4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/export.h>
55 #include <linux/delayacct.h>
56 #include <linux/init.h>
57 #include <linux/pfn_t.h>
58 #include <linux/writeback.h>
59 #include <linux/memcontrol.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/kallsyms.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
73 #include <asm/mmu_context.h>
74 #include <asm/pgalloc.h>
75 #include <linux/uaccess.h>
77 #include <asm/tlbflush.h>
78 #include <asm/pgtable.h>
82 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
83 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
86 #ifndef CONFIG_NEED_MULTIPLE_NODES
87 /* use the per-pgdat data instead for discontigmem - mbligh */
88 unsigned long max_mapnr
;
89 EXPORT_SYMBOL(max_mapnr
);
92 EXPORT_SYMBOL(mem_map
);
96 * A number of key systems in x86 including ioremap() rely on the assumption
97 * that high_memory defines the upper bound on direct map memory, then end
98 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
99 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103 EXPORT_SYMBOL(high_memory
);
106 * Randomize the address space (stacks, mmaps, brk, etc.).
108 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
109 * as ancient (libc5 based) binaries can segfault. )
111 int randomize_va_space __read_mostly
=
112 #ifdef CONFIG_COMPAT_BRK
118 static int __init
disable_randmaps(char *s
)
120 randomize_va_space
= 0;
123 __setup("norandmaps", disable_randmaps
);
125 unsigned long zero_pfn __read_mostly
;
126 EXPORT_SYMBOL(zero_pfn
);
128 unsigned long highest_memmap_pfn __read_mostly
;
131 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133 static int __init
init_zero_pfn(void)
135 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
138 core_initcall(init_zero_pfn
);
141 #if defined(SPLIT_RSS_COUNTING)
143 void sync_mm_rss(struct mm_struct
*mm
)
147 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
148 if (current
->rss_stat
.count
[i
]) {
149 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
150 current
->rss_stat
.count
[i
] = 0;
153 current
->rss_stat
.events
= 0;
156 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
158 struct task_struct
*task
= current
;
160 if (likely(task
->mm
== mm
))
161 task
->rss_stat
.count
[member
] += val
;
163 add_mm_counter(mm
, member
, val
);
165 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
166 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168 /* sync counter once per 64 page faults */
169 #define TASK_RSS_EVENTS_THRESH (64)
170 static void check_sync_rss_stat(struct task_struct
*task
)
172 if (unlikely(task
!= current
))
174 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
175 sync_mm_rss(task
->mm
);
177 #else /* SPLIT_RSS_COUNTING */
179 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
180 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182 static void check_sync_rss_stat(struct task_struct
*task
)
186 #endif /* SPLIT_RSS_COUNTING */
188 #ifdef HAVE_GENERIC_MMU_GATHER
190 static bool tlb_next_batch(struct mmu_gather
*tlb
)
192 struct mmu_gather_batch
*batch
;
196 tlb
->active
= batch
->next
;
200 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
203 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
210 batch
->max
= MAX_GATHER_BATCH
;
212 tlb
->active
->next
= batch
;
219 * Called to initialize an (on-stack) mmu_gather structure for page-table
220 * tear-down from @mm. The @fullmm argument is used when @mm is without
221 * users and we're going to destroy the full address space (exit/execve).
223 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
, unsigned long start
, unsigned long end
)
227 /* Is it from 0 to ~0? */
228 tlb
->fullmm
= !(start
| (end
+1));
229 tlb
->need_flush_all
= 0;
230 tlb
->local
.next
= NULL
;
232 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
233 tlb
->active
= &tlb
->local
;
234 tlb
->batch_count
= 0;
236 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
241 __tlb_reset_range(tlb
);
244 static void tlb_flush_mmu_tlbonly(struct mmu_gather
*tlb
)
250 mmu_notifier_invalidate_range(tlb
->mm
, tlb
->start
, tlb
->end
);
251 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
252 tlb_table_flush(tlb
);
254 __tlb_reset_range(tlb
);
257 static void tlb_flush_mmu_free(struct mmu_gather
*tlb
)
259 struct mmu_gather_batch
*batch
;
261 for (batch
= &tlb
->local
; batch
&& batch
->nr
; batch
= batch
->next
) {
262 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
265 tlb
->active
= &tlb
->local
;
268 void tlb_flush_mmu(struct mmu_gather
*tlb
)
270 tlb_flush_mmu_tlbonly(tlb
);
271 tlb_flush_mmu_free(tlb
);
275 * Called at the end of the shootdown operation to free up any resources
276 * that were required.
278 void tlb_finish_mmu(struct mmu_gather
*tlb
, unsigned long start
, unsigned long end
)
280 struct mmu_gather_batch
*batch
, *next
;
284 /* keep the page table cache within bounds */
287 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
289 free_pages((unsigned long)batch
, 0);
291 tlb
->local
.next
= NULL
;
295 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
296 * handling the additional races in SMP caused by other CPUs caching valid
297 * mappings in their TLBs. Returns the number of free page slots left.
298 * When out of page slots we must call tlb_flush_mmu().
299 *returns true if the caller should flush.
301 bool __tlb_remove_page_size(struct mmu_gather
*tlb
, struct page
*page
, int page_size
)
303 struct mmu_gather_batch
*batch
;
305 VM_BUG_ON(!tlb
->end
);
306 VM_WARN_ON(tlb
->page_size
!= page_size
);
310 * Add the page and check if we are full. If so
313 batch
->pages
[batch
->nr
++] = page
;
314 if (batch
->nr
== batch
->max
) {
315 if (!tlb_next_batch(tlb
))
319 VM_BUG_ON_PAGE(batch
->nr
> batch
->max
, page
);
324 #endif /* HAVE_GENERIC_MMU_GATHER */
326 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
329 * See the comment near struct mmu_table_batch.
332 static void tlb_remove_table_smp_sync(void *arg
)
334 /* Simply deliver the interrupt */
337 static void tlb_remove_table_one(void *table
)
340 * This isn't an RCU grace period and hence the page-tables cannot be
341 * assumed to be actually RCU-freed.
343 * It is however sufficient for software page-table walkers that rely on
344 * IRQ disabling. See the comment near struct mmu_table_batch.
346 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
347 __tlb_remove_table(table
);
350 static void tlb_remove_table_rcu(struct rcu_head
*head
)
352 struct mmu_table_batch
*batch
;
355 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
357 for (i
= 0; i
< batch
->nr
; i
++)
358 __tlb_remove_table(batch
->tables
[i
]);
360 free_page((unsigned long)batch
);
363 void tlb_table_flush(struct mmu_gather
*tlb
)
365 struct mmu_table_batch
**batch
= &tlb
->batch
;
368 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
373 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
375 struct mmu_table_batch
**batch
= &tlb
->batch
;
378 * When there's less then two users of this mm there cannot be a
379 * concurrent page-table walk.
381 if (atomic_read(&tlb
->mm
->mm_users
) < 2) {
382 __tlb_remove_table(table
);
386 if (*batch
== NULL
) {
387 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
388 if (*batch
== NULL
) {
389 tlb_remove_table_one(table
);
394 (*batch
)->tables
[(*batch
)->nr
++] = table
;
395 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
396 tlb_table_flush(tlb
);
399 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
402 * Note: this doesn't free the actual pages themselves. That
403 * has been handled earlier when unmapping all the memory regions.
405 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
408 pgtable_t token
= pmd_pgtable(*pmd
);
410 pte_free_tlb(tlb
, token
, addr
);
411 atomic_long_dec(&tlb
->mm
->nr_ptes
);
414 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
415 unsigned long addr
, unsigned long end
,
416 unsigned long floor
, unsigned long ceiling
)
423 pmd
= pmd_offset(pud
, addr
);
425 next
= pmd_addr_end(addr
, end
);
426 if (pmd_none_or_clear_bad(pmd
))
428 free_pte_range(tlb
, pmd
, addr
);
429 } while (pmd
++, addr
= next
, addr
!= end
);
439 if (end
- 1 > ceiling
- 1)
442 pmd
= pmd_offset(pud
, start
);
444 pmd_free_tlb(tlb
, pmd
, start
);
445 mm_dec_nr_pmds(tlb
->mm
);
448 static inline void free_pud_range(struct mmu_gather
*tlb
, p4d_t
*p4d
,
449 unsigned long addr
, unsigned long end
,
450 unsigned long floor
, unsigned long ceiling
)
457 pud
= pud_offset(p4d
, addr
);
459 next
= pud_addr_end(addr
, end
);
460 if (pud_none_or_clear_bad(pud
))
462 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
463 } while (pud
++, addr
= next
, addr
!= end
);
473 if (end
- 1 > ceiling
- 1)
476 pud
= pud_offset(p4d
, start
);
478 pud_free_tlb(tlb
, pud
, start
);
481 static inline void free_p4d_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
482 unsigned long addr
, unsigned long end
,
483 unsigned long floor
, unsigned long ceiling
)
490 p4d
= p4d_offset(pgd
, addr
);
492 next
= p4d_addr_end(addr
, end
);
493 if (p4d_none_or_clear_bad(p4d
))
495 free_pud_range(tlb
, p4d
, addr
, next
, floor
, ceiling
);
496 } while (p4d
++, addr
= next
, addr
!= end
);
502 ceiling
&= PGDIR_MASK
;
506 if (end
- 1 > ceiling
- 1)
509 p4d
= p4d_offset(pgd
, start
);
511 p4d_free_tlb(tlb
, p4d
, start
);
515 * This function frees user-level page tables of a process.
517 void free_pgd_range(struct mmu_gather
*tlb
,
518 unsigned long addr
, unsigned long end
,
519 unsigned long floor
, unsigned long ceiling
)
525 * The next few lines have given us lots of grief...
527 * Why are we testing PMD* at this top level? Because often
528 * there will be no work to do at all, and we'd prefer not to
529 * go all the way down to the bottom just to discover that.
531 * Why all these "- 1"s? Because 0 represents both the bottom
532 * of the address space and the top of it (using -1 for the
533 * top wouldn't help much: the masks would do the wrong thing).
534 * The rule is that addr 0 and floor 0 refer to the bottom of
535 * the address space, but end 0 and ceiling 0 refer to the top
536 * Comparisons need to use "end - 1" and "ceiling - 1" (though
537 * that end 0 case should be mythical).
539 * Wherever addr is brought up or ceiling brought down, we must
540 * be careful to reject "the opposite 0" before it confuses the
541 * subsequent tests. But what about where end is brought down
542 * by PMD_SIZE below? no, end can't go down to 0 there.
544 * Whereas we round start (addr) and ceiling down, by different
545 * masks at different levels, in order to test whether a table
546 * now has no other vmas using it, so can be freed, we don't
547 * bother to round floor or end up - the tests don't need that.
561 if (end
- 1 > ceiling
- 1)
566 * We add page table cache pages with PAGE_SIZE,
567 * (see pte_free_tlb()), flush the tlb if we need
569 tlb_remove_check_page_size_change(tlb
, PAGE_SIZE
);
570 pgd
= pgd_offset(tlb
->mm
, addr
);
572 next
= pgd_addr_end(addr
, end
);
573 if (pgd_none_or_clear_bad(pgd
))
575 free_p4d_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
576 } while (pgd
++, addr
= next
, addr
!= end
);
579 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
580 unsigned long floor
, unsigned long ceiling
)
583 struct vm_area_struct
*next
= vma
->vm_next
;
584 unsigned long addr
= vma
->vm_start
;
587 * Hide vma from rmap and truncate_pagecache before freeing
590 unlink_anon_vmas(vma
);
591 unlink_file_vma(vma
);
593 if (is_vm_hugetlb_page(vma
)) {
594 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
595 floor
, next
? next
->vm_start
: ceiling
);
598 * Optimization: gather nearby vmas into one call down
600 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
601 && !is_vm_hugetlb_page(next
)) {
604 unlink_anon_vmas(vma
);
605 unlink_file_vma(vma
);
607 free_pgd_range(tlb
, addr
, vma
->vm_end
,
608 floor
, next
? next
->vm_start
: ceiling
);
614 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
617 pgtable_t
new = pte_alloc_one(mm
, address
);
622 * Ensure all pte setup (eg. pte page lock and page clearing) are
623 * visible before the pte is made visible to other CPUs by being
624 * put into page tables.
626 * The other side of the story is the pointer chasing in the page
627 * table walking code (when walking the page table without locking;
628 * ie. most of the time). Fortunately, these data accesses consist
629 * of a chain of data-dependent loads, meaning most CPUs (alpha
630 * being the notable exception) will already guarantee loads are
631 * seen in-order. See the alpha page table accessors for the
632 * smp_read_barrier_depends() barriers in page table walking code.
634 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
636 ptl
= pmd_lock(mm
, pmd
);
637 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
638 atomic_long_inc(&mm
->nr_ptes
);
639 pmd_populate(mm
, pmd
, new);
648 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
650 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
654 smp_wmb(); /* See comment in __pte_alloc */
656 spin_lock(&init_mm
.page_table_lock
);
657 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
658 pmd_populate_kernel(&init_mm
, pmd
, new);
661 spin_unlock(&init_mm
.page_table_lock
);
663 pte_free_kernel(&init_mm
, new);
667 static inline void init_rss_vec(int *rss
)
669 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
672 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
676 if (current
->mm
== mm
)
678 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
680 add_mm_counter(mm
, i
, rss
[i
]);
684 * This function is called to print an error when a bad pte
685 * is found. For example, we might have a PFN-mapped pte in
686 * a region that doesn't allow it.
688 * The calling function must still handle the error.
690 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
691 pte_t pte
, struct page
*page
)
693 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
694 p4d_t
*p4d
= p4d_offset(pgd
, addr
);
695 pud_t
*pud
= pud_offset(p4d
, addr
);
696 pmd_t
*pmd
= pmd_offset(pud
, addr
);
697 struct address_space
*mapping
;
699 static unsigned long resume
;
700 static unsigned long nr_shown
;
701 static unsigned long nr_unshown
;
704 * Allow a burst of 60 reports, then keep quiet for that minute;
705 * or allow a steady drip of one report per second.
707 if (nr_shown
== 60) {
708 if (time_before(jiffies
, resume
)) {
713 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
720 resume
= jiffies
+ 60 * HZ
;
722 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
723 index
= linear_page_index(vma
, addr
);
725 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
727 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
729 dump_page(page
, "bad pte");
730 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
731 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
733 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
735 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
737 vma
->vm_ops
? vma
->vm_ops
->fault
: NULL
,
738 vma
->vm_file
? vma
->vm_file
->f_op
->mmap
: NULL
,
739 mapping
? mapping
->a_ops
->readpage
: NULL
);
741 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
745 * vm_normal_page -- This function gets the "struct page" associated with a pte.
747 * "Special" mappings do not wish to be associated with a "struct page" (either
748 * it doesn't exist, or it exists but they don't want to touch it). In this
749 * case, NULL is returned here. "Normal" mappings do have a struct page.
751 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
752 * pte bit, in which case this function is trivial. Secondly, an architecture
753 * may not have a spare pte bit, which requires a more complicated scheme,
756 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
757 * special mapping (even if there are underlying and valid "struct pages").
758 * COWed pages of a VM_PFNMAP are always normal.
760 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
761 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
762 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
763 * mapping will always honor the rule
765 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
767 * And for normal mappings this is false.
769 * This restricts such mappings to be a linear translation from virtual address
770 * to pfn. To get around this restriction, we allow arbitrary mappings so long
771 * as the vma is not a COW mapping; in that case, we know that all ptes are
772 * special (because none can have been COWed).
775 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
777 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
778 * page" backing, however the difference is that _all_ pages with a struct
779 * page (that is, those where pfn_valid is true) are refcounted and considered
780 * normal pages by the VM. The disadvantage is that pages are refcounted
781 * (which can be slower and simply not an option for some PFNMAP users). The
782 * advantage is that we don't have to follow the strict linearity rule of
783 * PFNMAP mappings in order to support COWable mappings.
786 #ifdef __HAVE_ARCH_PTE_SPECIAL
787 # define HAVE_PTE_SPECIAL 1
789 # define HAVE_PTE_SPECIAL 0
791 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
794 unsigned long pfn
= pte_pfn(pte
);
796 if (HAVE_PTE_SPECIAL
) {
797 if (likely(!pte_special(pte
)))
799 if (vma
->vm_ops
&& vma
->vm_ops
->find_special_page
)
800 return vma
->vm_ops
->find_special_page(vma
, addr
);
801 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
803 if (!is_zero_pfn(pfn
))
804 print_bad_pte(vma
, addr
, pte
, NULL
);
808 /* !HAVE_PTE_SPECIAL case follows: */
810 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
811 if (vma
->vm_flags
& VM_MIXEDMAP
) {
817 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
818 if (pfn
== vma
->vm_pgoff
+ off
)
820 if (!is_cow_mapping(vma
->vm_flags
))
825 if (is_zero_pfn(pfn
))
828 if (unlikely(pfn
> highest_memmap_pfn
)) {
829 print_bad_pte(vma
, addr
, pte
, NULL
);
834 * NOTE! We still have PageReserved() pages in the page tables.
835 * eg. VDSO mappings can cause them to exist.
838 return pfn_to_page(pfn
);
841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
842 struct page
*vm_normal_page_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
845 unsigned long pfn
= pmd_pfn(pmd
);
848 * There is no pmd_special() but there may be special pmds, e.g.
849 * in a direct-access (dax) mapping, so let's just replicate the
850 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
852 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
853 if (vma
->vm_flags
& VM_MIXEDMAP
) {
859 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
860 if (pfn
== vma
->vm_pgoff
+ off
)
862 if (!is_cow_mapping(vma
->vm_flags
))
867 if (is_zero_pfn(pfn
))
869 if (unlikely(pfn
> highest_memmap_pfn
))
873 * NOTE! We still have PageReserved() pages in the page tables.
874 * eg. VDSO mappings can cause them to exist.
877 return pfn_to_page(pfn
);
882 * copy one vm_area from one task to the other. Assumes the page tables
883 * already present in the new task to be cleared in the whole range
884 * covered by this vma.
887 static inline unsigned long
888 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
889 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
890 unsigned long addr
, int *rss
)
892 unsigned long vm_flags
= vma
->vm_flags
;
893 pte_t pte
= *src_pte
;
896 /* pte contains position in swap or file, so copy. */
897 if (unlikely(!pte_present(pte
))) {
898 swp_entry_t entry
= pte_to_swp_entry(pte
);
900 if (likely(!non_swap_entry(entry
))) {
901 if (swap_duplicate(entry
) < 0)
904 /* make sure dst_mm is on swapoff's mmlist. */
905 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
906 spin_lock(&mmlist_lock
);
907 if (list_empty(&dst_mm
->mmlist
))
908 list_add(&dst_mm
->mmlist
,
910 spin_unlock(&mmlist_lock
);
913 } else if (is_migration_entry(entry
)) {
914 page
= migration_entry_to_page(entry
);
916 rss
[mm_counter(page
)]++;
918 if (is_write_migration_entry(entry
) &&
919 is_cow_mapping(vm_flags
)) {
921 * COW mappings require pages in both
922 * parent and child to be set to read.
924 make_migration_entry_read(&entry
);
925 pte
= swp_entry_to_pte(entry
);
926 if (pte_swp_soft_dirty(*src_pte
))
927 pte
= pte_swp_mksoft_dirty(pte
);
928 set_pte_at(src_mm
, addr
, src_pte
, pte
);
935 * If it's a COW mapping, write protect it both
936 * in the parent and the child
938 if (is_cow_mapping(vm_flags
)) {
939 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
940 pte
= pte_wrprotect(pte
);
944 * If it's a shared mapping, mark it clean in
947 if (vm_flags
& VM_SHARED
)
948 pte
= pte_mkclean(pte
);
949 pte
= pte_mkold(pte
);
951 page
= vm_normal_page(vma
, addr
, pte
);
954 page_dup_rmap(page
, false);
955 rss
[mm_counter(page
)]++;
959 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
963 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
964 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
965 unsigned long addr
, unsigned long end
)
967 pte_t
*orig_src_pte
, *orig_dst_pte
;
968 pte_t
*src_pte
, *dst_pte
;
969 spinlock_t
*src_ptl
, *dst_ptl
;
971 int rss
[NR_MM_COUNTERS
];
972 swp_entry_t entry
= (swp_entry_t
){0};
977 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
980 src_pte
= pte_offset_map(src_pmd
, addr
);
981 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
982 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
983 orig_src_pte
= src_pte
;
984 orig_dst_pte
= dst_pte
;
985 arch_enter_lazy_mmu_mode();
989 * We are holding two locks at this point - either of them
990 * could generate latencies in another task on another CPU.
992 if (progress
>= 32) {
994 if (need_resched() ||
995 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
998 if (pte_none(*src_pte
)) {
1002 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
1007 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1009 arch_leave_lazy_mmu_mode();
1010 spin_unlock(src_ptl
);
1011 pte_unmap(orig_src_pte
);
1012 add_mm_rss_vec(dst_mm
, rss
);
1013 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
1017 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
1026 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1027 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
1028 unsigned long addr
, unsigned long end
)
1030 pmd_t
*src_pmd
, *dst_pmd
;
1033 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
1036 src_pmd
= pmd_offset(src_pud
, addr
);
1038 next
= pmd_addr_end(addr
, end
);
1039 if (pmd_trans_huge(*src_pmd
) || pmd_devmap(*src_pmd
)) {
1041 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PMD_SIZE
, vma
);
1042 err
= copy_huge_pmd(dst_mm
, src_mm
,
1043 dst_pmd
, src_pmd
, addr
, vma
);
1050 if (pmd_none_or_clear_bad(src_pmd
))
1052 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
1055 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
1059 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1060 p4d_t
*dst_p4d
, p4d_t
*src_p4d
, struct vm_area_struct
*vma
,
1061 unsigned long addr
, unsigned long end
)
1063 pud_t
*src_pud
, *dst_pud
;
1066 dst_pud
= pud_alloc(dst_mm
, dst_p4d
, addr
);
1069 src_pud
= pud_offset(src_p4d
, addr
);
1071 next
= pud_addr_end(addr
, end
);
1072 if (pud_trans_huge(*src_pud
) || pud_devmap(*src_pud
)) {
1075 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PUD_SIZE
, vma
);
1076 err
= copy_huge_pud(dst_mm
, src_mm
,
1077 dst_pud
, src_pud
, addr
, vma
);
1084 if (pud_none_or_clear_bad(src_pud
))
1086 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1089 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1093 static inline int copy_p4d_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1094 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
1095 unsigned long addr
, unsigned long end
)
1097 p4d_t
*src_p4d
, *dst_p4d
;
1100 dst_p4d
= p4d_alloc(dst_mm
, dst_pgd
, addr
);
1103 src_p4d
= p4d_offset(src_pgd
, addr
);
1105 next
= p4d_addr_end(addr
, end
);
1106 if (p4d_none_or_clear_bad(src_p4d
))
1108 if (copy_pud_range(dst_mm
, src_mm
, dst_p4d
, src_p4d
,
1111 } while (dst_p4d
++, src_p4d
++, addr
= next
, addr
!= end
);
1115 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1116 struct vm_area_struct
*vma
)
1118 pgd_t
*src_pgd
, *dst_pgd
;
1120 unsigned long addr
= vma
->vm_start
;
1121 unsigned long end
= vma
->vm_end
;
1122 unsigned long mmun_start
; /* For mmu_notifiers */
1123 unsigned long mmun_end
; /* For mmu_notifiers */
1128 * Don't copy ptes where a page fault will fill them correctly.
1129 * Fork becomes much lighter when there are big shared or private
1130 * readonly mappings. The tradeoff is that copy_page_range is more
1131 * efficient than faulting.
1133 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_PFNMAP
| VM_MIXEDMAP
)) &&
1137 if (is_vm_hugetlb_page(vma
))
1138 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1140 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1142 * We do not free on error cases below as remove_vma
1143 * gets called on error from higher level routine
1145 ret
= track_pfn_copy(vma
);
1151 * We need to invalidate the secondary MMU mappings only when
1152 * there could be a permission downgrade on the ptes of the
1153 * parent mm. And a permission downgrade will only happen if
1154 * is_cow_mapping() returns true.
1156 is_cow
= is_cow_mapping(vma
->vm_flags
);
1160 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1164 dst_pgd
= pgd_offset(dst_mm
, addr
);
1165 src_pgd
= pgd_offset(src_mm
, addr
);
1167 next
= pgd_addr_end(addr
, end
);
1168 if (pgd_none_or_clear_bad(src_pgd
))
1170 if (unlikely(copy_p4d_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1171 vma
, addr
, next
))) {
1175 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1178 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1182 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1183 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1184 unsigned long addr
, unsigned long end
,
1185 struct zap_details
*details
)
1187 struct mm_struct
*mm
= tlb
->mm
;
1188 int force_flush
= 0;
1189 int rss
[NR_MM_COUNTERS
];
1195 tlb_remove_check_page_size_change(tlb
, PAGE_SIZE
);
1198 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1200 arch_enter_lazy_mmu_mode();
1203 if (pte_none(ptent
))
1206 if (pte_present(ptent
)) {
1209 page
= vm_normal_page(vma
, addr
, ptent
);
1210 if (unlikely(details
) && page
) {
1212 * unmap_shared_mapping_pages() wants to
1213 * invalidate cache without truncating:
1214 * unmap shared but keep private pages.
1216 if (details
->check_mapping
&&
1217 details
->check_mapping
!= page_rmapping(page
))
1220 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1222 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1223 if (unlikely(!page
))
1226 if (!PageAnon(page
)) {
1227 if (pte_dirty(ptent
)) {
1229 set_page_dirty(page
);
1231 if (pte_young(ptent
) &&
1232 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1233 mark_page_accessed(page
);
1235 rss
[mm_counter(page
)]--;
1236 page_remove_rmap(page
, false);
1237 if (unlikely(page_mapcount(page
) < 0))
1238 print_bad_pte(vma
, addr
, ptent
, page
);
1239 if (unlikely(__tlb_remove_page(tlb
, page
))) {
1246 /* If details->check_mapping, we leave swap entries. */
1247 if (unlikely(details
))
1250 entry
= pte_to_swp_entry(ptent
);
1251 if (!non_swap_entry(entry
))
1253 else if (is_migration_entry(entry
)) {
1256 page
= migration_entry_to_page(entry
);
1257 rss
[mm_counter(page
)]--;
1259 if (unlikely(!free_swap_and_cache(entry
)))
1260 print_bad_pte(vma
, addr
, ptent
, NULL
);
1261 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1262 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1264 add_mm_rss_vec(mm
, rss
);
1265 arch_leave_lazy_mmu_mode();
1267 /* Do the actual TLB flush before dropping ptl */
1269 tlb_flush_mmu_tlbonly(tlb
);
1270 pte_unmap_unlock(start_pte
, ptl
);
1273 * If we forced a TLB flush (either due to running out of
1274 * batch buffers or because we needed to flush dirty TLB
1275 * entries before releasing the ptl), free the batched
1276 * memory too. Restart if we didn't do everything.
1280 tlb_flush_mmu_free(tlb
);
1288 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1289 struct vm_area_struct
*vma
, pud_t
*pud
,
1290 unsigned long addr
, unsigned long end
,
1291 struct zap_details
*details
)
1296 pmd
= pmd_offset(pud
, addr
);
1298 next
= pmd_addr_end(addr
, end
);
1299 if (pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)) {
1300 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1301 VM_BUG_ON_VMA(vma_is_anonymous(vma
) &&
1302 !rwsem_is_locked(&tlb
->mm
->mmap_sem
), vma
);
1303 __split_huge_pmd(vma
, pmd
, addr
, false, NULL
);
1304 } else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1309 * Here there can be other concurrent MADV_DONTNEED or
1310 * trans huge page faults running, and if the pmd is
1311 * none or trans huge it can change under us. This is
1312 * because MADV_DONTNEED holds the mmap_sem in read
1315 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1317 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1320 } while (pmd
++, addr
= next
, addr
!= end
);
1325 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1326 struct vm_area_struct
*vma
, p4d_t
*p4d
,
1327 unsigned long addr
, unsigned long end
,
1328 struct zap_details
*details
)
1333 pud
= pud_offset(p4d
, addr
);
1335 next
= pud_addr_end(addr
, end
);
1336 if (pud_trans_huge(*pud
) || pud_devmap(*pud
)) {
1337 if (next
- addr
!= HPAGE_PUD_SIZE
) {
1338 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb
->mm
->mmap_sem
), vma
);
1339 split_huge_pud(vma
, pud
, addr
);
1340 } else if (zap_huge_pud(tlb
, vma
, pud
, addr
))
1344 if (pud_none_or_clear_bad(pud
))
1346 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1349 } while (pud
++, addr
= next
, addr
!= end
);
1354 static inline unsigned long zap_p4d_range(struct mmu_gather
*tlb
,
1355 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1356 unsigned long addr
, unsigned long end
,
1357 struct zap_details
*details
)
1362 p4d
= p4d_offset(pgd
, addr
);
1364 next
= p4d_addr_end(addr
, end
);
1365 if (p4d_none_or_clear_bad(p4d
))
1367 next
= zap_pud_range(tlb
, vma
, p4d
, addr
, next
, details
);
1368 } while (p4d
++, addr
= next
, addr
!= end
);
1373 void unmap_page_range(struct mmu_gather
*tlb
,
1374 struct vm_area_struct
*vma
,
1375 unsigned long addr
, unsigned long end
,
1376 struct zap_details
*details
)
1381 BUG_ON(addr
>= end
);
1382 tlb_start_vma(tlb
, vma
);
1383 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1385 next
= pgd_addr_end(addr
, end
);
1386 if (pgd_none_or_clear_bad(pgd
))
1388 next
= zap_p4d_range(tlb
, vma
, pgd
, addr
, next
, details
);
1389 } while (pgd
++, addr
= next
, addr
!= end
);
1390 tlb_end_vma(tlb
, vma
);
1394 static void unmap_single_vma(struct mmu_gather
*tlb
,
1395 struct vm_area_struct
*vma
, unsigned long start_addr
,
1396 unsigned long end_addr
,
1397 struct zap_details
*details
)
1399 unsigned long start
= max(vma
->vm_start
, start_addr
);
1402 if (start
>= vma
->vm_end
)
1404 end
= min(vma
->vm_end
, end_addr
);
1405 if (end
<= vma
->vm_start
)
1409 uprobe_munmap(vma
, start
, end
);
1411 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1412 untrack_pfn(vma
, 0, 0);
1415 if (unlikely(is_vm_hugetlb_page(vma
))) {
1417 * It is undesirable to test vma->vm_file as it
1418 * should be non-null for valid hugetlb area.
1419 * However, vm_file will be NULL in the error
1420 * cleanup path of mmap_region. When
1421 * hugetlbfs ->mmap method fails,
1422 * mmap_region() nullifies vma->vm_file
1423 * before calling this function to clean up.
1424 * Since no pte has actually been setup, it is
1425 * safe to do nothing in this case.
1428 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
1429 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1430 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
1433 unmap_page_range(tlb
, vma
, start
, end
, details
);
1438 * unmap_vmas - unmap a range of memory covered by a list of vma's
1439 * @tlb: address of the caller's struct mmu_gather
1440 * @vma: the starting vma
1441 * @start_addr: virtual address at which to start unmapping
1442 * @end_addr: virtual address at which to end unmapping
1444 * Unmap all pages in the vma list.
1446 * Only addresses between `start' and `end' will be unmapped.
1448 * The VMA list must be sorted in ascending virtual address order.
1450 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1451 * range after unmap_vmas() returns. So the only responsibility here is to
1452 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1453 * drops the lock and schedules.
1455 void unmap_vmas(struct mmu_gather
*tlb
,
1456 struct vm_area_struct
*vma
, unsigned long start_addr
,
1457 unsigned long end_addr
)
1459 struct mm_struct
*mm
= vma
->vm_mm
;
1461 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1462 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1463 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1464 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1468 * zap_page_range - remove user pages in a given range
1469 * @vma: vm_area_struct holding the applicable pages
1470 * @start: starting address of pages to zap
1471 * @size: number of bytes to zap
1473 * Caller must protect the VMA list
1475 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1478 struct mm_struct
*mm
= vma
->vm_mm
;
1479 struct mmu_gather tlb
;
1480 unsigned long end
= start
+ size
;
1483 tlb_gather_mmu(&tlb
, mm
, start
, end
);
1484 update_hiwater_rss(mm
);
1485 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1486 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
)
1487 unmap_single_vma(&tlb
, vma
, start
, end
, NULL
);
1488 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1489 tlb_finish_mmu(&tlb
, start
, end
);
1493 * zap_page_range_single - remove user pages in a given range
1494 * @vma: vm_area_struct holding the applicable pages
1495 * @address: starting address of pages to zap
1496 * @size: number of bytes to zap
1497 * @details: details of shared cache invalidation
1499 * The range must fit into one VMA.
1501 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1502 unsigned long size
, struct zap_details
*details
)
1504 struct mm_struct
*mm
= vma
->vm_mm
;
1505 struct mmu_gather tlb
;
1506 unsigned long end
= address
+ size
;
1509 tlb_gather_mmu(&tlb
, mm
, address
, end
);
1510 update_hiwater_rss(mm
);
1511 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1512 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1513 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1514 tlb_finish_mmu(&tlb
, address
, end
);
1518 * zap_vma_ptes - remove ptes mapping the vma
1519 * @vma: vm_area_struct holding ptes to be zapped
1520 * @address: starting address of pages to zap
1521 * @size: number of bytes to zap
1523 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1525 * The entire address range must be fully contained within the vma.
1527 * Returns 0 if successful.
1529 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1532 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1533 !(vma
->vm_flags
& VM_PFNMAP
))
1535 zap_page_range_single(vma
, address
, size
, NULL
);
1538 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1540 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1548 pgd
= pgd_offset(mm
, addr
);
1549 p4d
= p4d_alloc(mm
, pgd
, addr
);
1552 pud
= pud_alloc(mm
, p4d
, addr
);
1555 pmd
= pmd_alloc(mm
, pud
, addr
);
1559 VM_BUG_ON(pmd_trans_huge(*pmd
));
1560 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1564 * This is the old fallback for page remapping.
1566 * For historical reasons, it only allows reserved pages. Only
1567 * old drivers should use this, and they needed to mark their
1568 * pages reserved for the old functions anyway.
1570 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1571 struct page
*page
, pgprot_t prot
)
1573 struct mm_struct
*mm
= vma
->vm_mm
;
1582 flush_dcache_page(page
);
1583 pte
= get_locked_pte(mm
, addr
, &ptl
);
1587 if (!pte_none(*pte
))
1590 /* Ok, finally just insert the thing.. */
1592 inc_mm_counter_fast(mm
, mm_counter_file(page
));
1593 page_add_file_rmap(page
, false);
1594 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1597 pte_unmap_unlock(pte
, ptl
);
1600 pte_unmap_unlock(pte
, ptl
);
1606 * vm_insert_page - insert single page into user vma
1607 * @vma: user vma to map to
1608 * @addr: target user address of this page
1609 * @page: source kernel page
1611 * This allows drivers to insert individual pages they've allocated
1614 * The page has to be a nice clean _individual_ kernel allocation.
1615 * If you allocate a compound page, you need to have marked it as
1616 * such (__GFP_COMP), or manually just split the page up yourself
1617 * (see split_page()).
1619 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1620 * took an arbitrary page protection parameter. This doesn't allow
1621 * that. Your vma protection will have to be set up correctly, which
1622 * means that if you want a shared writable mapping, you'd better
1623 * ask for a shared writable mapping!
1625 * The page does not need to be reserved.
1627 * Usually this function is called from f_op->mmap() handler
1628 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1629 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1630 * function from other places, for example from page-fault handler.
1632 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1635 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1637 if (!page_count(page
))
1639 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1640 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1641 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1642 vma
->vm_flags
|= VM_MIXEDMAP
;
1644 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1646 EXPORT_SYMBOL(vm_insert_page
);
1648 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1649 pfn_t pfn
, pgprot_t prot
)
1651 struct mm_struct
*mm
= vma
->vm_mm
;
1657 pte
= get_locked_pte(mm
, addr
, &ptl
);
1661 if (!pte_none(*pte
))
1664 /* Ok, finally just insert the thing.. */
1665 if (pfn_t_devmap(pfn
))
1666 entry
= pte_mkdevmap(pfn_t_pte(pfn
, prot
));
1668 entry
= pte_mkspecial(pfn_t_pte(pfn
, prot
));
1669 set_pte_at(mm
, addr
, pte
, entry
);
1670 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1674 pte_unmap_unlock(pte
, ptl
);
1680 * vm_insert_pfn - insert single pfn into user vma
1681 * @vma: user vma to map to
1682 * @addr: target user address of this page
1683 * @pfn: source kernel pfn
1685 * Similar to vm_insert_page, this allows drivers to insert individual pages
1686 * they've allocated into a user vma. Same comments apply.
1688 * This function should only be called from a vm_ops->fault handler, and
1689 * in that case the handler should return NULL.
1691 * vma cannot be a COW mapping.
1693 * As this is called only for pages that do not currently exist, we
1694 * do not need to flush old virtual caches or the TLB.
1696 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1699 return vm_insert_pfn_prot(vma
, addr
, pfn
, vma
->vm_page_prot
);
1701 EXPORT_SYMBOL(vm_insert_pfn
);
1704 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1705 * @vma: user vma to map to
1706 * @addr: target user address of this page
1707 * @pfn: source kernel pfn
1708 * @pgprot: pgprot flags for the inserted page
1710 * This is exactly like vm_insert_pfn, except that it allows drivers to
1711 * to override pgprot on a per-page basis.
1713 * This only makes sense for IO mappings, and it makes no sense for
1714 * cow mappings. In general, using multiple vmas is preferable;
1715 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1718 int vm_insert_pfn_prot(struct vm_area_struct
*vma
, unsigned long addr
,
1719 unsigned long pfn
, pgprot_t pgprot
)
1723 * Technically, architectures with pte_special can avoid all these
1724 * restrictions (same for remap_pfn_range). However we would like
1725 * consistency in testing and feature parity among all, so we should
1726 * try to keep these invariants in place for everybody.
1728 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1729 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1730 (VM_PFNMAP
|VM_MIXEDMAP
));
1731 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1732 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1734 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1737 track_pfn_insert(vma
, &pgprot
, __pfn_to_pfn_t(pfn
, PFN_DEV
));
1739 ret
= insert_pfn(vma
, addr
, __pfn_to_pfn_t(pfn
, PFN_DEV
), pgprot
);
1743 EXPORT_SYMBOL(vm_insert_pfn_prot
);
1745 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1748 pgprot_t pgprot
= vma
->vm_page_prot
;
1750 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1752 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1755 track_pfn_insert(vma
, &pgprot
, pfn
);
1758 * If we don't have pte special, then we have to use the pfn_valid()
1759 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1760 * refcount the page if pfn_valid is true (hence insert_page rather
1761 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1762 * without pte special, it would there be refcounted as a normal page.
1764 if (!HAVE_PTE_SPECIAL
&& !pfn_t_devmap(pfn
) && pfn_t_valid(pfn
)) {
1768 * At this point we are committed to insert_page()
1769 * regardless of whether the caller specified flags that
1770 * result in pfn_t_has_page() == false.
1772 page
= pfn_to_page(pfn_t_to_pfn(pfn
));
1773 return insert_page(vma
, addr
, page
, pgprot
);
1775 return insert_pfn(vma
, addr
, pfn
, pgprot
);
1777 EXPORT_SYMBOL(vm_insert_mixed
);
1780 * maps a range of physical memory into the requested pages. the old
1781 * mappings are removed. any references to nonexistent pages results
1782 * in null mappings (currently treated as "copy-on-access")
1784 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1785 unsigned long addr
, unsigned long end
,
1786 unsigned long pfn
, pgprot_t prot
)
1791 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1794 arch_enter_lazy_mmu_mode();
1796 BUG_ON(!pte_none(*pte
));
1797 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1799 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1800 arch_leave_lazy_mmu_mode();
1801 pte_unmap_unlock(pte
- 1, ptl
);
1805 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1806 unsigned long addr
, unsigned long end
,
1807 unsigned long pfn
, pgprot_t prot
)
1812 pfn
-= addr
>> PAGE_SHIFT
;
1813 pmd
= pmd_alloc(mm
, pud
, addr
);
1816 VM_BUG_ON(pmd_trans_huge(*pmd
));
1818 next
= pmd_addr_end(addr
, end
);
1819 if (remap_pte_range(mm
, pmd
, addr
, next
,
1820 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1822 } while (pmd
++, addr
= next
, addr
!= end
);
1826 static inline int remap_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
1827 unsigned long addr
, unsigned long end
,
1828 unsigned long pfn
, pgprot_t prot
)
1833 pfn
-= addr
>> PAGE_SHIFT
;
1834 pud
= pud_alloc(mm
, p4d
, addr
);
1838 next
= pud_addr_end(addr
, end
);
1839 if (remap_pmd_range(mm
, pud
, addr
, next
,
1840 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1842 } while (pud
++, addr
= next
, addr
!= end
);
1846 static inline int remap_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1847 unsigned long addr
, unsigned long end
,
1848 unsigned long pfn
, pgprot_t prot
)
1853 pfn
-= addr
>> PAGE_SHIFT
;
1854 p4d
= p4d_alloc(mm
, pgd
, addr
);
1858 next
= p4d_addr_end(addr
, end
);
1859 if (remap_pud_range(mm
, p4d
, addr
, next
,
1860 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1862 } while (p4d
++, addr
= next
, addr
!= end
);
1867 * remap_pfn_range - remap kernel memory to userspace
1868 * @vma: user vma to map to
1869 * @addr: target user address to start at
1870 * @pfn: physical address of kernel memory
1871 * @size: size of map area
1872 * @prot: page protection flags for this mapping
1874 * Note: this is only safe if the mm semaphore is held when called.
1876 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1877 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1881 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1882 struct mm_struct
*mm
= vma
->vm_mm
;
1883 unsigned long remap_pfn
= pfn
;
1887 * Physically remapped pages are special. Tell the
1888 * rest of the world about it:
1889 * VM_IO tells people not to look at these pages
1890 * (accesses can have side effects).
1891 * VM_PFNMAP tells the core MM that the base pages are just
1892 * raw PFN mappings, and do not have a "struct page" associated
1895 * Disable vma merging and expanding with mremap().
1897 * Omit vma from core dump, even when VM_IO turned off.
1899 * There's a horrible special case to handle copy-on-write
1900 * behaviour that some programs depend on. We mark the "original"
1901 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1902 * See vm_normal_page() for details.
1904 if (is_cow_mapping(vma
->vm_flags
)) {
1905 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1907 vma
->vm_pgoff
= pfn
;
1910 err
= track_pfn_remap(vma
, &prot
, remap_pfn
, addr
, PAGE_ALIGN(size
));
1914 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1916 BUG_ON(addr
>= end
);
1917 pfn
-= addr
>> PAGE_SHIFT
;
1918 pgd
= pgd_offset(mm
, addr
);
1919 flush_cache_range(vma
, addr
, end
);
1921 next
= pgd_addr_end(addr
, end
);
1922 err
= remap_p4d_range(mm
, pgd
, addr
, next
,
1923 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1926 } while (pgd
++, addr
= next
, addr
!= end
);
1929 untrack_pfn(vma
, remap_pfn
, PAGE_ALIGN(size
));
1933 EXPORT_SYMBOL(remap_pfn_range
);
1936 * vm_iomap_memory - remap memory to userspace
1937 * @vma: user vma to map to
1938 * @start: start of area
1939 * @len: size of area
1941 * This is a simplified io_remap_pfn_range() for common driver use. The
1942 * driver just needs to give us the physical memory range to be mapped,
1943 * we'll figure out the rest from the vma information.
1945 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1946 * whatever write-combining details or similar.
1948 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1950 unsigned long vm_len
, pfn
, pages
;
1952 /* Check that the physical memory area passed in looks valid */
1953 if (start
+ len
< start
)
1956 * You *really* shouldn't map things that aren't page-aligned,
1957 * but we've historically allowed it because IO memory might
1958 * just have smaller alignment.
1960 len
+= start
& ~PAGE_MASK
;
1961 pfn
= start
>> PAGE_SHIFT
;
1962 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
1963 if (pfn
+ pages
< pfn
)
1966 /* We start the mapping 'vm_pgoff' pages into the area */
1967 if (vma
->vm_pgoff
> pages
)
1969 pfn
+= vma
->vm_pgoff
;
1970 pages
-= vma
->vm_pgoff
;
1972 /* Can we fit all of the mapping? */
1973 vm_len
= vma
->vm_end
- vma
->vm_start
;
1974 if (vm_len
>> PAGE_SHIFT
> pages
)
1977 /* Ok, let it rip */
1978 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1980 EXPORT_SYMBOL(vm_iomap_memory
);
1982 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1983 unsigned long addr
, unsigned long end
,
1984 pte_fn_t fn
, void *data
)
1989 spinlock_t
*uninitialized_var(ptl
);
1991 pte
= (mm
== &init_mm
) ?
1992 pte_alloc_kernel(pmd
, addr
) :
1993 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1997 BUG_ON(pmd_huge(*pmd
));
1999 arch_enter_lazy_mmu_mode();
2001 token
= pmd_pgtable(*pmd
);
2004 err
= fn(pte
++, token
, addr
, data
);
2007 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2009 arch_leave_lazy_mmu_mode();
2012 pte_unmap_unlock(pte
-1, ptl
);
2016 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2017 unsigned long addr
, unsigned long end
,
2018 pte_fn_t fn
, void *data
)
2024 BUG_ON(pud_huge(*pud
));
2026 pmd
= pmd_alloc(mm
, pud
, addr
);
2030 next
= pmd_addr_end(addr
, end
);
2031 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
2034 } while (pmd
++, addr
= next
, addr
!= end
);
2038 static int apply_to_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
2039 unsigned long addr
, unsigned long end
,
2040 pte_fn_t fn
, void *data
)
2046 pud
= pud_alloc(mm
, p4d
, addr
);
2050 next
= pud_addr_end(addr
, end
);
2051 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
2054 } while (pud
++, addr
= next
, addr
!= end
);
2058 static int apply_to_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2059 unsigned long addr
, unsigned long end
,
2060 pte_fn_t fn
, void *data
)
2066 p4d
= p4d_alloc(mm
, pgd
, addr
);
2070 next
= p4d_addr_end(addr
, end
);
2071 err
= apply_to_pud_range(mm
, p4d
, addr
, next
, fn
, data
);
2074 } while (p4d
++, addr
= next
, addr
!= end
);
2079 * Scan a region of virtual memory, filling in page tables as necessary
2080 * and calling a provided function on each leaf page table.
2082 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2083 unsigned long size
, pte_fn_t fn
, void *data
)
2087 unsigned long end
= addr
+ size
;
2090 if (WARN_ON(addr
>= end
))
2093 pgd
= pgd_offset(mm
, addr
);
2095 next
= pgd_addr_end(addr
, end
);
2096 err
= apply_to_p4d_range(mm
, pgd
, addr
, next
, fn
, data
);
2099 } while (pgd
++, addr
= next
, addr
!= end
);
2103 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2106 * handle_pte_fault chooses page fault handler according to an entry which was
2107 * read non-atomically. Before making any commitment, on those architectures
2108 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2109 * parts, do_swap_page must check under lock before unmapping the pte and
2110 * proceeding (but do_wp_page is only called after already making such a check;
2111 * and do_anonymous_page can safely check later on).
2113 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2114 pte_t
*page_table
, pte_t orig_pte
)
2117 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2118 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2119 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2121 same
= pte_same(*page_table
, orig_pte
);
2125 pte_unmap(page_table
);
2129 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
2131 debug_dma_assert_idle(src
);
2134 * If the source page was a PFN mapping, we don't have
2135 * a "struct page" for it. We do a best-effort copy by
2136 * just copying from the original user address. If that
2137 * fails, we just zero-fill it. Live with it.
2139 if (unlikely(!src
)) {
2140 void *kaddr
= kmap_atomic(dst
);
2141 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2144 * This really shouldn't fail, because the page is there
2145 * in the page tables. But it might just be unreadable,
2146 * in which case we just give up and fill the result with
2149 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2151 kunmap_atomic(kaddr
);
2152 flush_dcache_page(dst
);
2154 copy_user_highpage(dst
, src
, va
, vma
);
2157 static gfp_t
__get_fault_gfp_mask(struct vm_area_struct
*vma
)
2159 struct file
*vm_file
= vma
->vm_file
;
2162 return mapping_gfp_mask(vm_file
->f_mapping
) | __GFP_FS
| __GFP_IO
;
2165 * Special mappings (e.g. VDSO) do not have any file so fake
2166 * a default GFP_KERNEL for them.
2172 * Notify the address space that the page is about to become writable so that
2173 * it can prohibit this or wait for the page to get into an appropriate state.
2175 * We do this without the lock held, so that it can sleep if it needs to.
2177 static int do_page_mkwrite(struct vm_fault
*vmf
)
2180 struct page
*page
= vmf
->page
;
2181 unsigned int old_flags
= vmf
->flags
;
2183 vmf
->flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2185 ret
= vmf
->vma
->vm_ops
->page_mkwrite(vmf
);
2186 /* Restore original flags so that caller is not surprised */
2187 vmf
->flags
= old_flags
;
2188 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2190 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2192 if (!page
->mapping
) {
2194 return 0; /* retry */
2196 ret
|= VM_FAULT_LOCKED
;
2198 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2203 * Handle dirtying of a page in shared file mapping on a write fault.
2205 * The function expects the page to be locked and unlocks it.
2207 static void fault_dirty_shared_page(struct vm_area_struct
*vma
,
2210 struct address_space
*mapping
;
2212 bool page_mkwrite
= vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
;
2214 dirtied
= set_page_dirty(page
);
2215 VM_BUG_ON_PAGE(PageAnon(page
), page
);
2217 * Take a local copy of the address_space - page.mapping may be zeroed
2218 * by truncate after unlock_page(). The address_space itself remains
2219 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2220 * release semantics to prevent the compiler from undoing this copying.
2222 mapping
= page_rmapping(page
);
2225 if ((dirtied
|| page_mkwrite
) && mapping
) {
2227 * Some device drivers do not set page.mapping
2228 * but still dirty their pages
2230 balance_dirty_pages_ratelimited(mapping
);
2234 file_update_time(vma
->vm_file
);
2238 * Handle write page faults for pages that can be reused in the current vma
2240 * This can happen either due to the mapping being with the VM_SHARED flag,
2241 * or due to us being the last reference standing to the page. In either
2242 * case, all we need to do here is to mark the page as writable and update
2243 * any related book-keeping.
2245 static inline void wp_page_reuse(struct vm_fault
*vmf
)
2246 __releases(vmf
->ptl
)
2248 struct vm_area_struct
*vma
= vmf
->vma
;
2249 struct page
*page
= vmf
->page
;
2252 * Clear the pages cpupid information as the existing
2253 * information potentially belongs to a now completely
2254 * unrelated process.
2257 page_cpupid_xchg_last(page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2259 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2260 entry
= pte_mkyoung(vmf
->orig_pte
);
2261 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2262 if (ptep_set_access_flags(vma
, vmf
->address
, vmf
->pte
, entry
, 1))
2263 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2264 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2268 * Handle the case of a page which we actually need to copy to a new page.
2270 * Called with mmap_sem locked and the old page referenced, but
2271 * without the ptl held.
2273 * High level logic flow:
2275 * - Allocate a page, copy the content of the old page to the new one.
2276 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2277 * - Take the PTL. If the pte changed, bail out and release the allocated page
2278 * - If the pte is still the way we remember it, update the page table and all
2279 * relevant references. This includes dropping the reference the page-table
2280 * held to the old page, as well as updating the rmap.
2281 * - In any case, unlock the PTL and drop the reference we took to the old page.
2283 static int wp_page_copy(struct vm_fault
*vmf
)
2285 struct vm_area_struct
*vma
= vmf
->vma
;
2286 struct mm_struct
*mm
= vma
->vm_mm
;
2287 struct page
*old_page
= vmf
->page
;
2288 struct page
*new_page
= NULL
;
2290 int page_copied
= 0;
2291 const unsigned long mmun_start
= vmf
->address
& PAGE_MASK
;
2292 const unsigned long mmun_end
= mmun_start
+ PAGE_SIZE
;
2293 struct mem_cgroup
*memcg
;
2295 if (unlikely(anon_vma_prepare(vma
)))
2298 if (is_zero_pfn(pte_pfn(vmf
->orig_pte
))) {
2299 new_page
= alloc_zeroed_user_highpage_movable(vma
,
2304 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2308 cow_user_page(new_page
, old_page
, vmf
->address
, vma
);
2311 if (mem_cgroup_try_charge(new_page
, mm
, GFP_KERNEL
, &memcg
, false))
2314 __SetPageUptodate(new_page
);
2316 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2319 * Re-check the pte - we dropped the lock
2321 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, vmf
->address
, &vmf
->ptl
);
2322 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2324 if (!PageAnon(old_page
)) {
2325 dec_mm_counter_fast(mm
,
2326 mm_counter_file(old_page
));
2327 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2330 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2332 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2333 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2334 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2336 * Clear the pte entry and flush it first, before updating the
2337 * pte with the new entry. This will avoid a race condition
2338 * seen in the presence of one thread doing SMC and another
2341 ptep_clear_flush_notify(vma
, vmf
->address
, vmf
->pte
);
2342 page_add_new_anon_rmap(new_page
, vma
, vmf
->address
, false);
2343 mem_cgroup_commit_charge(new_page
, memcg
, false, false);
2344 lru_cache_add_active_or_unevictable(new_page
, vma
);
2346 * We call the notify macro here because, when using secondary
2347 * mmu page tables (such as kvm shadow page tables), we want the
2348 * new page to be mapped directly into the secondary page table.
2350 set_pte_at_notify(mm
, vmf
->address
, vmf
->pte
, entry
);
2351 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2354 * Only after switching the pte to the new page may
2355 * we remove the mapcount here. Otherwise another
2356 * process may come and find the rmap count decremented
2357 * before the pte is switched to the new page, and
2358 * "reuse" the old page writing into it while our pte
2359 * here still points into it and can be read by other
2362 * The critical issue is to order this
2363 * page_remove_rmap with the ptp_clear_flush above.
2364 * Those stores are ordered by (if nothing else,)
2365 * the barrier present in the atomic_add_negative
2366 * in page_remove_rmap.
2368 * Then the TLB flush in ptep_clear_flush ensures that
2369 * no process can access the old page before the
2370 * decremented mapcount is visible. And the old page
2371 * cannot be reused until after the decremented
2372 * mapcount is visible. So transitively, TLBs to
2373 * old page will be flushed before it can be reused.
2375 page_remove_rmap(old_page
, false);
2378 /* Free the old page.. */
2379 new_page
= old_page
;
2382 mem_cgroup_cancel_charge(new_page
, memcg
, false);
2388 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2389 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2392 * Don't let another task, with possibly unlocked vma,
2393 * keep the mlocked page.
2395 if (page_copied
&& (vma
->vm_flags
& VM_LOCKED
)) {
2396 lock_page(old_page
); /* LRU manipulation */
2397 if (PageMlocked(old_page
))
2398 munlock_vma_page(old_page
);
2399 unlock_page(old_page
);
2403 return page_copied
? VM_FAULT_WRITE
: 0;
2409 return VM_FAULT_OOM
;
2413 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2414 * writeable once the page is prepared
2416 * @vmf: structure describing the fault
2418 * This function handles all that is needed to finish a write page fault in a
2419 * shared mapping due to PTE being read-only once the mapped page is prepared.
2420 * It handles locking of PTE and modifying it. The function returns
2421 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2424 * The function expects the page to be locked or other protection against
2425 * concurrent faults / writeback (such as DAX radix tree locks).
2427 int finish_mkwrite_fault(struct vm_fault
*vmf
)
2429 WARN_ON_ONCE(!(vmf
->vma
->vm_flags
& VM_SHARED
));
2430 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2433 * We might have raced with another page fault while we released the
2434 * pte_offset_map_lock.
2436 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2437 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2438 return VM_FAULT_NOPAGE
;
2445 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2448 static int wp_pfn_shared(struct vm_fault
*vmf
)
2450 struct vm_area_struct
*vma
= vmf
->vma
;
2452 if (vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
) {
2455 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2456 vmf
->flags
|= FAULT_FLAG_MKWRITE
;
2457 ret
= vma
->vm_ops
->pfn_mkwrite(vmf
);
2458 if (ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))
2460 return finish_mkwrite_fault(vmf
);
2463 return VM_FAULT_WRITE
;
2466 static int wp_page_shared(struct vm_fault
*vmf
)
2467 __releases(vmf
->ptl
)
2469 struct vm_area_struct
*vma
= vmf
->vma
;
2471 get_page(vmf
->page
);
2473 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2476 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2477 tmp
= do_page_mkwrite(vmf
);
2478 if (unlikely(!tmp
|| (tmp
&
2479 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2480 put_page(vmf
->page
);
2483 tmp
= finish_mkwrite_fault(vmf
);
2484 if (unlikely(tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2485 unlock_page(vmf
->page
);
2486 put_page(vmf
->page
);
2491 lock_page(vmf
->page
);
2493 fault_dirty_shared_page(vma
, vmf
->page
);
2494 put_page(vmf
->page
);
2496 return VM_FAULT_WRITE
;
2500 * This routine handles present pages, when users try to write
2501 * to a shared page. It is done by copying the page to a new address
2502 * and decrementing the shared-page counter for the old page.
2504 * Note that this routine assumes that the protection checks have been
2505 * done by the caller (the low-level page fault routine in most cases).
2506 * Thus we can safely just mark it writable once we've done any necessary
2509 * We also mark the page dirty at this point even though the page will
2510 * change only once the write actually happens. This avoids a few races,
2511 * and potentially makes it more efficient.
2513 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2514 * but allow concurrent faults), with pte both mapped and locked.
2515 * We return with mmap_sem still held, but pte unmapped and unlocked.
2517 static int do_wp_page(struct vm_fault
*vmf
)
2518 __releases(vmf
->ptl
)
2520 struct vm_area_struct
*vma
= vmf
->vma
;
2522 vmf
->page
= vm_normal_page(vma
, vmf
->address
, vmf
->orig_pte
);
2525 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2528 * We should not cow pages in a shared writeable mapping.
2529 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2531 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2532 (VM_WRITE
|VM_SHARED
))
2533 return wp_pfn_shared(vmf
);
2535 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2536 return wp_page_copy(vmf
);
2540 * Take out anonymous pages first, anonymous shared vmas are
2541 * not dirty accountable.
2543 if (PageAnon(vmf
->page
) && !PageKsm(vmf
->page
)) {
2545 if (!trylock_page(vmf
->page
)) {
2546 get_page(vmf
->page
);
2547 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2548 lock_page(vmf
->page
);
2549 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2550 vmf
->address
, &vmf
->ptl
);
2551 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2552 unlock_page(vmf
->page
);
2553 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2554 put_page(vmf
->page
);
2557 put_page(vmf
->page
);
2559 if (reuse_swap_page(vmf
->page
, &total_mapcount
)) {
2560 if (total_mapcount
== 1) {
2562 * The page is all ours. Move it to
2563 * our anon_vma so the rmap code will
2564 * not search our parent or siblings.
2565 * Protected against the rmap code by
2568 page_move_anon_rmap(vmf
->page
, vma
);
2570 unlock_page(vmf
->page
);
2572 return VM_FAULT_WRITE
;
2574 unlock_page(vmf
->page
);
2575 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2576 (VM_WRITE
|VM_SHARED
))) {
2577 return wp_page_shared(vmf
);
2581 * Ok, we need to copy. Oh, well..
2583 get_page(vmf
->page
);
2585 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2586 return wp_page_copy(vmf
);
2589 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2590 unsigned long start_addr
, unsigned long end_addr
,
2591 struct zap_details
*details
)
2593 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2596 static inline void unmap_mapping_range_tree(struct rb_root
*root
,
2597 struct zap_details
*details
)
2599 struct vm_area_struct
*vma
;
2600 pgoff_t vba
, vea
, zba
, zea
;
2602 vma_interval_tree_foreach(vma
, root
,
2603 details
->first_index
, details
->last_index
) {
2605 vba
= vma
->vm_pgoff
;
2606 vea
= vba
+ vma_pages(vma
) - 1;
2607 zba
= details
->first_index
;
2610 zea
= details
->last_index
;
2614 unmap_mapping_range_vma(vma
,
2615 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2616 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2622 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2623 * address_space corresponding to the specified page range in the underlying
2626 * @mapping: the address space containing mmaps to be unmapped.
2627 * @holebegin: byte in first page to unmap, relative to the start of
2628 * the underlying file. This will be rounded down to a PAGE_SIZE
2629 * boundary. Note that this is different from truncate_pagecache(), which
2630 * must keep the partial page. In contrast, we must get rid of
2632 * @holelen: size of prospective hole in bytes. This will be rounded
2633 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2635 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2636 * but 0 when invalidating pagecache, don't throw away private data.
2638 void unmap_mapping_range(struct address_space
*mapping
,
2639 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2641 struct zap_details details
= { };
2642 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2643 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2645 /* Check for overflow. */
2646 if (sizeof(holelen
) > sizeof(hlen
)) {
2648 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2649 if (holeend
& ~(long long)ULONG_MAX
)
2650 hlen
= ULONG_MAX
- hba
+ 1;
2653 details
.check_mapping
= even_cows
? NULL
: mapping
;
2654 details
.first_index
= hba
;
2655 details
.last_index
= hba
+ hlen
- 1;
2656 if (details
.last_index
< details
.first_index
)
2657 details
.last_index
= ULONG_MAX
;
2659 i_mmap_lock_write(mapping
);
2660 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
)))
2661 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2662 i_mmap_unlock_write(mapping
);
2664 EXPORT_SYMBOL(unmap_mapping_range
);
2667 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2668 * but allow concurrent faults), and pte mapped but not yet locked.
2669 * We return with pte unmapped and unlocked.
2671 * We return with the mmap_sem locked or unlocked in the same cases
2672 * as does filemap_fault().
2674 int do_swap_page(struct vm_fault
*vmf
)
2676 struct vm_area_struct
*vma
= vmf
->vma
;
2677 struct page
*page
, *swapcache
;
2678 struct mem_cgroup
*memcg
;
2685 if (!pte_unmap_same(vma
->vm_mm
, vmf
->pmd
, vmf
->pte
, vmf
->orig_pte
))
2688 entry
= pte_to_swp_entry(vmf
->orig_pte
);
2689 if (unlikely(non_swap_entry(entry
))) {
2690 if (is_migration_entry(entry
)) {
2691 migration_entry_wait(vma
->vm_mm
, vmf
->pmd
,
2693 } else if (is_hwpoison_entry(entry
)) {
2694 ret
= VM_FAULT_HWPOISON
;
2696 print_bad_pte(vma
, vmf
->address
, vmf
->orig_pte
, NULL
);
2697 ret
= VM_FAULT_SIGBUS
;
2701 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2702 page
= lookup_swap_cache(entry
);
2704 page
= swapin_readahead(entry
, GFP_HIGHUSER_MOVABLE
, vma
,
2708 * Back out if somebody else faulted in this pte
2709 * while we released the pte lock.
2711 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2712 vmf
->address
, &vmf
->ptl
);
2713 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
)))
2715 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2719 /* Had to read the page from swap area: Major fault */
2720 ret
= VM_FAULT_MAJOR
;
2721 count_vm_event(PGMAJFAULT
);
2722 count_memcg_event_mm(vma
->vm_mm
, PGMAJFAULT
);
2723 } else if (PageHWPoison(page
)) {
2725 * hwpoisoned dirty swapcache pages are kept for killing
2726 * owner processes (which may be unknown at hwpoison time)
2728 ret
= VM_FAULT_HWPOISON
;
2729 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2735 locked
= lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
);
2737 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2739 ret
|= VM_FAULT_RETRY
;
2744 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2745 * release the swapcache from under us. The page pin, and pte_same
2746 * test below, are not enough to exclude that. Even if it is still
2747 * swapcache, we need to check that the page's swap has not changed.
2749 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
2752 page
= ksm_might_need_to_copy(page
, vma
, vmf
->address
);
2753 if (unlikely(!page
)) {
2759 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
,
2766 * Back out if somebody else already faulted in this pte.
2768 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2770 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
)))
2773 if (unlikely(!PageUptodate(page
))) {
2774 ret
= VM_FAULT_SIGBUS
;
2779 * The page isn't present yet, go ahead with the fault.
2781 * Be careful about the sequence of operations here.
2782 * To get its accounting right, reuse_swap_page() must be called
2783 * while the page is counted on swap but not yet in mapcount i.e.
2784 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2785 * must be called after the swap_free(), or it will never succeed.
2788 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2789 dec_mm_counter_fast(vma
->vm_mm
, MM_SWAPENTS
);
2790 pte
= mk_pte(page
, vma
->vm_page_prot
);
2791 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
, NULL
)) {
2792 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2793 vmf
->flags
&= ~FAULT_FLAG_WRITE
;
2794 ret
|= VM_FAULT_WRITE
;
2795 exclusive
= RMAP_EXCLUSIVE
;
2797 flush_icache_page(vma
, page
);
2798 if (pte_swp_soft_dirty(vmf
->orig_pte
))
2799 pte
= pte_mksoft_dirty(pte
);
2800 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
2801 vmf
->orig_pte
= pte
;
2802 if (page
== swapcache
) {
2803 do_page_add_anon_rmap(page
, vma
, vmf
->address
, exclusive
);
2804 mem_cgroup_commit_charge(page
, memcg
, true, false);
2805 activate_page(page
);
2806 } else { /* ksm created a completely new copy */
2807 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
2808 mem_cgroup_commit_charge(page
, memcg
, false, false);
2809 lru_cache_add_active_or_unevictable(page
, vma
);
2813 if (mem_cgroup_swap_full(page
) ||
2814 (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2815 try_to_free_swap(page
);
2817 if (page
!= swapcache
) {
2819 * Hold the lock to avoid the swap entry to be reused
2820 * until we take the PT lock for the pte_same() check
2821 * (to avoid false positives from pte_same). For
2822 * further safety release the lock after the swap_free
2823 * so that the swap count won't change under a
2824 * parallel locked swapcache.
2826 unlock_page(swapcache
);
2827 put_page(swapcache
);
2830 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
2831 ret
|= do_wp_page(vmf
);
2832 if (ret
& VM_FAULT_ERROR
)
2833 ret
&= VM_FAULT_ERROR
;
2837 /* No need to invalidate - it was non-present before */
2838 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2840 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2844 mem_cgroup_cancel_charge(page
, memcg
, false);
2845 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2850 if (page
!= swapcache
) {
2851 unlock_page(swapcache
);
2852 put_page(swapcache
);
2858 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2859 * but allow concurrent faults), and pte mapped but not yet locked.
2860 * We return with mmap_sem still held, but pte unmapped and unlocked.
2862 static int do_anonymous_page(struct vm_fault
*vmf
)
2864 struct vm_area_struct
*vma
= vmf
->vma
;
2865 struct mem_cgroup
*memcg
;
2869 /* File mapping without ->vm_ops ? */
2870 if (vma
->vm_flags
& VM_SHARED
)
2871 return VM_FAULT_SIGBUS
;
2874 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2875 * pte_offset_map() on pmds where a huge pmd might be created
2876 * from a different thread.
2878 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2879 * parallel threads are excluded by other means.
2881 * Here we only have down_read(mmap_sem).
2883 if (pte_alloc(vma
->vm_mm
, vmf
->pmd
, vmf
->address
))
2884 return VM_FAULT_OOM
;
2886 /* See the comment in pte_alloc_one_map() */
2887 if (unlikely(pmd_trans_unstable(vmf
->pmd
)))
2890 /* Use the zero-page for reads */
2891 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
2892 !mm_forbids_zeropage(vma
->vm_mm
)) {
2893 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(vmf
->address
),
2894 vma
->vm_page_prot
));
2895 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2896 vmf
->address
, &vmf
->ptl
);
2897 if (!pte_none(*vmf
->pte
))
2899 /* Deliver the page fault to userland, check inside PT lock */
2900 if (userfaultfd_missing(vma
)) {
2901 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2902 return handle_userfault(vmf
, VM_UFFD_MISSING
);
2907 /* Allocate our own private page. */
2908 if (unlikely(anon_vma_prepare(vma
)))
2910 page
= alloc_zeroed_user_highpage_movable(vma
, vmf
->address
);
2914 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
, false))
2918 * The memory barrier inside __SetPageUptodate makes sure that
2919 * preceeding stores to the page contents become visible before
2920 * the set_pte_at() write.
2922 __SetPageUptodate(page
);
2924 entry
= mk_pte(page
, vma
->vm_page_prot
);
2925 if (vma
->vm_flags
& VM_WRITE
)
2926 entry
= pte_mkwrite(pte_mkdirty(entry
));
2928 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2930 if (!pte_none(*vmf
->pte
))
2933 /* Deliver the page fault to userland, check inside PT lock */
2934 if (userfaultfd_missing(vma
)) {
2935 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2936 mem_cgroup_cancel_charge(page
, memcg
, false);
2938 return handle_userfault(vmf
, VM_UFFD_MISSING
);
2941 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2942 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
2943 mem_cgroup_commit_charge(page
, memcg
, false, false);
2944 lru_cache_add_active_or_unevictable(page
, vma
);
2946 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
2948 /* No need to invalidate - it was non-present before */
2949 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2951 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2954 mem_cgroup_cancel_charge(page
, memcg
, false);
2960 return VM_FAULT_OOM
;
2964 * The mmap_sem must have been held on entry, and may have been
2965 * released depending on flags and vma->vm_ops->fault() return value.
2966 * See filemap_fault() and __lock_page_retry().
2968 static int __do_fault(struct vm_fault
*vmf
)
2970 struct vm_area_struct
*vma
= vmf
->vma
;
2973 ret
= vma
->vm_ops
->fault(vmf
);
2974 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
|
2975 VM_FAULT_DONE_COW
)))
2978 if (unlikely(PageHWPoison(vmf
->page
))) {
2979 if (ret
& VM_FAULT_LOCKED
)
2980 unlock_page(vmf
->page
);
2981 put_page(vmf
->page
);
2983 return VM_FAULT_HWPOISON
;
2986 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2987 lock_page(vmf
->page
);
2989 VM_BUG_ON_PAGE(!PageLocked(vmf
->page
), vmf
->page
);
2995 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
2996 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
2997 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
2998 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3000 static int pmd_devmap_trans_unstable(pmd_t
*pmd
)
3002 return pmd_devmap(*pmd
) || pmd_trans_unstable(pmd
);
3005 static int pte_alloc_one_map(struct vm_fault
*vmf
)
3007 struct vm_area_struct
*vma
= vmf
->vma
;
3009 if (!pmd_none(*vmf
->pmd
))
3011 if (vmf
->prealloc_pte
) {
3012 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3013 if (unlikely(!pmd_none(*vmf
->pmd
))) {
3014 spin_unlock(vmf
->ptl
);
3018 atomic_long_inc(&vma
->vm_mm
->nr_ptes
);
3019 pmd_populate(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3020 spin_unlock(vmf
->ptl
);
3021 vmf
->prealloc_pte
= NULL
;
3022 } else if (unlikely(pte_alloc(vma
->vm_mm
, vmf
->pmd
, vmf
->address
))) {
3023 return VM_FAULT_OOM
;
3027 * If a huge pmd materialized under us just retry later. Use
3028 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3029 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3030 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3031 * running immediately after a huge pmd fault in a different thread of
3032 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3033 * All we have to ensure is that it is a regular pmd that we can walk
3034 * with pte_offset_map() and we can do that through an atomic read in
3035 * C, which is what pmd_trans_unstable() provides.
3037 if (pmd_devmap_trans_unstable(vmf
->pmd
))
3038 return VM_FAULT_NOPAGE
;
3041 * At this point we know that our vmf->pmd points to a page of ptes
3042 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3043 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3044 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3045 * be valid and we will re-check to make sure the vmf->pte isn't
3046 * pte_none() under vmf->ptl protection when we return to
3049 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3054 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3056 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3057 static inline bool transhuge_vma_suitable(struct vm_area_struct
*vma
,
3058 unsigned long haddr
)
3060 if (((vma
->vm_start
>> PAGE_SHIFT
) & HPAGE_CACHE_INDEX_MASK
) !=
3061 (vma
->vm_pgoff
& HPAGE_CACHE_INDEX_MASK
))
3063 if (haddr
< vma
->vm_start
|| haddr
+ HPAGE_PMD_SIZE
> vma
->vm_end
)
3068 static void deposit_prealloc_pte(struct vm_fault
*vmf
)
3070 struct vm_area_struct
*vma
= vmf
->vma
;
3072 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3074 * We are going to consume the prealloc table,
3075 * count that as nr_ptes.
3077 atomic_long_inc(&vma
->vm_mm
->nr_ptes
);
3078 vmf
->prealloc_pte
= NULL
;
3081 static int do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3083 struct vm_area_struct
*vma
= vmf
->vma
;
3084 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3085 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
3089 if (!transhuge_vma_suitable(vma
, haddr
))
3090 return VM_FAULT_FALLBACK
;
3092 ret
= VM_FAULT_FALLBACK
;
3093 page
= compound_head(page
);
3096 * Archs like ppc64 need additonal space to store information
3097 * related to pte entry. Use the preallocated table for that.
3099 if (arch_needs_pgtable_deposit() && !vmf
->prealloc_pte
) {
3100 vmf
->prealloc_pte
= pte_alloc_one(vma
->vm_mm
, vmf
->address
);
3101 if (!vmf
->prealloc_pte
)
3102 return VM_FAULT_OOM
;
3103 smp_wmb(); /* See comment in __pte_alloc() */
3106 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3107 if (unlikely(!pmd_none(*vmf
->pmd
)))
3110 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
3111 flush_icache_page(vma
, page
+ i
);
3113 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
3115 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
3117 add_mm_counter(vma
->vm_mm
, MM_FILEPAGES
, HPAGE_PMD_NR
);
3118 page_add_file_rmap(page
, true);
3120 * deposit and withdraw with pmd lock held
3122 if (arch_needs_pgtable_deposit())
3123 deposit_prealloc_pte(vmf
);
3125 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
3127 update_mmu_cache_pmd(vma
, haddr
, vmf
->pmd
);
3129 /* fault is handled */
3131 count_vm_event(THP_FILE_MAPPED
);
3133 spin_unlock(vmf
->ptl
);
3137 static int do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3145 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3146 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3148 * @vmf: fault environment
3149 * @memcg: memcg to charge page (only for private mappings)
3150 * @page: page to map
3152 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3155 * Target users are page handler itself and implementations of
3156 * vm_ops->map_pages.
3158 int alloc_set_pte(struct vm_fault
*vmf
, struct mem_cgroup
*memcg
,
3161 struct vm_area_struct
*vma
= vmf
->vma
;
3162 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3166 if (pmd_none(*vmf
->pmd
) && PageTransCompound(page
) &&
3167 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
3169 VM_BUG_ON_PAGE(memcg
, page
);
3171 ret
= do_set_pmd(vmf
, page
);
3172 if (ret
!= VM_FAULT_FALLBACK
)
3177 ret
= pte_alloc_one_map(vmf
);
3182 /* Re-check under ptl */
3183 if (unlikely(!pte_none(*vmf
->pte
)))
3184 return VM_FAULT_NOPAGE
;
3186 flush_icache_page(vma
, page
);
3187 entry
= mk_pte(page
, vma
->vm_page_prot
);
3189 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3190 /* copy-on-write page */
3191 if (write
&& !(vma
->vm_flags
& VM_SHARED
)) {
3192 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3193 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3194 mem_cgroup_commit_charge(page
, memcg
, false, false);
3195 lru_cache_add_active_or_unevictable(page
, vma
);
3197 inc_mm_counter_fast(vma
->vm_mm
, mm_counter_file(page
));
3198 page_add_file_rmap(page
, false);
3200 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3202 /* no need to invalidate: a not-present page won't be cached */
3203 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3210 * finish_fault - finish page fault once we have prepared the page to fault
3212 * @vmf: structure describing the fault
3214 * This function handles all that is needed to finish a page fault once the
3215 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3216 * given page, adds reverse page mapping, handles memcg charges and LRU
3217 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3220 * The function expects the page to be locked and on success it consumes a
3221 * reference of a page being mapped (for the PTE which maps it).
3223 int finish_fault(struct vm_fault
*vmf
)
3228 /* Did we COW the page? */
3229 if ((vmf
->flags
& FAULT_FLAG_WRITE
) &&
3230 !(vmf
->vma
->vm_flags
& VM_SHARED
))
3231 page
= vmf
->cow_page
;
3234 ret
= alloc_set_pte(vmf
, vmf
->memcg
, page
);
3236 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3240 static unsigned long fault_around_bytes __read_mostly
=
3241 rounddown_pow_of_two(65536);
3243 #ifdef CONFIG_DEBUG_FS
3244 static int fault_around_bytes_get(void *data
, u64
*val
)
3246 *val
= fault_around_bytes
;
3251 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3252 * rounded down to nearest page order. It's what do_fault_around() expects to
3255 static int fault_around_bytes_set(void *data
, u64 val
)
3257 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
3259 if (val
> PAGE_SIZE
)
3260 fault_around_bytes
= rounddown_pow_of_two(val
);
3262 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
3265 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops
,
3266 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
3268 static int __init
fault_around_debugfs(void)
3272 ret
= debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL
, NULL
,
3273 &fault_around_bytes_fops
);
3275 pr_warn("Failed to create fault_around_bytes in debugfs");
3278 late_initcall(fault_around_debugfs
);
3282 * do_fault_around() tries to map few pages around the fault address. The hope
3283 * is that the pages will be needed soon and this will lower the number of
3286 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3287 * not ready to be mapped: not up-to-date, locked, etc.
3289 * This function is called with the page table lock taken. In the split ptlock
3290 * case the page table lock only protects only those entries which belong to
3291 * the page table corresponding to the fault address.
3293 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3296 * fault_around_pages() defines how many pages we'll try to map.
3297 * do_fault_around() expects it to return a power of two less than or equal to
3300 * The virtual address of the area that we map is naturally aligned to the
3301 * fault_around_pages() value (and therefore to page order). This way it's
3302 * easier to guarantee that we don't cross page table boundaries.
3304 static int do_fault_around(struct vm_fault
*vmf
)
3306 unsigned long address
= vmf
->address
, nr_pages
, mask
;
3307 pgoff_t start_pgoff
= vmf
->pgoff
;
3311 nr_pages
= READ_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
3312 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
3314 vmf
->address
= max(address
& mask
, vmf
->vma
->vm_start
);
3315 off
= ((address
- vmf
->address
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
3319 * end_pgoff is either end of page table or end of vma
3320 * or fault_around_pages() from start_pgoff, depending what is nearest.
3322 end_pgoff
= start_pgoff
-
3323 ((vmf
->address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
3325 end_pgoff
= min3(end_pgoff
, vma_pages(vmf
->vma
) + vmf
->vma
->vm_pgoff
- 1,
3326 start_pgoff
+ nr_pages
- 1);
3328 if (pmd_none(*vmf
->pmd
)) {
3329 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
,
3331 if (!vmf
->prealloc_pte
)
3333 smp_wmb(); /* See comment in __pte_alloc() */
3336 vmf
->vma
->vm_ops
->map_pages(vmf
, start_pgoff
, end_pgoff
);
3338 /* Huge page is mapped? Page fault is solved */
3339 if (pmd_trans_huge(*vmf
->pmd
)) {
3340 ret
= VM_FAULT_NOPAGE
;
3344 /* ->map_pages() haven't done anything useful. Cold page cache? */
3348 /* check if the page fault is solved */
3349 vmf
->pte
-= (vmf
->address
>> PAGE_SHIFT
) - (address
>> PAGE_SHIFT
);
3350 if (!pte_none(*vmf
->pte
))
3351 ret
= VM_FAULT_NOPAGE
;
3352 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3354 vmf
->address
= address
;
3359 static int do_read_fault(struct vm_fault
*vmf
)
3361 struct vm_area_struct
*vma
= vmf
->vma
;
3365 * Let's call ->map_pages() first and use ->fault() as fallback
3366 * if page by the offset is not ready to be mapped (cold cache or
3369 if (vma
->vm_ops
->map_pages
&& fault_around_bytes
>> PAGE_SHIFT
> 1) {
3370 ret
= do_fault_around(vmf
);
3375 ret
= __do_fault(vmf
);
3376 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3379 ret
|= finish_fault(vmf
);
3380 unlock_page(vmf
->page
);
3381 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3382 put_page(vmf
->page
);
3386 static int do_cow_fault(struct vm_fault
*vmf
)
3388 struct vm_area_struct
*vma
= vmf
->vma
;
3391 if (unlikely(anon_vma_prepare(vma
)))
3392 return VM_FAULT_OOM
;
3394 vmf
->cow_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vmf
->address
);
3396 return VM_FAULT_OOM
;
3398 if (mem_cgroup_try_charge(vmf
->cow_page
, vma
->vm_mm
, GFP_KERNEL
,
3399 &vmf
->memcg
, false)) {
3400 put_page(vmf
->cow_page
);
3401 return VM_FAULT_OOM
;
3404 ret
= __do_fault(vmf
);
3405 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3407 if (ret
& VM_FAULT_DONE_COW
)
3410 copy_user_highpage(vmf
->cow_page
, vmf
->page
, vmf
->address
, vma
);
3411 __SetPageUptodate(vmf
->cow_page
);
3413 ret
|= finish_fault(vmf
);
3414 unlock_page(vmf
->page
);
3415 put_page(vmf
->page
);
3416 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3420 mem_cgroup_cancel_charge(vmf
->cow_page
, vmf
->memcg
, false);
3421 put_page(vmf
->cow_page
);
3425 static int do_shared_fault(struct vm_fault
*vmf
)
3427 struct vm_area_struct
*vma
= vmf
->vma
;
3430 ret
= __do_fault(vmf
);
3431 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3435 * Check if the backing address space wants to know that the page is
3436 * about to become writable
3438 if (vma
->vm_ops
->page_mkwrite
) {
3439 unlock_page(vmf
->page
);
3440 tmp
= do_page_mkwrite(vmf
);
3441 if (unlikely(!tmp
||
3442 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3443 put_page(vmf
->page
);
3448 ret
|= finish_fault(vmf
);
3449 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3451 unlock_page(vmf
->page
);
3452 put_page(vmf
->page
);
3456 fault_dirty_shared_page(vma
, vmf
->page
);
3461 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3462 * but allow concurrent faults).
3463 * The mmap_sem may have been released depending on flags and our
3464 * return value. See filemap_fault() and __lock_page_or_retry().
3466 static int do_fault(struct vm_fault
*vmf
)
3468 struct vm_area_struct
*vma
= vmf
->vma
;
3471 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3472 if (!vma
->vm_ops
->fault
)
3473 ret
= VM_FAULT_SIGBUS
;
3474 else if (!(vmf
->flags
& FAULT_FLAG_WRITE
))
3475 ret
= do_read_fault(vmf
);
3476 else if (!(vma
->vm_flags
& VM_SHARED
))
3477 ret
= do_cow_fault(vmf
);
3479 ret
= do_shared_fault(vmf
);
3481 /* preallocated pagetable is unused: free it */
3482 if (vmf
->prealloc_pte
) {
3483 pte_free(vma
->vm_mm
, vmf
->prealloc_pte
);
3484 vmf
->prealloc_pte
= NULL
;
3489 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3490 unsigned long addr
, int page_nid
,
3495 count_vm_numa_event(NUMA_HINT_FAULTS
);
3496 if (page_nid
== numa_node_id()) {
3497 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3498 *flags
|= TNF_FAULT_LOCAL
;
3501 return mpol_misplaced(page
, vma
, addr
);
3504 static int do_numa_page(struct vm_fault
*vmf
)
3506 struct vm_area_struct
*vma
= vmf
->vma
;
3507 struct page
*page
= NULL
;
3511 bool migrated
= false;
3513 bool was_writable
= pte_savedwrite(vmf
->orig_pte
);
3517 * The "pte" at this point cannot be used safely without
3518 * validation through pte_unmap_same(). It's of NUMA type but
3519 * the pfn may be screwed if the read is non atomic.
3521 vmf
->ptl
= pte_lockptr(vma
->vm_mm
, vmf
->pmd
);
3522 spin_lock(vmf
->ptl
);
3523 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
3524 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3529 * Make it present again, Depending on how arch implementes non
3530 * accessible ptes, some can allow access by kernel mode.
3532 pte
= ptep_modify_prot_start(vma
->vm_mm
, vmf
->address
, vmf
->pte
);
3533 pte
= pte_modify(pte
, vma
->vm_page_prot
);
3534 pte
= pte_mkyoung(pte
);
3536 pte
= pte_mkwrite(pte
);
3537 ptep_modify_prot_commit(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
3538 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3540 page
= vm_normal_page(vma
, vmf
->address
, pte
);
3542 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3546 /* TODO: handle PTE-mapped THP */
3547 if (PageCompound(page
)) {
3548 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3553 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3554 * much anyway since they can be in shared cache state. This misses
3555 * the case where a mapping is writable but the process never writes
3556 * to it but pte_write gets cleared during protection updates and
3557 * pte_dirty has unpredictable behaviour between PTE scan updates,
3558 * background writeback, dirty balancing and application behaviour.
3560 if (!pte_write(pte
))
3561 flags
|= TNF_NO_GROUP
;
3564 * Flag if the page is shared between multiple address spaces. This
3565 * is later used when determining whether to group tasks together
3567 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3568 flags
|= TNF_SHARED
;
3570 last_cpupid
= page_cpupid_last(page
);
3571 page_nid
= page_to_nid(page
);
3572 target_nid
= numa_migrate_prep(page
, vma
, vmf
->address
, page_nid
,
3574 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3575 if (target_nid
== -1) {
3580 /* Migrate to the requested node */
3581 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3583 page_nid
= target_nid
;
3584 flags
|= TNF_MIGRATED
;
3586 flags
|= TNF_MIGRATE_FAIL
;
3590 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3594 static inline int create_huge_pmd(struct vm_fault
*vmf
)
3596 if (vma_is_anonymous(vmf
->vma
))
3597 return do_huge_pmd_anonymous_page(vmf
);
3598 if (vmf
->vma
->vm_ops
->huge_fault
)
3599 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
3600 return VM_FAULT_FALLBACK
;
3603 static int wp_huge_pmd(struct vm_fault
*vmf
, pmd_t orig_pmd
)
3605 if (vma_is_anonymous(vmf
->vma
))
3606 return do_huge_pmd_wp_page(vmf
, orig_pmd
);
3607 if (vmf
->vma
->vm_ops
->huge_fault
)
3608 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
3610 /* COW handled on pte level: split pmd */
3611 VM_BUG_ON_VMA(vmf
->vma
->vm_flags
& VM_SHARED
, vmf
->vma
);
3612 __split_huge_pmd(vmf
->vma
, vmf
->pmd
, vmf
->address
, false, NULL
);
3614 return VM_FAULT_FALLBACK
;
3617 static inline bool vma_is_accessible(struct vm_area_struct
*vma
)
3619 return vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
);
3622 static int create_huge_pud(struct vm_fault
*vmf
)
3624 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3625 /* No support for anonymous transparent PUD pages yet */
3626 if (vma_is_anonymous(vmf
->vma
))
3627 return VM_FAULT_FALLBACK
;
3628 if (vmf
->vma
->vm_ops
->huge_fault
)
3629 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
3630 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3631 return VM_FAULT_FALLBACK
;
3634 static int wp_huge_pud(struct vm_fault
*vmf
, pud_t orig_pud
)
3636 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3637 /* No support for anonymous transparent PUD pages yet */
3638 if (vma_is_anonymous(vmf
->vma
))
3639 return VM_FAULT_FALLBACK
;
3640 if (vmf
->vma
->vm_ops
->huge_fault
)
3641 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
3642 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3643 return VM_FAULT_FALLBACK
;
3647 * These routines also need to handle stuff like marking pages dirty
3648 * and/or accessed for architectures that don't do it in hardware (most
3649 * RISC architectures). The early dirtying is also good on the i386.
3651 * There is also a hook called "update_mmu_cache()" that architectures
3652 * with external mmu caches can use to update those (ie the Sparc or
3653 * PowerPC hashed page tables that act as extended TLBs).
3655 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3656 * concurrent faults).
3658 * The mmap_sem may have been released depending on flags and our return value.
3659 * See filemap_fault() and __lock_page_or_retry().
3661 static int handle_pte_fault(struct vm_fault
*vmf
)
3665 if (unlikely(pmd_none(*vmf
->pmd
))) {
3667 * Leave __pte_alloc() until later: because vm_ops->fault may
3668 * want to allocate huge page, and if we expose page table
3669 * for an instant, it will be difficult to retract from
3670 * concurrent faults and from rmap lookups.
3674 /* See comment in pte_alloc_one_map() */
3675 if (pmd_devmap_trans_unstable(vmf
->pmd
))
3678 * A regular pmd is established and it can't morph into a huge
3679 * pmd from under us anymore at this point because we hold the
3680 * mmap_sem read mode and khugepaged takes it in write mode.
3681 * So now it's safe to run pte_offset_map().
3683 vmf
->pte
= pte_offset_map(vmf
->pmd
, vmf
->address
);
3684 vmf
->orig_pte
= *vmf
->pte
;
3687 * some architectures can have larger ptes than wordsize,
3688 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3689 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3690 * atomic accesses. The code below just needs a consistent
3691 * view for the ifs and we later double check anyway with the
3692 * ptl lock held. So here a barrier will do.
3695 if (pte_none(vmf
->orig_pte
)) {
3696 pte_unmap(vmf
->pte
);
3702 if (vma_is_anonymous(vmf
->vma
))
3703 return do_anonymous_page(vmf
);
3705 return do_fault(vmf
);
3708 if (!pte_present(vmf
->orig_pte
))
3709 return do_swap_page(vmf
);
3711 if (pte_protnone(vmf
->orig_pte
) && vma_is_accessible(vmf
->vma
))
3712 return do_numa_page(vmf
);
3714 vmf
->ptl
= pte_lockptr(vmf
->vma
->vm_mm
, vmf
->pmd
);
3715 spin_lock(vmf
->ptl
);
3716 entry
= vmf
->orig_pte
;
3717 if (unlikely(!pte_same(*vmf
->pte
, entry
)))
3719 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
3720 if (!pte_write(entry
))
3721 return do_wp_page(vmf
);
3722 entry
= pte_mkdirty(entry
);
3724 entry
= pte_mkyoung(entry
);
3725 if (ptep_set_access_flags(vmf
->vma
, vmf
->address
, vmf
->pte
, entry
,
3726 vmf
->flags
& FAULT_FLAG_WRITE
)) {
3727 update_mmu_cache(vmf
->vma
, vmf
->address
, vmf
->pte
);
3730 * This is needed only for protection faults but the arch code
3731 * is not yet telling us if this is a protection fault or not.
3732 * This still avoids useless tlb flushes for .text page faults
3735 if (vmf
->flags
& FAULT_FLAG_WRITE
)
3736 flush_tlb_fix_spurious_fault(vmf
->vma
, vmf
->address
);
3739 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3744 * By the time we get here, we already hold the mm semaphore
3746 * The mmap_sem may have been released depending on flags and our
3747 * return value. See filemap_fault() and __lock_page_or_retry().
3749 static int __handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
3752 struct vm_fault vmf
= {
3754 .address
= address
& PAGE_MASK
,
3756 .pgoff
= linear_page_index(vma
, address
),
3757 .gfp_mask
= __get_fault_gfp_mask(vma
),
3759 struct mm_struct
*mm
= vma
->vm_mm
;
3764 pgd
= pgd_offset(mm
, address
);
3765 p4d
= p4d_alloc(mm
, pgd
, address
);
3767 return VM_FAULT_OOM
;
3769 vmf
.pud
= pud_alloc(mm
, p4d
, address
);
3771 return VM_FAULT_OOM
;
3772 if (pud_none(*vmf
.pud
) && transparent_hugepage_enabled(vma
)) {
3773 ret
= create_huge_pud(&vmf
);
3774 if (!(ret
& VM_FAULT_FALLBACK
))
3777 pud_t orig_pud
= *vmf
.pud
;
3780 if (pud_trans_huge(orig_pud
) || pud_devmap(orig_pud
)) {
3781 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
3783 /* NUMA case for anonymous PUDs would go here */
3785 if (dirty
&& !pud_write(orig_pud
)) {
3786 ret
= wp_huge_pud(&vmf
, orig_pud
);
3787 if (!(ret
& VM_FAULT_FALLBACK
))
3790 huge_pud_set_accessed(&vmf
, orig_pud
);
3796 vmf
.pmd
= pmd_alloc(mm
, vmf
.pud
, address
);
3798 return VM_FAULT_OOM
;
3799 if (pmd_none(*vmf
.pmd
) && transparent_hugepage_enabled(vma
)) {
3800 ret
= create_huge_pmd(&vmf
);
3801 if (!(ret
& VM_FAULT_FALLBACK
))
3804 pmd_t orig_pmd
= *vmf
.pmd
;
3807 if (pmd_trans_huge(orig_pmd
) || pmd_devmap(orig_pmd
)) {
3808 if (pmd_protnone(orig_pmd
) && vma_is_accessible(vma
))
3809 return do_huge_pmd_numa_page(&vmf
, orig_pmd
);
3811 if ((vmf
.flags
& FAULT_FLAG_WRITE
) &&
3812 !pmd_write(orig_pmd
)) {
3813 ret
= wp_huge_pmd(&vmf
, orig_pmd
);
3814 if (!(ret
& VM_FAULT_FALLBACK
))
3817 huge_pmd_set_accessed(&vmf
, orig_pmd
);
3823 return handle_pte_fault(&vmf
);
3827 * By the time we get here, we already hold the mm semaphore
3829 * The mmap_sem may have been released depending on flags and our
3830 * return value. See filemap_fault() and __lock_page_or_retry().
3832 int handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
3837 __set_current_state(TASK_RUNNING
);
3839 count_vm_event(PGFAULT
);
3840 count_memcg_event_mm(vma
->vm_mm
, PGFAULT
);
3842 /* do counter updates before entering really critical section. */
3843 check_sync_rss_stat(current
);
3846 * Enable the memcg OOM handling for faults triggered in user
3847 * space. Kernel faults are handled more gracefully.
3849 if (flags
& FAULT_FLAG_USER
)
3850 mem_cgroup_oom_enable();
3852 if (!arch_vma_access_permitted(vma
, flags
& FAULT_FLAG_WRITE
,
3853 flags
& FAULT_FLAG_INSTRUCTION
,
3854 flags
& FAULT_FLAG_REMOTE
))
3855 return VM_FAULT_SIGSEGV
;
3857 if (unlikely(is_vm_hugetlb_page(vma
)))
3858 ret
= hugetlb_fault(vma
->vm_mm
, vma
, address
, flags
);
3860 ret
= __handle_mm_fault(vma
, address
, flags
);
3862 if (flags
& FAULT_FLAG_USER
) {
3863 mem_cgroup_oom_disable();
3865 * The task may have entered a memcg OOM situation but
3866 * if the allocation error was handled gracefully (no
3867 * VM_FAULT_OOM), there is no need to kill anything.
3868 * Just clean up the OOM state peacefully.
3870 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
3871 mem_cgroup_oom_synchronize(false);
3875 * This mm has been already reaped by the oom reaper and so the
3876 * refault cannot be trusted in general. Anonymous refaults would
3877 * lose data and give a zero page instead e.g. This is especially
3878 * problem for use_mm() because regular tasks will just die and
3879 * the corrupted data will not be visible anywhere while kthread
3880 * will outlive the oom victim and potentially propagate the date
3883 if (unlikely((current
->flags
& PF_KTHREAD
) && !(ret
& VM_FAULT_ERROR
)
3884 && test_bit(MMF_UNSTABLE
, &vma
->vm_mm
->flags
)))
3885 ret
= VM_FAULT_SIGBUS
;
3889 EXPORT_SYMBOL_GPL(handle_mm_fault
);
3891 #ifndef __PAGETABLE_P4D_FOLDED
3893 * Allocate p4d page table.
3894 * We've already handled the fast-path in-line.
3896 int __p4d_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3898 p4d_t
*new = p4d_alloc_one(mm
, address
);
3902 smp_wmb(); /* See comment in __pte_alloc */
3904 spin_lock(&mm
->page_table_lock
);
3905 if (pgd_present(*pgd
)) /* Another has populated it */
3908 pgd_populate(mm
, pgd
, new);
3909 spin_unlock(&mm
->page_table_lock
);
3912 #endif /* __PAGETABLE_P4D_FOLDED */
3914 #ifndef __PAGETABLE_PUD_FOLDED
3916 * Allocate page upper directory.
3917 * We've already handled the fast-path in-line.
3919 int __pud_alloc(struct mm_struct
*mm
, p4d_t
*p4d
, unsigned long address
)
3921 pud_t
*new = pud_alloc_one(mm
, address
);
3925 smp_wmb(); /* See comment in __pte_alloc */
3927 spin_lock(&mm
->page_table_lock
);
3928 #ifndef __ARCH_HAS_5LEVEL_HACK
3929 if (p4d_present(*p4d
)) /* Another has populated it */
3932 p4d_populate(mm
, p4d
, new);
3934 if (pgd_present(*p4d
)) /* Another has populated it */
3937 pgd_populate(mm
, p4d
, new);
3938 #endif /* __ARCH_HAS_5LEVEL_HACK */
3939 spin_unlock(&mm
->page_table_lock
);
3942 #endif /* __PAGETABLE_PUD_FOLDED */
3944 #ifndef __PAGETABLE_PMD_FOLDED
3946 * Allocate page middle directory.
3947 * We've already handled the fast-path in-line.
3949 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3952 pmd_t
*new = pmd_alloc_one(mm
, address
);
3956 smp_wmb(); /* See comment in __pte_alloc */
3958 ptl
= pud_lock(mm
, pud
);
3959 #ifndef __ARCH_HAS_4LEVEL_HACK
3960 if (!pud_present(*pud
)) {
3962 pud_populate(mm
, pud
, new);
3963 } else /* Another has populated it */
3966 if (!pgd_present(*pud
)) {
3968 pgd_populate(mm
, pud
, new);
3969 } else /* Another has populated it */
3971 #endif /* __ARCH_HAS_4LEVEL_HACK */
3975 #endif /* __PAGETABLE_PMD_FOLDED */
3977 static int __follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
3978 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
3986 pgd
= pgd_offset(mm
, address
);
3987 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3990 p4d
= p4d_offset(pgd
, address
);
3991 if (p4d_none(*p4d
) || unlikely(p4d_bad(*p4d
)))
3994 pud
= pud_offset(p4d
, address
);
3995 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3998 pmd
= pmd_offset(pud
, address
);
3999 VM_BUG_ON(pmd_trans_huge(*pmd
));
4001 if (pmd_huge(*pmd
)) {
4005 *ptlp
= pmd_lock(mm
, pmd
);
4006 if (pmd_huge(*pmd
)) {
4013 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
4016 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
4017 if (!pte_present(*ptep
))
4022 pte_unmap_unlock(ptep
, *ptlp
);
4027 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
4028 pte_t
**ptepp
, spinlock_t
**ptlp
)
4032 /* (void) is needed to make gcc happy */
4033 (void) __cond_lock(*ptlp
,
4034 !(res
= __follow_pte_pmd(mm
, address
, ptepp
, NULL
,
4039 int follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4040 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4044 /* (void) is needed to make gcc happy */
4045 (void) __cond_lock(*ptlp
,
4046 !(res
= __follow_pte_pmd(mm
, address
, ptepp
, pmdpp
,
4050 EXPORT_SYMBOL(follow_pte_pmd
);
4053 * follow_pfn - look up PFN at a user virtual address
4054 * @vma: memory mapping
4055 * @address: user virtual address
4056 * @pfn: location to store found PFN
4058 * Only IO mappings and raw PFN mappings are allowed.
4060 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4062 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
4069 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4072 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
4075 *pfn
= pte_pfn(*ptep
);
4076 pte_unmap_unlock(ptep
, ptl
);
4079 EXPORT_SYMBOL(follow_pfn
);
4081 #ifdef CONFIG_HAVE_IOREMAP_PROT
4082 int follow_phys(struct vm_area_struct
*vma
,
4083 unsigned long address
, unsigned int flags
,
4084 unsigned long *prot
, resource_size_t
*phys
)
4090 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4093 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
4097 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
4100 *prot
= pgprot_val(pte_pgprot(pte
));
4101 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
4105 pte_unmap_unlock(ptep
, ptl
);
4110 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
4111 void *buf
, int len
, int write
)
4113 resource_size_t phys_addr
;
4114 unsigned long prot
= 0;
4115 void __iomem
*maddr
;
4116 int offset
= addr
& (PAGE_SIZE
-1);
4118 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
4121 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
4123 memcpy_toio(maddr
+ offset
, buf
, len
);
4125 memcpy_fromio(buf
, maddr
+ offset
, len
);
4130 EXPORT_SYMBOL_GPL(generic_access_phys
);
4134 * Access another process' address space as given in mm. If non-NULL, use the
4135 * given task for page fault accounting.
4137 int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
4138 unsigned long addr
, void *buf
, int len
, unsigned int gup_flags
)
4140 struct vm_area_struct
*vma
;
4141 void *old_buf
= buf
;
4142 int write
= gup_flags
& FOLL_WRITE
;
4144 down_read(&mm
->mmap_sem
);
4145 /* ignore errors, just check how much was successfully transferred */
4147 int bytes
, ret
, offset
;
4149 struct page
*page
= NULL
;
4151 ret
= get_user_pages_remote(tsk
, mm
, addr
, 1,
4152 gup_flags
, &page
, &vma
, NULL
);
4154 #ifndef CONFIG_HAVE_IOREMAP_PROT
4158 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4159 * we can access using slightly different code.
4161 vma
= find_vma(mm
, addr
);
4162 if (!vma
|| vma
->vm_start
> addr
)
4164 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
4165 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
4173 offset
= addr
& (PAGE_SIZE
-1);
4174 if (bytes
> PAGE_SIZE
-offset
)
4175 bytes
= PAGE_SIZE
-offset
;
4179 copy_to_user_page(vma
, page
, addr
,
4180 maddr
+ offset
, buf
, bytes
);
4181 set_page_dirty_lock(page
);
4183 copy_from_user_page(vma
, page
, addr
,
4184 buf
, maddr
+ offset
, bytes
);
4193 up_read(&mm
->mmap_sem
);
4195 return buf
- old_buf
;
4199 * access_remote_vm - access another process' address space
4200 * @mm: the mm_struct of the target address space
4201 * @addr: start address to access
4202 * @buf: source or destination buffer
4203 * @len: number of bytes to transfer
4204 * @gup_flags: flags modifying lookup behaviour
4206 * The caller must hold a reference on @mm.
4208 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
4209 void *buf
, int len
, unsigned int gup_flags
)
4211 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, gup_flags
);
4215 * Access another process' address space.
4216 * Source/target buffer must be kernel space,
4217 * Do not walk the page table directly, use get_user_pages
4219 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
4220 void *buf
, int len
, unsigned int gup_flags
)
4222 struct mm_struct
*mm
;
4225 mm
= get_task_mm(tsk
);
4229 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, gup_flags
);
4235 EXPORT_SYMBOL_GPL(access_process_vm
);
4238 * Print the name of a VMA.
4240 void print_vma_addr(char *prefix
, unsigned long ip
)
4242 struct mm_struct
*mm
= current
->mm
;
4243 struct vm_area_struct
*vma
;
4246 * Do not print if we are in atomic
4247 * contexts (in exception stacks, etc.):
4249 if (preempt_count())
4252 down_read(&mm
->mmap_sem
);
4253 vma
= find_vma(mm
, ip
);
4254 if (vma
&& vma
->vm_file
) {
4255 struct file
*f
= vma
->vm_file
;
4256 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
4260 p
= file_path(f
, buf
, PAGE_SIZE
);
4263 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4265 vma
->vm_end
- vma
->vm_start
);
4266 free_page((unsigned long)buf
);
4269 up_read(&mm
->mmap_sem
);
4272 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4273 void __might_fault(const char *file
, int line
)
4276 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4277 * holding the mmap_sem, this is safe because kernel memory doesn't
4278 * get paged out, therefore we'll never actually fault, and the
4279 * below annotations will generate false positives.
4281 if (uaccess_kernel())
4283 if (pagefault_disabled())
4285 __might_sleep(file
, line
, 0);
4286 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4288 might_lock_read(¤t
->mm
->mmap_sem
);
4291 EXPORT_SYMBOL(__might_fault
);
4294 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4295 static void clear_gigantic_page(struct page
*page
,
4297 unsigned int pages_per_huge_page
)
4300 struct page
*p
= page
;
4303 for (i
= 0; i
< pages_per_huge_page
;
4304 i
++, p
= mem_map_next(p
, page
, i
)) {
4306 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4309 void clear_huge_page(struct page
*page
,
4310 unsigned long addr
, unsigned int pages_per_huge_page
)
4314 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4315 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4320 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4322 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
4326 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4328 struct vm_area_struct
*vma
,
4329 unsigned int pages_per_huge_page
)
4332 struct page
*dst_base
= dst
;
4333 struct page
*src_base
= src
;
4335 for (i
= 0; i
< pages_per_huge_page
; ) {
4337 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4340 dst
= mem_map_next(dst
, dst_base
, i
);
4341 src
= mem_map_next(src
, src_base
, i
);
4345 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4346 unsigned long addr
, struct vm_area_struct
*vma
,
4347 unsigned int pages_per_huge_page
)
4351 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4352 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4353 pages_per_huge_page
);
4358 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4360 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
4364 long copy_huge_page_from_user(struct page
*dst_page
,
4365 const void __user
*usr_src
,
4366 unsigned int pages_per_huge_page
,
4367 bool allow_pagefault
)
4369 void *src
= (void *)usr_src
;
4371 unsigned long i
, rc
= 0;
4372 unsigned long ret_val
= pages_per_huge_page
* PAGE_SIZE
;
4374 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4375 if (allow_pagefault
)
4376 page_kaddr
= kmap(dst_page
+ i
);
4378 page_kaddr
= kmap_atomic(dst_page
+ i
);
4379 rc
= copy_from_user(page_kaddr
,
4380 (const void __user
*)(src
+ i
* PAGE_SIZE
),
4382 if (allow_pagefault
)
4383 kunmap(dst_page
+ i
);
4385 kunmap_atomic(page_kaddr
);
4387 ret_val
-= (PAGE_SIZE
- rc
);
4395 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4397 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4399 static struct kmem_cache
*page_ptl_cachep
;
4401 void __init
ptlock_cache_init(void)
4403 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
4407 bool ptlock_alloc(struct page
*page
)
4411 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
4418 void ptlock_free(struct page
*page
)
4420 kmem_cache_free(page_ptl_cachep
, page
->ptl
);