lkdtm: Add Control Flow Integrity test
[linux/fpc-iii.git] / drivers / acpi / cppc_acpi.c
blob15f103d7532b09d83ec9df1475bfba0a0dd7fe76
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
5 * (C) Copyright 2014, 2015 Linaro Ltd.
6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
8 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
16 * operation involves:
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 * depending on power/thermal budgets etc.
23 * - Platform conveys its decision back to OS
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
34 #define pr_fmt(fmt) "ACPI CPPC: " fmt
36 #include <linux/cpufreq.h>
37 #include <linux/delay.h>
38 #include <linux/iopoll.h>
39 #include <linux/ktime.h>
40 #include <linux/rwsem.h>
41 #include <linux/wait.h>
43 #include <acpi/cppc_acpi.h>
45 struct cppc_pcc_data {
46 struct mbox_chan *pcc_channel;
47 void __iomem *pcc_comm_addr;
48 bool pcc_channel_acquired;
49 unsigned int deadline_us;
50 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
52 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
53 bool platform_owns_pcc; /* Ownership of PCC subspace */
54 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
57 * Lock to provide controlled access to the PCC channel.
59 * For performance critical usecases(currently cppc_set_perf)
60 * We need to take read_lock and check if channel belongs to OSPM
61 * before reading or writing to PCC subspace
62 * We need to take write_lock before transferring the channel
63 * ownership to the platform via a Doorbell
64 * This allows us to batch a number of CPPC requests if they happen
65 * to originate in about the same time
67 * For non-performance critical usecases(init)
68 * Take write_lock for all purposes which gives exclusive access
70 struct rw_semaphore pcc_lock;
72 /* Wait queue for CPUs whose requests were batched */
73 wait_queue_head_t pcc_write_wait_q;
74 ktime_t last_cmd_cmpl_time;
75 ktime_t last_mpar_reset;
76 int mpar_count;
77 int refcount;
80 /* Array to represent the PCC channel per subspace ID */
81 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
82 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
86 * The cpc_desc structure contains the ACPI register details
87 * as described in the per CPU _CPC tables. The details
88 * include the type of register (e.g. PCC, System IO, FFH etc.)
89 * and destination addresses which lets us READ/WRITE CPU performance
90 * information using the appropriate I/O methods.
92 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
94 /* pcc mapped address + header size + offset within PCC subspace */
95 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
96 0x8 + (offs))
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
100 (cpc)->cpc_entry.reg.space_id == \
101 ACPI_ADR_SPACE_PLATFORM_COMM)
103 /* Evalutes to True if reg is a NULL register descriptor */
104 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105 (reg)->address == 0 && \
106 (reg)->bit_width == 0 && \
107 (reg)->bit_offset == 0 && \
108 (reg)->access_width == 0)
110 /* Evalutes to True if an optional cpc field is supported */
111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
112 !!(cpc)->cpc_entry.int_value : \
113 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
115 * Arbitrary Retries in case the remote processor is slow to respond
116 * to PCC commands. Keeping it high enough to cover emulators where
117 * the processors run painfully slow.
119 #define NUM_RETRIES 500ULL
121 struct cppc_attr {
122 struct attribute attr;
123 ssize_t (*show)(struct kobject *kobj,
124 struct attribute *attr, char *buf);
125 ssize_t (*store)(struct kobject *kobj,
126 struct attribute *attr, const char *c, ssize_t count);
129 #define define_one_cppc_ro(_name) \
130 static struct cppc_attr _name = \
131 __ATTR(_name, 0444, show_##_name, NULL)
133 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
135 #define show_cppc_data(access_fn, struct_name, member_name) \
136 static ssize_t show_##member_name(struct kobject *kobj, \
137 struct attribute *attr, char *buf) \
139 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
140 struct struct_name st_name = {0}; \
141 int ret; \
143 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
144 if (ret) \
145 return ret; \
147 return scnprintf(buf, PAGE_SIZE, "%llu\n", \
148 (u64)st_name.member_name); \
150 define_one_cppc_ro(member_name)
152 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
153 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
154 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
155 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
159 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
160 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
162 static ssize_t show_feedback_ctrs(struct kobject *kobj,
163 struct attribute *attr, char *buf)
165 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
166 struct cppc_perf_fb_ctrs fb_ctrs = {0};
167 int ret;
169 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
170 if (ret)
171 return ret;
173 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
174 fb_ctrs.reference, fb_ctrs.delivered);
176 define_one_cppc_ro(feedback_ctrs);
178 static struct attribute *cppc_attrs[] = {
179 &feedback_ctrs.attr,
180 &reference_perf.attr,
181 &wraparound_time.attr,
182 &highest_perf.attr,
183 &lowest_perf.attr,
184 &lowest_nonlinear_perf.attr,
185 &nominal_perf.attr,
186 &nominal_freq.attr,
187 &lowest_freq.attr,
188 NULL
191 static struct kobj_type cppc_ktype = {
192 .sysfs_ops = &kobj_sysfs_ops,
193 .default_attrs = cppc_attrs,
196 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
198 int ret, status;
199 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
200 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
201 pcc_ss_data->pcc_comm_addr;
203 if (!pcc_ss_data->platform_owns_pcc)
204 return 0;
207 * Poll PCC status register every 3us(delay_us) for maximum of
208 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
210 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
211 status & PCC_CMD_COMPLETE_MASK, 3,
212 pcc_ss_data->deadline_us);
214 if (likely(!ret)) {
215 pcc_ss_data->platform_owns_pcc = false;
216 if (chk_err_bit && (status & PCC_ERROR_MASK))
217 ret = -EIO;
220 if (unlikely(ret))
221 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
222 pcc_ss_id, ret);
224 return ret;
228 * This function transfers the ownership of the PCC to the platform
229 * So it must be called while holding write_lock(pcc_lock)
231 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
233 int ret = -EIO, i;
234 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
235 struct acpi_pcct_shared_memory *generic_comm_base =
236 (struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
237 unsigned int time_delta;
240 * For CMD_WRITE we know for a fact the caller should have checked
241 * the channel before writing to PCC space
243 if (cmd == CMD_READ) {
245 * If there are pending cpc_writes, then we stole the channel
246 * before write completion, so first send a WRITE command to
247 * platform
249 if (pcc_ss_data->pending_pcc_write_cmd)
250 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
252 ret = check_pcc_chan(pcc_ss_id, false);
253 if (ret)
254 goto end;
255 } else /* CMD_WRITE */
256 pcc_ss_data->pending_pcc_write_cmd = FALSE;
259 * Handle the Minimum Request Turnaround Time(MRTT)
260 * "The minimum amount of time that OSPM must wait after the completion
261 * of a command before issuing the next command, in microseconds"
263 if (pcc_ss_data->pcc_mrtt) {
264 time_delta = ktime_us_delta(ktime_get(),
265 pcc_ss_data->last_cmd_cmpl_time);
266 if (pcc_ss_data->pcc_mrtt > time_delta)
267 udelay(pcc_ss_data->pcc_mrtt - time_delta);
271 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
272 * "The maximum number of periodic requests that the subspace channel can
273 * support, reported in commands per minute. 0 indicates no limitation."
275 * This parameter should be ideally zero or large enough so that it can
276 * handle maximum number of requests that all the cores in the system can
277 * collectively generate. If it is not, we will follow the spec and just
278 * not send the request to the platform after hitting the MPAR limit in
279 * any 60s window
281 if (pcc_ss_data->pcc_mpar) {
282 if (pcc_ss_data->mpar_count == 0) {
283 time_delta = ktime_ms_delta(ktime_get(),
284 pcc_ss_data->last_mpar_reset);
285 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
286 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
287 pcc_ss_id);
288 ret = -EIO;
289 goto end;
291 pcc_ss_data->last_mpar_reset = ktime_get();
292 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
294 pcc_ss_data->mpar_count--;
297 /* Write to the shared comm region. */
298 writew_relaxed(cmd, &generic_comm_base->command);
300 /* Flip CMD COMPLETE bit */
301 writew_relaxed(0, &generic_comm_base->status);
303 pcc_ss_data->platform_owns_pcc = true;
305 /* Ring doorbell */
306 ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
307 if (ret < 0) {
308 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
309 pcc_ss_id, cmd, ret);
310 goto end;
313 /* wait for completion and check for PCC errro bit */
314 ret = check_pcc_chan(pcc_ss_id, true);
316 if (pcc_ss_data->pcc_mrtt)
317 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
319 if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
320 mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
321 else
322 mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
324 end:
325 if (cmd == CMD_WRITE) {
326 if (unlikely(ret)) {
327 for_each_possible_cpu(i) {
328 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
329 if (!desc)
330 continue;
332 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
333 desc->write_cmd_status = ret;
336 pcc_ss_data->pcc_write_cnt++;
337 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
340 return ret;
343 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
345 if (ret < 0)
346 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
347 *(u16 *)msg, ret);
348 else
349 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
350 *(u16 *)msg, ret);
353 struct mbox_client cppc_mbox_cl = {
354 .tx_done = cppc_chan_tx_done,
355 .knows_txdone = true,
358 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
360 int result = -EFAULT;
361 acpi_status status = AE_OK;
362 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
363 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
364 struct acpi_buffer state = {0, NULL};
365 union acpi_object *psd = NULL;
366 struct acpi_psd_package *pdomain;
368 status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
369 ACPI_TYPE_PACKAGE);
370 if (ACPI_FAILURE(status))
371 return -ENODEV;
373 psd = buffer.pointer;
374 if (!psd || psd->package.count != 1) {
375 pr_debug("Invalid _PSD data\n");
376 goto end;
379 pdomain = &(cpc_ptr->domain_info);
381 state.length = sizeof(struct acpi_psd_package);
382 state.pointer = pdomain;
384 status = acpi_extract_package(&(psd->package.elements[0]),
385 &format, &state);
386 if (ACPI_FAILURE(status)) {
387 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
388 goto end;
391 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
392 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
393 goto end;
396 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
397 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
398 goto end;
401 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
402 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
403 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
404 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
405 goto end;
408 result = 0;
409 end:
410 kfree(buffer.pointer);
411 return result;
415 * acpi_get_psd_map - Map the CPUs in a common freq domain.
416 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
418 * Return: 0 for success or negative value for err.
420 int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
422 int count_target;
423 int retval = 0;
424 unsigned int i, j;
425 cpumask_var_t covered_cpus;
426 struct cppc_cpudata *pr, *match_pr;
427 struct acpi_psd_package *pdomain;
428 struct acpi_psd_package *match_pdomain;
429 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
431 if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
432 return -ENOMEM;
435 * Now that we have _PSD data from all CPUs, let's setup P-state
436 * domain info.
438 for_each_possible_cpu(i) {
439 pr = all_cpu_data[i];
440 if (!pr)
441 continue;
443 if (cpumask_test_cpu(i, covered_cpus))
444 continue;
446 cpc_ptr = per_cpu(cpc_desc_ptr, i);
447 if (!cpc_ptr) {
448 retval = -EFAULT;
449 goto err_ret;
452 pdomain = &(cpc_ptr->domain_info);
453 cpumask_set_cpu(i, pr->shared_cpu_map);
454 cpumask_set_cpu(i, covered_cpus);
455 if (pdomain->num_processors <= 1)
456 continue;
458 /* Validate the Domain info */
459 count_target = pdomain->num_processors;
460 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
461 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
462 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
463 pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
464 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
465 pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
467 for_each_possible_cpu(j) {
468 if (i == j)
469 continue;
471 match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
472 if (!match_cpc_ptr) {
473 retval = -EFAULT;
474 goto err_ret;
477 match_pdomain = &(match_cpc_ptr->domain_info);
478 if (match_pdomain->domain != pdomain->domain)
479 continue;
481 /* Here i and j are in the same domain */
482 if (match_pdomain->num_processors != count_target) {
483 retval = -EFAULT;
484 goto err_ret;
487 if (pdomain->coord_type != match_pdomain->coord_type) {
488 retval = -EFAULT;
489 goto err_ret;
492 cpumask_set_cpu(j, covered_cpus);
493 cpumask_set_cpu(j, pr->shared_cpu_map);
496 for_each_possible_cpu(j) {
497 if (i == j)
498 continue;
500 match_pr = all_cpu_data[j];
501 if (!match_pr)
502 continue;
504 match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
505 if (!match_cpc_ptr) {
506 retval = -EFAULT;
507 goto err_ret;
510 match_pdomain = &(match_cpc_ptr->domain_info);
511 if (match_pdomain->domain != pdomain->domain)
512 continue;
514 match_pr->shared_type = pr->shared_type;
515 cpumask_copy(match_pr->shared_cpu_map,
516 pr->shared_cpu_map);
520 err_ret:
521 for_each_possible_cpu(i) {
522 pr = all_cpu_data[i];
523 if (!pr)
524 continue;
526 /* Assume no coordination on any error parsing domain info */
527 if (retval) {
528 cpumask_clear(pr->shared_cpu_map);
529 cpumask_set_cpu(i, pr->shared_cpu_map);
530 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
534 free_cpumask_var(covered_cpus);
535 return retval;
537 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
539 static int register_pcc_channel(int pcc_ss_idx)
541 struct acpi_pcct_hw_reduced *cppc_ss;
542 u64 usecs_lat;
544 if (pcc_ss_idx >= 0) {
545 pcc_data[pcc_ss_idx]->pcc_channel =
546 pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
548 if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
549 pr_err("Failed to find PCC channel for subspace %d\n",
550 pcc_ss_idx);
551 return -ENODEV;
555 * The PCC mailbox controller driver should
556 * have parsed the PCCT (global table of all
557 * PCC channels) and stored pointers to the
558 * subspace communication region in con_priv.
560 cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
562 if (!cppc_ss) {
563 pr_err("No PCC subspace found for %d CPPC\n",
564 pcc_ss_idx);
565 return -ENODEV;
569 * cppc_ss->latency is just a Nominal value. In reality
570 * the remote processor could be much slower to reply.
571 * So add an arbitrary amount of wait on top of Nominal.
573 usecs_lat = NUM_RETRIES * cppc_ss->latency;
574 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
575 pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
576 pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
577 pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
579 pcc_data[pcc_ss_idx]->pcc_comm_addr =
580 acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
581 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
582 pr_err("Failed to ioremap PCC comm region mem for %d\n",
583 pcc_ss_idx);
584 return -ENOMEM;
587 /* Set flag so that we don't come here for each CPU. */
588 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
591 return 0;
595 * cpc_ffh_supported() - check if FFH reading supported
597 * Check if the architecture has support for functional fixed hardware
598 * read/write capability.
600 * Return: true for supported, false for not supported
602 bool __weak cpc_ffh_supported(void)
604 return false;
608 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
610 * Check and allocate the cppc_pcc_data memory.
611 * In some processor configurations it is possible that same subspace
612 * is shared between multiple CPUs. This is seen especially in CPUs
613 * with hardware multi-threading support.
615 * Return: 0 for success, errno for failure
617 int pcc_data_alloc(int pcc_ss_id)
619 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
620 return -EINVAL;
622 if (pcc_data[pcc_ss_id]) {
623 pcc_data[pcc_ss_id]->refcount++;
624 } else {
625 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
626 GFP_KERNEL);
627 if (!pcc_data[pcc_ss_id])
628 return -ENOMEM;
629 pcc_data[pcc_ss_id]->refcount++;
632 return 0;
635 /* Check if CPPC revision + num_ent combination is supported */
636 static bool is_cppc_supported(int revision, int num_ent)
638 int expected_num_ent;
640 switch (revision) {
641 case CPPC_V2_REV:
642 expected_num_ent = CPPC_V2_NUM_ENT;
643 break;
644 case CPPC_V3_REV:
645 expected_num_ent = CPPC_V3_NUM_ENT;
646 break;
647 default:
648 pr_debug("Firmware exports unsupported CPPC revision: %d\n",
649 revision);
650 return false;
653 if (expected_num_ent != num_ent) {
654 pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
655 num_ent, expected_num_ent, revision);
656 return false;
659 return true;
663 * An example CPC table looks like the following.
665 * Name(_CPC, Package()
667 * 17,
668 * NumEntries
669 * 1,
670 * // Revision
671 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
672 * // Highest Performance
673 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
674 * // Nominal Performance
675 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
676 * // Lowest Nonlinear Performance
677 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
678 * // Lowest Performance
679 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
680 * // Guaranteed Performance Register
681 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
682 * // Desired Performance Register
683 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
684 * ..
685 * ..
686 * ..
689 * Each Register() encodes how to access that specific register.
690 * e.g. a sample PCC entry has the following encoding:
692 * Register (
693 * PCC,
694 * AddressSpaceKeyword
695 * 8,
696 * //RegisterBitWidth
697 * 8,
698 * //RegisterBitOffset
699 * 0x30,
700 * //RegisterAddress
702 * //AccessSize (subspace ID)
709 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
710 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
712 * Return: 0 for success or negative value for err.
714 int acpi_cppc_processor_probe(struct acpi_processor *pr)
716 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
717 union acpi_object *out_obj, *cpc_obj;
718 struct cpc_desc *cpc_ptr;
719 struct cpc_reg *gas_t;
720 struct device *cpu_dev;
721 acpi_handle handle = pr->handle;
722 unsigned int num_ent, i, cpc_rev;
723 int pcc_subspace_id = -1;
724 acpi_status status;
725 int ret = -EFAULT;
727 /* Parse the ACPI _CPC table for this CPU. */
728 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
729 ACPI_TYPE_PACKAGE);
730 if (ACPI_FAILURE(status)) {
731 ret = -ENODEV;
732 goto out_buf_free;
735 out_obj = (union acpi_object *) output.pointer;
737 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
738 if (!cpc_ptr) {
739 ret = -ENOMEM;
740 goto out_buf_free;
743 /* First entry is NumEntries. */
744 cpc_obj = &out_obj->package.elements[0];
745 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
746 num_ent = cpc_obj->integer.value;
747 } else {
748 pr_debug("Unexpected entry type(%d) for NumEntries\n",
749 cpc_obj->type);
750 goto out_free;
752 cpc_ptr->num_entries = num_ent;
754 /* Second entry should be revision. */
755 cpc_obj = &out_obj->package.elements[1];
756 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
757 cpc_rev = cpc_obj->integer.value;
758 } else {
759 pr_debug("Unexpected entry type(%d) for Revision\n",
760 cpc_obj->type);
761 goto out_free;
763 cpc_ptr->version = cpc_rev;
765 if (!is_cppc_supported(cpc_rev, num_ent))
766 goto out_free;
768 /* Iterate through remaining entries in _CPC */
769 for (i = 2; i < num_ent; i++) {
770 cpc_obj = &out_obj->package.elements[i];
772 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
773 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
774 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
775 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
776 gas_t = (struct cpc_reg *)
777 cpc_obj->buffer.pointer;
780 * The PCC Subspace index is encoded inside
781 * the CPC table entries. The same PCC index
782 * will be used for all the PCC entries,
783 * so extract it only once.
785 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
786 if (pcc_subspace_id < 0) {
787 pcc_subspace_id = gas_t->access_width;
788 if (pcc_data_alloc(pcc_subspace_id))
789 goto out_free;
790 } else if (pcc_subspace_id != gas_t->access_width) {
791 pr_debug("Mismatched PCC ids.\n");
792 goto out_free;
794 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
795 if (gas_t->address) {
796 void __iomem *addr;
798 addr = ioremap(gas_t->address, gas_t->bit_width/8);
799 if (!addr)
800 goto out_free;
801 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
803 } else {
804 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
805 /* Support only PCC ,SYS MEM and FFH type regs */
806 pr_debug("Unsupported register type: %d\n", gas_t->space_id);
807 goto out_free;
811 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
812 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
813 } else {
814 pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
815 goto out_free;
818 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
821 * Initialize the remaining cpc_regs as unsupported.
822 * Example: In case FW exposes CPPC v2, the below loop will initialize
823 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
825 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
826 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
827 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
831 /* Store CPU Logical ID */
832 cpc_ptr->cpu_id = pr->id;
834 /* Parse PSD data for this CPU */
835 ret = acpi_get_psd(cpc_ptr, handle);
836 if (ret)
837 goto out_free;
839 /* Register PCC channel once for all PCC subspace ID. */
840 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
841 ret = register_pcc_channel(pcc_subspace_id);
842 if (ret)
843 goto out_free;
845 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
846 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
849 /* Everything looks okay */
850 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
852 /* Add per logical CPU nodes for reading its feedback counters. */
853 cpu_dev = get_cpu_device(pr->id);
854 if (!cpu_dev) {
855 ret = -EINVAL;
856 goto out_free;
859 /* Plug PSD data into this CPU's CPC descriptor. */
860 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
862 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
863 "acpi_cppc");
864 if (ret) {
865 per_cpu(cpc_desc_ptr, pr->id) = NULL;
866 goto out_free;
869 kfree(output.pointer);
870 return 0;
872 out_free:
873 /* Free all the mapped sys mem areas for this CPU */
874 for (i = 2; i < cpc_ptr->num_entries; i++) {
875 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
877 if (addr)
878 iounmap(addr);
880 kfree(cpc_ptr);
882 out_buf_free:
883 kfree(output.pointer);
884 return ret;
886 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
889 * acpi_cppc_processor_exit - Cleanup CPC structs.
890 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
892 * Return: Void
894 void acpi_cppc_processor_exit(struct acpi_processor *pr)
896 struct cpc_desc *cpc_ptr;
897 unsigned int i;
898 void __iomem *addr;
899 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
901 if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
902 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
903 pcc_data[pcc_ss_id]->refcount--;
904 if (!pcc_data[pcc_ss_id]->refcount) {
905 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
906 pcc_data[pcc_ss_id]->pcc_channel_acquired = 0;
907 kfree(pcc_data[pcc_ss_id]);
912 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
913 if (!cpc_ptr)
914 return;
916 /* Free all the mapped sys mem areas for this CPU */
917 for (i = 2; i < cpc_ptr->num_entries; i++) {
918 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
919 if (addr)
920 iounmap(addr);
923 kobject_put(&cpc_ptr->kobj);
924 kfree(cpc_ptr);
926 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
929 * cpc_read_ffh() - Read FFH register
930 * @cpunum: CPU number to read
931 * @reg: cppc register information
932 * @val: place holder for return value
934 * Read bit_width bits from a specified address and bit_offset
936 * Return: 0 for success and error code
938 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
940 return -ENOTSUPP;
944 * cpc_write_ffh() - Write FFH register
945 * @cpunum: CPU number to write
946 * @reg: cppc register information
947 * @val: value to write
949 * Write value of bit_width bits to a specified address and bit_offset
951 * Return: 0 for success and error code
953 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
955 return -ENOTSUPP;
959 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
960 * as fast as possible. We have already mapped the PCC subspace during init, so
961 * we can directly write to it.
964 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
966 int ret_val = 0;
967 void __iomem *vaddr = 0;
968 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
969 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
971 if (reg_res->type == ACPI_TYPE_INTEGER) {
972 *val = reg_res->cpc_entry.int_value;
973 return ret_val;
976 *val = 0;
977 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
978 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
979 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
980 vaddr = reg_res->sys_mem_vaddr;
981 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
982 return cpc_read_ffh(cpu, reg, val);
983 else
984 return acpi_os_read_memory((acpi_physical_address)reg->address,
985 val, reg->bit_width);
987 switch (reg->bit_width) {
988 case 8:
989 *val = readb_relaxed(vaddr);
990 break;
991 case 16:
992 *val = readw_relaxed(vaddr);
993 break;
994 case 32:
995 *val = readl_relaxed(vaddr);
996 break;
997 case 64:
998 *val = readq_relaxed(vaddr);
999 break;
1000 default:
1001 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1002 reg->bit_width, pcc_ss_id);
1003 ret_val = -EFAULT;
1006 return ret_val;
1009 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1011 int ret_val = 0;
1012 void __iomem *vaddr = 0;
1013 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1014 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1016 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1017 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1018 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1019 vaddr = reg_res->sys_mem_vaddr;
1020 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1021 return cpc_write_ffh(cpu, reg, val);
1022 else
1023 return acpi_os_write_memory((acpi_physical_address)reg->address,
1024 val, reg->bit_width);
1026 switch (reg->bit_width) {
1027 case 8:
1028 writeb_relaxed(val, vaddr);
1029 break;
1030 case 16:
1031 writew_relaxed(val, vaddr);
1032 break;
1033 case 32:
1034 writel_relaxed(val, vaddr);
1035 break;
1036 case 64:
1037 writeq_relaxed(val, vaddr);
1038 break;
1039 default:
1040 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1041 reg->bit_width, pcc_ss_id);
1042 ret_val = -EFAULT;
1043 break;
1046 return ret_val;
1050 * cppc_get_desired_perf - Get the value of desired performance register.
1051 * @cpunum: CPU from which to get desired performance.
1052 * @desired_perf: address of a variable to store the returned desired performance
1054 * Return: 0 for success, -EIO otherwise.
1056 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1058 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1059 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1060 struct cpc_register_resource *desired_reg;
1061 struct cppc_pcc_data *pcc_ss_data = NULL;
1063 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1065 if (CPC_IN_PCC(desired_reg)) {
1066 int ret = 0;
1068 if (pcc_ss_id < 0)
1069 return -EIO;
1071 pcc_ss_data = pcc_data[pcc_ss_id];
1073 down_write(&pcc_ss_data->pcc_lock);
1075 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1076 cpc_read(cpunum, desired_reg, desired_perf);
1077 else
1078 ret = -EIO;
1080 up_write(&pcc_ss_data->pcc_lock);
1082 return ret;
1085 cpc_read(cpunum, desired_reg, desired_perf);
1087 return 0;
1089 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1092 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1093 * @cpunum: CPU from which to get capabilities info.
1094 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1096 * Return: 0 for success with perf_caps populated else -ERRNO.
1098 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1100 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1101 struct cpc_register_resource *highest_reg, *lowest_reg,
1102 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1103 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1104 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1105 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1106 struct cppc_pcc_data *pcc_ss_data = NULL;
1107 int ret = 0, regs_in_pcc = 0;
1109 if (!cpc_desc) {
1110 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1111 return -ENODEV;
1114 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1115 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1116 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1117 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1118 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1119 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1120 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1122 /* Are any of the regs PCC ?*/
1123 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1124 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1125 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1126 if (pcc_ss_id < 0) {
1127 pr_debug("Invalid pcc_ss_id\n");
1128 return -ENODEV;
1130 pcc_ss_data = pcc_data[pcc_ss_id];
1131 regs_in_pcc = 1;
1132 down_write(&pcc_ss_data->pcc_lock);
1133 /* Ring doorbell once to update PCC subspace */
1134 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1135 ret = -EIO;
1136 goto out_err;
1140 cpc_read(cpunum, highest_reg, &high);
1141 perf_caps->highest_perf = high;
1143 cpc_read(cpunum, lowest_reg, &low);
1144 perf_caps->lowest_perf = low;
1146 cpc_read(cpunum, nominal_reg, &nom);
1147 perf_caps->nominal_perf = nom;
1149 if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
1150 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1151 perf_caps->guaranteed_perf = 0;
1152 } else {
1153 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1154 perf_caps->guaranteed_perf = guaranteed;
1157 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1158 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1160 if (!high || !low || !nom || !min_nonlinear)
1161 ret = -EFAULT;
1163 /* Read optional lowest and nominal frequencies if present */
1164 if (CPC_SUPPORTED(low_freq_reg))
1165 cpc_read(cpunum, low_freq_reg, &low_f);
1167 if (CPC_SUPPORTED(nom_freq_reg))
1168 cpc_read(cpunum, nom_freq_reg, &nom_f);
1170 perf_caps->lowest_freq = low_f;
1171 perf_caps->nominal_freq = nom_f;
1174 out_err:
1175 if (regs_in_pcc)
1176 up_write(&pcc_ss_data->pcc_lock);
1177 return ret;
1179 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1182 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1183 * @cpunum: CPU from which to read counters.
1184 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1186 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1188 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1190 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1191 struct cpc_register_resource *delivered_reg, *reference_reg,
1192 *ref_perf_reg, *ctr_wrap_reg;
1193 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1194 struct cppc_pcc_data *pcc_ss_data = NULL;
1195 u64 delivered, reference, ref_perf, ctr_wrap_time;
1196 int ret = 0, regs_in_pcc = 0;
1198 if (!cpc_desc) {
1199 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1200 return -ENODEV;
1203 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1204 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1205 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1206 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1209 * If reference perf register is not supported then we should
1210 * use the nominal perf value
1212 if (!CPC_SUPPORTED(ref_perf_reg))
1213 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1215 /* Are any of the regs PCC ?*/
1216 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1217 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1218 if (pcc_ss_id < 0) {
1219 pr_debug("Invalid pcc_ss_id\n");
1220 return -ENODEV;
1222 pcc_ss_data = pcc_data[pcc_ss_id];
1223 down_write(&pcc_ss_data->pcc_lock);
1224 regs_in_pcc = 1;
1225 /* Ring doorbell once to update PCC subspace */
1226 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1227 ret = -EIO;
1228 goto out_err;
1232 cpc_read(cpunum, delivered_reg, &delivered);
1233 cpc_read(cpunum, reference_reg, &reference);
1234 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1237 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1238 * performance counters are assumed to never wrap during the lifetime of
1239 * platform
1241 ctr_wrap_time = (u64)(~((u64)0));
1242 if (CPC_SUPPORTED(ctr_wrap_reg))
1243 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1245 if (!delivered || !reference || !ref_perf) {
1246 ret = -EFAULT;
1247 goto out_err;
1250 perf_fb_ctrs->delivered = delivered;
1251 perf_fb_ctrs->reference = reference;
1252 perf_fb_ctrs->reference_perf = ref_perf;
1253 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1254 out_err:
1255 if (regs_in_pcc)
1256 up_write(&pcc_ss_data->pcc_lock);
1257 return ret;
1259 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1262 * cppc_set_perf - Set a CPU's performance controls.
1263 * @cpu: CPU for which to set performance controls.
1264 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1266 * Return: 0 for success, -ERRNO otherwise.
1268 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1270 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1271 struct cpc_register_resource *desired_reg;
1272 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1273 struct cppc_pcc_data *pcc_ss_data = NULL;
1274 int ret = 0;
1276 if (!cpc_desc) {
1277 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1278 return -ENODEV;
1281 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1284 * This is Phase-I where we want to write to CPC registers
1285 * -> We want all CPUs to be able to execute this phase in parallel
1287 * Since read_lock can be acquired by multiple CPUs simultaneously we
1288 * achieve that goal here
1290 if (CPC_IN_PCC(desired_reg)) {
1291 if (pcc_ss_id < 0) {
1292 pr_debug("Invalid pcc_ss_id\n");
1293 return -ENODEV;
1295 pcc_ss_data = pcc_data[pcc_ss_id];
1296 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1297 if (pcc_ss_data->platform_owns_pcc) {
1298 ret = check_pcc_chan(pcc_ss_id, false);
1299 if (ret) {
1300 up_read(&pcc_ss_data->pcc_lock);
1301 return ret;
1305 * Update the pending_write to make sure a PCC CMD_READ will not
1306 * arrive and steal the channel during the switch to write lock
1308 pcc_ss_data->pending_pcc_write_cmd = true;
1309 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1310 cpc_desc->write_cmd_status = 0;
1314 * Skip writing MIN/MAX until Linux knows how to come up with
1315 * useful values.
1317 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1319 if (CPC_IN_PCC(desired_reg))
1320 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
1322 * This is Phase-II where we transfer the ownership of PCC to Platform
1324 * Short Summary: Basically if we think of a group of cppc_set_perf
1325 * requests that happened in short overlapping interval. The last CPU to
1326 * come out of Phase-I will enter Phase-II and ring the doorbell.
1328 * We have the following requirements for Phase-II:
1329 * 1. We want to execute Phase-II only when there are no CPUs
1330 * currently executing in Phase-I
1331 * 2. Once we start Phase-II we want to avoid all other CPUs from
1332 * entering Phase-I.
1333 * 3. We want only one CPU among all those who went through Phase-I
1334 * to run phase-II
1336 * If write_trylock fails to get the lock and doesn't transfer the
1337 * PCC ownership to the platform, then one of the following will be TRUE
1338 * 1. There is at-least one CPU in Phase-I which will later execute
1339 * write_trylock, so the CPUs in Phase-I will be responsible for
1340 * executing the Phase-II.
1341 * 2. Some other CPU has beaten this CPU to successfully execute the
1342 * write_trylock and has already acquired the write_lock. We know for a
1343 * fact it (other CPU acquiring the write_lock) couldn't have happened
1344 * before this CPU's Phase-I as we held the read_lock.
1345 * 3. Some other CPU executing pcc CMD_READ has stolen the
1346 * down_write, in which case, send_pcc_cmd will check for pending
1347 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1348 * So this CPU can be certain that its request will be delivered
1349 * So in all cases, this CPU knows that its request will be delivered
1350 * by another CPU and can return
1352 * After getting the down_write we still need to check for
1353 * pending_pcc_write_cmd to take care of the following scenario
1354 * The thread running this code could be scheduled out between
1355 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1356 * could have delivered the request to Platform by triggering the
1357 * doorbell and transferred the ownership of PCC to platform. So this
1358 * avoids triggering an unnecessary doorbell and more importantly before
1359 * triggering the doorbell it makes sure that the PCC channel ownership
1360 * is still with OSPM.
1361 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1362 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1363 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1364 * case during a CMD_READ and if there are pending writes it delivers
1365 * the write command before servicing the read command
1367 if (CPC_IN_PCC(desired_reg)) {
1368 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1369 /* Update only if there are pending write commands */
1370 if (pcc_ss_data->pending_pcc_write_cmd)
1371 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1372 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
1373 } else
1374 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1375 wait_event(pcc_ss_data->pcc_write_wait_q,
1376 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1378 /* send_pcc_cmd updates the status in case of failure */
1379 ret = cpc_desc->write_cmd_status;
1381 return ret;
1383 EXPORT_SYMBOL_GPL(cppc_set_perf);
1386 * cppc_get_transition_latency - returns frequency transition latency in ns
1388 * ACPI CPPC does not explicitly specifiy how a platform can specify the
1389 * transition latency for perfromance change requests. The closest we have
1390 * is the timing information from the PCCT tables which provides the info
1391 * on the number and frequency of PCC commands the platform can handle.
1393 unsigned int cppc_get_transition_latency(int cpu_num)
1396 * Expected transition latency is based on the PCCT timing values
1397 * Below are definition from ACPI spec:
1398 * pcc_nominal- Expected latency to process a command, in microseconds
1399 * pcc_mpar - The maximum number of periodic requests that the subspace
1400 * channel can support, reported in commands per minute. 0
1401 * indicates no limitation.
1402 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1403 * completion of a command before issuing the next command,
1404 * in microseconds.
1406 unsigned int latency_ns = 0;
1407 struct cpc_desc *cpc_desc;
1408 struct cpc_register_resource *desired_reg;
1409 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1410 struct cppc_pcc_data *pcc_ss_data;
1412 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1413 if (!cpc_desc)
1414 return CPUFREQ_ETERNAL;
1416 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1417 if (!CPC_IN_PCC(desired_reg))
1418 return CPUFREQ_ETERNAL;
1420 if (pcc_ss_id < 0)
1421 return CPUFREQ_ETERNAL;
1423 pcc_ss_data = pcc_data[pcc_ss_id];
1424 if (pcc_ss_data->pcc_mpar)
1425 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1427 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1428 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1430 return latency_ns;
1432 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);