1 // SPDX-License-Identifier: GPL-2.0-only
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
5 * (C) Copyright 2014, 2015 Linaro Ltd.
6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
8 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 * depending on power/thermal budgets etc.
23 * - Platform conveys its decision back to OS
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
34 #define pr_fmt(fmt) "ACPI CPPC: " fmt
36 #include <linux/cpufreq.h>
37 #include <linux/delay.h>
38 #include <linux/iopoll.h>
39 #include <linux/ktime.h>
40 #include <linux/rwsem.h>
41 #include <linux/wait.h>
43 #include <acpi/cppc_acpi.h>
45 struct cppc_pcc_data
{
46 struct mbox_chan
*pcc_channel
;
47 void __iomem
*pcc_comm_addr
;
48 bool pcc_channel_acquired
;
49 unsigned int deadline_us
;
50 unsigned int pcc_mpar
, pcc_mrtt
, pcc_nominal
;
52 bool pending_pcc_write_cmd
; /* Any pending/batched PCC write cmds? */
53 bool platform_owns_pcc
; /* Ownership of PCC subspace */
54 unsigned int pcc_write_cnt
; /* Running count of PCC write commands */
57 * Lock to provide controlled access to the PCC channel.
59 * For performance critical usecases(currently cppc_set_perf)
60 * We need to take read_lock and check if channel belongs to OSPM
61 * before reading or writing to PCC subspace
62 * We need to take write_lock before transferring the channel
63 * ownership to the platform via a Doorbell
64 * This allows us to batch a number of CPPC requests if they happen
65 * to originate in about the same time
67 * For non-performance critical usecases(init)
68 * Take write_lock for all purposes which gives exclusive access
70 struct rw_semaphore pcc_lock
;
72 /* Wait queue for CPUs whose requests were batched */
73 wait_queue_head_t pcc_write_wait_q
;
74 ktime_t last_cmd_cmpl_time
;
75 ktime_t last_mpar_reset
;
80 /* Array to represent the PCC channel per subspace ID */
81 static struct cppc_pcc_data
*pcc_data
[MAX_PCC_SUBSPACES
];
82 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx
);
86 * The cpc_desc structure contains the ACPI register details
87 * as described in the per CPU _CPC tables. The details
88 * include the type of register (e.g. PCC, System IO, FFH etc.)
89 * and destination addresses which lets us READ/WRITE CPU performance
90 * information using the appropriate I/O methods.
92 static DEFINE_PER_CPU(struct cpc_desc
*, cpc_desc_ptr
);
94 /* pcc mapped address + header size + offset within PCC subspace */
95 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
100 (cpc)->cpc_entry.reg.space_id == \
101 ACPI_ADR_SPACE_PLATFORM_COMM)
103 /* Evalutes to True if reg is a NULL register descriptor */
104 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105 (reg)->address == 0 && \
106 (reg)->bit_width == 0 && \
107 (reg)->bit_offset == 0 && \
108 (reg)->access_width == 0)
110 /* Evalutes to True if an optional cpc field is supported */
111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
112 !!(cpc)->cpc_entry.int_value : \
113 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
115 * Arbitrary Retries in case the remote processor is slow to respond
116 * to PCC commands. Keeping it high enough to cover emulators where
117 * the processors run painfully slow.
119 #define NUM_RETRIES 500ULL
122 struct attribute attr
;
123 ssize_t (*show
)(struct kobject
*kobj
,
124 struct attribute
*attr
, char *buf
);
125 ssize_t (*store
)(struct kobject
*kobj
,
126 struct attribute
*attr
, const char *c
, ssize_t count
);
129 #define define_one_cppc_ro(_name) \
130 static struct cppc_attr _name = \
131 __ATTR(_name, 0444, show_##_name, NULL)
133 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
135 #define show_cppc_data(access_fn, struct_name, member_name) \
136 static ssize_t show_##member_name(struct kobject *kobj, \
137 struct attribute *attr, char *buf) \
139 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
140 struct struct_name st_name = {0}; \
143 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
147 return scnprintf(buf, PAGE_SIZE, "%llu\n", \
148 (u64)st_name.member_name); \
150 define_one_cppc_ro(member_name)
152 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, highest_perf
);
153 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, lowest_perf
);
154 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, nominal_perf
);
155 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, lowest_nonlinear_perf
);
156 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, lowest_freq
);
157 show_cppc_data(cppc_get_perf_caps
, cppc_perf_caps
, nominal_freq
);
159 show_cppc_data(cppc_get_perf_ctrs
, cppc_perf_fb_ctrs
, reference_perf
);
160 show_cppc_data(cppc_get_perf_ctrs
, cppc_perf_fb_ctrs
, wraparound_time
);
162 static ssize_t
show_feedback_ctrs(struct kobject
*kobj
,
163 struct attribute
*attr
, char *buf
)
165 struct cpc_desc
*cpc_ptr
= to_cpc_desc(kobj
);
166 struct cppc_perf_fb_ctrs fb_ctrs
= {0};
169 ret
= cppc_get_perf_ctrs(cpc_ptr
->cpu_id
, &fb_ctrs
);
173 return scnprintf(buf
, PAGE_SIZE
, "ref:%llu del:%llu\n",
174 fb_ctrs
.reference
, fb_ctrs
.delivered
);
176 define_one_cppc_ro(feedback_ctrs
);
178 static struct attribute
*cppc_attrs
[] = {
180 &reference_perf
.attr
,
181 &wraparound_time
.attr
,
184 &lowest_nonlinear_perf
.attr
,
191 static struct kobj_type cppc_ktype
= {
192 .sysfs_ops
= &kobj_sysfs_ops
,
193 .default_attrs
= cppc_attrs
,
196 static int check_pcc_chan(int pcc_ss_id
, bool chk_err_bit
)
199 struct cppc_pcc_data
*pcc_ss_data
= pcc_data
[pcc_ss_id
];
200 struct acpi_pcct_shared_memory __iomem
*generic_comm_base
=
201 pcc_ss_data
->pcc_comm_addr
;
203 if (!pcc_ss_data
->platform_owns_pcc
)
207 * Poll PCC status register every 3us(delay_us) for maximum of
208 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
210 ret
= readw_relaxed_poll_timeout(&generic_comm_base
->status
, status
,
211 status
& PCC_CMD_COMPLETE_MASK
, 3,
212 pcc_ss_data
->deadline_us
);
215 pcc_ss_data
->platform_owns_pcc
= false;
216 if (chk_err_bit
&& (status
& PCC_ERROR_MASK
))
221 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
228 * This function transfers the ownership of the PCC to the platform
229 * So it must be called while holding write_lock(pcc_lock)
231 static int send_pcc_cmd(int pcc_ss_id
, u16 cmd
)
234 struct cppc_pcc_data
*pcc_ss_data
= pcc_data
[pcc_ss_id
];
235 struct acpi_pcct_shared_memory
*generic_comm_base
=
236 (struct acpi_pcct_shared_memory
*)pcc_ss_data
->pcc_comm_addr
;
237 unsigned int time_delta
;
240 * For CMD_WRITE we know for a fact the caller should have checked
241 * the channel before writing to PCC space
243 if (cmd
== CMD_READ
) {
245 * If there are pending cpc_writes, then we stole the channel
246 * before write completion, so first send a WRITE command to
249 if (pcc_ss_data
->pending_pcc_write_cmd
)
250 send_pcc_cmd(pcc_ss_id
, CMD_WRITE
);
252 ret
= check_pcc_chan(pcc_ss_id
, false);
255 } else /* CMD_WRITE */
256 pcc_ss_data
->pending_pcc_write_cmd
= FALSE
;
259 * Handle the Minimum Request Turnaround Time(MRTT)
260 * "The minimum amount of time that OSPM must wait after the completion
261 * of a command before issuing the next command, in microseconds"
263 if (pcc_ss_data
->pcc_mrtt
) {
264 time_delta
= ktime_us_delta(ktime_get(),
265 pcc_ss_data
->last_cmd_cmpl_time
);
266 if (pcc_ss_data
->pcc_mrtt
> time_delta
)
267 udelay(pcc_ss_data
->pcc_mrtt
- time_delta
);
271 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
272 * "The maximum number of periodic requests that the subspace channel can
273 * support, reported in commands per minute. 0 indicates no limitation."
275 * This parameter should be ideally zero or large enough so that it can
276 * handle maximum number of requests that all the cores in the system can
277 * collectively generate. If it is not, we will follow the spec and just
278 * not send the request to the platform after hitting the MPAR limit in
281 if (pcc_ss_data
->pcc_mpar
) {
282 if (pcc_ss_data
->mpar_count
== 0) {
283 time_delta
= ktime_ms_delta(ktime_get(),
284 pcc_ss_data
->last_mpar_reset
);
285 if ((time_delta
< 60 * MSEC_PER_SEC
) && pcc_ss_data
->last_mpar_reset
) {
286 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
291 pcc_ss_data
->last_mpar_reset
= ktime_get();
292 pcc_ss_data
->mpar_count
= pcc_ss_data
->pcc_mpar
;
294 pcc_ss_data
->mpar_count
--;
297 /* Write to the shared comm region. */
298 writew_relaxed(cmd
, &generic_comm_base
->command
);
300 /* Flip CMD COMPLETE bit */
301 writew_relaxed(0, &generic_comm_base
->status
);
303 pcc_ss_data
->platform_owns_pcc
= true;
306 ret
= mbox_send_message(pcc_ss_data
->pcc_channel
, &cmd
);
308 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
309 pcc_ss_id
, cmd
, ret
);
313 /* wait for completion and check for PCC errro bit */
314 ret
= check_pcc_chan(pcc_ss_id
, true);
316 if (pcc_ss_data
->pcc_mrtt
)
317 pcc_ss_data
->last_cmd_cmpl_time
= ktime_get();
319 if (pcc_ss_data
->pcc_channel
->mbox
->txdone_irq
)
320 mbox_chan_txdone(pcc_ss_data
->pcc_channel
, ret
);
322 mbox_client_txdone(pcc_ss_data
->pcc_channel
, ret
);
325 if (cmd
== CMD_WRITE
) {
327 for_each_possible_cpu(i
) {
328 struct cpc_desc
*desc
= per_cpu(cpc_desc_ptr
, i
);
332 if (desc
->write_cmd_id
== pcc_ss_data
->pcc_write_cnt
)
333 desc
->write_cmd_status
= ret
;
336 pcc_ss_data
->pcc_write_cnt
++;
337 wake_up_all(&pcc_ss_data
->pcc_write_wait_q
);
343 static void cppc_chan_tx_done(struct mbox_client
*cl
, void *msg
, int ret
)
346 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
349 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
353 struct mbox_client cppc_mbox_cl
= {
354 .tx_done
= cppc_chan_tx_done
,
355 .knows_txdone
= true,
358 static int acpi_get_psd(struct cpc_desc
*cpc_ptr
, acpi_handle handle
)
360 int result
= -EFAULT
;
361 acpi_status status
= AE_OK
;
362 struct acpi_buffer buffer
= {ACPI_ALLOCATE_BUFFER
, NULL
};
363 struct acpi_buffer format
= {sizeof("NNNNN"), "NNNNN"};
364 struct acpi_buffer state
= {0, NULL
};
365 union acpi_object
*psd
= NULL
;
366 struct acpi_psd_package
*pdomain
;
368 status
= acpi_evaluate_object_typed(handle
, "_PSD", NULL
, &buffer
,
370 if (ACPI_FAILURE(status
))
373 psd
= buffer
.pointer
;
374 if (!psd
|| psd
->package
.count
!= 1) {
375 pr_debug("Invalid _PSD data\n");
379 pdomain
= &(cpc_ptr
->domain_info
);
381 state
.length
= sizeof(struct acpi_psd_package
);
382 state
.pointer
= pdomain
;
384 status
= acpi_extract_package(&(psd
->package
.elements
[0]),
386 if (ACPI_FAILURE(status
)) {
387 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr
->cpu_id
);
391 if (pdomain
->num_entries
!= ACPI_PSD_REV0_ENTRIES
) {
392 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr
->cpu_id
);
396 if (pdomain
->revision
!= ACPI_PSD_REV0_REVISION
) {
397 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr
->cpu_id
);
401 if (pdomain
->coord_type
!= DOMAIN_COORD_TYPE_SW_ALL
&&
402 pdomain
->coord_type
!= DOMAIN_COORD_TYPE_SW_ANY
&&
403 pdomain
->coord_type
!= DOMAIN_COORD_TYPE_HW_ALL
) {
404 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr
->cpu_id
);
410 kfree(buffer
.pointer
);
415 * acpi_get_psd_map - Map the CPUs in a common freq domain.
416 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
418 * Return: 0 for success or negative value for err.
420 int acpi_get_psd_map(struct cppc_cpudata
**all_cpu_data
)
425 cpumask_var_t covered_cpus
;
426 struct cppc_cpudata
*pr
, *match_pr
;
427 struct acpi_psd_package
*pdomain
;
428 struct acpi_psd_package
*match_pdomain
;
429 struct cpc_desc
*cpc_ptr
, *match_cpc_ptr
;
431 if (!zalloc_cpumask_var(&covered_cpus
, GFP_KERNEL
))
435 * Now that we have _PSD data from all CPUs, let's setup P-state
438 for_each_possible_cpu(i
) {
439 pr
= all_cpu_data
[i
];
443 if (cpumask_test_cpu(i
, covered_cpus
))
446 cpc_ptr
= per_cpu(cpc_desc_ptr
, i
);
452 pdomain
= &(cpc_ptr
->domain_info
);
453 cpumask_set_cpu(i
, pr
->shared_cpu_map
);
454 cpumask_set_cpu(i
, covered_cpus
);
455 if (pdomain
->num_processors
<= 1)
458 /* Validate the Domain info */
459 count_target
= pdomain
->num_processors
;
460 if (pdomain
->coord_type
== DOMAIN_COORD_TYPE_SW_ALL
)
461 pr
->shared_type
= CPUFREQ_SHARED_TYPE_ALL
;
462 else if (pdomain
->coord_type
== DOMAIN_COORD_TYPE_HW_ALL
)
463 pr
->shared_type
= CPUFREQ_SHARED_TYPE_HW
;
464 else if (pdomain
->coord_type
== DOMAIN_COORD_TYPE_SW_ANY
)
465 pr
->shared_type
= CPUFREQ_SHARED_TYPE_ANY
;
467 for_each_possible_cpu(j
) {
471 match_cpc_ptr
= per_cpu(cpc_desc_ptr
, j
);
472 if (!match_cpc_ptr
) {
477 match_pdomain
= &(match_cpc_ptr
->domain_info
);
478 if (match_pdomain
->domain
!= pdomain
->domain
)
481 /* Here i and j are in the same domain */
482 if (match_pdomain
->num_processors
!= count_target
) {
487 if (pdomain
->coord_type
!= match_pdomain
->coord_type
) {
492 cpumask_set_cpu(j
, covered_cpus
);
493 cpumask_set_cpu(j
, pr
->shared_cpu_map
);
496 for_each_possible_cpu(j
) {
500 match_pr
= all_cpu_data
[j
];
504 match_cpc_ptr
= per_cpu(cpc_desc_ptr
, j
);
505 if (!match_cpc_ptr
) {
510 match_pdomain
= &(match_cpc_ptr
->domain_info
);
511 if (match_pdomain
->domain
!= pdomain
->domain
)
514 match_pr
->shared_type
= pr
->shared_type
;
515 cpumask_copy(match_pr
->shared_cpu_map
,
521 for_each_possible_cpu(i
) {
522 pr
= all_cpu_data
[i
];
526 /* Assume no coordination on any error parsing domain info */
528 cpumask_clear(pr
->shared_cpu_map
);
529 cpumask_set_cpu(i
, pr
->shared_cpu_map
);
530 pr
->shared_type
= CPUFREQ_SHARED_TYPE_ALL
;
534 free_cpumask_var(covered_cpus
);
537 EXPORT_SYMBOL_GPL(acpi_get_psd_map
);
539 static int register_pcc_channel(int pcc_ss_idx
)
541 struct acpi_pcct_hw_reduced
*cppc_ss
;
544 if (pcc_ss_idx
>= 0) {
545 pcc_data
[pcc_ss_idx
]->pcc_channel
=
546 pcc_mbox_request_channel(&cppc_mbox_cl
, pcc_ss_idx
);
548 if (IS_ERR(pcc_data
[pcc_ss_idx
]->pcc_channel
)) {
549 pr_err("Failed to find PCC channel for subspace %d\n",
555 * The PCC mailbox controller driver should
556 * have parsed the PCCT (global table of all
557 * PCC channels) and stored pointers to the
558 * subspace communication region in con_priv.
560 cppc_ss
= (pcc_data
[pcc_ss_idx
]->pcc_channel
)->con_priv
;
563 pr_err("No PCC subspace found for %d CPPC\n",
569 * cppc_ss->latency is just a Nominal value. In reality
570 * the remote processor could be much slower to reply.
571 * So add an arbitrary amount of wait on top of Nominal.
573 usecs_lat
= NUM_RETRIES
* cppc_ss
->latency
;
574 pcc_data
[pcc_ss_idx
]->deadline_us
= usecs_lat
;
575 pcc_data
[pcc_ss_idx
]->pcc_mrtt
= cppc_ss
->min_turnaround_time
;
576 pcc_data
[pcc_ss_idx
]->pcc_mpar
= cppc_ss
->max_access_rate
;
577 pcc_data
[pcc_ss_idx
]->pcc_nominal
= cppc_ss
->latency
;
579 pcc_data
[pcc_ss_idx
]->pcc_comm_addr
=
580 acpi_os_ioremap(cppc_ss
->base_address
, cppc_ss
->length
);
581 if (!pcc_data
[pcc_ss_idx
]->pcc_comm_addr
) {
582 pr_err("Failed to ioremap PCC comm region mem for %d\n",
587 /* Set flag so that we don't come here for each CPU. */
588 pcc_data
[pcc_ss_idx
]->pcc_channel_acquired
= true;
595 * cpc_ffh_supported() - check if FFH reading supported
597 * Check if the architecture has support for functional fixed hardware
598 * read/write capability.
600 * Return: true for supported, false for not supported
602 bool __weak
cpc_ffh_supported(void)
608 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
610 * Check and allocate the cppc_pcc_data memory.
611 * In some processor configurations it is possible that same subspace
612 * is shared between multiple CPUs. This is seen especially in CPUs
613 * with hardware multi-threading support.
615 * Return: 0 for success, errno for failure
617 int pcc_data_alloc(int pcc_ss_id
)
619 if (pcc_ss_id
< 0 || pcc_ss_id
>= MAX_PCC_SUBSPACES
)
622 if (pcc_data
[pcc_ss_id
]) {
623 pcc_data
[pcc_ss_id
]->refcount
++;
625 pcc_data
[pcc_ss_id
] = kzalloc(sizeof(struct cppc_pcc_data
),
627 if (!pcc_data
[pcc_ss_id
])
629 pcc_data
[pcc_ss_id
]->refcount
++;
635 /* Check if CPPC revision + num_ent combination is supported */
636 static bool is_cppc_supported(int revision
, int num_ent
)
638 int expected_num_ent
;
642 expected_num_ent
= CPPC_V2_NUM_ENT
;
645 expected_num_ent
= CPPC_V3_NUM_ENT
;
648 pr_debug("Firmware exports unsupported CPPC revision: %d\n",
653 if (expected_num_ent
!= num_ent
) {
654 pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
655 num_ent
, expected_num_ent
, revision
);
663 * An example CPC table looks like the following.
665 * Name(_CPC, Package()
671 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
672 * // Highest Performance
673 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
674 * // Nominal Performance
675 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
676 * // Lowest Nonlinear Performance
677 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
678 * // Lowest Performance
679 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
680 * // Guaranteed Performance Register
681 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
682 * // Desired Performance Register
683 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
689 * Each Register() encodes how to access that specific register.
690 * e.g. a sample PCC entry has the following encoding:
694 * AddressSpaceKeyword
698 * //RegisterBitOffset
702 * //AccessSize (subspace ID)
709 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
710 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
712 * Return: 0 for success or negative value for err.
714 int acpi_cppc_processor_probe(struct acpi_processor
*pr
)
716 struct acpi_buffer output
= {ACPI_ALLOCATE_BUFFER
, NULL
};
717 union acpi_object
*out_obj
, *cpc_obj
;
718 struct cpc_desc
*cpc_ptr
;
719 struct cpc_reg
*gas_t
;
720 struct device
*cpu_dev
;
721 acpi_handle handle
= pr
->handle
;
722 unsigned int num_ent
, i
, cpc_rev
;
723 int pcc_subspace_id
= -1;
727 /* Parse the ACPI _CPC table for this CPU. */
728 status
= acpi_evaluate_object_typed(handle
, "_CPC", NULL
, &output
,
730 if (ACPI_FAILURE(status
)) {
735 out_obj
= (union acpi_object
*) output
.pointer
;
737 cpc_ptr
= kzalloc(sizeof(struct cpc_desc
), GFP_KERNEL
);
743 /* First entry is NumEntries. */
744 cpc_obj
= &out_obj
->package
.elements
[0];
745 if (cpc_obj
->type
== ACPI_TYPE_INTEGER
) {
746 num_ent
= cpc_obj
->integer
.value
;
748 pr_debug("Unexpected entry type(%d) for NumEntries\n",
752 cpc_ptr
->num_entries
= num_ent
;
754 /* Second entry should be revision. */
755 cpc_obj
= &out_obj
->package
.elements
[1];
756 if (cpc_obj
->type
== ACPI_TYPE_INTEGER
) {
757 cpc_rev
= cpc_obj
->integer
.value
;
759 pr_debug("Unexpected entry type(%d) for Revision\n",
763 cpc_ptr
->version
= cpc_rev
;
765 if (!is_cppc_supported(cpc_rev
, num_ent
))
768 /* Iterate through remaining entries in _CPC */
769 for (i
= 2; i
< num_ent
; i
++) {
770 cpc_obj
= &out_obj
->package
.elements
[i
];
772 if (cpc_obj
->type
== ACPI_TYPE_INTEGER
) {
773 cpc_ptr
->cpc_regs
[i
-2].type
= ACPI_TYPE_INTEGER
;
774 cpc_ptr
->cpc_regs
[i
-2].cpc_entry
.int_value
= cpc_obj
->integer
.value
;
775 } else if (cpc_obj
->type
== ACPI_TYPE_BUFFER
) {
776 gas_t
= (struct cpc_reg
*)
777 cpc_obj
->buffer
.pointer
;
780 * The PCC Subspace index is encoded inside
781 * the CPC table entries. The same PCC index
782 * will be used for all the PCC entries,
783 * so extract it only once.
785 if (gas_t
->space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
) {
786 if (pcc_subspace_id
< 0) {
787 pcc_subspace_id
= gas_t
->access_width
;
788 if (pcc_data_alloc(pcc_subspace_id
))
790 } else if (pcc_subspace_id
!= gas_t
->access_width
) {
791 pr_debug("Mismatched PCC ids.\n");
794 } else if (gas_t
->space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
) {
795 if (gas_t
->address
) {
798 addr
= ioremap(gas_t
->address
, gas_t
->bit_width
/8);
801 cpc_ptr
->cpc_regs
[i
-2].sys_mem_vaddr
= addr
;
804 if (gas_t
->space_id
!= ACPI_ADR_SPACE_FIXED_HARDWARE
|| !cpc_ffh_supported()) {
805 /* Support only PCC ,SYS MEM and FFH type regs */
806 pr_debug("Unsupported register type: %d\n", gas_t
->space_id
);
811 cpc_ptr
->cpc_regs
[i
-2].type
= ACPI_TYPE_BUFFER
;
812 memcpy(&cpc_ptr
->cpc_regs
[i
-2].cpc_entry
.reg
, gas_t
, sizeof(*gas_t
));
814 pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i
, pr
->id
);
818 per_cpu(cpu_pcc_subspace_idx
, pr
->id
) = pcc_subspace_id
;
821 * Initialize the remaining cpc_regs as unsupported.
822 * Example: In case FW exposes CPPC v2, the below loop will initialize
823 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
825 for (i
= num_ent
- 2; i
< MAX_CPC_REG_ENT
; i
++) {
826 cpc_ptr
->cpc_regs
[i
].type
= ACPI_TYPE_INTEGER
;
827 cpc_ptr
->cpc_regs
[i
].cpc_entry
.int_value
= 0;
831 /* Store CPU Logical ID */
832 cpc_ptr
->cpu_id
= pr
->id
;
834 /* Parse PSD data for this CPU */
835 ret
= acpi_get_psd(cpc_ptr
, handle
);
839 /* Register PCC channel once for all PCC subspace ID. */
840 if (pcc_subspace_id
>= 0 && !pcc_data
[pcc_subspace_id
]->pcc_channel_acquired
) {
841 ret
= register_pcc_channel(pcc_subspace_id
);
845 init_rwsem(&pcc_data
[pcc_subspace_id
]->pcc_lock
);
846 init_waitqueue_head(&pcc_data
[pcc_subspace_id
]->pcc_write_wait_q
);
849 /* Everything looks okay */
850 pr_debug("Parsed CPC struct for CPU: %d\n", pr
->id
);
852 /* Add per logical CPU nodes for reading its feedback counters. */
853 cpu_dev
= get_cpu_device(pr
->id
);
859 /* Plug PSD data into this CPU's CPC descriptor. */
860 per_cpu(cpc_desc_ptr
, pr
->id
) = cpc_ptr
;
862 ret
= kobject_init_and_add(&cpc_ptr
->kobj
, &cppc_ktype
, &cpu_dev
->kobj
,
865 per_cpu(cpc_desc_ptr
, pr
->id
) = NULL
;
869 kfree(output
.pointer
);
873 /* Free all the mapped sys mem areas for this CPU */
874 for (i
= 2; i
< cpc_ptr
->num_entries
; i
++) {
875 void __iomem
*addr
= cpc_ptr
->cpc_regs
[i
-2].sys_mem_vaddr
;
883 kfree(output
.pointer
);
886 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe
);
889 * acpi_cppc_processor_exit - Cleanup CPC structs.
890 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
894 void acpi_cppc_processor_exit(struct acpi_processor
*pr
)
896 struct cpc_desc
*cpc_ptr
;
899 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, pr
->id
);
901 if (pcc_ss_id
>=0 && pcc_data
[pcc_ss_id
]) {
902 if (pcc_data
[pcc_ss_id
]->pcc_channel_acquired
) {
903 pcc_data
[pcc_ss_id
]->refcount
--;
904 if (!pcc_data
[pcc_ss_id
]->refcount
) {
905 pcc_mbox_free_channel(pcc_data
[pcc_ss_id
]->pcc_channel
);
906 pcc_data
[pcc_ss_id
]->pcc_channel_acquired
= 0;
907 kfree(pcc_data
[pcc_ss_id
]);
912 cpc_ptr
= per_cpu(cpc_desc_ptr
, pr
->id
);
916 /* Free all the mapped sys mem areas for this CPU */
917 for (i
= 2; i
< cpc_ptr
->num_entries
; i
++) {
918 addr
= cpc_ptr
->cpc_regs
[i
-2].sys_mem_vaddr
;
923 kobject_put(&cpc_ptr
->kobj
);
926 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit
);
929 * cpc_read_ffh() - Read FFH register
930 * @cpunum: CPU number to read
931 * @reg: cppc register information
932 * @val: place holder for return value
934 * Read bit_width bits from a specified address and bit_offset
936 * Return: 0 for success and error code
938 int __weak
cpc_read_ffh(int cpunum
, struct cpc_reg
*reg
, u64
*val
)
944 * cpc_write_ffh() - Write FFH register
945 * @cpunum: CPU number to write
946 * @reg: cppc register information
947 * @val: value to write
949 * Write value of bit_width bits to a specified address and bit_offset
951 * Return: 0 for success and error code
953 int __weak
cpc_write_ffh(int cpunum
, struct cpc_reg
*reg
, u64 val
)
959 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
960 * as fast as possible. We have already mapped the PCC subspace during init, so
961 * we can directly write to it.
964 static int cpc_read(int cpu
, struct cpc_register_resource
*reg_res
, u64
*val
)
967 void __iomem
*vaddr
= 0;
968 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpu
);
969 struct cpc_reg
*reg
= ®_res
->cpc_entry
.reg
;
971 if (reg_res
->type
== ACPI_TYPE_INTEGER
) {
972 *val
= reg_res
->cpc_entry
.int_value
;
977 if (reg
->space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
&& pcc_ss_id
>= 0)
978 vaddr
= GET_PCC_VADDR(reg
->address
, pcc_ss_id
);
979 else if (reg
->space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
)
980 vaddr
= reg_res
->sys_mem_vaddr
;
981 else if (reg
->space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
)
982 return cpc_read_ffh(cpu
, reg
, val
);
984 return acpi_os_read_memory((acpi_physical_address
)reg
->address
,
985 val
, reg
->bit_width
);
987 switch (reg
->bit_width
) {
989 *val
= readb_relaxed(vaddr
);
992 *val
= readw_relaxed(vaddr
);
995 *val
= readl_relaxed(vaddr
);
998 *val
= readq_relaxed(vaddr
);
1001 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1002 reg
->bit_width
, pcc_ss_id
);
1009 static int cpc_write(int cpu
, struct cpc_register_resource
*reg_res
, u64 val
)
1012 void __iomem
*vaddr
= 0;
1013 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpu
);
1014 struct cpc_reg
*reg
= ®_res
->cpc_entry
.reg
;
1016 if (reg
->space_id
== ACPI_ADR_SPACE_PLATFORM_COMM
&& pcc_ss_id
>= 0)
1017 vaddr
= GET_PCC_VADDR(reg
->address
, pcc_ss_id
);
1018 else if (reg
->space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
)
1019 vaddr
= reg_res
->sys_mem_vaddr
;
1020 else if (reg
->space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
)
1021 return cpc_write_ffh(cpu
, reg
, val
);
1023 return acpi_os_write_memory((acpi_physical_address
)reg
->address
,
1024 val
, reg
->bit_width
);
1026 switch (reg
->bit_width
) {
1028 writeb_relaxed(val
, vaddr
);
1031 writew_relaxed(val
, vaddr
);
1034 writel_relaxed(val
, vaddr
);
1037 writeq_relaxed(val
, vaddr
);
1040 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1041 reg
->bit_width
, pcc_ss_id
);
1050 * cppc_get_desired_perf - Get the value of desired performance register.
1051 * @cpunum: CPU from which to get desired performance.
1052 * @desired_perf: address of a variable to store the returned desired performance
1054 * Return: 0 for success, -EIO otherwise.
1056 int cppc_get_desired_perf(int cpunum
, u64
*desired_perf
)
1058 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpunum
);
1059 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpunum
);
1060 struct cpc_register_resource
*desired_reg
;
1061 struct cppc_pcc_data
*pcc_ss_data
= NULL
;
1063 desired_reg
= &cpc_desc
->cpc_regs
[DESIRED_PERF
];
1065 if (CPC_IN_PCC(desired_reg
)) {
1071 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1073 down_write(&pcc_ss_data
->pcc_lock
);
1075 if (send_pcc_cmd(pcc_ss_id
, CMD_READ
) >= 0)
1076 cpc_read(cpunum
, desired_reg
, desired_perf
);
1080 up_write(&pcc_ss_data
->pcc_lock
);
1085 cpc_read(cpunum
, desired_reg
, desired_perf
);
1089 EXPORT_SYMBOL_GPL(cppc_get_desired_perf
);
1092 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1093 * @cpunum: CPU from which to get capabilities info.
1094 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1096 * Return: 0 for success with perf_caps populated else -ERRNO.
1098 int cppc_get_perf_caps(int cpunum
, struct cppc_perf_caps
*perf_caps
)
1100 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpunum
);
1101 struct cpc_register_resource
*highest_reg
, *lowest_reg
,
1102 *lowest_non_linear_reg
, *nominal_reg
, *guaranteed_reg
,
1103 *low_freq_reg
= NULL
, *nom_freq_reg
= NULL
;
1104 u64 high
, low
, guaranteed
, nom
, min_nonlinear
, low_f
= 0, nom_f
= 0;
1105 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpunum
);
1106 struct cppc_pcc_data
*pcc_ss_data
= NULL
;
1107 int ret
= 0, regs_in_pcc
= 0;
1110 pr_debug("No CPC descriptor for CPU:%d\n", cpunum
);
1114 highest_reg
= &cpc_desc
->cpc_regs
[HIGHEST_PERF
];
1115 lowest_reg
= &cpc_desc
->cpc_regs
[LOWEST_PERF
];
1116 lowest_non_linear_reg
= &cpc_desc
->cpc_regs
[LOW_NON_LINEAR_PERF
];
1117 nominal_reg
= &cpc_desc
->cpc_regs
[NOMINAL_PERF
];
1118 low_freq_reg
= &cpc_desc
->cpc_regs
[LOWEST_FREQ
];
1119 nom_freq_reg
= &cpc_desc
->cpc_regs
[NOMINAL_FREQ
];
1120 guaranteed_reg
= &cpc_desc
->cpc_regs
[GUARANTEED_PERF
];
1122 /* Are any of the regs PCC ?*/
1123 if (CPC_IN_PCC(highest_reg
) || CPC_IN_PCC(lowest_reg
) ||
1124 CPC_IN_PCC(lowest_non_linear_reg
) || CPC_IN_PCC(nominal_reg
) ||
1125 CPC_IN_PCC(low_freq_reg
) || CPC_IN_PCC(nom_freq_reg
)) {
1126 if (pcc_ss_id
< 0) {
1127 pr_debug("Invalid pcc_ss_id\n");
1130 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1132 down_write(&pcc_ss_data
->pcc_lock
);
1133 /* Ring doorbell once to update PCC subspace */
1134 if (send_pcc_cmd(pcc_ss_id
, CMD_READ
) < 0) {
1140 cpc_read(cpunum
, highest_reg
, &high
);
1141 perf_caps
->highest_perf
= high
;
1143 cpc_read(cpunum
, lowest_reg
, &low
);
1144 perf_caps
->lowest_perf
= low
;
1146 cpc_read(cpunum
, nominal_reg
, &nom
);
1147 perf_caps
->nominal_perf
= nom
;
1149 if (guaranteed_reg
->type
!= ACPI_TYPE_BUFFER
||
1150 IS_NULL_REG(&guaranteed_reg
->cpc_entry
.reg
)) {
1151 perf_caps
->guaranteed_perf
= 0;
1153 cpc_read(cpunum
, guaranteed_reg
, &guaranteed
);
1154 perf_caps
->guaranteed_perf
= guaranteed
;
1157 cpc_read(cpunum
, lowest_non_linear_reg
, &min_nonlinear
);
1158 perf_caps
->lowest_nonlinear_perf
= min_nonlinear
;
1160 if (!high
|| !low
|| !nom
|| !min_nonlinear
)
1163 /* Read optional lowest and nominal frequencies if present */
1164 if (CPC_SUPPORTED(low_freq_reg
))
1165 cpc_read(cpunum
, low_freq_reg
, &low_f
);
1167 if (CPC_SUPPORTED(nom_freq_reg
))
1168 cpc_read(cpunum
, nom_freq_reg
, &nom_f
);
1170 perf_caps
->lowest_freq
= low_f
;
1171 perf_caps
->nominal_freq
= nom_f
;
1176 up_write(&pcc_ss_data
->pcc_lock
);
1179 EXPORT_SYMBOL_GPL(cppc_get_perf_caps
);
1182 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1183 * @cpunum: CPU from which to read counters.
1184 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1186 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1188 int cppc_get_perf_ctrs(int cpunum
, struct cppc_perf_fb_ctrs
*perf_fb_ctrs
)
1190 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpunum
);
1191 struct cpc_register_resource
*delivered_reg
, *reference_reg
,
1192 *ref_perf_reg
, *ctr_wrap_reg
;
1193 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpunum
);
1194 struct cppc_pcc_data
*pcc_ss_data
= NULL
;
1195 u64 delivered
, reference
, ref_perf
, ctr_wrap_time
;
1196 int ret
= 0, regs_in_pcc
= 0;
1199 pr_debug("No CPC descriptor for CPU:%d\n", cpunum
);
1203 delivered_reg
= &cpc_desc
->cpc_regs
[DELIVERED_CTR
];
1204 reference_reg
= &cpc_desc
->cpc_regs
[REFERENCE_CTR
];
1205 ref_perf_reg
= &cpc_desc
->cpc_regs
[REFERENCE_PERF
];
1206 ctr_wrap_reg
= &cpc_desc
->cpc_regs
[CTR_WRAP_TIME
];
1209 * If reference perf register is not supported then we should
1210 * use the nominal perf value
1212 if (!CPC_SUPPORTED(ref_perf_reg
))
1213 ref_perf_reg
= &cpc_desc
->cpc_regs
[NOMINAL_PERF
];
1215 /* Are any of the regs PCC ?*/
1216 if (CPC_IN_PCC(delivered_reg
) || CPC_IN_PCC(reference_reg
) ||
1217 CPC_IN_PCC(ctr_wrap_reg
) || CPC_IN_PCC(ref_perf_reg
)) {
1218 if (pcc_ss_id
< 0) {
1219 pr_debug("Invalid pcc_ss_id\n");
1222 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1223 down_write(&pcc_ss_data
->pcc_lock
);
1225 /* Ring doorbell once to update PCC subspace */
1226 if (send_pcc_cmd(pcc_ss_id
, CMD_READ
) < 0) {
1232 cpc_read(cpunum
, delivered_reg
, &delivered
);
1233 cpc_read(cpunum
, reference_reg
, &reference
);
1234 cpc_read(cpunum
, ref_perf_reg
, &ref_perf
);
1237 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1238 * performance counters are assumed to never wrap during the lifetime of
1241 ctr_wrap_time
= (u64
)(~((u64
)0));
1242 if (CPC_SUPPORTED(ctr_wrap_reg
))
1243 cpc_read(cpunum
, ctr_wrap_reg
, &ctr_wrap_time
);
1245 if (!delivered
|| !reference
|| !ref_perf
) {
1250 perf_fb_ctrs
->delivered
= delivered
;
1251 perf_fb_ctrs
->reference
= reference
;
1252 perf_fb_ctrs
->reference_perf
= ref_perf
;
1253 perf_fb_ctrs
->wraparound_time
= ctr_wrap_time
;
1256 up_write(&pcc_ss_data
->pcc_lock
);
1259 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs
);
1262 * cppc_set_perf - Set a CPU's performance controls.
1263 * @cpu: CPU for which to set performance controls.
1264 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1266 * Return: 0 for success, -ERRNO otherwise.
1268 int cppc_set_perf(int cpu
, struct cppc_perf_ctrls
*perf_ctrls
)
1270 struct cpc_desc
*cpc_desc
= per_cpu(cpc_desc_ptr
, cpu
);
1271 struct cpc_register_resource
*desired_reg
;
1272 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpu
);
1273 struct cppc_pcc_data
*pcc_ss_data
= NULL
;
1277 pr_debug("No CPC descriptor for CPU:%d\n", cpu
);
1281 desired_reg
= &cpc_desc
->cpc_regs
[DESIRED_PERF
];
1284 * This is Phase-I where we want to write to CPC registers
1285 * -> We want all CPUs to be able to execute this phase in parallel
1287 * Since read_lock can be acquired by multiple CPUs simultaneously we
1288 * achieve that goal here
1290 if (CPC_IN_PCC(desired_reg
)) {
1291 if (pcc_ss_id
< 0) {
1292 pr_debug("Invalid pcc_ss_id\n");
1295 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1296 down_read(&pcc_ss_data
->pcc_lock
); /* BEGIN Phase-I */
1297 if (pcc_ss_data
->platform_owns_pcc
) {
1298 ret
= check_pcc_chan(pcc_ss_id
, false);
1300 up_read(&pcc_ss_data
->pcc_lock
);
1305 * Update the pending_write to make sure a PCC CMD_READ will not
1306 * arrive and steal the channel during the switch to write lock
1308 pcc_ss_data
->pending_pcc_write_cmd
= true;
1309 cpc_desc
->write_cmd_id
= pcc_ss_data
->pcc_write_cnt
;
1310 cpc_desc
->write_cmd_status
= 0;
1314 * Skip writing MIN/MAX until Linux knows how to come up with
1317 cpc_write(cpu
, desired_reg
, perf_ctrls
->desired_perf
);
1319 if (CPC_IN_PCC(desired_reg
))
1320 up_read(&pcc_ss_data
->pcc_lock
); /* END Phase-I */
1322 * This is Phase-II where we transfer the ownership of PCC to Platform
1324 * Short Summary: Basically if we think of a group of cppc_set_perf
1325 * requests that happened in short overlapping interval. The last CPU to
1326 * come out of Phase-I will enter Phase-II and ring the doorbell.
1328 * We have the following requirements for Phase-II:
1329 * 1. We want to execute Phase-II only when there are no CPUs
1330 * currently executing in Phase-I
1331 * 2. Once we start Phase-II we want to avoid all other CPUs from
1333 * 3. We want only one CPU among all those who went through Phase-I
1336 * If write_trylock fails to get the lock and doesn't transfer the
1337 * PCC ownership to the platform, then one of the following will be TRUE
1338 * 1. There is at-least one CPU in Phase-I which will later execute
1339 * write_trylock, so the CPUs in Phase-I will be responsible for
1340 * executing the Phase-II.
1341 * 2. Some other CPU has beaten this CPU to successfully execute the
1342 * write_trylock and has already acquired the write_lock. We know for a
1343 * fact it (other CPU acquiring the write_lock) couldn't have happened
1344 * before this CPU's Phase-I as we held the read_lock.
1345 * 3. Some other CPU executing pcc CMD_READ has stolen the
1346 * down_write, in which case, send_pcc_cmd will check for pending
1347 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1348 * So this CPU can be certain that its request will be delivered
1349 * So in all cases, this CPU knows that its request will be delivered
1350 * by another CPU and can return
1352 * After getting the down_write we still need to check for
1353 * pending_pcc_write_cmd to take care of the following scenario
1354 * The thread running this code could be scheduled out between
1355 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1356 * could have delivered the request to Platform by triggering the
1357 * doorbell and transferred the ownership of PCC to platform. So this
1358 * avoids triggering an unnecessary doorbell and more importantly before
1359 * triggering the doorbell it makes sure that the PCC channel ownership
1360 * is still with OSPM.
1361 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1362 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1363 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1364 * case during a CMD_READ and if there are pending writes it delivers
1365 * the write command before servicing the read command
1367 if (CPC_IN_PCC(desired_reg
)) {
1368 if (down_write_trylock(&pcc_ss_data
->pcc_lock
)) {/* BEGIN Phase-II */
1369 /* Update only if there are pending write commands */
1370 if (pcc_ss_data
->pending_pcc_write_cmd
)
1371 send_pcc_cmd(pcc_ss_id
, CMD_WRITE
);
1372 up_write(&pcc_ss_data
->pcc_lock
); /* END Phase-II */
1374 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1375 wait_event(pcc_ss_data
->pcc_write_wait_q
,
1376 cpc_desc
->write_cmd_id
!= pcc_ss_data
->pcc_write_cnt
);
1378 /* send_pcc_cmd updates the status in case of failure */
1379 ret
= cpc_desc
->write_cmd_status
;
1383 EXPORT_SYMBOL_GPL(cppc_set_perf
);
1386 * cppc_get_transition_latency - returns frequency transition latency in ns
1388 * ACPI CPPC does not explicitly specifiy how a platform can specify the
1389 * transition latency for perfromance change requests. The closest we have
1390 * is the timing information from the PCCT tables which provides the info
1391 * on the number and frequency of PCC commands the platform can handle.
1393 unsigned int cppc_get_transition_latency(int cpu_num
)
1396 * Expected transition latency is based on the PCCT timing values
1397 * Below are definition from ACPI spec:
1398 * pcc_nominal- Expected latency to process a command, in microseconds
1399 * pcc_mpar - The maximum number of periodic requests that the subspace
1400 * channel can support, reported in commands per minute. 0
1401 * indicates no limitation.
1402 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1403 * completion of a command before issuing the next command,
1406 unsigned int latency_ns
= 0;
1407 struct cpc_desc
*cpc_desc
;
1408 struct cpc_register_resource
*desired_reg
;
1409 int pcc_ss_id
= per_cpu(cpu_pcc_subspace_idx
, cpu_num
);
1410 struct cppc_pcc_data
*pcc_ss_data
;
1412 cpc_desc
= per_cpu(cpc_desc_ptr
, cpu_num
);
1414 return CPUFREQ_ETERNAL
;
1416 desired_reg
= &cpc_desc
->cpc_regs
[DESIRED_PERF
];
1417 if (!CPC_IN_PCC(desired_reg
))
1418 return CPUFREQ_ETERNAL
;
1421 return CPUFREQ_ETERNAL
;
1423 pcc_ss_data
= pcc_data
[pcc_ss_id
];
1424 if (pcc_ss_data
->pcc_mpar
)
1425 latency_ns
= 60 * (1000 * 1000 * 1000 / pcc_ss_data
->pcc_mpar
);
1427 latency_ns
= max(latency_ns
, pcc_ss_data
->pcc_nominal
* 1000);
1428 latency_ns
= max(latency_ns
, pcc_ss_data
->pcc_mrtt
* 1000);
1432 EXPORT_SYMBOL_GPL(cppc_get_transition_latency
);