loop
1558 ret = prepare_pages(inode, pages, num_pages,
1559 pos, write_bytes,
1560 force_page_uptodate);
1561 if (ret)
1562 break;
1564 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1565 pos, &lockstart, &lockend,
1566 &cached_state);
1567 if (ret < 0) {
1568 if (ret == -EAGAIN)
1569 goto again;
1570 break;
1571 } else if (ret > 0) {
1572 need_unlock = true;
1573 ret = 0;
1576 copied = btrfs_copy_from_user(pos, num_pages,
1577 write_bytes, pages, i);
1580 * if we have trouble faulting in the pages, fall
1581 * back to one page at a time
1583 if (copied < write_bytes)
1584 nrptrs = 1;
1586 if (copied == 0) {
1587 force_page_uptodate = true;
1588 dirty_pages = 0;
1589 } else {
1590 force_page_uptodate = false;
1591 dirty_pages = DIV_ROUND_UP(copied + offset,
1592 PAGE_CACHE_SIZE);
1596 * If we had a short copy we need to release the excess delaloc
1597 * bytes we reserved. We need to increment outstanding_extents
1598 * because btrfs_delalloc_release_space will decrement it, but
1599 * we still have an outstanding extent for the chunk we actually
1600 * managed to copy.
1602 if (num_pages > dirty_pages) {
1603 release_bytes = (num_pages - dirty_pages) <<
1604 PAGE_CACHE_SHIFT;
1605 if (copied > 0) {
1606 spin_lock(&BTRFS_I(inode)->lock);
1607 BTRFS_I(inode)->outstanding_extents++;
1608 spin_unlock(&BTRFS_I(inode)->lock);
1610 if (only_release_metadata)
1611 btrfs_delalloc_release_metadata(inode,
1612 release_bytes);
1613 else
1614 btrfs_delalloc_release_space(inode,
1615 release_bytes);
1618 release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1620 if (copied > 0)
1621 ret = btrfs_dirty_pages(root, inode, pages,
1622 dirty_pages, pos, copied,
1623 NULL);
1624 if (need_unlock)
1625 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1626 lockstart, lockend, &cached_state,
1627 GFP_NOFS);
1628 if (ret) {
1629 btrfs_drop_pages(pages, num_pages);
1630 break;
1633 release_bytes = 0;
1634 if (only_release_metadata)
1635 btrfs_end_write_no_snapshoting(root);
1637 if (only_release_metadata && copied > 0) {
1638 u64 lockstart = round_down(pos, root->sectorsize);
1639 u64 lockend = lockstart +
1640 (dirty_pages << PAGE_CACHE_SHIFT) - 1;
1642 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1643 lockend, EXTENT_NORESERVE, NULL,
1644 NULL, GFP_NOFS);
1645 only_release_metadata = false;
1648 btrfs_drop_pages(pages, num_pages);
1650 cond_resched();
1652 balance_dirty_pages_ratelimited(inode->i_mapping);
1653 if (dirty_pages < (root->nodesize >> PAGE_CACHE_SHIFT) + 1)
1654 btrfs_btree_balance_dirty(root);
1656 pos += copied;
1657 num_written += copied;
1660 kfree(pages);
1662 if (release_bytes) {
1663 if (only_release_metadata) {
1664 btrfs_end_write_no_snapshoting(root);
1665 btrfs_delalloc_release_metadata(inode, release_bytes);
1666 } else {
1667 btrfs_delalloc_release_space(inode, release_bytes);
1671 return num_written ? num_written : ret;
1674 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1675 struct iov_iter *from,
1676 loff_t pos)
1678 struct file *file = iocb->ki_filp;
1679 struct inode *inode = file_inode(file);
1680 ssize_t written;
1681 ssize_t written_buffered;
1682 loff_t endbyte;
1683 int err;
1685 written = generic_file_direct_write(iocb, from, pos);
1687 if (written < 0 || !iov_iter_count(from))
1688 return written;
1690 pos += written;
1691 written_buffered = __btrfs_buffered_write(file, from, pos);
1692 if (written_buffered < 0) {
1693 err = written_buffered;
1694 goto out;
1697 * Ensure all data is persisted. We want the next direct IO read to be
1698 * able to read what was just written.
1700 endbyte = pos + written_buffered - 1;
1701 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1702 if (err)
1703 goto out;
1704 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1705 if (err)
1706 goto out;
1707 written += written_buffered;
1708 iocb->ki_pos = pos + written_buffered;
1709 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1710 endbyte >> PAGE_CACHE_SHIFT);
1711 out:
1712 return written ? written : err;
1715 static void update_time_for_write(struct inode *inode)
1717 struct timespec now;
1719 if (IS_NOCMTIME(inode))
1720 return;
1722 now = current_fs_time(inode->i_sb);
1723 if (!timespec_equal(&inode->i_mtime, &now))
1724 inode->i_mtime = now;
1726 if (!timespec_equal(&inode->i_ctime, &now))
1727 inode->i_ctime = now;
1729 if (IS_I_VERSION(inode))
1730 inode_inc_iversion(inode);
1733 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1734 struct iov_iter *from)
1736 struct file *file = iocb->ki_filp;
1737 struct inode *inode = file_inode(file);
1738 struct btrfs_root *root = BTRFS_I(inode)->root;
1739 u64 start_pos;
1740 u64 end_pos;
1741 ssize_t num_written = 0;
1742 ssize_t err = 0;
1743 size_t count = iov_iter_count(from);
1744 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1745 loff_t pos = iocb->ki_pos;
1747 mutex_lock(&inode->i_mutex);
1749 current->backing_dev_info = inode_to_bdi(inode);
1750 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1751 if (err) {
1752 mutex_unlock(&inode->i_mutex);
1753 goto out;
1756 if (count == 0) {
1757 mutex_unlock(&inode->i_mutex);
1758 goto out;
1761 iov_iter_truncate(from, count);
1763 err = file_remove_suid(file);
1764 if (err) {
1765 mutex_unlock(&inode->i_mutex);
1766 goto out;
1770 * If BTRFS flips readonly due to some impossible error
1771 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1772 * although we have opened a file as writable, we have
1773 * to stop this write operation to ensure FS consistency.
1775 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1776 mutex_unlock(&inode->i_mutex);
1777 err = -EROFS;
1778 goto out;
1782 * We reserve space for updating the inode when we reserve space for the
1783 * extent we are going to write, so we will enospc out there. We don't
1784 * need to start yet another transaction to update the inode as we will
1785 * update the inode when we finish writing whatever data we write.
1787 update_time_for_write(inode);
1789 start_pos = round_down(pos, root->sectorsize);
1790 if (start_pos > i_size_read(inode)) {
1791 /* Expand hole size to cover write data, preventing empty gap */
1792 end_pos = round_up(pos + count, root->sectorsize);
1793 err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
1794 if (err) {
1795 mutex_unlock(&inode->i_mutex);
1796 goto out;
1800 if (sync)
1801 atomic_inc(&BTRFS_I(inode)->sync_writers);
1803 if (file->f_flags & O_DIRECT) {
1804 num_written = __btrfs_direct_write(iocb, from, pos);
1805 } else {
1806 num_written = __btrfs_buffered_write(file, from, pos);
1807 if (num_written > 0)
1808 iocb->ki_pos = pos + num_written;
1811 mutex_unlock(&inode->i_mutex);
1814 * We also have to set last_sub_trans to the current log transid,
1815 * otherwise subsequent syncs to a file that's been synced in this
1816 * transaction will appear to have already occured.
1818 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1819 if (num_written > 0) {
1820 err = generic_write_sync(file, pos, num_written);
1821 if (err < 0)
1822 num_written = err;
1825 if (sync)
1826 atomic_dec(&BTRFS_I(inode)->sync_writers);
1827 out:
1828 current->backing_dev_info = NULL;
1829 return num_written ? num_written : err;
1832 int btrfs_release_file(struct inode *inode, struct file *filp)
1834 if (filp->private_data)
1835 btrfs_ioctl_trans_end(filp);
1837 * ordered_data_close is set by settattr when we are about to truncate
1838 * a file from a non-zero size to a zero size. This tries to
1839 * flush down new bytes that may have been written if the
1840 * application were using truncate to replace a file in place.
1842 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1843 &BTRFS_I(inode)->runtime_flags))
1844 filemap_flush(inode->i_mapping);
1845 return 0;
1848 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1850 int ret;
1852 atomic_inc(&BTRFS_I(inode)->sync_writers);
1853 ret = btrfs_fdatawrite_range(inode, start, end);
1854 atomic_dec(&BTRFS_I(inode)->sync_writers);
1856 return ret;
1860 * fsync call for both files and directories. This logs the inode into
1861 * the tree log instead of forcing full commits whenever possible.
1863 * It needs to call filemap_fdatawait so that all ordered extent updates are
1864 * in the metadata btree are up to date for copying to the log.
1866 * It drops the inode mutex before doing the tree log commit. This is an
1867 * important optimization for directories because holding the mutex prevents
1868 * new operations on the dir while we write to disk.
1870 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1872 struct dentry *dentry = file->f_path.dentry;
1873 struct inode *inode = dentry->d_inode;
1874 struct btrfs_root *root = BTRFS_I(inode)->root;
1875 struct btrfs_trans_handle *trans;
1876 struct btrfs_log_ctx ctx;
1877 int ret = 0;
1878 bool full_sync = 0;
1880 trace_btrfs_sync_file(file, datasync);
1883 * We write the dirty pages in the range and wait until they complete
1884 * out of the ->i_mutex. If so, we can flush the dirty pages by
1885 * multi-task, and make the performance up. See
1886 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1888 ret = start_ordered_ops(inode, start, end);
1889 if (ret)
1890 return ret;
1892 mutex_lock(&inode->i_mutex);
1893 atomic_inc(&root->log_batch);
1894 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1895 &BTRFS_I(inode)->runtime_flags);
1897 * We might have have had more pages made dirty after calling
1898 * start_ordered_ops and before acquiring the inode's i_mutex.
1900 if (full_sync) {
1902 * For a full sync, we need to make sure any ordered operations
1903 * start and finish before we start logging the inode, so that
1904 * all extents are persisted and the respective file extent
1905 * items are in the fs/subvol btree.
1907 ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
1908 } else {
1910 * Start any new ordered operations before starting to log the
1911 * inode. We will wait for them to finish in btrfs_sync_log().
1913 * Right before acquiring the inode's mutex, we might have new
1914 * writes dirtying pages, which won't immediately start the
1915 * respective ordered operations - that is done through the
1916 * fill_delalloc callbacks invoked from the writepage and
1917 * writepages address space operations. So make sure we start
1918 * all ordered operations before starting to log our inode. Not
1919 * doing this means that while logging the inode, writeback
1920 * could start and invoke writepage/writepages, which would call
1921 * the fill_delalloc callbacks (cow_file_range,
1922 * submit_compressed_extents). These callbacks add first an
1923 * extent map to the modified list of extents and then create
1924 * the respective ordered operation, which means in
1925 * tree-log.c:btrfs_log_inode() we might capture all existing
1926 * ordered operations (with btrfs_get_logged_extents()) before
1927 * the fill_delalloc callback adds its ordered operation, and by
1928 * the time we visit the modified list of extent maps (with
1929 * btrfs_log_changed_extents()), we see and process the extent
1930 * map they created. We then use the extent map to construct a
1931 * file extent item for logging without waiting for the
1932 * respective ordered operation to finish - this file extent
1933 * item points to a disk location that might not have yet been
1934 * written to, containing random data - so after a crash a log
1935 * replay will make our inode have file extent items that point
1936 * to disk locations containing invalid data, as we returned
1937 * success to userspace without waiting for the respective
1938 * ordered operation to finish, because it wasn't captured by
1939 * btrfs_get_logged_extents().
1941 ret = start_ordered_ops(inode, start, end);
1943 if (ret) {
1944 mutex_unlock(&inode->i_mutex);
1945 goto out;
1947 atomic_inc(&root->log_batch);
1950 * If the last transaction that changed this file was before the current
1951 * transaction and we have the full sync flag set in our inode, we can
1952 * bail out now without any syncing.
1954 * Note that we can't bail out if the full sync flag isn't set. This is
1955 * because when the full sync flag is set we start all ordered extents
1956 * and wait for them to fully complete - when they complete they update
1957 * the inode's last_trans field through:
1959 * btrfs_finish_ordered_io() ->
1960 * btrfs_update_inode_fallback() ->
1961 * btrfs_update_inode() ->
1962 * btrfs_set_inode_last_trans()
1964 * So we are sure that last_trans is up to date and can do this check to
1965 * bail out safely. For the fast path, when the full sync flag is not
1966 * set in our inode, we can not do it because we start only our ordered
1967 * extents and don't wait for them to complete (that is when
1968 * btrfs_finish_ordered_io runs), so here at this point their last_trans
1969 * value might be less than or equals to fs_info->last_trans_committed,
1970 * and setting a speculative last_trans for an inode when a buffered
1971 * write is made (such as fs_info->generation + 1 for example) would not
1972 * be reliable since after setting the value and before fsync is called
1973 * any number of transactions can start and commit (transaction kthread
1974 * commits the current transaction periodically), and a transaction
1975 * commit does not start nor waits for ordered extents to complete.
1977 smp_mb();
1978 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1979 (full_sync && BTRFS_I(inode)->last_trans <=
1980 root->fs_info->last_trans_committed)) {
1982 * We'v had everything committed since the last time we were
1983 * modified so clear this flag in case it was set for whatever
1984 * reason, it's no longer relevant.
1986 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1987 &BTRFS_I(inode)->runtime_flags);
1988 mutex_unlock(&inode->i_mutex);
1989 goto out;
1993 * ok we haven't committed the transaction yet, lets do a commit
1995 if (file->private_data)
1996 btrfs_ioctl_trans_end(file);
1999 * We use start here because we will need to wait on the IO to complete
2000 * in btrfs_sync_log, which could require joining a transaction (for
2001 * example checking cross references in the nocow path). If we use join
2002 * here we could get into a situation where we're waiting on IO to
2003 * happen that is blocked on a transaction trying to commit. With start
2004 * we inc the extwriter counter, so we wait for all extwriters to exit
2005 * before we start blocking join'ers. This comment is to keep somebody
2006 * from thinking they are super smart and changing this to
2007 * btrfs_join_transaction *cough*Josef*cough*.
2009 trans = btrfs_start_transaction(root, 0);
2010 if (IS_ERR(trans)) {
2011 ret = PTR_ERR(trans);
2012 mutex_unlock(&inode->i_mutex);
2013 goto out;
2015 trans->sync = true;
2017 btrfs_init_log_ctx(&ctx);
2019 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2020 if (ret < 0) {
2021 /* Fallthrough and commit/free transaction. */
2022 ret = 1;
2025 /* we've logged all the items and now have a consistent
2026 * version of the file in the log. It is possible that
2027 * someone will come in and modify the file, but that's
2028 * fine because the log is consistent on disk, and we
2029 * have references to all of the file's extents
2031 * It is possible that someone will come in and log the
2032 * file again, but that will end up using the synchronization
2033 * inside btrfs_sync_log to keep things safe.
2035 mutex_unlock(&inode->i_mutex);
2038 * If any of the ordered extents had an error, just return it to user
2039 * space, so that the application knows some writes didn't succeed and
2040 * can take proper action (retry for e.g.). Blindly committing the
2041 * transaction in this case, would fool userspace that everything was
2042 * successful. And we also want to make sure our log doesn't contain
2043 * file extent items pointing to extents that weren't fully written to -
2044 * just like in the non fast fsync path, where we check for the ordered
2045 * operation's error flag before writing to the log tree and return -EIO
2046 * if any of them had this flag set (btrfs_wait_ordered_range) -
2047 * therefore we need to check for errors in the ordered operations,
2048 * which are indicated by ctx.io_err.
2050 if (ctx.io_err) {
2051 btrfs_end_transaction(trans, root);
2052 ret = ctx.io_err;
2053 goto out;
2056 if (ret != BTRFS_NO_LOG_SYNC) {
2057 if (!ret) {
2058 ret = btrfs_sync_log(trans, root, &ctx);
2059 if (!ret) {
2060 ret = btrfs_end_transaction(trans, root);
2061 goto out;
2064 if (!full_sync) {
2065 ret = btrfs_wait_ordered_range(inode, start,
2066 end - start + 1);
2067 if (ret) {
2068 btrfs_end_transaction(trans, root);
2069 goto out;
2072 ret = btrfs_commit_transaction(trans, root);
2073 } else {
2074 ret = btrfs_end_transaction(trans, root);
2076 out:
2077 return ret > 0 ? -EIO : ret;
2080 static const struct vm_operations_struct btrfs_file_vm_ops = {
2081 .fault = filemap_fault,
2082 .map_pages = filemap_map_pages,
2083 .page_mkwrite = btrfs_page_mkwrite,
2086 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2088 struct address_space *mapping = filp->f_mapping;
2090 if (!mapping->a_ops->readpage)
2091 return -ENOEXEC;
2093 file_accessed(filp);
2094 vma->vm_ops = &btrfs_file_vm_ops;
2096 return 0;
2099 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2100 int slot, u64 start, u64 end)
2102 struct btrfs_file_extent_item *fi;
2103 struct btrfs_key key;
2105 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2106 return 0;
2108 btrfs_item_key_to_cpu(leaf, &key, slot);
2109 if (key.objectid != btrfs_ino(inode) ||
2110 key.type != BTRFS_EXTENT_DATA_KEY)
2111 return 0;
2113 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2115 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2116 return 0;
2118 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2119 return 0;
2121 if (key.offset == end)
2122 return 1;
2123 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2124 return 1;
2125 return 0;
2128 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2129 struct btrfs_path *path, u64 offset, u64 end)
2131 struct btrfs_root *root = BTRFS_I(inode)->root;
2132 struct extent_buffer *leaf;
2133 struct btrfs_file_extent_item *fi;
2134 struct extent_map *hole_em;
2135 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2136 struct btrfs_key key;
2137 int ret;
2139 if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2140 goto out;
2142 key.objectid = btrfs_ino(inode);
2143 key.type = BTRFS_EXTENT_DATA_KEY;
2144 key.offset = offset;
2146 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2147 if (ret < 0)
2148 return ret;
2149 BUG_ON(!ret);
2151 leaf = path->nodes[0];
2152 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2153 u64 num_bytes;
2155 path->slots[0]--;
2156 fi = btrfs_item_ptr(leaf, path->slots[0],
2157 struct btrfs_file_extent_item);
2158 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2159 end - offset;
2160 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2161 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2162 btrfs_set_file_extent_offset(leaf, fi, 0);
2163 btrfs_mark_buffer_dirty(leaf);
2164 goto out;
2167 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2168 u64 num_bytes;
2170 key.offset = offset;
2171 btrfs_set_item_key_safe(root, path, &key);
2172 fi = btrfs_item_ptr(leaf, path->slots[0],
2173 struct btrfs_file_extent_item);
2174 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2175 offset;
2176 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2177 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2178 btrfs_set_file_extent_offset(leaf, fi, 0);
2179 btrfs_mark_buffer_dirty(leaf);
2180 goto out;
2182 btrfs_release_path(path);
2184 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2185 0, 0, end - offset, 0, end - offset,
2186 0, 0, 0);
2187 if (ret)
2188 return ret;
2190 out:
2191 btrfs_release_path(path);
2193 hole_em = alloc_extent_map();
2194 if (!hole_em) {
2195 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2196 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2197 &BTRFS_I(inode)->runtime_flags);
2198 } else {
2199 hole_em->start = offset;
2200 hole_em->len = end - offset;
2201 hole_em->ram_bytes = hole_em->len;
2202 hole_em->orig_start = offset;
2204 hole_em->block_start = EXTENT_MAP_HOLE;
2205 hole_em->block_len = 0;
2206 hole_em->orig_block_len = 0;
2207 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2208 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2209 hole_em->generation = trans->transid;
2211 do {
2212 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2213 write_lock(&em_tree->lock);
2214 ret = add_extent_mapping(em_tree, hole_em, 1);
2215 write_unlock(&em_tree->lock);
2216 } while (ret == -EEXIST);
2217 free_extent_map(hole_em);
2218 if (ret)
2219 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2220 &BTRFS_I(inode)->runtime_flags);
2223 return 0;
2227 * Find a hole extent on given inode and change start/len to the end of hole
2228 * extent.(hole/vacuum extent whose em->start <= start &&
2229 * em->start + em->len > start)
2230 * When a hole extent is found, return 1 and modify start/len.
2232 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2234 struct extent_map *em;
2235 int ret = 0;
2237 em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2238 if (IS_ERR_OR_NULL(em)) {
2239 if (!em)
2240 ret = -ENOMEM;
2241 else
2242 ret = PTR_ERR(em);
2243 return ret;
2246 /* Hole or vacuum extent(only exists in no-hole mode) */
2247 if (em->block_start == EXTENT_MAP_HOLE) {
2248 ret = 1;
2249 *len = em->start + em->len > *start + *len ?
2250 0 : *start + *len - em->start - em->len;
2251 *start = em->start + em->len;
2253 free_extent_map(em);
2254 return ret;
2257 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2259 struct btrfs_root *root = BTRFS_I(inode)->root;
2260 struct extent_state *cached_state = NULL;
2261 struct btrfs_path *path;
2262 struct btrfs_block_rsv *rsv;
2263 struct btrfs_trans_handle *trans;
2264 u64 lockstart;
2265 u64 lockend;
2266 u64 tail_start;
2267 u64 tail_len;
2268 u64 orig_start = offset;
2269 u64 cur_offset;
2270 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2271 u64 drop_end;
2272 int ret = 0;
2273 int err = 0;
2274 int rsv_count;
2275 bool same_page;
2276 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2277 u64 ino_size;
2278 bool truncated_page = false;
2279 bool updated_inode = false;
2281 ret = btrfs_wait_ordered_range(inode, offset, len);
2282 if (ret)
2283 return ret;
2285 mutex_lock(&inode->i_mutex);
2286 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
2287 ret = find_first_non_hole(inode, &offset, &len);
2288 if (ret < 0)
2289 goto out_only_mutex;
2290 if (ret && !len) {
2291 /* Already in a large hole */
2292 ret = 0;
2293 goto out_only_mutex;
2296 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2297 lockend = round_down(offset + len,
2298 BTRFS_I(inode)->root->sectorsize) - 1;
2299 same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2300 ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2303 * We needn't truncate any page which is beyond the end of the file
2304 * because we are sure there is no data there.
2307 * Only do this if we are in the same page and we aren't doing the
2308 * entire page.
2310 if (same_page && len < PAGE_CACHE_SIZE) {
2311 if (offset < ino_size) {
2312 truncated_page = true;
2313 ret = btrfs_truncate_page(inode, offset, len, 0);
2314 } else {
2315 ret = 0;
2317 goto out_only_mutex;
2320 /* zero back part of the first page */
2321 if (offset < ino_size) {
2322 truncated_page = true;
2323 ret = btrfs_truncate_page(inode, offset, 0, 0);
2324 if (ret) {
2325 mutex_unlock(&inode->i_mutex);
2326 return ret;
2330 /* Check the aligned pages after the first unaligned page,
2331 * if offset != orig_start, which means the first unaligned page
2332 * including serveral following pages are already in holes,
2333 * the extra check can be skipped */
2334 if (offset == orig_start) {
2335 /* after truncate page, check hole again */
2336 len = offset + len - lockstart;
2337 offset = lockstart;
2338 ret = find_first_non_hole(inode, &offset, &len);
2339 if (ret < 0)
2340 goto out_only_mutex;
2341 if (ret && !len) {
2342 ret = 0;
2343 goto out_only_mutex;
2345 lockstart = offset;
2348 /* Check the tail unaligned part is in a hole */
2349 tail_start = lockend + 1;
2350 tail_len = offset + len - tail_start;
2351 if (tail_len) {
2352 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2353 if (unlikely(ret < 0))
2354 goto out_only_mutex;
2355 if (!ret) {
2356 /* zero the front end of the last page */
2357 if (tail_start + tail_len < ino_size) {
2358 truncated_page = true;
2359 ret = btrfs_truncate_page(inode,
2360 tail_start + tail_len, 0, 1);
2361 if (ret)
2362 goto out_only_mutex;
2367 if (lockend < lockstart) {
2368 ret = 0;
2369 goto out_only_mutex;
2372 while (1) {
2373 struct btrfs_ordered_extent *ordered;
2375 truncate_pagecache_range(inode, lockstart, lockend);
2377 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2378 0, &cached_state);
2379 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2382 * We need to make sure we have no ordered extents in this range
2383 * and nobody raced in and read a page in this range, if we did
2384 * we need to try again.
2386 if ((!ordered ||
2387 (ordered->file_offset + ordered->len <= lockstart ||
2388 ordered->file_offset > lockend)) &&
2389 !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2390 if (ordered)
2391 btrfs_put_ordered_extent(ordered);
2392 break;
2394 if (ordered)
2395 btrfs_put_ordered_extent(ordered);
2396 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2397 lockend, &cached_state, GFP_NOFS);
2398 ret = btrfs_wait_ordered_range(inode, lockstart,
2399 lockend - lockstart + 1);
2400 if (ret) {
2401 mutex_unlock(&inode->i_mutex);
2402 return ret;
2406 path = btrfs_alloc_path();
2407 if (!path) {
2408 ret = -ENOMEM;
2409 goto out;
2412 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2413 if (!rsv) {
2414 ret = -ENOMEM;
2415 goto out_free;
2417 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2418 rsv->failfast = 1;
2421 * 1 - update the inode
2422 * 1 - removing the extents in the range
2423 * 1 - adding the hole extent if no_holes isn't set
2425 rsv_count = no_holes ? 2 : 3;
2426 trans = btrfs_start_transaction(root, rsv_count);
2427 if (IS_ERR(trans)) {
2428 err = PTR_ERR(trans);
2429 goto out_free;
2432 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2433 min_size);
2434 BUG_ON(ret);
2435 trans->block_rsv = rsv;
2437 cur_offset = lockstart;
2438 len = lockend - cur_offset;
2439 while (cur_offset < lockend) {
2440 ret = __btrfs_drop_extents(trans, root, inode, path,
2441 cur_offset, lockend + 1,
2442 &drop_end, 1, 0, 0, NULL);
2443 if (ret != -ENOSPC)
2444 break;
2446 trans->block_rsv = &root->fs_info->trans_block_rsv;
2448 if (cur_offset < ino_size) {
2449 ret = fill_holes(trans, inode, path, cur_offset,
2450 drop_end);
2451 if (ret) {
2452 err = ret;
2453 break;
2457 cur_offset = drop_end;
2459 ret = btrfs_update_inode(trans, root, inode);
2460 if (ret) {
2461 err = ret;
2462 break;
2465 btrfs_end_transaction(trans, root);
2466 btrfs_btree_balance_dirty(root);
2468 trans = btrfs_start_transaction(root, rsv_count);
2469 if (IS_ERR(trans)) {
2470 ret = PTR_ERR(trans);
2471 trans = NULL;
2472 break;
2475 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2476 rsv, min_size);
2477 BUG_ON(ret); /* shouldn't happen */
2478 trans->block_rsv = rsv;
2480 ret = find_first_non_hole(inode, &cur_offset, &len);
2481 if (unlikely(ret < 0))
2482 break;
2483 if (ret && !len) {
2484 ret = 0;
2485 break;
2489 if (ret) {
2490 err = ret;
2491 goto out_trans;
2494 trans->block_rsv = &root->fs_info->trans_block_rsv;
2496 * Don't insert file hole extent item if it's for a range beyond eof
2497 * (because it's useless) or if it represents a 0 bytes range (when
2498 * cur_offset == drop_end).
2500 if (cur_offset < ino_size && cur_offset < drop_end) {
2501 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2502 if (ret) {
2503 err = ret;
2504 goto out_trans;
2508 out_trans:
2509 if (!trans)
2510 goto out_free;
2512 inode_inc_iversion(inode);
2513 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2515 trans->block_rsv = &root->fs_info->trans_block_rsv;
2516 ret = btrfs_update_inode(trans, root, inode);
2517 updated_inode = true;
2518 btrfs_end_transaction(trans, root);
2519 btrfs_btree_balance_dirty(root);
2520 out_free:
2521 btrfs_free_path(path);
2522 btrfs_free_block_rsv(root, rsv);
2523 out:
2524 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2525 &cached_state, GFP_NOFS);
2526 out_only_mutex:
2527 if (!updated_inode && truncated_page && !ret && !err) {
2529 * If we only end up zeroing part of a page, we still need to
2530 * update the inode item, so that all the time fields are
2531 * updated as well as the necessary btrfs inode in memory fields
2532 * for detecting, at fsync time, if the inode isn't yet in the
2533 * log tree or it's there but not up to date.
2535 trans = btrfs_start_transaction(root, 1);
2536 if (IS_ERR(trans)) {
2537 err = PTR_ERR(trans);
2538 } else {
2539 err = btrfs_update_inode(trans, root, inode);
2540 ret = btrfs_end_transaction(trans, root);
2543 mutex_unlock(&inode->i_mutex);
2544 if (ret && !err)
2545 err = ret;
2546 return err;
2549 static long btrfs_fallocate(struct file *file, int mode,
2550 loff_t offset, loff_t len)
2552 struct inode *inode = file_inode(file);
2553 struct extent_state *cached_state = NULL;
2554 struct btrfs_root *root = BTRFS_I(inode)->root;
2555 u64 cur_offset;
2556 u64 last_byte;
2557 u64 alloc_start;
2558 u64 alloc_end;
2559 u64 alloc_hint = 0;
2560 u64 locked_end;
2561 struct extent_map *em;
2562 int blocksize = BTRFS_I(inode)->root->sectorsize;
2563 int ret;
2565 alloc_start = round_down(offset, blocksize);
2566 alloc_end = round_up(offset + len, blocksize);
2568 /* Make sure we aren't being give some crap mode */
2569 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2570 return -EOPNOTSUPP;
2572 if (mode & FALLOC_FL_PUNCH_HOLE)
2573 return btrfs_punch_hole(inode, offset, len);
2576 * Make sure we have enough space before we do the
2577 * allocation.
2579 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2580 if (ret)
2581 return ret;
2582 if (root->fs_info->quota_enabled) {
2583 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2584 if (ret)
2585 goto out_reserve_fail;
2588 mutex_lock(&inode->i_mutex);
2589 ret = inode_newsize_ok(inode, alloc_end);
2590 if (ret)
2591 goto out;
2593 if (alloc_start > inode->i_size) {
2594 ret = btrfs_cont_expand(inode, i_size_read(inode),
2595 alloc_start);
2596 if (ret)
2597 goto out;
2598 } else {
2600 * If we are fallocating from the end of the file onward we
2601 * need to zero out the end of the page if i_size lands in the
2602 * middle of a page.
2604 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2605 if (ret)
2606 goto out;
2610 * wait for ordered IO before we have any locks. We'll loop again
2611 * below with the locks held.
2613 ret = btrfs_wait_ordered_range(inode, alloc_start,
2614 alloc_end - alloc_start);
2615 if (ret)
2616 goto out;
2618 locked_end = alloc_end - 1;
2619 while (1) {
2620 struct btrfs_ordered_extent *ordered;
2622 /* the extent lock is ordered inside the running
2623 * transaction
2625 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2626 locked_end, 0, &cached_state);
2627 ordered = btrfs_lookup_first_ordered_extent(inode,
2628 alloc_end - 1);
2629 if (ordered &&
2630 ordered->file_offset + ordered->len > alloc_start &&
2631 ordered->file_offset < alloc_end) {
2632 btrfs_put_ordered_extent(ordered);
2633 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2634 alloc_start, locked_end,
2635 &cached_state, GFP_NOFS);
2637 * we can't wait on the range with the transaction
2638 * running or with the extent lock held
2640 ret = btrfs_wait_ordered_range(inode, alloc_start,
2641 alloc_end - alloc_start);
2642 if (ret)
2643 goto out;
2644 } else {
2645 if (ordered)
2646 btrfs_put_ordered_extent(ordered);
2647 break;
2651 cur_offset = alloc_start;
2652 while (1) {
2653 u64 actual_end;
2655 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2656 alloc_end - cur_offset, 0);
2657 if (IS_ERR_OR_NULL(em)) {
2658 if (!em)
2659 ret = -ENOMEM;
2660 else
2661 ret = PTR_ERR(em);
2662 break;
2664 last_byte = min(extent_map_end(em), alloc_end);
2665 actual_end = min_t(u64, extent_map_end(em), offset + len);
2666 last_byte = ALIGN(last_byte, blocksize);
2668 if (em->block_start == EXTENT_MAP_HOLE ||
2669 (cur_offset >= inode->i_size &&
2670 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2671 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2672 last_byte - cur_offset,
2673 1 << inode->i_blkbits,
2674 offset + len,
2675 &alloc_hint);
2677 if (ret < 0) {
2678 free_extent_map(em);
2679 break;
2681 } else if (actual_end > inode->i_size &&
2682 !(mode & FALLOC_FL_KEEP_SIZE)) {
2684 * We didn't need to allocate any more space, but we
2685 * still extended the size of the file so we need to
2686 * update i_size.
2688 inode->i_ctime = CURRENT_TIME;
2689 i_size_write(inode, actual_end);
2690 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2692 free_extent_map(em);
2694 cur_offset = last_byte;
2695 if (cur_offset >= alloc_end) {
2696 ret = 0;
2697 break;
2700 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2701 &cached_state, GFP_NOFS);
2702 out:
2703 mutex_unlock(&inode->i_mutex);
2704 if (root->fs_info->quota_enabled)
2705 btrfs_qgroup_free(root, alloc_end - alloc_start);
2706 out_reserve_fail:
2707 /* Let go of our reservation. */
2708 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2709 return ret;
2712 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2714 struct btrfs_root *root = BTRFS_I(inode)->root;
2715 struct extent_map *em = NULL;
2716 struct extent_state *cached_state = NULL;
2717 u64 lockstart;
2718 u64 lockend;
2719 u64 start;
2720 u64 len;
2721 int ret = 0;
2723 if (inode->i_size == 0)
2724 return -ENXIO;
2727 * *offset can be negative, in this case we start finding DATA/HOLE from
2728 * the very start of the file.
2730 start = max_t(loff_t, 0, *offset);
2732 lockstart = round_down(start, root->sectorsize);
2733 lockend = round_up(i_size_read(inode), root->sectorsize);
2734 if (lockend <= lockstart)
2735 lockend = lockstart + root->sectorsize;
2736 lockend--;
2737 len = lockend - lockstart + 1;
2739 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2740 &cached_state);
2742 while (start < inode->i_size) {
2743 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2744 if (IS_ERR(em)) {
2745 ret = PTR_ERR(em);
2746 em = NULL;
2747 break;
2750 if (whence == SEEK_HOLE &&
2751 (em->block_start == EXTENT_MAP_HOLE ||
2752 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2753 break;
2754 else if (whence == SEEK_DATA &&
2755 (em->block_start != EXTENT_MAP_HOLE &&
2756 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2757 break;
2759 start = em->start + em->len;
2760 free_extent_map(em);
2761 em = NULL;
2762 cond_resched();
2764 free_extent_map(em);
2765 if (!ret) {
2766 if (whence == SEEK_DATA && start >= inode->i_size)
2767 ret = -ENXIO;
2768 else
2769 *offset = min_t(loff_t, start, inode->i_size);
2771 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2772 &cached_state, GFP_NOFS);
2773 return ret;
2776 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2778 struct inode *inode = file->f_mapping->host;
2779 int ret;
2781 mutex_lock(&inode->i_mutex);
2782 switch (whence) {
2783 case SEEK_END:
2784 case SEEK_CUR:
2785 offset = generic_file_llseek(file, offset, whence);
2786 goto out;
2787 case SEEK_DATA:
2788 case SEEK_HOLE:
2789 if (offset >= i_size_read(inode)) {
2790 mutex_unlock(&inode->i_mutex);
2791 return -ENXIO;
2794 ret = find_desired_extent(inode, &offset, whence);
2795 if (ret) {
2796 mutex_unlock(&inode->i_mutex);
2797 return ret;
2801 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2802 out:
2803 mutex_unlock(&inode->i_mutex);
2804 return offset;
2807 const struct file_operations btrfs_file_operations = {
2808 .llseek = btrfs_file_llseek,
2809 .read = new_sync_read,
2810 .write = new_sync_write,
2811 .read_iter = generic_file_read_iter,
2812 .splice_read = generic_file_splice_read,
2813 .write_iter = btrfs_file_write_iter,
2814 .mmap = btrfs_file_mmap,
2815 .open = generic_file_open,
2816 .release = btrfs_release_file,
2817 .fsync = btrfs_sync_file,
2818 .fallocate = btrfs_fallocate,
2819 .unlocked_ioctl = btrfs_ioctl,
2820 #ifdef CONFIG_COMPAT
2821 .compat_ioctl = btrfs_ioctl,
2822 #endif
2825 void btrfs_auto_defrag_exit(void)
2827 if (btrfs_inode_defrag_cachep)
2828 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2831 int btrfs_auto_defrag_init(void)
2833 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2834 sizeof(struct inode_defrag), 0,
2835 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2836 NULL);
2837 if (!btrfs_inode_defrag_cachep)
2838 return -ENOMEM;
2840 return 0;
2843 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
2845 int ret;
2848 * So with compression we will find and lock a dirty page and clear the
2849 * first one as dirty, setup an async extent, and immediately return
2850 * with the entire range locked but with nobody actually marked with
2851 * writeback. So we can't just filemap_write_and_wait_range() and
2852 * expect it to work since it will just kick off a thread to do the
2853 * actual work. So we need to call filemap_fdatawrite_range _again_
2854 * since it will wait on the page lock, which won't be unlocked until
2855 * after the pages have been marked as writeback and so we're good to go
2856 * from there. We have to do this otherwise we'll miss the ordered
2857 * extents and that results in badness. Please Josef, do not think you
2858 * know better and pull this out at some point in the future, it is
2859 * right and you are wrong.
2861 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2862 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
2863 &BTRFS_I(inode)->runtime_flags))
2864 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2866 return ret;