2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
38 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40 static struct vfsmount
*shm_mnt
;
44 * This virtual memory filesystem is heavily based on the ramfs. It
45 * extends ramfs by the ability to use swap and honor resource limits
46 * which makes it a completely usable filesystem.
49 #include <linux/xattr.h>
50 #include <linux/exportfs.h>
51 #include <linux/posix_acl.h>
52 #include <linux/posix_acl_xattr.h>
53 #include <linux/mman.h>
54 #include <linux/string.h>
55 #include <linux/slab.h>
56 #include <linux/backing-dev.h>
57 #include <linux/shmem_fs.h>
58 #include <linux/writeback.h>
59 #include <linux/blkdev.h>
60 #include <linux/pagevec.h>
61 #include <linux/percpu_counter.h>
62 #include <linux/falloc.h>
63 #include <linux/splice.h>
64 #include <linux/security.h>
65 #include <linux/swapops.h>
66 #include <linux/mempolicy.h>
67 #include <linux/namei.h>
68 #include <linux/ctype.h>
69 #include <linux/migrate.h>
70 #include <linux/highmem.h>
71 #include <linux/seq_file.h>
72 #include <linux/magic.h>
73 #include <linux/syscalls.h>
74 #include <linux/fcntl.h>
75 #include <uapi/linux/memfd.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/rmap.h>
78 #include <linux/uuid.h>
80 #include <linux/uaccess.h>
81 #include <asm/pgtable.h>
85 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
86 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
88 /* Pretend that each entry is of this size in directory's i_size */
89 #define BOGO_DIRENT_SIZE 20
91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92 #define SHORT_SYMLINK_LEN 128
95 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
96 * inode->i_private (with i_mutex making sure that it has only one user at
97 * a time): we would prefer not to enlarge the shmem inode just for that.
100 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
101 pgoff_t start
; /* start of range currently being fallocated */
102 pgoff_t next
; /* the next page offset to be fallocated */
103 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
104 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
108 static unsigned long shmem_default_max_blocks(void)
110 return totalram_pages
/ 2;
113 static unsigned long shmem_default_max_inodes(void)
115 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
119 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
120 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
121 struct shmem_inode_info
*info
, pgoff_t index
);
122 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
123 struct page
**pagep
, enum sgp_type sgp
,
124 gfp_t gfp
, struct vm_area_struct
*vma
,
125 struct vm_fault
*vmf
, int *fault_type
);
127 int shmem_getpage(struct inode
*inode
, pgoff_t index
,
128 struct page
**pagep
, enum sgp_type sgp
)
130 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
131 mapping_gfp_mask(inode
->i_mapping
), NULL
, NULL
, NULL
);
134 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
136 return sb
->s_fs_info
;
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
145 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
147 return (flags
& VM_NORESERVE
) ?
148 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
151 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
153 if (!(flags
& VM_NORESERVE
))
154 vm_unacct_memory(VM_ACCT(size
));
157 static inline int shmem_reacct_size(unsigned long flags
,
158 loff_t oldsize
, loff_t newsize
)
160 if (!(flags
& VM_NORESERVE
)) {
161 if (VM_ACCT(newsize
) > VM_ACCT(oldsize
))
162 return security_vm_enough_memory_mm(current
->mm
,
163 VM_ACCT(newsize
) - VM_ACCT(oldsize
));
164 else if (VM_ACCT(newsize
) < VM_ACCT(oldsize
))
165 vm_unacct_memory(VM_ACCT(oldsize
) - VM_ACCT(newsize
));
171 * ... whereas tmpfs objects are accounted incrementally as
172 * pages are allocated, in order to allow large sparse files.
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176 static inline int shmem_acct_block(unsigned long flags
, long pages
)
178 if (!(flags
& VM_NORESERVE
))
181 return security_vm_enough_memory_mm(current
->mm
,
182 pages
* VM_ACCT(PAGE_SIZE
));
185 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
187 if (flags
& VM_NORESERVE
)
188 vm_unacct_memory(pages
* VM_ACCT(PAGE_SIZE
));
191 static const struct super_operations shmem_ops
;
192 static const struct address_space_operations shmem_aops
;
193 static const struct file_operations shmem_file_operations
;
194 static const struct inode_operations shmem_inode_operations
;
195 static const struct inode_operations shmem_dir_inode_operations
;
196 static const struct inode_operations shmem_special_inode_operations
;
197 static const struct vm_operations_struct shmem_vm_ops
;
198 static struct file_system_type shmem_fs_type
;
200 bool vma_is_shmem(struct vm_area_struct
*vma
)
202 return vma
->vm_ops
== &shmem_vm_ops
;
205 static LIST_HEAD(shmem_swaplist
);
206 static DEFINE_MUTEX(shmem_swaplist_mutex
);
208 static int shmem_reserve_inode(struct super_block
*sb
)
210 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
211 if (sbinfo
->max_inodes
) {
212 spin_lock(&sbinfo
->stat_lock
);
213 if (!sbinfo
->free_inodes
) {
214 spin_unlock(&sbinfo
->stat_lock
);
217 sbinfo
->free_inodes
--;
218 spin_unlock(&sbinfo
->stat_lock
);
223 static void shmem_free_inode(struct super_block
*sb
)
225 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
226 if (sbinfo
->max_inodes
) {
227 spin_lock(&sbinfo
->stat_lock
);
228 sbinfo
->free_inodes
++;
229 spin_unlock(&sbinfo
->stat_lock
);
234 * shmem_recalc_inode - recalculate the block usage of an inode
235 * @inode: inode to recalc
237 * We have to calculate the free blocks since the mm can drop
238 * undirtied hole pages behind our back.
240 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
241 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
243 * It has to be called with the spinlock held.
245 static void shmem_recalc_inode(struct inode
*inode
)
247 struct shmem_inode_info
*info
= SHMEM_I(inode
);
250 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
252 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
253 if (sbinfo
->max_blocks
)
254 percpu_counter_add(&sbinfo
->used_blocks
, -freed
);
255 info
->alloced
-= freed
;
256 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
257 shmem_unacct_blocks(info
->flags
, freed
);
261 bool shmem_charge(struct inode
*inode
, long pages
)
263 struct shmem_inode_info
*info
= SHMEM_I(inode
);
264 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
267 if (shmem_acct_block(info
->flags
, pages
))
269 spin_lock_irqsave(&info
->lock
, flags
);
270 info
->alloced
+= pages
;
271 inode
->i_blocks
+= pages
* BLOCKS_PER_PAGE
;
272 shmem_recalc_inode(inode
);
273 spin_unlock_irqrestore(&info
->lock
, flags
);
274 inode
->i_mapping
->nrpages
+= pages
;
276 if (!sbinfo
->max_blocks
)
278 if (percpu_counter_compare(&sbinfo
->used_blocks
,
279 sbinfo
->max_blocks
- pages
) > 0) {
280 inode
->i_mapping
->nrpages
-= pages
;
281 spin_lock_irqsave(&info
->lock
, flags
);
282 info
->alloced
-= pages
;
283 shmem_recalc_inode(inode
);
284 spin_unlock_irqrestore(&info
->lock
, flags
);
285 shmem_unacct_blocks(info
->flags
, pages
);
288 percpu_counter_add(&sbinfo
->used_blocks
, pages
);
292 void shmem_uncharge(struct inode
*inode
, long pages
)
294 struct shmem_inode_info
*info
= SHMEM_I(inode
);
295 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
298 spin_lock_irqsave(&info
->lock
, flags
);
299 info
->alloced
-= pages
;
300 inode
->i_blocks
-= pages
* BLOCKS_PER_PAGE
;
301 shmem_recalc_inode(inode
);
302 spin_unlock_irqrestore(&info
->lock
, flags
);
304 if (sbinfo
->max_blocks
)
305 percpu_counter_sub(&sbinfo
->used_blocks
, pages
);
306 shmem_unacct_blocks(info
->flags
, pages
);
310 * Replace item expected in radix tree by a new item, while holding tree lock.
312 static int shmem_radix_tree_replace(struct address_space
*mapping
,
313 pgoff_t index
, void *expected
, void *replacement
)
315 struct radix_tree_node
*node
;
319 VM_BUG_ON(!expected
);
320 VM_BUG_ON(!replacement
);
321 item
= __radix_tree_lookup(&mapping
->page_tree
, index
, &node
, &pslot
);
324 if (item
!= expected
)
326 __radix_tree_replace(&mapping
->page_tree
, node
, pslot
,
327 replacement
, NULL
, NULL
);
332 * Sometimes, before we decide whether to proceed or to fail, we must check
333 * that an entry was not already brought back from swap by a racing thread.
335 * Checking page is not enough: by the time a SwapCache page is locked, it
336 * might be reused, and again be SwapCache, using the same swap as before.
338 static bool shmem_confirm_swap(struct address_space
*mapping
,
339 pgoff_t index
, swp_entry_t swap
)
344 item
= radix_tree_lookup(&mapping
->page_tree
, index
);
346 return item
== swp_to_radix_entry(swap
);
350 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
353 * disables huge pages for the mount;
355 * enables huge pages for the mount;
356 * SHMEM_HUGE_WITHIN_SIZE:
357 * only allocate huge pages if the page will be fully within i_size,
358 * also respect fadvise()/madvise() hints;
360 * only allocate huge pages if requested with fadvise()/madvise();
363 #define SHMEM_HUGE_NEVER 0
364 #define SHMEM_HUGE_ALWAYS 1
365 #define SHMEM_HUGE_WITHIN_SIZE 2
366 #define SHMEM_HUGE_ADVISE 3
370 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
373 * disables huge on shm_mnt and all mounts, for emergency use;
375 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
378 #define SHMEM_HUGE_DENY (-1)
379 #define SHMEM_HUGE_FORCE (-2)
381 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
382 /* ifdef here to avoid bloating shmem.o when not necessary */
384 int shmem_huge __read_mostly
;
386 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
387 static int shmem_parse_huge(const char *str
)
389 if (!strcmp(str
, "never"))
390 return SHMEM_HUGE_NEVER
;
391 if (!strcmp(str
, "always"))
392 return SHMEM_HUGE_ALWAYS
;
393 if (!strcmp(str
, "within_size"))
394 return SHMEM_HUGE_WITHIN_SIZE
;
395 if (!strcmp(str
, "advise"))
396 return SHMEM_HUGE_ADVISE
;
397 if (!strcmp(str
, "deny"))
398 return SHMEM_HUGE_DENY
;
399 if (!strcmp(str
, "force"))
400 return SHMEM_HUGE_FORCE
;
404 static const char *shmem_format_huge(int huge
)
407 case SHMEM_HUGE_NEVER
:
409 case SHMEM_HUGE_ALWAYS
:
411 case SHMEM_HUGE_WITHIN_SIZE
:
412 return "within_size";
413 case SHMEM_HUGE_ADVISE
:
415 case SHMEM_HUGE_DENY
:
417 case SHMEM_HUGE_FORCE
:
426 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
427 struct shrink_control
*sc
, unsigned long nr_to_split
)
429 LIST_HEAD(list
), *pos
, *next
;
430 LIST_HEAD(to_remove
);
432 struct shmem_inode_info
*info
;
434 unsigned long batch
= sc
? sc
->nr_to_scan
: 128;
435 int removed
= 0, split
= 0;
437 if (list_empty(&sbinfo
->shrinklist
))
440 spin_lock(&sbinfo
->shrinklist_lock
);
441 list_for_each_safe(pos
, next
, &sbinfo
->shrinklist
) {
442 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
445 inode
= igrab(&info
->vfs_inode
);
447 /* inode is about to be evicted */
449 list_del_init(&info
->shrinklist
);
454 /* Check if there's anything to gain */
455 if (round_up(inode
->i_size
, PAGE_SIZE
) ==
456 round_up(inode
->i_size
, HPAGE_PMD_SIZE
)) {
457 list_move(&info
->shrinklist
, &to_remove
);
462 list_move(&info
->shrinklist
, &list
);
467 spin_unlock(&sbinfo
->shrinklist_lock
);
469 list_for_each_safe(pos
, next
, &to_remove
) {
470 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
471 inode
= &info
->vfs_inode
;
472 list_del_init(&info
->shrinklist
);
476 list_for_each_safe(pos
, next
, &list
) {
479 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
480 inode
= &info
->vfs_inode
;
482 if (nr_to_split
&& split
>= nr_to_split
) {
487 page
= find_lock_page(inode
->i_mapping
,
488 (inode
->i_size
& HPAGE_PMD_MASK
) >> PAGE_SHIFT
);
492 if (!PageTransHuge(page
)) {
498 ret
= split_huge_page(page
);
503 /* split failed: leave it on the list */
510 list_del_init(&info
->shrinklist
);
515 spin_lock(&sbinfo
->shrinklist_lock
);
516 list_splice_tail(&list
, &sbinfo
->shrinklist
);
517 sbinfo
->shrinklist_len
-= removed
;
518 spin_unlock(&sbinfo
->shrinklist_lock
);
523 static long shmem_unused_huge_scan(struct super_block
*sb
,
524 struct shrink_control
*sc
)
526 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
528 if (!READ_ONCE(sbinfo
->shrinklist_len
))
531 return shmem_unused_huge_shrink(sbinfo
, sc
, 0);
534 static long shmem_unused_huge_count(struct super_block
*sb
,
535 struct shrink_control
*sc
)
537 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
538 return READ_ONCE(sbinfo
->shrinklist_len
);
540 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
542 #define shmem_huge SHMEM_HUGE_DENY
544 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
545 struct shrink_control
*sc
, unsigned long nr_to_split
)
549 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
552 * Like add_to_page_cache_locked, but error if expected item has gone.
554 static int shmem_add_to_page_cache(struct page
*page
,
555 struct address_space
*mapping
,
556 pgoff_t index
, void *expected
)
558 int error
, nr
= hpage_nr_pages(page
);
560 VM_BUG_ON_PAGE(PageTail(page
), page
);
561 VM_BUG_ON_PAGE(index
!= round_down(index
, nr
), page
);
562 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
563 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
564 VM_BUG_ON(expected
&& PageTransHuge(page
));
566 page_ref_add(page
, nr
);
567 page
->mapping
= mapping
;
570 spin_lock_irq(&mapping
->tree_lock
);
571 if (PageTransHuge(page
)) {
572 void __rcu
**results
;
577 if (radix_tree_gang_lookup_slot(&mapping
->page_tree
,
578 &results
, &idx
, index
, 1) &&
579 idx
< index
+ HPAGE_PMD_NR
) {
584 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
585 error
= radix_tree_insert(&mapping
->page_tree
,
586 index
+ i
, page
+ i
);
589 count_vm_event(THP_FILE_ALLOC
);
591 } else if (!expected
) {
592 error
= radix_tree_insert(&mapping
->page_tree
, index
, page
);
594 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
599 mapping
->nrpages
+= nr
;
600 if (PageTransHuge(page
))
601 __inc_node_page_state(page
, NR_SHMEM_THPS
);
602 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, nr
);
603 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, nr
);
604 spin_unlock_irq(&mapping
->tree_lock
);
606 page
->mapping
= NULL
;
607 spin_unlock_irq(&mapping
->tree_lock
);
608 page_ref_sub(page
, nr
);
614 * Like delete_from_page_cache, but substitutes swap for page.
616 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
618 struct address_space
*mapping
= page
->mapping
;
621 VM_BUG_ON_PAGE(PageCompound(page
), page
);
623 spin_lock_irq(&mapping
->tree_lock
);
624 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
625 page
->mapping
= NULL
;
627 __dec_node_page_state(page
, NR_FILE_PAGES
);
628 __dec_node_page_state(page
, NR_SHMEM
);
629 spin_unlock_irq(&mapping
->tree_lock
);
635 * Remove swap entry from radix tree, free the swap and its page cache.
637 static int shmem_free_swap(struct address_space
*mapping
,
638 pgoff_t index
, void *radswap
)
642 spin_lock_irq(&mapping
->tree_lock
);
643 old
= radix_tree_delete_item(&mapping
->page_tree
, index
, radswap
);
644 spin_unlock_irq(&mapping
->tree_lock
);
647 free_swap_and_cache(radix_to_swp_entry(radswap
));
652 * Determine (in bytes) how many of the shmem object's pages mapped by the
653 * given offsets are swapped out.
655 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
656 * as long as the inode doesn't go away and racy results are not a problem.
658 unsigned long shmem_partial_swap_usage(struct address_space
*mapping
,
659 pgoff_t start
, pgoff_t end
)
661 struct radix_tree_iter iter
;
664 unsigned long swapped
= 0;
668 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
669 if (iter
.index
>= end
)
672 page
= radix_tree_deref_slot(slot
);
674 if (radix_tree_deref_retry(page
)) {
675 slot
= radix_tree_iter_retry(&iter
);
679 if (radix_tree_exceptional_entry(page
))
682 if (need_resched()) {
683 slot
= radix_tree_iter_resume(slot
, &iter
);
690 return swapped
<< PAGE_SHIFT
;
694 * Determine (in bytes) how many of the shmem object's pages mapped by the
695 * given vma is swapped out.
697 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
698 * as long as the inode doesn't go away and racy results are not a problem.
700 unsigned long shmem_swap_usage(struct vm_area_struct
*vma
)
702 struct inode
*inode
= file_inode(vma
->vm_file
);
703 struct shmem_inode_info
*info
= SHMEM_I(inode
);
704 struct address_space
*mapping
= inode
->i_mapping
;
705 unsigned long swapped
;
707 /* Be careful as we don't hold info->lock */
708 swapped
= READ_ONCE(info
->swapped
);
711 * The easier cases are when the shmem object has nothing in swap, or
712 * the vma maps it whole. Then we can simply use the stats that we
718 if (!vma
->vm_pgoff
&& vma
->vm_end
- vma
->vm_start
>= inode
->i_size
)
719 return swapped
<< PAGE_SHIFT
;
721 /* Here comes the more involved part */
722 return shmem_partial_swap_usage(mapping
,
723 linear_page_index(vma
, vma
->vm_start
),
724 linear_page_index(vma
, vma
->vm_end
));
728 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
730 void shmem_unlock_mapping(struct address_space
*mapping
)
733 pgoff_t indices
[PAGEVEC_SIZE
];
736 pagevec_init(&pvec
, 0);
738 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
740 while (!mapping_unevictable(mapping
)) {
742 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
743 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
745 pvec
.nr
= find_get_entries(mapping
, index
,
746 PAGEVEC_SIZE
, pvec
.pages
, indices
);
749 index
= indices
[pvec
.nr
- 1] + 1;
750 pagevec_remove_exceptionals(&pvec
);
751 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
752 pagevec_release(&pvec
);
758 * Remove range of pages and swap entries from radix tree, and free them.
759 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
761 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
764 struct address_space
*mapping
= inode
->i_mapping
;
765 struct shmem_inode_info
*info
= SHMEM_I(inode
);
766 pgoff_t start
= (lstart
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
767 pgoff_t end
= (lend
+ 1) >> PAGE_SHIFT
;
768 unsigned int partial_start
= lstart
& (PAGE_SIZE
- 1);
769 unsigned int partial_end
= (lend
+ 1) & (PAGE_SIZE
- 1);
771 pgoff_t indices
[PAGEVEC_SIZE
];
772 long nr_swaps_freed
= 0;
777 end
= -1; /* unsigned, so actually very big */
779 pagevec_init(&pvec
, 0);
781 while (index
< end
) {
782 pvec
.nr
= find_get_entries(mapping
, index
,
783 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
784 pvec
.pages
, indices
);
787 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
788 struct page
*page
= pvec
.pages
[i
];
794 if (radix_tree_exceptional_entry(page
)) {
797 nr_swaps_freed
+= !shmem_free_swap(mapping
,
802 VM_BUG_ON_PAGE(page_to_pgoff(page
) != index
, page
);
804 if (!trylock_page(page
))
807 if (PageTransTail(page
)) {
808 /* Middle of THP: zero out the page */
809 clear_highpage(page
);
812 } else if (PageTransHuge(page
)) {
813 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
815 * Range ends in the middle of THP:
818 clear_highpage(page
);
822 index
+= HPAGE_PMD_NR
- 1;
823 i
+= HPAGE_PMD_NR
- 1;
826 if (!unfalloc
|| !PageUptodate(page
)) {
827 VM_BUG_ON_PAGE(PageTail(page
), page
);
828 if (page_mapping(page
) == mapping
) {
829 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
830 truncate_inode_page(mapping
, page
);
835 pagevec_remove_exceptionals(&pvec
);
836 pagevec_release(&pvec
);
842 struct page
*page
= NULL
;
843 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
);
845 unsigned int top
= PAGE_SIZE
;
850 zero_user_segment(page
, partial_start
, top
);
851 set_page_dirty(page
);
857 struct page
*page
= NULL
;
858 shmem_getpage(inode
, end
, &page
, SGP_READ
);
860 zero_user_segment(page
, 0, partial_end
);
861 set_page_dirty(page
);
870 while (index
< end
) {
873 pvec
.nr
= find_get_entries(mapping
, index
,
874 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
875 pvec
.pages
, indices
);
877 /* If all gone or hole-punch or unfalloc, we're done */
878 if (index
== start
|| end
!= -1)
880 /* But if truncating, restart to make sure all gone */
884 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
885 struct page
*page
= pvec
.pages
[i
];
891 if (radix_tree_exceptional_entry(page
)) {
894 if (shmem_free_swap(mapping
, index
, page
)) {
895 /* Swap was replaced by page: retry */
905 if (PageTransTail(page
)) {
906 /* Middle of THP: zero out the page */
907 clear_highpage(page
);
910 * Partial thp truncate due 'start' in middle
911 * of THP: don't need to look on these pages
912 * again on !pvec.nr restart.
914 if (index
!= round_down(end
, HPAGE_PMD_NR
))
917 } else if (PageTransHuge(page
)) {
918 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
920 * Range ends in the middle of THP:
923 clear_highpage(page
);
927 index
+= HPAGE_PMD_NR
- 1;
928 i
+= HPAGE_PMD_NR
- 1;
931 if (!unfalloc
|| !PageUptodate(page
)) {
932 VM_BUG_ON_PAGE(PageTail(page
), page
);
933 if (page_mapping(page
) == mapping
) {
934 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
935 truncate_inode_page(mapping
, page
);
937 /* Page was replaced by swap: retry */
945 pagevec_remove_exceptionals(&pvec
);
946 pagevec_release(&pvec
);
950 spin_lock_irq(&info
->lock
);
951 info
->swapped
-= nr_swaps_freed
;
952 shmem_recalc_inode(inode
);
953 spin_unlock_irq(&info
->lock
);
956 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
958 shmem_undo_range(inode
, lstart
, lend
, false);
959 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
961 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
963 static int shmem_getattr(const struct path
*path
, struct kstat
*stat
,
964 u32 request_mask
, unsigned int query_flags
)
966 struct inode
*inode
= path
->dentry
->d_inode
;
967 struct shmem_inode_info
*info
= SHMEM_I(inode
);
969 if (info
->alloced
- info
->swapped
!= inode
->i_mapping
->nrpages
) {
970 spin_lock_irq(&info
->lock
);
971 shmem_recalc_inode(inode
);
972 spin_unlock_irq(&info
->lock
);
974 generic_fillattr(inode
, stat
);
978 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
980 struct inode
*inode
= d_inode(dentry
);
981 struct shmem_inode_info
*info
= SHMEM_I(inode
);
982 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
985 error
= setattr_prepare(dentry
, attr
);
989 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
990 loff_t oldsize
= inode
->i_size
;
991 loff_t newsize
= attr
->ia_size
;
993 /* protected by i_mutex */
994 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
995 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
998 if (newsize
!= oldsize
) {
999 error
= shmem_reacct_size(SHMEM_I(inode
)->flags
,
1003 i_size_write(inode
, newsize
);
1004 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
1006 if (newsize
<= oldsize
) {
1007 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
1008 if (oldsize
> holebegin
)
1009 unmap_mapping_range(inode
->i_mapping
,
1012 shmem_truncate_range(inode
,
1013 newsize
, (loff_t
)-1);
1014 /* unmap again to remove racily COWed private pages */
1015 if (oldsize
> holebegin
)
1016 unmap_mapping_range(inode
->i_mapping
,
1020 * Part of the huge page can be beyond i_size: subject
1021 * to shrink under memory pressure.
1023 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
1024 spin_lock(&sbinfo
->shrinklist_lock
);
1025 if (list_empty(&info
->shrinklist
)) {
1026 list_add_tail(&info
->shrinklist
,
1027 &sbinfo
->shrinklist
);
1028 sbinfo
->shrinklist_len
++;
1030 spin_unlock(&sbinfo
->shrinklist_lock
);
1035 setattr_copy(inode
, attr
);
1036 if (attr
->ia_valid
& ATTR_MODE
)
1037 error
= posix_acl_chmod(inode
, inode
->i_mode
);
1041 static void shmem_evict_inode(struct inode
*inode
)
1043 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1044 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1046 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
1047 shmem_unacct_size(info
->flags
, inode
->i_size
);
1049 shmem_truncate_range(inode
, 0, (loff_t
)-1);
1050 if (!list_empty(&info
->shrinklist
)) {
1051 spin_lock(&sbinfo
->shrinklist_lock
);
1052 if (!list_empty(&info
->shrinklist
)) {
1053 list_del_init(&info
->shrinklist
);
1054 sbinfo
->shrinklist_len
--;
1056 spin_unlock(&sbinfo
->shrinklist_lock
);
1058 if (!list_empty(&info
->swaplist
)) {
1059 mutex_lock(&shmem_swaplist_mutex
);
1060 list_del_init(&info
->swaplist
);
1061 mutex_unlock(&shmem_swaplist_mutex
);
1065 simple_xattrs_free(&info
->xattrs
);
1066 WARN_ON(inode
->i_blocks
);
1067 shmem_free_inode(inode
->i_sb
);
1071 static unsigned long find_swap_entry(struct radix_tree_root
*root
, void *item
)
1073 struct radix_tree_iter iter
;
1075 unsigned long found
= -1;
1076 unsigned int checked
= 0;
1079 radix_tree_for_each_slot(slot
, root
, &iter
, 0) {
1080 if (*slot
== item
) {
1085 if ((checked
% 4096) != 0)
1087 slot
= radix_tree_iter_resume(slot
, &iter
);
1096 * If swap found in inode, free it and move page from swapcache to filecache.
1098 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
1099 swp_entry_t swap
, struct page
**pagep
)
1101 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
1107 radswap
= swp_to_radix_entry(swap
);
1108 index
= find_swap_entry(&mapping
->page_tree
, radswap
);
1110 return -EAGAIN
; /* tell shmem_unuse we found nothing */
1113 * Move _head_ to start search for next from here.
1114 * But be careful: shmem_evict_inode checks list_empty without taking
1115 * mutex, and there's an instant in list_move_tail when info->swaplist
1116 * would appear empty, if it were the only one on shmem_swaplist.
1118 if (shmem_swaplist
.next
!= &info
->swaplist
)
1119 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
1121 gfp
= mapping_gfp_mask(mapping
);
1122 if (shmem_should_replace_page(*pagep
, gfp
)) {
1123 mutex_unlock(&shmem_swaplist_mutex
);
1124 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
1125 mutex_lock(&shmem_swaplist_mutex
);
1127 * We needed to drop mutex to make that restrictive page
1128 * allocation, but the inode might have been freed while we
1129 * dropped it: although a racing shmem_evict_inode() cannot
1130 * complete without emptying the radix_tree, our page lock
1131 * on this swapcache page is not enough to prevent that -
1132 * free_swap_and_cache() of our swap entry will only
1133 * trylock_page(), removing swap from radix_tree whatever.
1135 * We must not proceed to shmem_add_to_page_cache() if the
1136 * inode has been freed, but of course we cannot rely on
1137 * inode or mapping or info to check that. However, we can
1138 * safely check if our swap entry is still in use (and here
1139 * it can't have got reused for another page): if it's still
1140 * in use, then the inode cannot have been freed yet, and we
1141 * can safely proceed (if it's no longer in use, that tells
1142 * nothing about the inode, but we don't need to unuse swap).
1144 if (!page_swapcount(*pagep
))
1149 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1150 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1151 * beneath us (pagelock doesn't help until the page is in pagecache).
1154 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
1156 if (error
!= -ENOMEM
) {
1158 * Truncation and eviction use free_swap_and_cache(), which
1159 * only does trylock page: if we raced, best clean up here.
1161 delete_from_swap_cache(*pagep
);
1162 set_page_dirty(*pagep
);
1164 spin_lock_irq(&info
->lock
);
1166 spin_unlock_irq(&info
->lock
);
1174 * Search through swapped inodes to find and replace swap by page.
1176 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
1178 struct list_head
*this, *next
;
1179 struct shmem_inode_info
*info
;
1180 struct mem_cgroup
*memcg
;
1184 * There's a faint possibility that swap page was replaced before
1185 * caller locked it: caller will come back later with the right page.
1187 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
1191 * Charge page using GFP_KERNEL while we can wait, before taking
1192 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1193 * Charged back to the user (not to caller) when swap account is used.
1195 error
= mem_cgroup_try_charge(page
, current
->mm
, GFP_KERNEL
, &memcg
,
1199 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1202 mutex_lock(&shmem_swaplist_mutex
);
1203 list_for_each_safe(this, next
, &shmem_swaplist
) {
1204 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
1206 error
= shmem_unuse_inode(info
, swap
, &page
);
1208 list_del_init(&info
->swaplist
);
1210 if (error
!= -EAGAIN
)
1212 /* found nothing in this: move on to search the next */
1214 mutex_unlock(&shmem_swaplist_mutex
);
1217 if (error
!= -ENOMEM
)
1219 mem_cgroup_cancel_charge(page
, memcg
, false);
1221 mem_cgroup_commit_charge(page
, memcg
, true, false);
1229 * Move the page from the page cache to the swap cache.
1231 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1233 struct shmem_inode_info
*info
;
1234 struct address_space
*mapping
;
1235 struct inode
*inode
;
1239 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1240 BUG_ON(!PageLocked(page
));
1241 mapping
= page
->mapping
;
1242 index
= page
->index
;
1243 inode
= mapping
->host
;
1244 info
= SHMEM_I(inode
);
1245 if (info
->flags
& VM_LOCKED
)
1247 if (!total_swap_pages
)
1251 * Our capabilities prevent regular writeback or sync from ever calling
1252 * shmem_writepage; but a stacking filesystem might use ->writepage of
1253 * its underlying filesystem, in which case tmpfs should write out to
1254 * swap only in response to memory pressure, and not for the writeback
1257 if (!wbc
->for_reclaim
) {
1258 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1263 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1264 * value into swapfile.c, the only way we can correctly account for a
1265 * fallocated page arriving here is now to initialize it and write it.
1267 * That's okay for a page already fallocated earlier, but if we have
1268 * not yet completed the fallocation, then (a) we want to keep track
1269 * of this page in case we have to undo it, and (b) it may not be a
1270 * good idea to continue anyway, once we're pushing into swap. So
1271 * reactivate the page, and let shmem_fallocate() quit when too many.
1273 if (!PageUptodate(page
)) {
1274 if (inode
->i_private
) {
1275 struct shmem_falloc
*shmem_falloc
;
1276 spin_lock(&inode
->i_lock
);
1277 shmem_falloc
= inode
->i_private
;
1279 !shmem_falloc
->waitq
&&
1280 index
>= shmem_falloc
->start
&&
1281 index
< shmem_falloc
->next
)
1282 shmem_falloc
->nr_unswapped
++;
1284 shmem_falloc
= NULL
;
1285 spin_unlock(&inode
->i_lock
);
1289 clear_highpage(page
);
1290 flush_dcache_page(page
);
1291 SetPageUptodate(page
);
1294 swap
= get_swap_page(page
);
1298 if (mem_cgroup_try_charge_swap(page
, swap
))
1302 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1303 * if it's not already there. Do it now before the page is
1304 * moved to swap cache, when its pagelock no longer protects
1305 * the inode from eviction. But don't unlock the mutex until
1306 * we've incremented swapped, because shmem_unuse_inode() will
1307 * prune a !swapped inode from the swaplist under this mutex.
1309 mutex_lock(&shmem_swaplist_mutex
);
1310 if (list_empty(&info
->swaplist
))
1311 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
1313 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1314 spin_lock_irq(&info
->lock
);
1315 shmem_recalc_inode(inode
);
1317 spin_unlock_irq(&info
->lock
);
1319 swap_shmem_alloc(swap
);
1320 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
1322 mutex_unlock(&shmem_swaplist_mutex
);
1323 BUG_ON(page_mapped(page
));
1324 swap_writepage(page
, wbc
);
1328 mutex_unlock(&shmem_swaplist_mutex
);
1330 put_swap_page(page
, swap
);
1332 set_page_dirty(page
);
1333 if (wbc
->for_reclaim
)
1334 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1339 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1340 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1344 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1345 return; /* show nothing */
1347 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
1349 seq_printf(seq
, ",mpol=%s", buffer
);
1352 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1354 struct mempolicy
*mpol
= NULL
;
1356 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1357 mpol
= sbinfo
->mpol
;
1359 spin_unlock(&sbinfo
->stat_lock
);
1363 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1364 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1367 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1371 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1373 #define vm_policy vm_private_data
1376 static void shmem_pseudo_vma_init(struct vm_area_struct
*vma
,
1377 struct shmem_inode_info
*info
, pgoff_t index
)
1379 /* Create a pseudo vma that just contains the policy */
1381 /* Bias interleave by inode number to distribute better across nodes */
1382 vma
->vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
1384 vma
->vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
1387 static void shmem_pseudo_vma_destroy(struct vm_area_struct
*vma
)
1389 /* Drop reference taken by mpol_shared_policy_lookup() */
1390 mpol_cond_put(vma
->vm_policy
);
1393 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
1394 struct shmem_inode_info
*info
, pgoff_t index
)
1396 struct vm_area_struct pvma
;
1399 shmem_pseudo_vma_init(&pvma
, info
, index
);
1400 page
= swapin_readahead(swap
, gfp
, &pvma
, 0);
1401 shmem_pseudo_vma_destroy(&pvma
);
1406 static struct page
*shmem_alloc_hugepage(gfp_t gfp
,
1407 struct shmem_inode_info
*info
, pgoff_t index
)
1409 struct vm_area_struct pvma
;
1410 struct inode
*inode
= &info
->vfs_inode
;
1411 struct address_space
*mapping
= inode
->i_mapping
;
1412 pgoff_t idx
, hindex
;
1413 void __rcu
**results
;
1416 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1419 hindex
= round_down(index
, HPAGE_PMD_NR
);
1421 if (radix_tree_gang_lookup_slot(&mapping
->page_tree
, &results
, &idx
,
1422 hindex
, 1) && idx
< hindex
+ HPAGE_PMD_NR
) {
1428 shmem_pseudo_vma_init(&pvma
, info
, hindex
);
1429 page
= alloc_pages_vma(gfp
| __GFP_COMP
| __GFP_NORETRY
| __GFP_NOWARN
,
1430 HPAGE_PMD_ORDER
, &pvma
, 0, numa_node_id(), true);
1431 shmem_pseudo_vma_destroy(&pvma
);
1433 prep_transhuge_page(page
);
1437 static struct page
*shmem_alloc_page(gfp_t gfp
,
1438 struct shmem_inode_info
*info
, pgoff_t index
)
1440 struct vm_area_struct pvma
;
1443 shmem_pseudo_vma_init(&pvma
, info
, index
);
1444 page
= alloc_page_vma(gfp
, &pvma
, 0);
1445 shmem_pseudo_vma_destroy(&pvma
);
1450 static struct page
*shmem_alloc_and_acct_page(gfp_t gfp
,
1451 struct shmem_inode_info
*info
, struct shmem_sb_info
*sbinfo
,
1452 pgoff_t index
, bool huge
)
1458 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1460 nr
= huge
? HPAGE_PMD_NR
: 1;
1462 if (shmem_acct_block(info
->flags
, nr
))
1464 if (sbinfo
->max_blocks
) {
1465 if (percpu_counter_compare(&sbinfo
->used_blocks
,
1466 sbinfo
->max_blocks
- nr
) > 0)
1468 percpu_counter_add(&sbinfo
->used_blocks
, nr
);
1472 page
= shmem_alloc_hugepage(gfp
, info
, index
);
1474 page
= shmem_alloc_page(gfp
, info
, index
);
1476 __SetPageLocked(page
);
1477 __SetPageSwapBacked(page
);
1482 if (sbinfo
->max_blocks
)
1483 percpu_counter_add(&sbinfo
->used_blocks
, -nr
);
1485 shmem_unacct_blocks(info
->flags
, nr
);
1487 return ERR_PTR(err
);
1491 * When a page is moved from swapcache to shmem filecache (either by the
1492 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1493 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1494 * ignorance of the mapping it belongs to. If that mapping has special
1495 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1496 * we may need to copy to a suitable page before moving to filecache.
1498 * In a future release, this may well be extended to respect cpuset and
1499 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1500 * but for now it is a simple matter of zone.
1502 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
1504 return page_zonenum(page
) > gfp_zone(gfp
);
1507 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
1508 struct shmem_inode_info
*info
, pgoff_t index
)
1510 struct page
*oldpage
, *newpage
;
1511 struct address_space
*swap_mapping
;
1516 swap_index
= page_private(oldpage
);
1517 swap_mapping
= page_mapping(oldpage
);
1520 * We have arrived here because our zones are constrained, so don't
1521 * limit chance of success by further cpuset and node constraints.
1523 gfp
&= ~GFP_CONSTRAINT_MASK
;
1524 newpage
= shmem_alloc_page(gfp
, info
, index
);
1529 copy_highpage(newpage
, oldpage
);
1530 flush_dcache_page(newpage
);
1532 __SetPageLocked(newpage
);
1533 __SetPageSwapBacked(newpage
);
1534 SetPageUptodate(newpage
);
1535 set_page_private(newpage
, swap_index
);
1536 SetPageSwapCache(newpage
);
1539 * Our caller will very soon move newpage out of swapcache, but it's
1540 * a nice clean interface for us to replace oldpage by newpage there.
1542 spin_lock_irq(&swap_mapping
->tree_lock
);
1543 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
1546 __inc_node_page_state(newpage
, NR_FILE_PAGES
);
1547 __dec_node_page_state(oldpage
, NR_FILE_PAGES
);
1549 spin_unlock_irq(&swap_mapping
->tree_lock
);
1551 if (unlikely(error
)) {
1553 * Is this possible? I think not, now that our callers check
1554 * both PageSwapCache and page_private after getting page lock;
1555 * but be defensive. Reverse old to newpage for clear and free.
1559 mem_cgroup_migrate(oldpage
, newpage
);
1560 lru_cache_add_anon(newpage
);
1564 ClearPageSwapCache(oldpage
);
1565 set_page_private(oldpage
, 0);
1567 unlock_page(oldpage
);
1574 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1576 * If we allocate a new one we do not mark it dirty. That's up to the
1577 * vm. If we swap it in we mark it dirty since we also free the swap
1578 * entry since a page cannot live in both the swap and page cache.
1580 * fault_mm and fault_type are only supplied by shmem_fault:
1581 * otherwise they are NULL.
1583 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1584 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
,
1585 struct vm_area_struct
*vma
, struct vm_fault
*vmf
, int *fault_type
)
1587 struct address_space
*mapping
= inode
->i_mapping
;
1588 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1589 struct shmem_sb_info
*sbinfo
;
1590 struct mm_struct
*charge_mm
;
1591 struct mem_cgroup
*memcg
;
1594 enum sgp_type sgp_huge
= sgp
;
1595 pgoff_t hindex
= index
;
1600 if (index
> (MAX_LFS_FILESIZE
>> PAGE_SHIFT
))
1602 if (sgp
== SGP_NOHUGE
|| sgp
== SGP_HUGE
)
1606 page
= find_lock_entry(mapping
, index
);
1607 if (radix_tree_exceptional_entry(page
)) {
1608 swap
= radix_to_swp_entry(page
);
1612 if (sgp
<= SGP_CACHE
&&
1613 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1618 if (page
&& sgp
== SGP_WRITE
)
1619 mark_page_accessed(page
);
1621 /* fallocated page? */
1622 if (page
&& !PageUptodate(page
)) {
1623 if (sgp
!= SGP_READ
)
1629 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1635 * Fast cache lookup did not find it:
1636 * bring it back from swap or allocate.
1638 sbinfo
= SHMEM_SB(inode
->i_sb
);
1639 charge_mm
= vma
? vma
->vm_mm
: current
->mm
;
1642 /* Look it up and read it in.. */
1643 page
= lookup_swap_cache(swap
);
1645 /* Or update major stats only when swapin succeeds?? */
1647 *fault_type
|= VM_FAULT_MAJOR
;
1648 count_vm_event(PGMAJFAULT
);
1649 count_memcg_event_mm(charge_mm
, PGMAJFAULT
);
1651 /* Here we actually start the io */
1652 page
= shmem_swapin(swap
, gfp
, info
, index
);
1659 /* We have to do this with page locked to prevent races */
1661 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1662 !shmem_confirm_swap(mapping
, index
, swap
)) {
1663 error
= -EEXIST
; /* try again */
1666 if (!PageUptodate(page
)) {
1670 wait_on_page_writeback(page
);
1672 if (shmem_should_replace_page(page
, gfp
)) {
1673 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1678 error
= mem_cgroup_try_charge(page
, charge_mm
, gfp
, &memcg
,
1681 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1682 swp_to_radix_entry(swap
));
1684 * We already confirmed swap under page lock, and make
1685 * no memory allocation here, so usually no possibility
1686 * of error; but free_swap_and_cache() only trylocks a
1687 * page, so it is just possible that the entry has been
1688 * truncated or holepunched since swap was confirmed.
1689 * shmem_undo_range() will have done some of the
1690 * unaccounting, now delete_from_swap_cache() will do
1692 * Reset swap.val? No, leave it so "failed" goes back to
1693 * "repeat": reading a hole and writing should succeed.
1696 mem_cgroup_cancel_charge(page
, memcg
, false);
1697 delete_from_swap_cache(page
);
1703 mem_cgroup_commit_charge(page
, memcg
, true, false);
1705 spin_lock_irq(&info
->lock
);
1707 shmem_recalc_inode(inode
);
1708 spin_unlock_irq(&info
->lock
);
1710 if (sgp
== SGP_WRITE
)
1711 mark_page_accessed(page
);
1713 delete_from_swap_cache(page
);
1714 set_page_dirty(page
);
1718 if (vma
&& userfaultfd_missing(vma
)) {
1719 *fault_type
= handle_userfault(vmf
, VM_UFFD_MISSING
);
1723 /* shmem_symlink() */
1724 if (mapping
->a_ops
!= &shmem_aops
)
1726 if (shmem_huge
== SHMEM_HUGE_DENY
|| sgp_huge
== SGP_NOHUGE
)
1728 if (shmem_huge
== SHMEM_HUGE_FORCE
)
1730 switch (sbinfo
->huge
) {
1733 case SHMEM_HUGE_NEVER
:
1735 case SHMEM_HUGE_WITHIN_SIZE
:
1736 off
= round_up(index
, HPAGE_PMD_NR
);
1737 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
1738 if (i_size
>= HPAGE_PMD_SIZE
&&
1739 i_size
>> PAGE_SHIFT
>= off
)
1742 case SHMEM_HUGE_ADVISE
:
1743 if (sgp_huge
== SGP_HUGE
)
1745 /* TODO: implement fadvise() hints */
1750 page
= shmem_alloc_and_acct_page(gfp
, info
, sbinfo
,
1753 alloc_nohuge
: page
= shmem_alloc_and_acct_page(gfp
, info
, sbinfo
,
1758 error
= PTR_ERR(page
);
1760 if (error
!= -ENOSPC
)
1763 * Try to reclaim some spece by splitting a huge page
1764 * beyond i_size on the filesystem.
1768 ret
= shmem_unused_huge_shrink(sbinfo
, NULL
, 1);
1769 if (ret
== SHRINK_STOP
)
1777 if (PageTransHuge(page
))
1778 hindex
= round_down(index
, HPAGE_PMD_NR
);
1782 if (sgp
== SGP_WRITE
)
1783 __SetPageReferenced(page
);
1785 error
= mem_cgroup_try_charge(page
, charge_mm
, gfp
, &memcg
,
1786 PageTransHuge(page
));
1789 error
= radix_tree_maybe_preload_order(gfp
& GFP_RECLAIM_MASK
,
1790 compound_order(page
));
1792 error
= shmem_add_to_page_cache(page
, mapping
, hindex
,
1794 radix_tree_preload_end();
1797 mem_cgroup_cancel_charge(page
, memcg
,
1798 PageTransHuge(page
));
1801 mem_cgroup_commit_charge(page
, memcg
, false,
1802 PageTransHuge(page
));
1803 lru_cache_add_anon(page
);
1805 spin_lock_irq(&info
->lock
);
1806 info
->alloced
+= 1 << compound_order(page
);
1807 inode
->i_blocks
+= BLOCKS_PER_PAGE
<< compound_order(page
);
1808 shmem_recalc_inode(inode
);
1809 spin_unlock_irq(&info
->lock
);
1812 if (PageTransHuge(page
) &&
1813 DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
) <
1814 hindex
+ HPAGE_PMD_NR
- 1) {
1816 * Part of the huge page is beyond i_size: subject
1817 * to shrink under memory pressure.
1819 spin_lock(&sbinfo
->shrinklist_lock
);
1820 if (list_empty(&info
->shrinklist
)) {
1821 list_add_tail(&info
->shrinklist
,
1822 &sbinfo
->shrinklist
);
1823 sbinfo
->shrinklist_len
++;
1825 spin_unlock(&sbinfo
->shrinklist_lock
);
1829 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1831 if (sgp
== SGP_FALLOC
)
1835 * Let SGP_WRITE caller clear ends if write does not fill page;
1836 * but SGP_FALLOC on a page fallocated earlier must initialize
1837 * it now, lest undo on failure cancel our earlier guarantee.
1839 if (sgp
!= SGP_WRITE
&& !PageUptodate(page
)) {
1840 struct page
*head
= compound_head(page
);
1843 for (i
= 0; i
< (1 << compound_order(head
)); i
++) {
1844 clear_highpage(head
+ i
);
1845 flush_dcache_page(head
+ i
);
1847 SetPageUptodate(head
);
1851 /* Perhaps the file has been truncated since we checked */
1852 if (sgp
<= SGP_CACHE
&&
1853 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1855 ClearPageDirty(page
);
1856 delete_from_page_cache(page
);
1857 spin_lock_irq(&info
->lock
);
1858 shmem_recalc_inode(inode
);
1859 spin_unlock_irq(&info
->lock
);
1864 *pagep
= page
+ index
- hindex
;
1871 if (sbinfo
->max_blocks
)
1872 percpu_counter_sub(&sbinfo
->used_blocks
,
1873 1 << compound_order(page
));
1874 shmem_unacct_blocks(info
->flags
, 1 << compound_order(page
));
1876 if (PageTransHuge(page
)) {
1882 if (swap
.val
&& !shmem_confirm_swap(mapping
, index
, swap
))
1889 if (error
== -ENOSPC
&& !once
++) {
1890 spin_lock_irq(&info
->lock
);
1891 shmem_recalc_inode(inode
);
1892 spin_unlock_irq(&info
->lock
);
1895 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1901 * This is like autoremove_wake_function, but it removes the wait queue
1902 * entry unconditionally - even if something else had already woken the
1905 static int synchronous_wake_function(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *key
)
1907 int ret
= default_wake_function(wait
, mode
, sync
, key
);
1908 list_del_init(&wait
->entry
);
1912 static int shmem_fault(struct vm_fault
*vmf
)
1914 struct vm_area_struct
*vma
= vmf
->vma
;
1915 struct inode
*inode
= file_inode(vma
->vm_file
);
1916 gfp_t gfp
= mapping_gfp_mask(inode
->i_mapping
);
1919 int ret
= VM_FAULT_LOCKED
;
1922 * Trinity finds that probing a hole which tmpfs is punching can
1923 * prevent the hole-punch from ever completing: which in turn
1924 * locks writers out with its hold on i_mutex. So refrain from
1925 * faulting pages into the hole while it's being punched. Although
1926 * shmem_undo_range() does remove the additions, it may be unable to
1927 * keep up, as each new page needs its own unmap_mapping_range() call,
1928 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1930 * It does not matter if we sometimes reach this check just before the
1931 * hole-punch begins, so that one fault then races with the punch:
1932 * we just need to make racing faults a rare case.
1934 * The implementation below would be much simpler if we just used a
1935 * standard mutex or completion: but we cannot take i_mutex in fault,
1936 * and bloating every shmem inode for this unlikely case would be sad.
1938 if (unlikely(inode
->i_private
)) {
1939 struct shmem_falloc
*shmem_falloc
;
1941 spin_lock(&inode
->i_lock
);
1942 shmem_falloc
= inode
->i_private
;
1944 shmem_falloc
->waitq
&&
1945 vmf
->pgoff
>= shmem_falloc
->start
&&
1946 vmf
->pgoff
< shmem_falloc
->next
) {
1947 wait_queue_head_t
*shmem_falloc_waitq
;
1948 DEFINE_WAIT_FUNC(shmem_fault_wait
, synchronous_wake_function
);
1950 ret
= VM_FAULT_NOPAGE
;
1951 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
1952 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
1953 /* It's polite to up mmap_sem if we can */
1954 up_read(&vma
->vm_mm
->mmap_sem
);
1955 ret
= VM_FAULT_RETRY
;
1958 shmem_falloc_waitq
= shmem_falloc
->waitq
;
1959 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
1960 TASK_UNINTERRUPTIBLE
);
1961 spin_unlock(&inode
->i_lock
);
1965 * shmem_falloc_waitq points into the shmem_fallocate()
1966 * stack of the hole-punching task: shmem_falloc_waitq
1967 * is usually invalid by the time we reach here, but
1968 * finish_wait() does not dereference it in that case;
1969 * though i_lock needed lest racing with wake_up_all().
1971 spin_lock(&inode
->i_lock
);
1972 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
1973 spin_unlock(&inode
->i_lock
);
1976 spin_unlock(&inode
->i_lock
);
1981 if ((vma
->vm_flags
& VM_NOHUGEPAGE
) ||
1982 test_bit(MMF_DISABLE_THP
, &vma
->vm_mm
->flags
))
1984 else if (vma
->vm_flags
& VM_HUGEPAGE
)
1987 error
= shmem_getpage_gfp(inode
, vmf
->pgoff
, &vmf
->page
, sgp
,
1988 gfp
, vma
, vmf
, &ret
);
1990 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1994 unsigned long shmem_get_unmapped_area(struct file
*file
,
1995 unsigned long uaddr
, unsigned long len
,
1996 unsigned long pgoff
, unsigned long flags
)
1998 unsigned long (*get_area
)(struct file
*,
1999 unsigned long, unsigned long, unsigned long, unsigned long);
2001 unsigned long offset
;
2002 unsigned long inflated_len
;
2003 unsigned long inflated_addr
;
2004 unsigned long inflated_offset
;
2006 if (len
> TASK_SIZE
)
2009 get_area
= current
->mm
->get_unmapped_area
;
2010 addr
= get_area(file
, uaddr
, len
, pgoff
, flags
);
2012 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
2014 if (IS_ERR_VALUE(addr
))
2016 if (addr
& ~PAGE_MASK
)
2018 if (addr
> TASK_SIZE
- len
)
2021 if (shmem_huge
== SHMEM_HUGE_DENY
)
2023 if (len
< HPAGE_PMD_SIZE
)
2025 if (flags
& MAP_FIXED
)
2028 * Our priority is to support MAP_SHARED mapped hugely;
2029 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2030 * But if caller specified an address hint, respect that as before.
2035 if (shmem_huge
!= SHMEM_HUGE_FORCE
) {
2036 struct super_block
*sb
;
2039 VM_BUG_ON(file
->f_op
!= &shmem_file_operations
);
2040 sb
= file_inode(file
)->i_sb
;
2043 * Called directly from mm/mmap.c, or drivers/char/mem.c
2044 * for "/dev/zero", to create a shared anonymous object.
2046 if (IS_ERR(shm_mnt
))
2048 sb
= shm_mnt
->mnt_sb
;
2050 if (SHMEM_SB(sb
)->huge
== SHMEM_HUGE_NEVER
)
2054 offset
= (pgoff
<< PAGE_SHIFT
) & (HPAGE_PMD_SIZE
-1);
2055 if (offset
&& offset
+ len
< 2 * HPAGE_PMD_SIZE
)
2057 if ((addr
& (HPAGE_PMD_SIZE
-1)) == offset
)
2060 inflated_len
= len
+ HPAGE_PMD_SIZE
- PAGE_SIZE
;
2061 if (inflated_len
> TASK_SIZE
)
2063 if (inflated_len
< len
)
2066 inflated_addr
= get_area(NULL
, 0, inflated_len
, 0, flags
);
2067 if (IS_ERR_VALUE(inflated_addr
))
2069 if (inflated_addr
& ~PAGE_MASK
)
2072 inflated_offset
= inflated_addr
& (HPAGE_PMD_SIZE
-1);
2073 inflated_addr
+= offset
- inflated_offset
;
2074 if (inflated_offset
> offset
)
2075 inflated_addr
+= HPAGE_PMD_SIZE
;
2077 if (inflated_addr
> TASK_SIZE
- len
)
2079 return inflated_addr
;
2083 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
2085 struct inode
*inode
= file_inode(vma
->vm_file
);
2086 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
2089 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
2092 struct inode
*inode
= file_inode(vma
->vm_file
);
2095 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2096 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
2100 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2102 struct inode
*inode
= file_inode(file
);
2103 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2104 int retval
= -ENOMEM
;
2106 spin_lock_irq(&info
->lock
);
2107 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
2108 if (!user_shm_lock(inode
->i_size
, user
))
2110 info
->flags
|= VM_LOCKED
;
2111 mapping_set_unevictable(file
->f_mapping
);
2113 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
2114 user_shm_unlock(inode
->i_size
, user
);
2115 info
->flags
&= ~VM_LOCKED
;
2116 mapping_clear_unevictable(file
->f_mapping
);
2121 spin_unlock_irq(&info
->lock
);
2125 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2127 file_accessed(file
);
2128 vma
->vm_ops
= &shmem_vm_ops
;
2129 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
2130 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
2131 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
2132 khugepaged_enter(vma
, vma
->vm_flags
);
2137 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
2138 umode_t mode
, dev_t dev
, unsigned long flags
)
2140 struct inode
*inode
;
2141 struct shmem_inode_info
*info
;
2142 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2144 if (shmem_reserve_inode(sb
))
2147 inode
= new_inode(sb
);
2149 inode
->i_ino
= get_next_ino();
2150 inode_init_owner(inode
, dir
, mode
);
2151 inode
->i_blocks
= 0;
2152 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2153 inode
->i_generation
= get_seconds();
2154 info
= SHMEM_I(inode
);
2155 memset(info
, 0, (char *)inode
- (char *)info
);
2156 spin_lock_init(&info
->lock
);
2157 info
->seals
= F_SEAL_SEAL
;
2158 info
->flags
= flags
& VM_NORESERVE
;
2159 INIT_LIST_HEAD(&info
->shrinklist
);
2160 INIT_LIST_HEAD(&info
->swaplist
);
2161 simple_xattrs_init(&info
->xattrs
);
2162 cache_no_acl(inode
);
2164 switch (mode
& S_IFMT
) {
2166 inode
->i_op
= &shmem_special_inode_operations
;
2167 init_special_inode(inode
, mode
, dev
);
2170 inode
->i_mapping
->a_ops
= &shmem_aops
;
2171 inode
->i_op
= &shmem_inode_operations
;
2172 inode
->i_fop
= &shmem_file_operations
;
2173 mpol_shared_policy_init(&info
->policy
,
2174 shmem_get_sbmpol(sbinfo
));
2178 /* Some things misbehave if size == 0 on a directory */
2179 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
2180 inode
->i_op
= &shmem_dir_inode_operations
;
2181 inode
->i_fop
= &simple_dir_operations
;
2185 * Must not load anything in the rbtree,
2186 * mpol_free_shared_policy will not be called.
2188 mpol_shared_policy_init(&info
->policy
, NULL
);
2192 shmem_free_inode(sb
);
2196 bool shmem_mapping(struct address_space
*mapping
)
2198 return mapping
->a_ops
== &shmem_aops
;
2201 int shmem_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
2203 struct vm_area_struct
*dst_vma
,
2204 unsigned long dst_addr
,
2205 unsigned long src_addr
,
2206 struct page
**pagep
)
2208 struct inode
*inode
= file_inode(dst_vma
->vm_file
);
2209 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2210 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2211 struct address_space
*mapping
= inode
->i_mapping
;
2212 gfp_t gfp
= mapping_gfp_mask(mapping
);
2213 pgoff_t pgoff
= linear_page_index(dst_vma
, dst_addr
);
2214 struct mem_cgroup
*memcg
;
2218 pte_t _dst_pte
, *dst_pte
;
2222 if (shmem_acct_block(info
->flags
, 1))
2224 if (sbinfo
->max_blocks
) {
2225 if (percpu_counter_compare(&sbinfo
->used_blocks
,
2226 sbinfo
->max_blocks
) >= 0)
2227 goto out_unacct_blocks
;
2228 percpu_counter_inc(&sbinfo
->used_blocks
);
2232 page
= shmem_alloc_page(gfp
, info
, pgoff
);
2234 goto out_dec_used_blocks
;
2236 page_kaddr
= kmap_atomic(page
);
2237 ret
= copy_from_user(page_kaddr
, (const void __user
*)src_addr
,
2239 kunmap_atomic(page_kaddr
);
2241 /* fallback to copy_from_user outside mmap_sem */
2242 if (unlikely(ret
)) {
2244 if (sbinfo
->max_blocks
)
2245 percpu_counter_add(&sbinfo
->used_blocks
, -1);
2246 shmem_unacct_blocks(info
->flags
, 1);
2247 /* don't free the page */
2255 VM_BUG_ON(PageLocked(page
) || PageSwapBacked(page
));
2256 __SetPageLocked(page
);
2257 __SetPageSwapBacked(page
);
2258 __SetPageUptodate(page
);
2260 ret
= mem_cgroup_try_charge(page
, dst_mm
, gfp
, &memcg
, false);
2264 ret
= radix_tree_maybe_preload(gfp
& GFP_RECLAIM_MASK
);
2266 ret
= shmem_add_to_page_cache(page
, mapping
, pgoff
, NULL
);
2267 radix_tree_preload_end();
2270 goto out_release_uncharge
;
2272 mem_cgroup_commit_charge(page
, memcg
, false, false);
2274 _dst_pte
= mk_pte(page
, dst_vma
->vm_page_prot
);
2275 if (dst_vma
->vm_flags
& VM_WRITE
)
2276 _dst_pte
= pte_mkwrite(pte_mkdirty(_dst_pte
));
2279 dst_pte
= pte_offset_map_lock(dst_mm
, dst_pmd
, dst_addr
, &ptl
);
2280 if (!pte_none(*dst_pte
))
2281 goto out_release_uncharge_unlock
;
2283 lru_cache_add_anon(page
);
2285 spin_lock(&info
->lock
);
2287 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
2288 shmem_recalc_inode(inode
);
2289 spin_unlock(&info
->lock
);
2291 inc_mm_counter(dst_mm
, mm_counter_file(page
));
2292 page_add_file_rmap(page
, false);
2293 set_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
2295 /* No need to invalidate - it was non-present before */
2296 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
2298 pte_unmap_unlock(dst_pte
, ptl
);
2302 out_release_uncharge_unlock
:
2303 pte_unmap_unlock(dst_pte
, ptl
);
2304 out_release_uncharge
:
2305 mem_cgroup_cancel_charge(page
, memcg
, false);
2309 out_dec_used_blocks
:
2310 if (sbinfo
->max_blocks
)
2311 percpu_counter_add(&sbinfo
->used_blocks
, -1);
2313 shmem_unacct_blocks(info
->flags
, 1);
2318 static const struct inode_operations shmem_symlink_inode_operations
;
2319 static const struct inode_operations shmem_short_symlink_operations
;
2321 #ifdef CONFIG_TMPFS_XATTR
2322 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
2324 #define shmem_initxattrs NULL
2328 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
2329 loff_t pos
, unsigned len
, unsigned flags
,
2330 struct page
**pagep
, void **fsdata
)
2332 struct inode
*inode
= mapping
->host
;
2333 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2334 pgoff_t index
= pos
>> PAGE_SHIFT
;
2336 /* i_mutex is held by caller */
2337 if (unlikely(info
->seals
& (F_SEAL_WRITE
| F_SEAL_GROW
))) {
2338 if (info
->seals
& F_SEAL_WRITE
)
2340 if ((info
->seals
& F_SEAL_GROW
) && pos
+ len
> inode
->i_size
)
2344 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
);
2348 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
2349 loff_t pos
, unsigned len
, unsigned copied
,
2350 struct page
*page
, void *fsdata
)
2352 struct inode
*inode
= mapping
->host
;
2354 if (pos
+ copied
> inode
->i_size
)
2355 i_size_write(inode
, pos
+ copied
);
2357 if (!PageUptodate(page
)) {
2358 struct page
*head
= compound_head(page
);
2359 if (PageTransCompound(page
)) {
2362 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2363 if (head
+ i
== page
)
2365 clear_highpage(head
+ i
);
2366 flush_dcache_page(head
+ i
);
2369 if (copied
< PAGE_SIZE
) {
2370 unsigned from
= pos
& (PAGE_SIZE
- 1);
2371 zero_user_segments(page
, 0, from
,
2372 from
+ copied
, PAGE_SIZE
);
2374 SetPageUptodate(head
);
2376 set_page_dirty(page
);
2383 static ssize_t
shmem_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
2385 struct file
*file
= iocb
->ki_filp
;
2386 struct inode
*inode
= file_inode(file
);
2387 struct address_space
*mapping
= inode
->i_mapping
;
2389 unsigned long offset
;
2390 enum sgp_type sgp
= SGP_READ
;
2393 loff_t
*ppos
= &iocb
->ki_pos
;
2396 * Might this read be for a stacking filesystem? Then when reading
2397 * holes of a sparse file, we actually need to allocate those pages,
2398 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2400 if (!iter_is_iovec(to
))
2403 index
= *ppos
>> PAGE_SHIFT
;
2404 offset
= *ppos
& ~PAGE_MASK
;
2407 struct page
*page
= NULL
;
2409 unsigned long nr
, ret
;
2410 loff_t i_size
= i_size_read(inode
);
2412 end_index
= i_size
>> PAGE_SHIFT
;
2413 if (index
> end_index
)
2415 if (index
== end_index
) {
2416 nr
= i_size
& ~PAGE_MASK
;
2421 error
= shmem_getpage(inode
, index
, &page
, sgp
);
2423 if (error
== -EINVAL
)
2428 if (sgp
== SGP_CACHE
)
2429 set_page_dirty(page
);
2434 * We must evaluate after, since reads (unlike writes)
2435 * are called without i_mutex protection against truncate
2438 i_size
= i_size_read(inode
);
2439 end_index
= i_size
>> PAGE_SHIFT
;
2440 if (index
== end_index
) {
2441 nr
= i_size
& ~PAGE_MASK
;
2452 * If users can be writing to this page using arbitrary
2453 * virtual addresses, take care about potential aliasing
2454 * before reading the page on the kernel side.
2456 if (mapping_writably_mapped(mapping
))
2457 flush_dcache_page(page
);
2459 * Mark the page accessed if we read the beginning.
2462 mark_page_accessed(page
);
2464 page
= ZERO_PAGE(0);
2469 * Ok, we have the page, and it's up-to-date, so
2470 * now we can copy it to user space...
2472 ret
= copy_page_to_iter(page
, offset
, nr
, to
);
2475 index
+= offset
>> PAGE_SHIFT
;
2476 offset
&= ~PAGE_MASK
;
2479 if (!iov_iter_count(to
))
2488 *ppos
= ((loff_t
) index
<< PAGE_SHIFT
) + offset
;
2489 file_accessed(file
);
2490 return retval
? retval
: error
;
2494 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2496 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
2497 pgoff_t index
, pgoff_t end
, int whence
)
2500 struct pagevec pvec
;
2501 pgoff_t indices
[PAGEVEC_SIZE
];
2505 pagevec_init(&pvec
, 0);
2506 pvec
.nr
= 1; /* start small: we may be there already */
2508 pvec
.nr
= find_get_entries(mapping
, index
,
2509 pvec
.nr
, pvec
.pages
, indices
);
2511 if (whence
== SEEK_DATA
)
2515 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
2516 if (index
< indices
[i
]) {
2517 if (whence
== SEEK_HOLE
) {
2523 page
= pvec
.pages
[i
];
2524 if (page
&& !radix_tree_exceptional_entry(page
)) {
2525 if (!PageUptodate(page
))
2529 (page
&& whence
== SEEK_DATA
) ||
2530 (!page
&& whence
== SEEK_HOLE
)) {
2535 pagevec_remove_exceptionals(&pvec
);
2536 pagevec_release(&pvec
);
2537 pvec
.nr
= PAGEVEC_SIZE
;
2543 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2545 struct address_space
*mapping
= file
->f_mapping
;
2546 struct inode
*inode
= mapping
->host
;
2550 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
2551 return generic_file_llseek_size(file
, offset
, whence
,
2552 MAX_LFS_FILESIZE
, i_size_read(inode
));
2554 /* We're holding i_mutex so we can access i_size directly */
2558 else if (offset
>= inode
->i_size
)
2561 start
= offset
>> PAGE_SHIFT
;
2562 end
= (inode
->i_size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2563 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
2564 new_offset
<<= PAGE_SHIFT
;
2565 if (new_offset
> offset
) {
2566 if (new_offset
< inode
->i_size
)
2567 offset
= new_offset
;
2568 else if (whence
== SEEK_DATA
)
2571 offset
= inode
->i_size
;
2576 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
2577 inode_unlock(inode
);
2582 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2583 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2585 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2586 #define LAST_SCAN 4 /* about 150ms max */
2588 static void shmem_tag_pins(struct address_space
*mapping
)
2590 struct radix_tree_iter iter
;
2599 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
2600 page
= radix_tree_deref_slot(slot
);
2601 if (!page
|| radix_tree_exception(page
)) {
2602 if (radix_tree_deref_retry(page
)) {
2603 slot
= radix_tree_iter_retry(&iter
);
2606 } else if (page_count(page
) - page_mapcount(page
) > 1) {
2607 spin_lock_irq(&mapping
->tree_lock
);
2608 radix_tree_tag_set(&mapping
->page_tree
, iter
.index
,
2610 spin_unlock_irq(&mapping
->tree_lock
);
2613 if (need_resched()) {
2614 slot
= radix_tree_iter_resume(slot
, &iter
);
2622 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2623 * via get_user_pages(), drivers might have some pending I/O without any active
2624 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2625 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2626 * them to be dropped.
2627 * The caller must guarantee that no new user will acquire writable references
2628 * to those pages to avoid races.
2630 static int shmem_wait_for_pins(struct address_space
*mapping
)
2632 struct radix_tree_iter iter
;
2638 shmem_tag_pins(mapping
);
2641 for (scan
= 0; scan
<= LAST_SCAN
; scan
++) {
2642 if (!radix_tree_tagged(&mapping
->page_tree
, SHMEM_TAG_PINNED
))
2646 lru_add_drain_all();
2647 else if (schedule_timeout_killable((HZ
<< scan
) / 200))
2652 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
,
2653 start
, SHMEM_TAG_PINNED
) {
2655 page
= radix_tree_deref_slot(slot
);
2656 if (radix_tree_exception(page
)) {
2657 if (radix_tree_deref_retry(page
)) {
2658 slot
= radix_tree_iter_retry(&iter
);
2666 page_count(page
) - page_mapcount(page
) != 1) {
2667 if (scan
< LAST_SCAN
)
2668 goto continue_resched
;
2671 * On the last scan, we clean up all those tags
2672 * we inserted; but make a note that we still
2673 * found pages pinned.
2678 spin_lock_irq(&mapping
->tree_lock
);
2679 radix_tree_tag_clear(&mapping
->page_tree
,
2680 iter
.index
, SHMEM_TAG_PINNED
);
2681 spin_unlock_irq(&mapping
->tree_lock
);
2683 if (need_resched()) {
2684 slot
= radix_tree_iter_resume(slot
, &iter
);
2694 #define F_ALL_SEALS (F_SEAL_SEAL | \
2699 int shmem_add_seals(struct file
*file
, unsigned int seals
)
2701 struct inode
*inode
= file_inode(file
);
2702 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2707 * Sealing allows multiple parties to share a shmem-file but restrict
2708 * access to a specific subset of file operations. Seals can only be
2709 * added, but never removed. This way, mutually untrusted parties can
2710 * share common memory regions with a well-defined policy. A malicious
2711 * peer can thus never perform unwanted operations on a shared object.
2713 * Seals are only supported on special shmem-files and always affect
2714 * the whole underlying inode. Once a seal is set, it may prevent some
2715 * kinds of access to the file. Currently, the following seals are
2717 * SEAL_SEAL: Prevent further seals from being set on this file
2718 * SEAL_SHRINK: Prevent the file from shrinking
2719 * SEAL_GROW: Prevent the file from growing
2720 * SEAL_WRITE: Prevent write access to the file
2722 * As we don't require any trust relationship between two parties, we
2723 * must prevent seals from being removed. Therefore, sealing a file
2724 * only adds a given set of seals to the file, it never touches
2725 * existing seals. Furthermore, the "setting seals"-operation can be
2726 * sealed itself, which basically prevents any further seal from being
2729 * Semantics of sealing are only defined on volatile files. Only
2730 * anonymous shmem files support sealing. More importantly, seals are
2731 * never written to disk. Therefore, there's no plan to support it on
2735 if (file
->f_op
!= &shmem_file_operations
)
2737 if (!(file
->f_mode
& FMODE_WRITE
))
2739 if (seals
& ~(unsigned int)F_ALL_SEALS
)
2744 if (info
->seals
& F_SEAL_SEAL
) {
2749 if ((seals
& F_SEAL_WRITE
) && !(info
->seals
& F_SEAL_WRITE
)) {
2750 error
= mapping_deny_writable(file
->f_mapping
);
2754 error
= shmem_wait_for_pins(file
->f_mapping
);
2756 mapping_allow_writable(file
->f_mapping
);
2761 info
->seals
|= seals
;
2765 inode_unlock(inode
);
2768 EXPORT_SYMBOL_GPL(shmem_add_seals
);
2770 int shmem_get_seals(struct file
*file
)
2772 if (file
->f_op
!= &shmem_file_operations
)
2775 return SHMEM_I(file_inode(file
))->seals
;
2777 EXPORT_SYMBOL_GPL(shmem_get_seals
);
2779 long shmem_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2785 /* disallow upper 32bit */
2789 error
= shmem_add_seals(file
, arg
);
2792 error
= shmem_get_seals(file
);
2802 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
2805 struct inode
*inode
= file_inode(file
);
2806 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2807 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2808 struct shmem_falloc shmem_falloc
;
2809 pgoff_t start
, index
, end
;
2812 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2817 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
2818 struct address_space
*mapping
= file
->f_mapping
;
2819 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
2820 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
2821 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
2823 /* protected by i_mutex */
2824 if (info
->seals
& F_SEAL_WRITE
) {
2829 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
2830 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
2831 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
2832 spin_lock(&inode
->i_lock
);
2833 inode
->i_private
= &shmem_falloc
;
2834 spin_unlock(&inode
->i_lock
);
2836 if ((u64
)unmap_end
> (u64
)unmap_start
)
2837 unmap_mapping_range(mapping
, unmap_start
,
2838 1 + unmap_end
- unmap_start
, 0);
2839 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
2840 /* No need to unmap again: hole-punching leaves COWed pages */
2842 spin_lock(&inode
->i_lock
);
2843 inode
->i_private
= NULL
;
2844 wake_up_all(&shmem_falloc_waitq
);
2845 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq
.head
));
2846 spin_unlock(&inode
->i_lock
);
2851 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2852 error
= inode_newsize_ok(inode
, offset
+ len
);
2856 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
2861 start
= offset
>> PAGE_SHIFT
;
2862 end
= (offset
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2863 /* Try to avoid a swapstorm if len is impossible to satisfy */
2864 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
2869 shmem_falloc
.waitq
= NULL
;
2870 shmem_falloc
.start
= start
;
2871 shmem_falloc
.next
= start
;
2872 shmem_falloc
.nr_falloced
= 0;
2873 shmem_falloc
.nr_unswapped
= 0;
2874 spin_lock(&inode
->i_lock
);
2875 inode
->i_private
= &shmem_falloc
;
2876 spin_unlock(&inode
->i_lock
);
2878 for (index
= start
; index
< end
; index
++) {
2882 * Good, the fallocate(2) manpage permits EINTR: we may have
2883 * been interrupted because we are using up too much memory.
2885 if (signal_pending(current
))
2887 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
2890 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
);
2892 /* Remove the !PageUptodate pages we added */
2893 if (index
> start
) {
2894 shmem_undo_range(inode
,
2895 (loff_t
)start
<< PAGE_SHIFT
,
2896 ((loff_t
)index
<< PAGE_SHIFT
) - 1, true);
2902 * Inform shmem_writepage() how far we have reached.
2903 * No need for lock or barrier: we have the page lock.
2905 shmem_falloc
.next
++;
2906 if (!PageUptodate(page
))
2907 shmem_falloc
.nr_falloced
++;
2910 * If !PageUptodate, leave it that way so that freeable pages
2911 * can be recognized if we need to rollback on error later.
2912 * But set_page_dirty so that memory pressure will swap rather
2913 * than free the pages we are allocating (and SGP_CACHE pages
2914 * might still be clean: we now need to mark those dirty too).
2916 set_page_dirty(page
);
2922 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
2923 i_size_write(inode
, offset
+ len
);
2924 inode
->i_ctime
= current_time(inode
);
2926 spin_lock(&inode
->i_lock
);
2927 inode
->i_private
= NULL
;
2928 spin_unlock(&inode
->i_lock
);
2930 inode_unlock(inode
);
2934 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2936 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
2938 buf
->f_type
= TMPFS_MAGIC
;
2939 buf
->f_bsize
= PAGE_SIZE
;
2940 buf
->f_namelen
= NAME_MAX
;
2941 if (sbinfo
->max_blocks
) {
2942 buf
->f_blocks
= sbinfo
->max_blocks
;
2944 buf
->f_bfree
= sbinfo
->max_blocks
-
2945 percpu_counter_sum(&sbinfo
->used_blocks
);
2947 if (sbinfo
->max_inodes
) {
2948 buf
->f_files
= sbinfo
->max_inodes
;
2949 buf
->f_ffree
= sbinfo
->free_inodes
;
2951 /* else leave those fields 0 like simple_statfs */
2956 * File creation. Allocate an inode, and we're done..
2959 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
2961 struct inode
*inode
;
2962 int error
= -ENOSPC
;
2964 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
2966 error
= simple_acl_create(dir
, inode
);
2969 error
= security_inode_init_security(inode
, dir
,
2971 shmem_initxattrs
, NULL
);
2972 if (error
&& error
!= -EOPNOTSUPP
)
2976 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2977 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
2978 d_instantiate(dentry
, inode
);
2979 dget(dentry
); /* Extra count - pin the dentry in core */
2988 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2990 struct inode
*inode
;
2991 int error
= -ENOSPC
;
2993 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
2995 error
= security_inode_init_security(inode
, dir
,
2997 shmem_initxattrs
, NULL
);
2998 if (error
&& error
!= -EOPNOTSUPP
)
3000 error
= simple_acl_create(dir
, inode
);
3003 d_tmpfile(dentry
, inode
);
3011 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
3015 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
3021 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
3024 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
3030 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
3032 struct inode
*inode
= d_inode(old_dentry
);
3036 * No ordinary (disk based) filesystem counts links as inodes;
3037 * but each new link needs a new dentry, pinning lowmem, and
3038 * tmpfs dentries cannot be pruned until they are unlinked.
3040 ret
= shmem_reserve_inode(inode
->i_sb
);
3044 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3045 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
3047 ihold(inode
); /* New dentry reference */
3048 dget(dentry
); /* Extra pinning count for the created dentry */
3049 d_instantiate(dentry
, inode
);
3054 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
3056 struct inode
*inode
= d_inode(dentry
);
3058 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
3059 shmem_free_inode(inode
->i_sb
);
3061 dir
->i_size
-= BOGO_DIRENT_SIZE
;
3062 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
3064 dput(dentry
); /* Undo the count from "create" - this does all the work */
3068 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
3070 if (!simple_empty(dentry
))
3073 drop_nlink(d_inode(dentry
));
3075 return shmem_unlink(dir
, dentry
);
3078 static int shmem_exchange(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
3080 bool old_is_dir
= d_is_dir(old_dentry
);
3081 bool new_is_dir
= d_is_dir(new_dentry
);
3083 if (old_dir
!= new_dir
&& old_is_dir
!= new_is_dir
) {
3085 drop_nlink(old_dir
);
3088 drop_nlink(new_dir
);
3092 old_dir
->i_ctime
= old_dir
->i_mtime
=
3093 new_dir
->i_ctime
= new_dir
->i_mtime
=
3094 d_inode(old_dentry
)->i_ctime
=
3095 d_inode(new_dentry
)->i_ctime
= current_time(old_dir
);
3100 static int shmem_whiteout(struct inode
*old_dir
, struct dentry
*old_dentry
)
3102 struct dentry
*whiteout
;
3105 whiteout
= d_alloc(old_dentry
->d_parent
, &old_dentry
->d_name
);
3109 error
= shmem_mknod(old_dir
, whiteout
,
3110 S_IFCHR
| WHITEOUT_MODE
, WHITEOUT_DEV
);
3116 * Cheat and hash the whiteout while the old dentry is still in
3117 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3119 * d_lookup() will consistently find one of them at this point,
3120 * not sure which one, but that isn't even important.
3127 * The VFS layer already does all the dentry stuff for rename,
3128 * we just have to decrement the usage count for the target if
3129 * it exists so that the VFS layer correctly free's it when it
3132 static int shmem_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
, unsigned int flags
)
3134 struct inode
*inode
= d_inode(old_dentry
);
3135 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
3137 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
3140 if (flags
& RENAME_EXCHANGE
)
3141 return shmem_exchange(old_dir
, old_dentry
, new_dir
, new_dentry
);
3143 if (!simple_empty(new_dentry
))
3146 if (flags
& RENAME_WHITEOUT
) {
3149 error
= shmem_whiteout(old_dir
, old_dentry
);
3154 if (d_really_is_positive(new_dentry
)) {
3155 (void) shmem_unlink(new_dir
, new_dentry
);
3156 if (they_are_dirs
) {
3157 drop_nlink(d_inode(new_dentry
));
3158 drop_nlink(old_dir
);
3160 } else if (they_are_dirs
) {
3161 drop_nlink(old_dir
);
3165 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
3166 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
3167 old_dir
->i_ctime
= old_dir
->i_mtime
=
3168 new_dir
->i_ctime
= new_dir
->i_mtime
=
3169 inode
->i_ctime
= current_time(old_dir
);
3173 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
3177 struct inode
*inode
;
3179 struct shmem_inode_info
*info
;
3181 len
= strlen(symname
) + 1;
3182 if (len
> PAGE_SIZE
)
3183 return -ENAMETOOLONG
;
3185 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
3189 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
3190 shmem_initxattrs
, NULL
);
3192 if (error
!= -EOPNOTSUPP
) {
3199 info
= SHMEM_I(inode
);
3200 inode
->i_size
= len
-1;
3201 if (len
<= SHORT_SYMLINK_LEN
) {
3202 inode
->i_link
= kmemdup(symname
, len
, GFP_KERNEL
);
3203 if (!inode
->i_link
) {
3207 inode
->i_op
= &shmem_short_symlink_operations
;
3209 inode_nohighmem(inode
);
3210 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
);
3215 inode
->i_mapping
->a_ops
= &shmem_aops
;
3216 inode
->i_op
= &shmem_symlink_inode_operations
;
3217 memcpy(page_address(page
), symname
, len
);
3218 SetPageUptodate(page
);
3219 set_page_dirty(page
);
3223 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3224 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
3225 d_instantiate(dentry
, inode
);
3230 static void shmem_put_link(void *arg
)
3232 mark_page_accessed(arg
);
3236 static const char *shmem_get_link(struct dentry
*dentry
,
3237 struct inode
*inode
,
3238 struct delayed_call
*done
)
3240 struct page
*page
= NULL
;
3243 page
= find_get_page(inode
->i_mapping
, 0);
3245 return ERR_PTR(-ECHILD
);
3246 if (!PageUptodate(page
)) {
3248 return ERR_PTR(-ECHILD
);
3251 error
= shmem_getpage(inode
, 0, &page
, SGP_READ
);
3253 return ERR_PTR(error
);
3256 set_delayed_call(done
, shmem_put_link
, page
);
3257 return page_address(page
);
3260 #ifdef CONFIG_TMPFS_XATTR
3262 * Superblocks without xattr inode operations may get some security.* xattr
3263 * support from the LSM "for free". As soon as we have any other xattrs
3264 * like ACLs, we also need to implement the security.* handlers at
3265 * filesystem level, though.
3269 * Callback for security_inode_init_security() for acquiring xattrs.
3271 static int shmem_initxattrs(struct inode
*inode
,
3272 const struct xattr
*xattr_array
,
3275 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3276 const struct xattr
*xattr
;
3277 struct simple_xattr
*new_xattr
;
3280 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
3281 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
3285 len
= strlen(xattr
->name
) + 1;
3286 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
3288 if (!new_xattr
->name
) {
3293 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
3294 XATTR_SECURITY_PREFIX_LEN
);
3295 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
3298 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
3304 static int shmem_xattr_handler_get(const struct xattr_handler
*handler
,
3305 struct dentry
*unused
, struct inode
*inode
,
3306 const char *name
, void *buffer
, size_t size
)
3308 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3310 name
= xattr_full_name(handler
, name
);
3311 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
3314 static int shmem_xattr_handler_set(const struct xattr_handler
*handler
,
3315 struct dentry
*unused
, struct inode
*inode
,
3316 const char *name
, const void *value
,
3317 size_t size
, int flags
)
3319 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3321 name
= xattr_full_name(handler
, name
);
3322 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
3325 static const struct xattr_handler shmem_security_xattr_handler
= {
3326 .prefix
= XATTR_SECURITY_PREFIX
,
3327 .get
= shmem_xattr_handler_get
,
3328 .set
= shmem_xattr_handler_set
,
3331 static const struct xattr_handler shmem_trusted_xattr_handler
= {
3332 .prefix
= XATTR_TRUSTED_PREFIX
,
3333 .get
= shmem_xattr_handler_get
,
3334 .set
= shmem_xattr_handler_set
,
3337 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
3338 #ifdef CONFIG_TMPFS_POSIX_ACL
3339 &posix_acl_access_xattr_handler
,
3340 &posix_acl_default_xattr_handler
,
3342 &shmem_security_xattr_handler
,
3343 &shmem_trusted_xattr_handler
,
3347 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
3349 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
3350 return simple_xattr_list(d_inode(dentry
), &info
->xattrs
, buffer
, size
);
3352 #endif /* CONFIG_TMPFS_XATTR */
3354 static const struct inode_operations shmem_short_symlink_operations
= {
3355 .get_link
= simple_get_link
,
3356 #ifdef CONFIG_TMPFS_XATTR
3357 .listxattr
= shmem_listxattr
,
3361 static const struct inode_operations shmem_symlink_inode_operations
= {
3362 .get_link
= shmem_get_link
,
3363 #ifdef CONFIG_TMPFS_XATTR
3364 .listxattr
= shmem_listxattr
,
3368 static struct dentry
*shmem_get_parent(struct dentry
*child
)
3370 return ERR_PTR(-ESTALE
);
3373 static int shmem_match(struct inode
*ino
, void *vfh
)
3377 inum
= (inum
<< 32) | fh
[1];
3378 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
3381 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
3382 struct fid
*fid
, int fh_len
, int fh_type
)
3384 struct inode
*inode
;
3385 struct dentry
*dentry
= NULL
;
3392 inum
= (inum
<< 32) | fid
->raw
[1];
3394 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
3395 shmem_match
, fid
->raw
);
3397 dentry
= d_find_alias(inode
);
3404 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
3405 struct inode
*parent
)
3409 return FILEID_INVALID
;
3412 if (inode_unhashed(inode
)) {
3413 /* Unfortunately insert_inode_hash is not idempotent,
3414 * so as we hash inodes here rather than at creation
3415 * time, we need a lock to ensure we only try
3418 static DEFINE_SPINLOCK(lock
);
3420 if (inode_unhashed(inode
))
3421 __insert_inode_hash(inode
,
3422 inode
->i_ino
+ inode
->i_generation
);
3426 fh
[0] = inode
->i_generation
;
3427 fh
[1] = inode
->i_ino
;
3428 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
3434 static const struct export_operations shmem_export_ops
= {
3435 .get_parent
= shmem_get_parent
,
3436 .encode_fh
= shmem_encode_fh
,
3437 .fh_to_dentry
= shmem_fh_to_dentry
,
3440 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
3443 char *this_char
, *value
, *rest
;
3444 struct mempolicy
*mpol
= NULL
;
3448 while (options
!= NULL
) {
3449 this_char
= options
;
3452 * NUL-terminate this option: unfortunately,
3453 * mount options form a comma-separated list,
3454 * but mpol's nodelist may also contain commas.
3456 options
= strchr(options
, ',');
3457 if (options
== NULL
)
3460 if (!isdigit(*options
)) {
3467 if ((value
= strchr(this_char
,'=')) != NULL
) {
3470 pr_err("tmpfs: No value for mount option '%s'\n",
3475 if (!strcmp(this_char
,"size")) {
3476 unsigned long long size
;
3477 size
= memparse(value
,&rest
);
3479 size
<<= PAGE_SHIFT
;
3480 size
*= totalram_pages
;
3486 sbinfo
->max_blocks
=
3487 DIV_ROUND_UP(size
, PAGE_SIZE
);
3488 } else if (!strcmp(this_char
,"nr_blocks")) {
3489 sbinfo
->max_blocks
= memparse(value
, &rest
);
3492 } else if (!strcmp(this_char
,"nr_inodes")) {
3493 sbinfo
->max_inodes
= memparse(value
, &rest
);
3496 } else if (!strcmp(this_char
,"mode")) {
3499 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
3502 } else if (!strcmp(this_char
,"uid")) {
3505 uid
= simple_strtoul(value
, &rest
, 0);
3508 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
3509 if (!uid_valid(sbinfo
->uid
))
3511 } else if (!strcmp(this_char
,"gid")) {
3514 gid
= simple_strtoul(value
, &rest
, 0);
3517 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
3518 if (!gid_valid(sbinfo
->gid
))
3520 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3521 } else if (!strcmp(this_char
, "huge")) {
3523 huge
= shmem_parse_huge(value
);
3526 if (!has_transparent_hugepage() &&
3527 huge
!= SHMEM_HUGE_NEVER
)
3529 sbinfo
->huge
= huge
;
3532 } else if (!strcmp(this_char
,"mpol")) {
3535 if (mpol_parse_str(value
, &mpol
))
3539 pr_err("tmpfs: Bad mount option %s\n", this_char
);
3543 sbinfo
->mpol
= mpol
;
3547 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3555 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
3557 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3558 struct shmem_sb_info config
= *sbinfo
;
3559 unsigned long inodes
;
3560 int error
= -EINVAL
;
3563 if (shmem_parse_options(data
, &config
, true))
3566 spin_lock(&sbinfo
->stat_lock
);
3567 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
3568 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
3570 if (config
.max_inodes
< inodes
)
3573 * Those tests disallow limited->unlimited while any are in use;
3574 * but we must separately disallow unlimited->limited, because
3575 * in that case we have no record of how much is already in use.
3577 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
3579 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
3583 sbinfo
->huge
= config
.huge
;
3584 sbinfo
->max_blocks
= config
.max_blocks
;
3585 sbinfo
->max_inodes
= config
.max_inodes
;
3586 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
3589 * Preserve previous mempolicy unless mpol remount option was specified.
3592 mpol_put(sbinfo
->mpol
);
3593 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
3596 spin_unlock(&sbinfo
->stat_lock
);
3600 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
3602 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
3604 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
3605 seq_printf(seq
, ",size=%luk",
3606 sbinfo
->max_blocks
<< (PAGE_SHIFT
- 10));
3607 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
3608 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
3609 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
3610 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
3611 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
3612 seq_printf(seq
, ",uid=%u",
3613 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
3614 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
3615 seq_printf(seq
, ",gid=%u",
3616 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
3617 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3618 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3620 seq_printf(seq
, ",huge=%s", shmem_format_huge(sbinfo
->huge
));
3622 shmem_show_mpol(seq
, sbinfo
->mpol
);
3626 #define MFD_NAME_PREFIX "memfd:"
3627 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3628 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3630 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3632 SYSCALL_DEFINE2(memfd_create
,
3633 const char __user
*, uname
,
3634 unsigned int, flags
)
3636 struct shmem_inode_info
*info
;
3642 if (flags
& ~(unsigned int)MFD_ALL_FLAGS
)
3645 /* length includes terminating zero */
3646 len
= strnlen_user(uname
, MFD_NAME_MAX_LEN
+ 1);
3649 if (len
> MFD_NAME_MAX_LEN
+ 1)
3652 name
= kmalloc(len
+ MFD_NAME_PREFIX_LEN
, GFP_TEMPORARY
);
3656 strcpy(name
, MFD_NAME_PREFIX
);
3657 if (copy_from_user(&name
[MFD_NAME_PREFIX_LEN
], uname
, len
)) {
3662 /* terminating-zero may have changed after strnlen_user() returned */
3663 if (name
[len
+ MFD_NAME_PREFIX_LEN
- 1]) {
3668 fd
= get_unused_fd_flags((flags
& MFD_CLOEXEC
) ? O_CLOEXEC
: 0);
3674 file
= shmem_file_setup(name
, 0, VM_NORESERVE
);
3676 error
= PTR_ERR(file
);
3679 info
= SHMEM_I(file_inode(file
));
3680 file
->f_mode
|= FMODE_LSEEK
| FMODE_PREAD
| FMODE_PWRITE
;
3681 file
->f_flags
|= O_RDWR
| O_LARGEFILE
;
3682 if (flags
& MFD_ALLOW_SEALING
)
3683 info
->seals
&= ~F_SEAL_SEAL
;
3685 fd_install(fd
, file
);
3696 #endif /* CONFIG_TMPFS */
3698 static void shmem_put_super(struct super_block
*sb
)
3700 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3702 percpu_counter_destroy(&sbinfo
->used_blocks
);
3703 mpol_put(sbinfo
->mpol
);
3705 sb
->s_fs_info
= NULL
;
3708 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
3710 struct inode
*inode
;
3711 struct shmem_sb_info
*sbinfo
;
3714 /* Round up to L1_CACHE_BYTES to resist false sharing */
3715 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
3716 L1_CACHE_BYTES
), GFP_KERNEL
);
3720 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
3721 sbinfo
->uid
= current_fsuid();
3722 sbinfo
->gid
= current_fsgid();
3723 sb
->s_fs_info
= sbinfo
;
3727 * Per default we only allow half of the physical ram per
3728 * tmpfs instance, limiting inodes to one per page of lowmem;
3729 * but the internal instance is left unlimited.
3731 if (!(sb
->s_flags
& MS_KERNMOUNT
)) {
3732 sbinfo
->max_blocks
= shmem_default_max_blocks();
3733 sbinfo
->max_inodes
= shmem_default_max_inodes();
3734 if (shmem_parse_options(data
, sbinfo
, false)) {
3739 sb
->s_flags
|= MS_NOUSER
;
3741 sb
->s_export_op
= &shmem_export_ops
;
3742 sb
->s_flags
|= MS_NOSEC
;
3744 sb
->s_flags
|= MS_NOUSER
;
3747 spin_lock_init(&sbinfo
->stat_lock
);
3748 if (percpu_counter_init(&sbinfo
->used_blocks
, 0, GFP_KERNEL
))
3750 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
3751 spin_lock_init(&sbinfo
->shrinklist_lock
);
3752 INIT_LIST_HEAD(&sbinfo
->shrinklist
);
3754 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
3755 sb
->s_blocksize
= PAGE_SIZE
;
3756 sb
->s_blocksize_bits
= PAGE_SHIFT
;
3757 sb
->s_magic
= TMPFS_MAGIC
;
3758 sb
->s_op
= &shmem_ops
;
3759 sb
->s_time_gran
= 1;
3760 #ifdef CONFIG_TMPFS_XATTR
3761 sb
->s_xattr
= shmem_xattr_handlers
;
3763 #ifdef CONFIG_TMPFS_POSIX_ACL
3764 sb
->s_flags
|= MS_POSIXACL
;
3766 uuid_gen(&sb
->s_uuid
);
3768 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
3771 inode
->i_uid
= sbinfo
->uid
;
3772 inode
->i_gid
= sbinfo
->gid
;
3773 sb
->s_root
= d_make_root(inode
);
3779 shmem_put_super(sb
);
3783 static struct kmem_cache
*shmem_inode_cachep
;
3785 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
3787 struct shmem_inode_info
*info
;
3788 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
3791 return &info
->vfs_inode
;
3794 static void shmem_destroy_callback(struct rcu_head
*head
)
3796 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
3797 if (S_ISLNK(inode
->i_mode
))
3798 kfree(inode
->i_link
);
3799 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
3802 static void shmem_destroy_inode(struct inode
*inode
)
3804 if (S_ISREG(inode
->i_mode
))
3805 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
3806 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
3809 static void shmem_init_inode(void *foo
)
3811 struct shmem_inode_info
*info
= foo
;
3812 inode_init_once(&info
->vfs_inode
);
3815 static int shmem_init_inodecache(void)
3817 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
3818 sizeof(struct shmem_inode_info
),
3819 0, SLAB_PANIC
|SLAB_ACCOUNT
, shmem_init_inode
);
3823 static void shmem_destroy_inodecache(void)
3825 kmem_cache_destroy(shmem_inode_cachep
);
3828 static const struct address_space_operations shmem_aops
= {
3829 .writepage
= shmem_writepage
,
3830 .set_page_dirty
= __set_page_dirty_no_writeback
,
3832 .write_begin
= shmem_write_begin
,
3833 .write_end
= shmem_write_end
,
3835 #ifdef CONFIG_MIGRATION
3836 .migratepage
= migrate_page
,
3838 .error_remove_page
= generic_error_remove_page
,
3841 static const struct file_operations shmem_file_operations
= {
3843 .get_unmapped_area
= shmem_get_unmapped_area
,
3845 .llseek
= shmem_file_llseek
,
3846 .read_iter
= shmem_file_read_iter
,
3847 .write_iter
= generic_file_write_iter
,
3848 .fsync
= noop_fsync
,
3849 .splice_read
= generic_file_splice_read
,
3850 .splice_write
= iter_file_splice_write
,
3851 .fallocate
= shmem_fallocate
,
3855 static const struct inode_operations shmem_inode_operations
= {
3856 .getattr
= shmem_getattr
,
3857 .setattr
= shmem_setattr
,
3858 #ifdef CONFIG_TMPFS_XATTR
3859 .listxattr
= shmem_listxattr
,
3860 .set_acl
= simple_set_acl
,
3864 static const struct inode_operations shmem_dir_inode_operations
= {
3866 .create
= shmem_create
,
3867 .lookup
= simple_lookup
,
3869 .unlink
= shmem_unlink
,
3870 .symlink
= shmem_symlink
,
3871 .mkdir
= shmem_mkdir
,
3872 .rmdir
= shmem_rmdir
,
3873 .mknod
= shmem_mknod
,
3874 .rename
= shmem_rename2
,
3875 .tmpfile
= shmem_tmpfile
,
3877 #ifdef CONFIG_TMPFS_XATTR
3878 .listxattr
= shmem_listxattr
,
3880 #ifdef CONFIG_TMPFS_POSIX_ACL
3881 .setattr
= shmem_setattr
,
3882 .set_acl
= simple_set_acl
,
3886 static const struct inode_operations shmem_special_inode_operations
= {
3887 #ifdef CONFIG_TMPFS_XATTR
3888 .listxattr
= shmem_listxattr
,
3890 #ifdef CONFIG_TMPFS_POSIX_ACL
3891 .setattr
= shmem_setattr
,
3892 .set_acl
= simple_set_acl
,
3896 static const struct super_operations shmem_ops
= {
3897 .alloc_inode
= shmem_alloc_inode
,
3898 .destroy_inode
= shmem_destroy_inode
,
3900 .statfs
= shmem_statfs
,
3901 .remount_fs
= shmem_remount_fs
,
3902 .show_options
= shmem_show_options
,
3904 .evict_inode
= shmem_evict_inode
,
3905 .drop_inode
= generic_delete_inode
,
3906 .put_super
= shmem_put_super
,
3907 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3908 .nr_cached_objects
= shmem_unused_huge_count
,
3909 .free_cached_objects
= shmem_unused_huge_scan
,
3913 static const struct vm_operations_struct shmem_vm_ops
= {
3914 .fault
= shmem_fault
,
3915 .map_pages
= filemap_map_pages
,
3917 .set_policy
= shmem_set_policy
,
3918 .get_policy
= shmem_get_policy
,
3922 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
3923 int flags
, const char *dev_name
, void *data
)
3925 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
3928 static struct file_system_type shmem_fs_type
= {
3929 .owner
= THIS_MODULE
,
3931 .mount
= shmem_mount
,
3932 .kill_sb
= kill_litter_super
,
3933 .fs_flags
= FS_USERNS_MOUNT
,
3936 int __init
shmem_init(void)
3940 /* If rootfs called this, don't re-init */
3941 if (shmem_inode_cachep
)
3944 error
= shmem_init_inodecache();
3948 error
= register_filesystem(&shmem_fs_type
);
3950 pr_err("Could not register tmpfs\n");
3954 shm_mnt
= kern_mount(&shmem_fs_type
);
3955 if (IS_ERR(shm_mnt
)) {
3956 error
= PTR_ERR(shm_mnt
);
3957 pr_err("Could not kern_mount tmpfs\n");
3961 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3962 if (has_transparent_hugepage() && shmem_huge
< SHMEM_HUGE_DENY
)
3963 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3965 shmem_huge
= 0; /* just in case it was patched */
3970 unregister_filesystem(&shmem_fs_type
);
3972 shmem_destroy_inodecache();
3974 shm_mnt
= ERR_PTR(error
);
3978 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3979 static ssize_t
shmem_enabled_show(struct kobject
*kobj
,
3980 struct kobj_attribute
*attr
, char *buf
)
3984 SHMEM_HUGE_WITHIN_SIZE
,
3992 for (i
= 0, count
= 0; i
< ARRAY_SIZE(values
); i
++) {
3993 const char *fmt
= shmem_huge
== values
[i
] ? "[%s] " : "%s ";
3995 count
+= sprintf(buf
+ count
, fmt
,
3996 shmem_format_huge(values
[i
]));
3998 buf
[count
- 1] = '\n';
4002 static ssize_t
shmem_enabled_store(struct kobject
*kobj
,
4003 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
4008 if (count
+ 1 > sizeof(tmp
))
4010 memcpy(tmp
, buf
, count
);
4012 if (count
&& tmp
[count
- 1] == '\n')
4013 tmp
[count
- 1] = '\0';
4015 huge
= shmem_parse_huge(tmp
);
4016 if (huge
== -EINVAL
)
4018 if (!has_transparent_hugepage() &&
4019 huge
!= SHMEM_HUGE_NEVER
&& huge
!= SHMEM_HUGE_DENY
)
4023 if (shmem_huge
< SHMEM_HUGE_DENY
)
4024 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
4028 struct kobj_attribute shmem_enabled_attr
=
4029 __ATTR(shmem_enabled
, 0644, shmem_enabled_show
, shmem_enabled_store
);
4030 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4032 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4033 bool shmem_huge_enabled(struct vm_area_struct
*vma
)
4035 struct inode
*inode
= file_inode(vma
->vm_file
);
4036 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
4040 if (shmem_huge
== SHMEM_HUGE_FORCE
)
4042 if (shmem_huge
== SHMEM_HUGE_DENY
)
4044 switch (sbinfo
->huge
) {
4045 case SHMEM_HUGE_NEVER
:
4047 case SHMEM_HUGE_ALWAYS
:
4049 case SHMEM_HUGE_WITHIN_SIZE
:
4050 off
= round_up(vma
->vm_pgoff
, HPAGE_PMD_NR
);
4051 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
4052 if (i_size
>= HPAGE_PMD_SIZE
&&
4053 i_size
>> PAGE_SHIFT
>= off
)
4055 case SHMEM_HUGE_ADVISE
:
4056 /* TODO: implement fadvise() hints */
4057 return (vma
->vm_flags
& VM_HUGEPAGE
);
4063 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4065 #else /* !CONFIG_SHMEM */
4068 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4070 * This is intended for small system where the benefits of the full
4071 * shmem code (swap-backed and resource-limited) are outweighed by
4072 * their complexity. On systems without swap this code should be
4073 * effectively equivalent, but much lighter weight.
4076 static struct file_system_type shmem_fs_type
= {
4078 .mount
= ramfs_mount
,
4079 .kill_sb
= kill_litter_super
,
4080 .fs_flags
= FS_USERNS_MOUNT
,
4083 int __init
shmem_init(void)
4085 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
4087 shm_mnt
= kern_mount(&shmem_fs_type
);
4088 BUG_ON(IS_ERR(shm_mnt
));
4093 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
4098 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
4103 void shmem_unlock_mapping(struct address_space
*mapping
)
4108 unsigned long shmem_get_unmapped_area(struct file
*file
,
4109 unsigned long addr
, unsigned long len
,
4110 unsigned long pgoff
, unsigned long flags
)
4112 return current
->mm
->get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
4116 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
4118 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
4120 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
4122 #define shmem_vm_ops generic_file_vm_ops
4123 #define shmem_file_operations ramfs_file_operations
4124 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4125 #define shmem_acct_size(flags, size) 0
4126 #define shmem_unacct_size(flags, size) do {} while (0)
4128 #endif /* CONFIG_SHMEM */
4132 static const struct dentry_operations anon_ops
= {
4133 .d_dname
= simple_dname
4136 static struct file
*__shmem_file_setup(const char *name
, loff_t size
,
4137 unsigned long flags
, unsigned int i_flags
)
4140 struct inode
*inode
;
4142 struct super_block
*sb
;
4145 if (IS_ERR(shm_mnt
))
4146 return ERR_CAST(shm_mnt
);
4148 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
4149 return ERR_PTR(-EINVAL
);
4151 if (shmem_acct_size(flags
, size
))
4152 return ERR_PTR(-ENOMEM
);
4154 res
= ERR_PTR(-ENOMEM
);
4156 this.len
= strlen(name
);
4157 this.hash
= 0; /* will go */
4158 sb
= shm_mnt
->mnt_sb
;
4159 path
.mnt
= mntget(shm_mnt
);
4160 path
.dentry
= d_alloc_pseudo(sb
, &this);
4163 d_set_d_op(path
.dentry
, &anon_ops
);
4165 res
= ERR_PTR(-ENOSPC
);
4166 inode
= shmem_get_inode(sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
4170 inode
->i_flags
|= i_flags
;
4171 d_instantiate(path
.dentry
, inode
);
4172 inode
->i_size
= size
;
4173 clear_nlink(inode
); /* It is unlinked */
4174 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
4178 res
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
4179 &shmem_file_operations
);
4186 shmem_unacct_size(flags
, size
);
4193 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4194 * kernel internal. There will be NO LSM permission checks against the
4195 * underlying inode. So users of this interface must do LSM checks at a
4196 * higher layer. The users are the big_key and shm implementations. LSM
4197 * checks are provided at the key or shm level rather than the inode.
4198 * @name: name for dentry (to be seen in /proc/<pid>/maps
4199 * @size: size to be set for the file
4200 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4202 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4204 return __shmem_file_setup(name
, size
, flags
, S_PRIVATE
);
4208 * shmem_file_setup - get an unlinked file living in tmpfs
4209 * @name: name for dentry (to be seen in /proc/<pid>/maps
4210 * @size: size to be set for the file
4211 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4213 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4215 return __shmem_file_setup(name
, size
, flags
, 0);
4217 EXPORT_SYMBOL_GPL(shmem_file_setup
);
4220 * shmem_zero_setup - setup a shared anonymous mapping
4221 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4223 int shmem_zero_setup(struct vm_area_struct
*vma
)
4226 loff_t size
= vma
->vm_end
- vma
->vm_start
;
4229 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4230 * between XFS directory reading and selinux: since this file is only
4231 * accessible to the user through its mapping, use S_PRIVATE flag to
4232 * bypass file security, in the same way as shmem_kernel_file_setup().
4234 file
= __shmem_file_setup("dev/zero", size
, vma
->vm_flags
, S_PRIVATE
);
4236 return PTR_ERR(file
);
4240 vma
->vm_file
= file
;
4241 vma
->vm_ops
= &shmem_vm_ops
;
4243 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
4244 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
4245 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
4246 khugepaged_enter(vma
, vma
->vm_flags
);
4253 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4254 * @mapping: the page's address_space
4255 * @index: the page index
4256 * @gfp: the page allocator flags to use if allocating
4258 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4259 * with any new page allocations done using the specified allocation flags.
4260 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4261 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4262 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4264 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4265 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4267 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
4268 pgoff_t index
, gfp_t gfp
)
4271 struct inode
*inode
= mapping
->host
;
4275 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
4276 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
,
4277 gfp
, NULL
, NULL
, NULL
);
4279 page
= ERR_PTR(error
);
4285 * The tiny !SHMEM case uses ramfs without swap
4287 return read_cache_page_gfp(mapping
, index
, gfp
);
4290 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);