lkdtm: Add Control Flow Integrity test
[linux/fpc-iii.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
blob684662888792f6ff0619fcc3c8a6c99a0909e42b
1 /*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
43 * USA.
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h> /* To get host page size per arch */
63 #include <linux/aer.h>
66 #include "mpt3sas_base.h"
68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
73 /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH 30000
75 #define MAX_CHAIN_DEPTH 100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95 " max msix vectors");
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100 "irq poll weight (default= one fourth of HBA queue depth)");
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104 " enable detection of firmware fault and halt firmware - (default=0)");
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110 "0 - balanced: high iops mode is enabled &\n\t\t"
111 "interrupt coalescing is enabled only on high iops queues,\n\t\t"
112 "1 - iops: high iops mode is disabled &\n\t\t"
113 "interrupt coalescing is enabled on all queues,\n\t\t"
114 "2 - latency: high iops mode is disabled &\n\t\t"
115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116 "\t\tdefault - default perf_mode is 'balanced'"
119 enum mpt3sas_perf_mode {
120 MPT_PERF_MODE_DEFAULT = -1,
121 MPT_PERF_MODE_BALANCED = 0,
122 MPT_PERF_MODE_IOPS = 1,
123 MPT_PERF_MODE_LATENCY = 2,
126 static int
127 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
130 * mpt3sas_base_check_cmd_timeout - Function
131 * to check timeout and command termination due
132 * to Host reset.
134 * @ioc: per adapter object.
135 * @status: Status of issued command.
136 * @mpi_request:mf request pointer.
137 * @sz: size of buffer.
139 * @Returns - 1/0 Reset to be done or Not
142 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
143 u8 status, void *mpi_request, int sz)
145 u8 issue_reset = 0;
147 if (!(status & MPT3_CMD_RESET))
148 issue_reset = 1;
150 ioc_err(ioc, "Command %s\n",
151 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
152 _debug_dump_mf(mpi_request, sz);
154 return issue_reset;
158 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
159 * @val: ?
160 * @kp: ?
162 * Return: ?
164 static int
165 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
167 int ret = param_set_int(val, kp);
168 struct MPT3SAS_ADAPTER *ioc;
170 if (ret)
171 return ret;
173 /* global ioc spinlock to protect controller list on list operations */
174 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
175 spin_lock(&gioc_lock);
176 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
177 ioc->fwfault_debug = mpt3sas_fwfault_debug;
178 spin_unlock(&gioc_lock);
179 return 0;
181 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
182 param_get_int, &mpt3sas_fwfault_debug, 0644);
185 * _base_readl_aero - retry readl for max three times.
186 * @addr - MPT Fusion system interface register address
188 * Retry the readl() for max three times if it gets zero value
189 * while reading the system interface register.
191 static inline u32
192 _base_readl_aero(const volatile void __iomem *addr)
194 u32 i = 0, ret_val;
196 do {
197 ret_val = readl(addr);
198 i++;
199 } while (ret_val == 0 && i < 3);
201 return ret_val;
204 static inline u32
205 _base_readl(const volatile void __iomem *addr)
207 return readl(addr);
211 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
212 * in BAR0 space.
214 * @ioc: per adapter object
215 * @reply: reply message frame(lower 32bit addr)
216 * @index: System request message index.
218 static void
219 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
220 u32 index)
223 * 256 is offset within sys register.
224 * 256 offset MPI frame starts. Max MPI frame supported is 32.
225 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
227 u16 cmd_credit = ioc->facts.RequestCredit + 1;
228 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
229 MPI_FRAME_START_OFFSET +
230 (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
232 writel(reply, reply_free_iomem);
236 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
237 * to system/BAR0 region.
239 * @dst_iomem: Pointer to the destination location in BAR0 space.
240 * @src: Pointer to the Source data.
241 * @size: Size of data to be copied.
243 static void
244 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
246 int i;
247 u32 *src_virt_mem = (u32 *)src;
249 for (i = 0; i < size/4; i++)
250 writel((u32)src_virt_mem[i],
251 (void __iomem *)dst_iomem + (i * 4));
255 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
257 * @dst_iomem: Pointer to the destination location in BAR0 space.
258 * @src: Pointer to the Source data.
259 * @size: Size of data to be copied.
261 static void
262 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
264 int i;
265 u32 *src_virt_mem = (u32 *)(src);
267 for (i = 0; i < size/4; i++)
268 writel((u32)src_virt_mem[i],
269 (void __iomem *)dst_iomem + (i * 4));
273 * _base_get_chain - Calculates and Returns virtual chain address
274 * for the provided smid in BAR0 space.
276 * @ioc: per adapter object
277 * @smid: system request message index
278 * @sge_chain_count: Scatter gather chain count.
280 * Return: the chain address.
282 static inline void __iomem*
283 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
284 u8 sge_chain_count)
286 void __iomem *base_chain, *chain_virt;
287 u16 cmd_credit = ioc->facts.RequestCredit + 1;
289 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
290 (cmd_credit * ioc->request_sz) +
291 REPLY_FREE_POOL_SIZE;
292 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
293 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
294 return chain_virt;
298 * _base_get_chain_phys - Calculates and Returns physical address
299 * in BAR0 for scatter gather chains, for
300 * the provided smid.
302 * @ioc: per adapter object
303 * @smid: system request message index
304 * @sge_chain_count: Scatter gather chain count.
306 * Return: Physical chain address.
308 static inline phys_addr_t
309 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
310 u8 sge_chain_count)
312 phys_addr_t base_chain_phys, chain_phys;
313 u16 cmd_credit = ioc->facts.RequestCredit + 1;
315 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET +
316 (cmd_credit * ioc->request_sz) +
317 REPLY_FREE_POOL_SIZE;
318 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
319 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
320 return chain_phys;
324 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
325 * buffer address for the provided smid.
326 * (Each smid can have 64K starts from 17024)
328 * @ioc: per adapter object
329 * @smid: system request message index
331 * Return: Pointer to buffer location in BAR0.
334 static void __iomem *
335 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
337 u16 cmd_credit = ioc->facts.RequestCredit + 1;
338 // Added extra 1 to reach end of chain.
339 void __iomem *chain_end = _base_get_chain(ioc,
340 cmd_credit + 1,
341 ioc->facts.MaxChainDepth);
342 return chain_end + (smid * 64 * 1024);
346 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
347 * Host buffer Physical address for the provided smid.
348 * (Each smid can have 64K starts from 17024)
350 * @ioc: per adapter object
351 * @smid: system request message index
353 * Return: Pointer to buffer location in BAR0.
355 static phys_addr_t
356 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
358 u16 cmd_credit = ioc->facts.RequestCredit + 1;
359 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
360 cmd_credit + 1,
361 ioc->facts.MaxChainDepth);
362 return chain_end_phys + (smid * 64 * 1024);
366 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
367 * lookup list and Provides chain_buffer
368 * address for the matching dma address.
369 * (Each smid can have 64K starts from 17024)
371 * @ioc: per adapter object
372 * @chain_buffer_dma: Chain buffer dma address.
374 * Return: Pointer to chain buffer. Or Null on Failure.
376 static void *
377 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
378 dma_addr_t chain_buffer_dma)
380 u16 index, j;
381 struct chain_tracker *ct;
383 for (index = 0; index < ioc->scsiio_depth; index++) {
384 for (j = 0; j < ioc->chains_needed_per_io; j++) {
385 ct = &ioc->chain_lookup[index].chains_per_smid[j];
386 if (ct && ct->chain_buffer_dma == chain_buffer_dma)
387 return ct->chain_buffer;
390 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
391 return NULL;
395 * _clone_sg_entries - MPI EP's scsiio and config requests
396 * are handled here. Base function for
397 * double buffering, before submitting
398 * the requests.
400 * @ioc: per adapter object.
401 * @mpi_request: mf request pointer.
402 * @smid: system request message index.
404 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
405 void *mpi_request, u16 smid)
407 Mpi2SGESimple32_t *sgel, *sgel_next;
408 u32 sgl_flags, sge_chain_count = 0;
409 bool is_write = 0;
410 u16 i = 0;
411 void __iomem *buffer_iomem;
412 phys_addr_t buffer_iomem_phys;
413 void __iomem *buff_ptr;
414 phys_addr_t buff_ptr_phys;
415 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
416 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
417 phys_addr_t dst_addr_phys;
418 MPI2RequestHeader_t *request_hdr;
419 struct scsi_cmnd *scmd;
420 struct scatterlist *sg_scmd = NULL;
421 int is_scsiio_req = 0;
423 request_hdr = (MPI2RequestHeader_t *) mpi_request;
425 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
426 Mpi25SCSIIORequest_t *scsiio_request =
427 (Mpi25SCSIIORequest_t *)mpi_request;
428 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
429 is_scsiio_req = 1;
430 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
431 Mpi2ConfigRequest_t *config_req =
432 (Mpi2ConfigRequest_t *)mpi_request;
433 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
434 } else
435 return;
437 /* From smid we can get scsi_cmd, once we have sg_scmd,
438 * we just need to get sg_virt and sg_next to get virual
439 * address associated with sgel->Address.
442 if (is_scsiio_req) {
443 /* Get scsi_cmd using smid */
444 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
445 if (scmd == NULL) {
446 ioc_err(ioc, "scmd is NULL\n");
447 return;
450 /* Get sg_scmd from scmd provided */
451 sg_scmd = scsi_sglist(scmd);
455 * 0 - 255 System register
456 * 256 - 4352 MPI Frame. (This is based on maxCredit 32)
457 * 4352 - 4864 Reply_free pool (512 byte is reserved
458 * considering maxCredit 32. Reply need extra
459 * room, for mCPU case kept four times of
460 * maxCredit).
461 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
462 * 128 byte size = 12288)
463 * 17152 - x Host buffer mapped with smid.
464 * (Each smid can have 64K Max IO.)
465 * BAR0+Last 1K MSIX Addr and Data
466 * Total size in use 2113664 bytes of 4MB BAR0
469 buffer_iomem = _base_get_buffer_bar0(ioc, smid);
470 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
472 buff_ptr = buffer_iomem;
473 buff_ptr_phys = buffer_iomem_phys;
474 WARN_ON(buff_ptr_phys > U32_MAX);
476 if (le32_to_cpu(sgel->FlagsLength) &
477 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
478 is_write = 1;
480 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
482 sgl_flags =
483 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
485 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
486 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
488 * Helper function which on passing
489 * chain_buffer_dma returns chain_buffer. Get
490 * the virtual address for sgel->Address
492 sgel_next =
493 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
494 le32_to_cpu(sgel->Address));
495 if (sgel_next == NULL)
496 return;
498 * This is coping 128 byte chain
499 * frame (not a host buffer)
501 dst_chain_addr[sge_chain_count] =
502 _base_get_chain(ioc,
503 smid, sge_chain_count);
504 src_chain_addr[sge_chain_count] =
505 (void *) sgel_next;
506 dst_addr_phys = _base_get_chain_phys(ioc,
507 smid, sge_chain_count);
508 WARN_ON(dst_addr_phys > U32_MAX);
509 sgel->Address =
510 cpu_to_le32(lower_32_bits(dst_addr_phys));
511 sgel = sgel_next;
512 sge_chain_count++;
513 break;
514 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
515 if (is_write) {
516 if (is_scsiio_req) {
517 _base_clone_to_sys_mem(buff_ptr,
518 sg_virt(sg_scmd),
519 (le32_to_cpu(sgel->FlagsLength) &
520 0x00ffffff));
522 * FIXME: this relies on a a zero
523 * PCI mem_offset.
525 sgel->Address =
526 cpu_to_le32((u32)buff_ptr_phys);
527 } else {
528 _base_clone_to_sys_mem(buff_ptr,
529 ioc->config_vaddr,
530 (le32_to_cpu(sgel->FlagsLength) &
531 0x00ffffff));
532 sgel->Address =
533 cpu_to_le32((u32)buff_ptr_phys);
536 buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
537 0x00ffffff);
538 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
539 0x00ffffff);
540 if ((le32_to_cpu(sgel->FlagsLength) &
541 (MPI2_SGE_FLAGS_END_OF_BUFFER
542 << MPI2_SGE_FLAGS_SHIFT)))
543 goto eob_clone_chain;
544 else {
546 * Every single element in MPT will have
547 * associated sg_next. Better to sanity that
548 * sg_next is not NULL, but it will be a bug
549 * if it is null.
551 if (is_scsiio_req) {
552 sg_scmd = sg_next(sg_scmd);
553 if (sg_scmd)
554 sgel++;
555 else
556 goto eob_clone_chain;
559 break;
563 eob_clone_chain:
564 for (i = 0; i < sge_chain_count; i++) {
565 if (is_scsiio_req)
566 _base_clone_to_sys_mem(dst_chain_addr[i],
567 src_chain_addr[i], ioc->request_sz);
572 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
573 * @arg: input argument, used to derive ioc
575 * Return:
576 * 0 if controller is removed from pci subsystem.
577 * -1 for other case.
579 static int mpt3sas_remove_dead_ioc_func(void *arg)
581 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
582 struct pci_dev *pdev;
584 if (!ioc)
585 return -1;
587 pdev = ioc->pdev;
588 if (!pdev)
589 return -1;
590 pci_stop_and_remove_bus_device_locked(pdev);
591 return 0;
595 * _base_fault_reset_work - workq handling ioc fault conditions
596 * @work: input argument, used to derive ioc
598 * Context: sleep.
600 static void
601 _base_fault_reset_work(struct work_struct *work)
603 struct MPT3SAS_ADAPTER *ioc =
604 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
605 unsigned long flags;
606 u32 doorbell;
607 int rc;
608 struct task_struct *p;
611 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
612 if (ioc->shost_recovery || ioc->pci_error_recovery)
613 goto rearm_timer;
614 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
616 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
617 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
618 ioc_err(ioc, "SAS host is non-operational !!!!\n");
620 /* It may be possible that EEH recovery can resolve some of
621 * pci bus failure issues rather removing the dead ioc function
622 * by considering controller is in a non-operational state. So
623 * here priority is given to the EEH recovery. If it doesn't
624 * not resolve this issue, mpt3sas driver will consider this
625 * controller to non-operational state and remove the dead ioc
626 * function.
628 if (ioc->non_operational_loop++ < 5) {
629 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
630 flags);
631 goto rearm_timer;
635 * Call _scsih_flush_pending_cmds callback so that we flush all
636 * pending commands back to OS. This call is required to aovid
637 * deadlock at block layer. Dead IOC will fail to do diag reset,
638 * and this call is safe since dead ioc will never return any
639 * command back from HW.
641 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
643 * Set remove_host flag early since kernel thread will
644 * take some time to execute.
646 ioc->remove_host = 1;
647 /*Remove the Dead Host */
648 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
649 "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
650 if (IS_ERR(p))
651 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
652 __func__);
653 else
654 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
655 __func__);
656 return; /* don't rearm timer */
659 ioc->non_operational_loop = 0;
661 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
662 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
663 ioc_warn(ioc, "%s: hard reset: %s\n",
664 __func__, rc == 0 ? "success" : "failed");
665 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
666 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
667 mpt3sas_base_fault_info(ioc, doorbell &
668 MPI2_DOORBELL_DATA_MASK);
669 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
670 MPI2_IOC_STATE_OPERATIONAL)
671 return; /* don't rearm timer */
674 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
675 rearm_timer:
676 if (ioc->fault_reset_work_q)
677 queue_delayed_work(ioc->fault_reset_work_q,
678 &ioc->fault_reset_work,
679 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
680 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
684 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
685 * @ioc: per adapter object
687 * Context: sleep.
689 void
690 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
692 unsigned long flags;
694 if (ioc->fault_reset_work_q)
695 return;
697 /* initialize fault polling */
699 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
700 snprintf(ioc->fault_reset_work_q_name,
701 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
702 ioc->driver_name, ioc->id);
703 ioc->fault_reset_work_q =
704 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
705 if (!ioc->fault_reset_work_q) {
706 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
707 return;
709 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
710 if (ioc->fault_reset_work_q)
711 queue_delayed_work(ioc->fault_reset_work_q,
712 &ioc->fault_reset_work,
713 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
714 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
718 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
719 * @ioc: per adapter object
721 * Context: sleep.
723 void
724 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
726 unsigned long flags;
727 struct workqueue_struct *wq;
729 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
730 wq = ioc->fault_reset_work_q;
731 ioc->fault_reset_work_q = NULL;
732 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
733 if (wq) {
734 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
735 flush_workqueue(wq);
736 destroy_workqueue(wq);
741 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
742 * @ioc: per adapter object
743 * @fault_code: fault code
745 void
746 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
748 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
752 * mpt3sas_halt_firmware - halt's mpt controller firmware
753 * @ioc: per adapter object
755 * For debugging timeout related issues. Writing 0xCOFFEE00
756 * to the doorbell register will halt controller firmware. With
757 * the purpose to stop both driver and firmware, the enduser can
758 * obtain a ring buffer from controller UART.
760 void
761 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
763 u32 doorbell;
765 if (!ioc->fwfault_debug)
766 return;
768 dump_stack();
770 doorbell = ioc->base_readl(&ioc->chip->Doorbell);
771 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
772 mpt3sas_base_fault_info(ioc , doorbell);
773 else {
774 writel(0xC0FFEE00, &ioc->chip->Doorbell);
775 ioc_err(ioc, "Firmware is halted due to command timeout\n");
778 if (ioc->fwfault_debug == 2)
779 for (;;)
781 else
782 panic("panic in %s\n", __func__);
786 * _base_sas_ioc_info - verbose translation of the ioc status
787 * @ioc: per adapter object
788 * @mpi_reply: reply mf payload returned from firmware
789 * @request_hdr: request mf
791 static void
792 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
793 MPI2RequestHeader_t *request_hdr)
795 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
796 MPI2_IOCSTATUS_MASK;
797 char *desc = NULL;
798 u16 frame_sz;
799 char *func_str = NULL;
801 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
802 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
803 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
804 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
805 return;
807 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
808 return;
810 switch (ioc_status) {
812 /****************************************************************************
813 * Common IOCStatus values for all replies
814 ****************************************************************************/
816 case MPI2_IOCSTATUS_INVALID_FUNCTION:
817 desc = "invalid function";
818 break;
819 case MPI2_IOCSTATUS_BUSY:
820 desc = "busy";
821 break;
822 case MPI2_IOCSTATUS_INVALID_SGL:
823 desc = "invalid sgl";
824 break;
825 case MPI2_IOCSTATUS_INTERNAL_ERROR:
826 desc = "internal error";
827 break;
828 case MPI2_IOCSTATUS_INVALID_VPID:
829 desc = "invalid vpid";
830 break;
831 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
832 desc = "insufficient resources";
833 break;
834 case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
835 desc = "insufficient power";
836 break;
837 case MPI2_IOCSTATUS_INVALID_FIELD:
838 desc = "invalid field";
839 break;
840 case MPI2_IOCSTATUS_INVALID_STATE:
841 desc = "invalid state";
842 break;
843 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
844 desc = "op state not supported";
845 break;
847 /****************************************************************************
848 * Config IOCStatus values
849 ****************************************************************************/
851 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
852 desc = "config invalid action";
853 break;
854 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
855 desc = "config invalid type";
856 break;
857 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
858 desc = "config invalid page";
859 break;
860 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
861 desc = "config invalid data";
862 break;
863 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
864 desc = "config no defaults";
865 break;
866 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
867 desc = "config cant commit";
868 break;
870 /****************************************************************************
871 * SCSI IO Reply
872 ****************************************************************************/
874 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
875 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
876 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
877 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
878 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
879 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
880 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
881 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
882 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
883 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
884 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
885 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
886 break;
888 /****************************************************************************
889 * For use by SCSI Initiator and SCSI Target end-to-end data protection
890 ****************************************************************************/
892 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
893 desc = "eedp guard error";
894 break;
895 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
896 desc = "eedp ref tag error";
897 break;
898 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
899 desc = "eedp app tag error";
900 break;
902 /****************************************************************************
903 * SCSI Target values
904 ****************************************************************************/
906 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
907 desc = "target invalid io index";
908 break;
909 case MPI2_IOCSTATUS_TARGET_ABORTED:
910 desc = "target aborted";
911 break;
912 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
913 desc = "target no conn retryable";
914 break;
915 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
916 desc = "target no connection";
917 break;
918 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
919 desc = "target xfer count mismatch";
920 break;
921 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
922 desc = "target data offset error";
923 break;
924 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
925 desc = "target too much write data";
926 break;
927 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
928 desc = "target iu too short";
929 break;
930 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
931 desc = "target ack nak timeout";
932 break;
933 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
934 desc = "target nak received";
935 break;
937 /****************************************************************************
938 * Serial Attached SCSI values
939 ****************************************************************************/
941 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
942 desc = "smp request failed";
943 break;
944 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
945 desc = "smp data overrun";
946 break;
948 /****************************************************************************
949 * Diagnostic Buffer Post / Diagnostic Release values
950 ****************************************************************************/
952 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
953 desc = "diagnostic released";
954 break;
955 default:
956 break;
959 if (!desc)
960 return;
962 switch (request_hdr->Function) {
963 case MPI2_FUNCTION_CONFIG:
964 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
965 func_str = "config_page";
966 break;
967 case MPI2_FUNCTION_SCSI_TASK_MGMT:
968 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
969 func_str = "task_mgmt";
970 break;
971 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
972 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
973 func_str = "sas_iounit_ctl";
974 break;
975 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
976 frame_sz = sizeof(Mpi2SepRequest_t);
977 func_str = "enclosure";
978 break;
979 case MPI2_FUNCTION_IOC_INIT:
980 frame_sz = sizeof(Mpi2IOCInitRequest_t);
981 func_str = "ioc_init";
982 break;
983 case MPI2_FUNCTION_PORT_ENABLE:
984 frame_sz = sizeof(Mpi2PortEnableRequest_t);
985 func_str = "port_enable";
986 break;
987 case MPI2_FUNCTION_SMP_PASSTHROUGH:
988 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
989 func_str = "smp_passthru";
990 break;
991 case MPI2_FUNCTION_NVME_ENCAPSULATED:
992 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
993 ioc->sge_size;
994 func_str = "nvme_encapsulated";
995 break;
996 default:
997 frame_sz = 32;
998 func_str = "unknown";
999 break;
1002 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1003 desc, ioc_status, request_hdr, func_str);
1005 _debug_dump_mf(request_hdr, frame_sz/4);
1009 * _base_display_event_data - verbose translation of firmware asyn events
1010 * @ioc: per adapter object
1011 * @mpi_reply: reply mf payload returned from firmware
1013 static void
1014 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1015 Mpi2EventNotificationReply_t *mpi_reply)
1017 char *desc = NULL;
1018 u16 event;
1020 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1021 return;
1023 event = le16_to_cpu(mpi_reply->Event);
1025 switch (event) {
1026 case MPI2_EVENT_LOG_DATA:
1027 desc = "Log Data";
1028 break;
1029 case MPI2_EVENT_STATE_CHANGE:
1030 desc = "Status Change";
1031 break;
1032 case MPI2_EVENT_HARD_RESET_RECEIVED:
1033 desc = "Hard Reset Received";
1034 break;
1035 case MPI2_EVENT_EVENT_CHANGE:
1036 desc = "Event Change";
1037 break;
1038 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1039 desc = "Device Status Change";
1040 break;
1041 case MPI2_EVENT_IR_OPERATION_STATUS:
1042 if (!ioc->hide_ir_msg)
1043 desc = "IR Operation Status";
1044 break;
1045 case MPI2_EVENT_SAS_DISCOVERY:
1047 Mpi2EventDataSasDiscovery_t *event_data =
1048 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1049 ioc_info(ioc, "Discovery: (%s)",
1050 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1051 "start" : "stop");
1052 if (event_data->DiscoveryStatus)
1053 pr_cont(" discovery_status(0x%08x)",
1054 le32_to_cpu(event_data->DiscoveryStatus));
1055 pr_cont("\n");
1056 return;
1058 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1059 desc = "SAS Broadcast Primitive";
1060 break;
1061 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1062 desc = "SAS Init Device Status Change";
1063 break;
1064 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1065 desc = "SAS Init Table Overflow";
1066 break;
1067 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1068 desc = "SAS Topology Change List";
1069 break;
1070 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1071 desc = "SAS Enclosure Device Status Change";
1072 break;
1073 case MPI2_EVENT_IR_VOLUME:
1074 if (!ioc->hide_ir_msg)
1075 desc = "IR Volume";
1076 break;
1077 case MPI2_EVENT_IR_PHYSICAL_DISK:
1078 if (!ioc->hide_ir_msg)
1079 desc = "IR Physical Disk";
1080 break;
1081 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1082 if (!ioc->hide_ir_msg)
1083 desc = "IR Configuration Change List";
1084 break;
1085 case MPI2_EVENT_LOG_ENTRY_ADDED:
1086 if (!ioc->hide_ir_msg)
1087 desc = "Log Entry Added";
1088 break;
1089 case MPI2_EVENT_TEMP_THRESHOLD:
1090 desc = "Temperature Threshold";
1091 break;
1092 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1093 desc = "Cable Event";
1094 break;
1095 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1096 desc = "SAS Device Discovery Error";
1097 break;
1098 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1099 desc = "PCIE Device Status Change";
1100 break;
1101 case MPI2_EVENT_PCIE_ENUMERATION:
1103 Mpi26EventDataPCIeEnumeration_t *event_data =
1104 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1105 ioc_info(ioc, "PCIE Enumeration: (%s)",
1106 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1107 "start" : "stop");
1108 if (event_data->EnumerationStatus)
1109 pr_cont("enumeration_status(0x%08x)",
1110 le32_to_cpu(event_data->EnumerationStatus));
1111 pr_cont("\n");
1112 return;
1114 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1115 desc = "PCIE Topology Change List";
1116 break;
1119 if (!desc)
1120 return;
1122 ioc_info(ioc, "%s\n", desc);
1126 * _base_sas_log_info - verbose translation of firmware log info
1127 * @ioc: per adapter object
1128 * @log_info: log info
1130 static void
1131 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1133 union loginfo_type {
1134 u32 loginfo;
1135 struct {
1136 u32 subcode:16;
1137 u32 code:8;
1138 u32 originator:4;
1139 u32 bus_type:4;
1140 } dw;
1142 union loginfo_type sas_loginfo;
1143 char *originator_str = NULL;
1145 sas_loginfo.loginfo = log_info;
1146 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1147 return;
1149 /* each nexus loss loginfo */
1150 if (log_info == 0x31170000)
1151 return;
1153 /* eat the loginfos associated with task aborts */
1154 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1155 0x31140000 || log_info == 0x31130000))
1156 return;
1158 switch (sas_loginfo.dw.originator) {
1159 case 0:
1160 originator_str = "IOP";
1161 break;
1162 case 1:
1163 originator_str = "PL";
1164 break;
1165 case 2:
1166 if (!ioc->hide_ir_msg)
1167 originator_str = "IR";
1168 else
1169 originator_str = "WarpDrive";
1170 break;
1173 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1174 log_info,
1175 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1179 * _base_display_reply_info -
1180 * @ioc: per adapter object
1181 * @smid: system request message index
1182 * @msix_index: MSIX table index supplied by the OS
1183 * @reply: reply message frame(lower 32bit addr)
1185 static void
1186 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1187 u32 reply)
1189 MPI2DefaultReply_t *mpi_reply;
1190 u16 ioc_status;
1191 u32 loginfo = 0;
1193 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1194 if (unlikely(!mpi_reply)) {
1195 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1196 __FILE__, __LINE__, __func__);
1197 return;
1199 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1201 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1202 (ioc->logging_level & MPT_DEBUG_REPLY)) {
1203 _base_sas_ioc_info(ioc , mpi_reply,
1204 mpt3sas_base_get_msg_frame(ioc, smid));
1207 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1208 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1209 _base_sas_log_info(ioc, loginfo);
1212 if (ioc_status || loginfo) {
1213 ioc_status &= MPI2_IOCSTATUS_MASK;
1214 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1219 * mpt3sas_base_done - base internal command completion routine
1220 * @ioc: per adapter object
1221 * @smid: system request message index
1222 * @msix_index: MSIX table index supplied by the OS
1223 * @reply: reply message frame(lower 32bit addr)
1225 * Return:
1226 * 1 meaning mf should be freed from _base_interrupt
1227 * 0 means the mf is freed from this function.
1230 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1231 u32 reply)
1233 MPI2DefaultReply_t *mpi_reply;
1235 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1236 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1237 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1239 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1240 return 1;
1242 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1243 if (mpi_reply) {
1244 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1245 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1247 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1249 complete(&ioc->base_cmds.done);
1250 return 1;
1254 * _base_async_event - main callback handler for firmware asyn events
1255 * @ioc: per adapter object
1256 * @msix_index: MSIX table index supplied by the OS
1257 * @reply: reply message frame(lower 32bit addr)
1259 * Return:
1260 * 1 meaning mf should be freed from _base_interrupt
1261 * 0 means the mf is freed from this function.
1263 static u8
1264 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1266 Mpi2EventNotificationReply_t *mpi_reply;
1267 Mpi2EventAckRequest_t *ack_request;
1268 u16 smid;
1269 struct _event_ack_list *delayed_event_ack;
1271 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1272 if (!mpi_reply)
1273 return 1;
1274 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1275 return 1;
1277 _base_display_event_data(ioc, mpi_reply);
1279 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1280 goto out;
1281 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1282 if (!smid) {
1283 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1284 GFP_ATOMIC);
1285 if (!delayed_event_ack)
1286 goto out;
1287 INIT_LIST_HEAD(&delayed_event_ack->list);
1288 delayed_event_ack->Event = mpi_reply->Event;
1289 delayed_event_ack->EventContext = mpi_reply->EventContext;
1290 list_add_tail(&delayed_event_ack->list,
1291 &ioc->delayed_event_ack_list);
1292 dewtprintk(ioc,
1293 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1294 le16_to_cpu(mpi_reply->Event)));
1295 goto out;
1298 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1299 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1300 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1301 ack_request->Event = mpi_reply->Event;
1302 ack_request->EventContext = mpi_reply->EventContext;
1303 ack_request->VF_ID = 0; /* TODO */
1304 ack_request->VP_ID = 0;
1305 ioc->put_smid_default(ioc, smid);
1307 out:
1309 /* scsih callback handler */
1310 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1312 /* ctl callback handler */
1313 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1315 return 1;
1318 static struct scsiio_tracker *
1319 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1321 struct scsi_cmnd *cmd;
1323 if (WARN_ON(!smid) ||
1324 WARN_ON(smid >= ioc->hi_priority_smid))
1325 return NULL;
1327 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1328 if (cmd)
1329 return scsi_cmd_priv(cmd);
1331 return NULL;
1335 * _base_get_cb_idx - obtain the callback index
1336 * @ioc: per adapter object
1337 * @smid: system request message index
1339 * Return: callback index.
1341 static u8
1342 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1344 int i;
1345 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1346 u8 cb_idx = 0xFF;
1348 if (smid < ioc->hi_priority_smid) {
1349 struct scsiio_tracker *st;
1351 if (smid < ctl_smid) {
1352 st = _get_st_from_smid(ioc, smid);
1353 if (st)
1354 cb_idx = st->cb_idx;
1355 } else if (smid == ctl_smid)
1356 cb_idx = ioc->ctl_cb_idx;
1357 } else if (smid < ioc->internal_smid) {
1358 i = smid - ioc->hi_priority_smid;
1359 cb_idx = ioc->hpr_lookup[i].cb_idx;
1360 } else if (smid <= ioc->hba_queue_depth) {
1361 i = smid - ioc->internal_smid;
1362 cb_idx = ioc->internal_lookup[i].cb_idx;
1364 return cb_idx;
1368 * _base_mask_interrupts - disable interrupts
1369 * @ioc: per adapter object
1371 * Disabling ResetIRQ, Reply and Doorbell Interrupts
1373 static void
1374 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1376 u32 him_register;
1378 ioc->mask_interrupts = 1;
1379 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1380 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1381 writel(him_register, &ioc->chip->HostInterruptMask);
1382 ioc->base_readl(&ioc->chip->HostInterruptMask);
1386 * _base_unmask_interrupts - enable interrupts
1387 * @ioc: per adapter object
1389 * Enabling only Reply Interrupts
1391 static void
1392 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1394 u32 him_register;
1396 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1397 him_register &= ~MPI2_HIM_RIM;
1398 writel(him_register, &ioc->chip->HostInterruptMask);
1399 ioc->mask_interrupts = 0;
1402 union reply_descriptor {
1403 u64 word;
1404 struct {
1405 u32 low;
1406 u32 high;
1407 } u;
1410 static u32 base_mod64(u64 dividend, u32 divisor)
1412 u32 remainder;
1414 if (!divisor)
1415 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1416 remainder = do_div(dividend, divisor);
1417 return remainder;
1421 * _base_process_reply_queue - Process reply descriptors from reply
1422 * descriptor post queue.
1423 * @reply_q: per IRQ's reply queue object.
1425 * Return: number of reply descriptors processed from reply
1426 * descriptor queue.
1428 static int
1429 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1431 union reply_descriptor rd;
1432 u64 completed_cmds;
1433 u8 request_descript_type;
1434 u16 smid;
1435 u8 cb_idx;
1436 u32 reply;
1437 u8 msix_index = reply_q->msix_index;
1438 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1439 Mpi2ReplyDescriptorsUnion_t *rpf;
1440 u8 rc;
1442 completed_cmds = 0;
1443 if (!atomic_add_unless(&reply_q->busy, 1, 1))
1444 return completed_cmds;
1446 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1447 request_descript_type = rpf->Default.ReplyFlags
1448 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1449 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1450 atomic_dec(&reply_q->busy);
1451 return completed_cmds;
1454 cb_idx = 0xFF;
1455 do {
1456 rd.word = le64_to_cpu(rpf->Words);
1457 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1458 goto out;
1459 reply = 0;
1460 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1461 if (request_descript_type ==
1462 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1463 request_descript_type ==
1464 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1465 request_descript_type ==
1466 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1467 cb_idx = _base_get_cb_idx(ioc, smid);
1468 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1469 (likely(mpt_callbacks[cb_idx] != NULL))) {
1470 rc = mpt_callbacks[cb_idx](ioc, smid,
1471 msix_index, 0);
1472 if (rc)
1473 mpt3sas_base_free_smid(ioc, smid);
1475 } else if (request_descript_type ==
1476 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1477 reply = le32_to_cpu(
1478 rpf->AddressReply.ReplyFrameAddress);
1479 if (reply > ioc->reply_dma_max_address ||
1480 reply < ioc->reply_dma_min_address)
1481 reply = 0;
1482 if (smid) {
1483 cb_idx = _base_get_cb_idx(ioc, smid);
1484 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1485 (likely(mpt_callbacks[cb_idx] != NULL))) {
1486 rc = mpt_callbacks[cb_idx](ioc, smid,
1487 msix_index, reply);
1488 if (reply)
1489 _base_display_reply_info(ioc,
1490 smid, msix_index, reply);
1491 if (rc)
1492 mpt3sas_base_free_smid(ioc,
1493 smid);
1495 } else {
1496 _base_async_event(ioc, msix_index, reply);
1499 /* reply free queue handling */
1500 if (reply) {
1501 ioc->reply_free_host_index =
1502 (ioc->reply_free_host_index ==
1503 (ioc->reply_free_queue_depth - 1)) ?
1504 0 : ioc->reply_free_host_index + 1;
1505 ioc->reply_free[ioc->reply_free_host_index] =
1506 cpu_to_le32(reply);
1507 if (ioc->is_mcpu_endpoint)
1508 _base_clone_reply_to_sys_mem(ioc,
1509 reply,
1510 ioc->reply_free_host_index);
1511 writel(ioc->reply_free_host_index,
1512 &ioc->chip->ReplyFreeHostIndex);
1516 rpf->Words = cpu_to_le64(ULLONG_MAX);
1517 reply_q->reply_post_host_index =
1518 (reply_q->reply_post_host_index ==
1519 (ioc->reply_post_queue_depth - 1)) ? 0 :
1520 reply_q->reply_post_host_index + 1;
1521 request_descript_type =
1522 reply_q->reply_post_free[reply_q->reply_post_host_index].
1523 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1524 completed_cmds++;
1525 /* Update the reply post host index after continuously
1526 * processing the threshold number of Reply Descriptors.
1527 * So that FW can find enough entries to post the Reply
1528 * Descriptors in the reply descriptor post queue.
1530 if (!base_mod64(completed_cmds, ioc->thresh_hold)) {
1531 if (ioc->combined_reply_queue) {
1532 writel(reply_q->reply_post_host_index |
1533 ((msix_index & 7) <<
1534 MPI2_RPHI_MSIX_INDEX_SHIFT),
1535 ioc->replyPostRegisterIndex[msix_index/8]);
1536 } else {
1537 writel(reply_q->reply_post_host_index |
1538 (msix_index <<
1539 MPI2_RPHI_MSIX_INDEX_SHIFT),
1540 &ioc->chip->ReplyPostHostIndex);
1542 if (!reply_q->irq_poll_scheduled) {
1543 reply_q->irq_poll_scheduled = true;
1544 irq_poll_sched(&reply_q->irqpoll);
1546 atomic_dec(&reply_q->busy);
1547 return completed_cmds;
1549 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1550 goto out;
1551 if (!reply_q->reply_post_host_index)
1552 rpf = reply_q->reply_post_free;
1553 else
1554 rpf++;
1555 } while (1);
1557 out:
1559 if (!completed_cmds) {
1560 atomic_dec(&reply_q->busy);
1561 return completed_cmds;
1564 if (ioc->is_warpdrive) {
1565 writel(reply_q->reply_post_host_index,
1566 ioc->reply_post_host_index[msix_index]);
1567 atomic_dec(&reply_q->busy);
1568 return completed_cmds;
1571 /* Update Reply Post Host Index.
1572 * For those HBA's which support combined reply queue feature
1573 * 1. Get the correct Supplemental Reply Post Host Index Register.
1574 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1575 * Index Register address bank i.e replyPostRegisterIndex[],
1576 * 2. Then update this register with new reply host index value
1577 * in ReplyPostIndex field and the MSIxIndex field with
1578 * msix_index value reduced to a value between 0 and 7,
1579 * using a modulo 8 operation. Since each Supplemental Reply Post
1580 * Host Index Register supports 8 MSI-X vectors.
1582 * For other HBA's just update the Reply Post Host Index register with
1583 * new reply host index value in ReplyPostIndex Field and msix_index
1584 * value in MSIxIndex field.
1586 if (ioc->combined_reply_queue)
1587 writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
1588 MPI2_RPHI_MSIX_INDEX_SHIFT),
1589 ioc->replyPostRegisterIndex[msix_index/8]);
1590 else
1591 writel(reply_q->reply_post_host_index | (msix_index <<
1592 MPI2_RPHI_MSIX_INDEX_SHIFT),
1593 &ioc->chip->ReplyPostHostIndex);
1594 atomic_dec(&reply_q->busy);
1595 return completed_cmds;
1599 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1600 * @irq: irq number (not used)
1601 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1603 * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1605 static irqreturn_t
1606 _base_interrupt(int irq, void *bus_id)
1608 struct adapter_reply_queue *reply_q = bus_id;
1609 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1611 if (ioc->mask_interrupts)
1612 return IRQ_NONE;
1613 if (reply_q->irq_poll_scheduled)
1614 return IRQ_HANDLED;
1615 return ((_base_process_reply_queue(reply_q) > 0) ?
1616 IRQ_HANDLED : IRQ_NONE);
1620 * _base_irqpoll - IRQ poll callback handler
1621 * @irqpoll - irq_poll object
1622 * @budget - irq poll weight
1624 * returns number of reply descriptors processed
1626 static int
1627 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1629 struct adapter_reply_queue *reply_q;
1630 int num_entries = 0;
1632 reply_q = container_of(irqpoll, struct adapter_reply_queue,
1633 irqpoll);
1634 if (reply_q->irq_line_enable) {
1635 disable_irq(reply_q->os_irq);
1636 reply_q->irq_line_enable = false;
1638 num_entries = _base_process_reply_queue(reply_q);
1639 if (num_entries < budget) {
1640 irq_poll_complete(irqpoll);
1641 reply_q->irq_poll_scheduled = false;
1642 reply_q->irq_line_enable = true;
1643 enable_irq(reply_q->os_irq);
1646 return num_entries;
1650 * _base_init_irqpolls - initliaze IRQ polls
1651 * @ioc: per adapter object
1653 * returns nothing
1655 static void
1656 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1658 struct adapter_reply_queue *reply_q, *next;
1660 if (list_empty(&ioc->reply_queue_list))
1661 return;
1663 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1664 irq_poll_init(&reply_q->irqpoll,
1665 ioc->hba_queue_depth/4, _base_irqpoll);
1666 reply_q->irq_poll_scheduled = false;
1667 reply_q->irq_line_enable = true;
1668 reply_q->os_irq = pci_irq_vector(ioc->pdev,
1669 reply_q->msix_index);
1674 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1675 * @ioc: per adapter object
1677 * Return: Whether or not MSI/X is enabled.
1679 static inline int
1680 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1682 return (ioc->facts.IOCCapabilities &
1683 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1687 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1688 * @ioc: per adapter object
1689 * Context: non ISR conext
1691 * Called when a Task Management request has completed.
1693 void
1694 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1696 struct adapter_reply_queue *reply_q;
1698 /* If MSIX capability is turned off
1699 * then multi-queues are not enabled
1701 if (!_base_is_controller_msix_enabled(ioc))
1702 return;
1704 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1705 if (ioc->shost_recovery || ioc->remove_host ||
1706 ioc->pci_error_recovery)
1707 return;
1708 /* TMs are on msix_index == 0 */
1709 if (reply_q->msix_index == 0)
1710 continue;
1711 if (reply_q->irq_poll_scheduled) {
1712 /* Calling irq_poll_disable will wait for any pending
1713 * callbacks to have completed.
1715 irq_poll_disable(&reply_q->irqpoll);
1716 irq_poll_enable(&reply_q->irqpoll);
1717 reply_q->irq_poll_scheduled = false;
1718 reply_q->irq_line_enable = true;
1719 enable_irq(reply_q->os_irq);
1720 continue;
1722 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1727 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1728 * @cb_idx: callback index
1730 void
1731 mpt3sas_base_release_callback_handler(u8 cb_idx)
1733 mpt_callbacks[cb_idx] = NULL;
1737 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1738 * @cb_func: callback function
1740 * Return: Index of @cb_func.
1743 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1745 u8 cb_idx;
1747 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1748 if (mpt_callbacks[cb_idx] == NULL)
1749 break;
1751 mpt_callbacks[cb_idx] = cb_func;
1752 return cb_idx;
1756 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1758 void
1759 mpt3sas_base_initialize_callback_handler(void)
1761 u8 cb_idx;
1763 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1764 mpt3sas_base_release_callback_handler(cb_idx);
1769 * _base_build_zero_len_sge - build zero length sg entry
1770 * @ioc: per adapter object
1771 * @paddr: virtual address for SGE
1773 * Create a zero length scatter gather entry to insure the IOCs hardware has
1774 * something to use if the target device goes brain dead and tries
1775 * to send data even when none is asked for.
1777 static void
1778 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1780 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1781 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1782 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1783 MPI2_SGE_FLAGS_SHIFT);
1784 ioc->base_add_sg_single(paddr, flags_length, -1);
1788 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1789 * @paddr: virtual address for SGE
1790 * @flags_length: SGE flags and data transfer length
1791 * @dma_addr: Physical address
1793 static void
1794 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1796 Mpi2SGESimple32_t *sgel = paddr;
1798 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1799 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1800 sgel->FlagsLength = cpu_to_le32(flags_length);
1801 sgel->Address = cpu_to_le32(dma_addr);
1806 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1807 * @paddr: virtual address for SGE
1808 * @flags_length: SGE flags and data transfer length
1809 * @dma_addr: Physical address
1811 static void
1812 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1814 Mpi2SGESimple64_t *sgel = paddr;
1816 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1817 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1818 sgel->FlagsLength = cpu_to_le32(flags_length);
1819 sgel->Address = cpu_to_le64(dma_addr);
1823 * _base_get_chain_buffer_tracker - obtain chain tracker
1824 * @ioc: per adapter object
1825 * @scmd: SCSI commands of the IO request
1827 * Return: chain tracker from chain_lookup table using key as
1828 * smid and smid's chain_offset.
1830 static struct chain_tracker *
1831 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
1832 struct scsi_cmnd *scmd)
1834 struct chain_tracker *chain_req;
1835 struct scsiio_tracker *st = scsi_cmd_priv(scmd);
1836 u16 smid = st->smid;
1837 u8 chain_offset =
1838 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
1840 if (chain_offset == ioc->chains_needed_per_io)
1841 return NULL;
1843 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
1844 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
1845 return chain_req;
1850 * _base_build_sg - build generic sg
1851 * @ioc: per adapter object
1852 * @psge: virtual address for SGE
1853 * @data_out_dma: physical address for WRITES
1854 * @data_out_sz: data xfer size for WRITES
1855 * @data_in_dma: physical address for READS
1856 * @data_in_sz: data xfer size for READS
1858 static void
1859 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1860 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1861 size_t data_in_sz)
1863 u32 sgl_flags;
1865 if (!data_out_sz && !data_in_sz) {
1866 _base_build_zero_len_sge(ioc, psge);
1867 return;
1870 if (data_out_sz && data_in_sz) {
1871 /* WRITE sgel first */
1872 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1873 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1874 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1875 ioc->base_add_sg_single(psge, sgl_flags |
1876 data_out_sz, data_out_dma);
1878 /* incr sgel */
1879 psge += ioc->sge_size;
1881 /* READ sgel last */
1882 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1883 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1884 MPI2_SGE_FLAGS_END_OF_LIST);
1885 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1886 ioc->base_add_sg_single(psge, sgl_flags |
1887 data_in_sz, data_in_dma);
1888 } else if (data_out_sz) /* WRITE */ {
1889 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1890 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1891 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1892 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1893 ioc->base_add_sg_single(psge, sgl_flags |
1894 data_out_sz, data_out_dma);
1895 } else if (data_in_sz) /* READ */ {
1896 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1897 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1898 MPI2_SGE_FLAGS_END_OF_LIST);
1899 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1900 ioc->base_add_sg_single(psge, sgl_flags |
1901 data_in_sz, data_in_dma);
1905 /* IEEE format sgls */
1908 * _base_build_nvme_prp - This function is called for NVMe end devices to build
1909 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
1910 * entry of the NVMe message (PRP1). If the data buffer is small enough to be
1911 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is
1912 * used to describe a larger data buffer. If the data buffer is too large to
1913 * describe using the two PRP entriess inside the NVMe message, then PRP1
1914 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
1915 * list located elsewhere in memory to describe the remaining data memory
1916 * segments. The PRP list will be contiguous.
1918 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
1919 * consists of a list of PRP entries to describe a number of noncontigous
1920 * physical memory segments as a single memory buffer, just as a SGL does. Note
1921 * however, that this function is only used by the IOCTL call, so the memory
1922 * given will be guaranteed to be contiguous. There is no need to translate
1923 * non-contiguous SGL into a PRP in this case. All PRPs will describe
1924 * contiguous space that is one page size each.
1926 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
1927 * a PRP list pointer or a PRP element, depending upon the command. PRP2
1928 * contains the second PRP element if the memory being described fits within 2
1929 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
1931 * A PRP list pointer contains the address of a PRP list, structured as a linear
1932 * array of PRP entries. Each PRP entry in this list describes a segment of
1933 * physical memory.
1935 * Each 64-bit PRP entry comprises an address and an offset field. The address
1936 * always points at the beginning of a 4KB physical memory page, and the offset
1937 * describes where within that 4KB page the memory segment begins. Only the
1938 * first element in a PRP list may contain a non-zero offest, implying that all
1939 * memory segments following the first begin at the start of a 4KB page.
1941 * Each PRP element normally describes 4KB of physical memory, with exceptions
1942 * for the first and last elements in the list. If the memory being described
1943 * by the list begins at a non-zero offset within the first 4KB page, then the
1944 * first PRP element will contain a non-zero offset indicating where the region
1945 * begins within the 4KB page. The last memory segment may end before the end
1946 * of the 4KB segment, depending upon the overall size of the memory being
1947 * described by the PRP list.
1949 * Since PRP entries lack any indication of size, the overall data buffer length
1950 * is used to determine where the end of the data memory buffer is located, and
1951 * how many PRP entries are required to describe it.
1953 * @ioc: per adapter object
1954 * @smid: system request message index for getting asscociated SGL
1955 * @nvme_encap_request: the NVMe request msg frame pointer
1956 * @data_out_dma: physical address for WRITES
1957 * @data_out_sz: data xfer size for WRITES
1958 * @data_in_dma: physical address for READS
1959 * @data_in_sz: data xfer size for READS
1961 static void
1962 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
1963 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
1964 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1965 size_t data_in_sz)
1967 int prp_size = NVME_PRP_SIZE;
1968 __le64 *prp_entry, *prp1_entry, *prp2_entry;
1969 __le64 *prp_page;
1970 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
1971 u32 offset, entry_len;
1972 u32 page_mask_result, page_mask;
1973 size_t length;
1974 struct mpt3sas_nvme_cmd *nvme_cmd =
1975 (void *)nvme_encap_request->NVMe_Command;
1978 * Not all commands require a data transfer. If no data, just return
1979 * without constructing any PRP.
1981 if (!data_in_sz && !data_out_sz)
1982 return;
1983 prp1_entry = &nvme_cmd->prp1;
1984 prp2_entry = &nvme_cmd->prp2;
1985 prp_entry = prp1_entry;
1987 * For the PRP entries, use the specially allocated buffer of
1988 * contiguous memory.
1990 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
1991 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
1994 * Check if we are within 1 entry of a page boundary we don't
1995 * want our first entry to be a PRP List entry.
1997 page_mask = ioc->page_size - 1;
1998 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
1999 if (!page_mask_result) {
2000 /* Bump up to next page boundary. */
2001 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2002 prp_page_dma = prp_page_dma + prp_size;
2006 * Set PRP physical pointer, which initially points to the current PRP
2007 * DMA memory page.
2009 prp_entry_dma = prp_page_dma;
2011 /* Get physical address and length of the data buffer. */
2012 if (data_in_sz) {
2013 dma_addr = data_in_dma;
2014 length = data_in_sz;
2015 } else {
2016 dma_addr = data_out_dma;
2017 length = data_out_sz;
2020 /* Loop while the length is not zero. */
2021 while (length) {
2023 * Check if we need to put a list pointer here if we are at
2024 * page boundary - prp_size (8 bytes).
2026 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2027 if (!page_mask_result) {
2029 * This is the last entry in a PRP List, so we need to
2030 * put a PRP list pointer here. What this does is:
2031 * - bump the current memory pointer to the next
2032 * address, which will be the next full page.
2033 * - set the PRP Entry to point to that page. This
2034 * is now the PRP List pointer.
2035 * - bump the PRP Entry pointer the start of the
2036 * next page. Since all of this PRP memory is
2037 * contiguous, no need to get a new page - it's
2038 * just the next address.
2040 prp_entry_dma++;
2041 *prp_entry = cpu_to_le64(prp_entry_dma);
2042 prp_entry++;
2045 /* Need to handle if entry will be part of a page. */
2046 offset = dma_addr & page_mask;
2047 entry_len = ioc->page_size - offset;
2049 if (prp_entry == prp1_entry) {
2051 * Must fill in the first PRP pointer (PRP1) before
2052 * moving on.
2054 *prp1_entry = cpu_to_le64(dma_addr);
2057 * Now point to the second PRP entry within the
2058 * command (PRP2).
2060 prp_entry = prp2_entry;
2061 } else if (prp_entry == prp2_entry) {
2063 * Should the PRP2 entry be a PRP List pointer or just
2064 * a regular PRP pointer? If there is more than one
2065 * more page of data, must use a PRP List pointer.
2067 if (length > ioc->page_size) {
2069 * PRP2 will contain a PRP List pointer because
2070 * more PRP's are needed with this command. The
2071 * list will start at the beginning of the
2072 * contiguous buffer.
2074 *prp2_entry = cpu_to_le64(prp_entry_dma);
2077 * The next PRP Entry will be the start of the
2078 * first PRP List.
2080 prp_entry = prp_page;
2081 } else {
2083 * After this, the PRP Entries are complete.
2084 * This command uses 2 PRP's and no PRP list.
2086 *prp2_entry = cpu_to_le64(dma_addr);
2088 } else {
2090 * Put entry in list and bump the addresses.
2092 * After PRP1 and PRP2 are filled in, this will fill in
2093 * all remaining PRP entries in a PRP List, one per
2094 * each time through the loop.
2096 *prp_entry = cpu_to_le64(dma_addr);
2097 prp_entry++;
2098 prp_entry_dma++;
2102 * Bump the phys address of the command's data buffer by the
2103 * entry_len.
2105 dma_addr += entry_len;
2107 /* Decrement length accounting for last partial page. */
2108 if (entry_len > length)
2109 length = 0;
2110 else
2111 length -= entry_len;
2116 * base_make_prp_nvme -
2117 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
2119 * @ioc: per adapter object
2120 * @scmd: SCSI command from the mid-layer
2121 * @mpi_request: mpi request
2122 * @smid: msg Index
2123 * @sge_count: scatter gather element count.
2125 * Return: true: PRPs are built
2126 * false: IEEE SGLs needs to be built
2128 static void
2129 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2130 struct scsi_cmnd *scmd,
2131 Mpi25SCSIIORequest_t *mpi_request,
2132 u16 smid, int sge_count)
2134 int sge_len, num_prp_in_chain = 0;
2135 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2136 __le64 *curr_buff;
2137 dma_addr_t msg_dma, sge_addr, offset;
2138 u32 page_mask, page_mask_result;
2139 struct scatterlist *sg_scmd;
2140 u32 first_prp_len;
2141 int data_len = scsi_bufflen(scmd);
2142 u32 nvme_pg_size;
2144 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2146 * Nvme has a very convoluted prp format. One prp is required
2147 * for each page or partial page. Driver need to split up OS sg_list
2148 * entries if it is longer than one page or cross a page
2149 * boundary. Driver also have to insert a PRP list pointer entry as
2150 * the last entry in each physical page of the PRP list.
2152 * NOTE: The first PRP "entry" is actually placed in the first
2153 * SGL entry in the main message as IEEE 64 format. The 2nd
2154 * entry in the main message is the chain element, and the rest
2155 * of the PRP entries are built in the contiguous pcie buffer.
2157 page_mask = nvme_pg_size - 1;
2160 * Native SGL is needed.
2161 * Put a chain element in main message frame that points to the first
2162 * chain buffer.
2164 * NOTE: The ChainOffset field must be 0 when using a chain pointer to
2165 * a native SGL.
2168 /* Set main message chain element pointer */
2169 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2171 * For NVMe the chain element needs to be the 2nd SG entry in the main
2172 * message.
2174 main_chain_element = (Mpi25IeeeSgeChain64_t *)
2175 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2178 * For the PRP entries, use the specially allocated buffer of
2179 * contiguous memory. Normal chain buffers can't be used
2180 * because each chain buffer would need to be the size of an OS
2181 * page (4k).
2183 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2184 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2186 main_chain_element->Address = cpu_to_le64(msg_dma);
2187 main_chain_element->NextChainOffset = 0;
2188 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2189 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2190 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2192 /* Build first prp, sge need not to be page aligned*/
2193 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2194 sg_scmd = scsi_sglist(scmd);
2195 sge_addr = sg_dma_address(sg_scmd);
2196 sge_len = sg_dma_len(sg_scmd);
2198 offset = sge_addr & page_mask;
2199 first_prp_len = nvme_pg_size - offset;
2201 ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2202 ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2204 data_len -= first_prp_len;
2206 if (sge_len > first_prp_len) {
2207 sge_addr += first_prp_len;
2208 sge_len -= first_prp_len;
2209 } else if (data_len && (sge_len == first_prp_len)) {
2210 sg_scmd = sg_next(sg_scmd);
2211 sge_addr = sg_dma_address(sg_scmd);
2212 sge_len = sg_dma_len(sg_scmd);
2215 for (;;) {
2216 offset = sge_addr & page_mask;
2218 /* Put PRP pointer due to page boundary*/
2219 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2220 if (unlikely(!page_mask_result)) {
2221 scmd_printk(KERN_NOTICE,
2222 scmd, "page boundary curr_buff: 0x%p\n",
2223 curr_buff);
2224 msg_dma += 8;
2225 *curr_buff = cpu_to_le64(msg_dma);
2226 curr_buff++;
2227 num_prp_in_chain++;
2230 *curr_buff = cpu_to_le64(sge_addr);
2231 curr_buff++;
2232 msg_dma += 8;
2233 num_prp_in_chain++;
2235 sge_addr += nvme_pg_size;
2236 sge_len -= nvme_pg_size;
2237 data_len -= nvme_pg_size;
2239 if (data_len <= 0)
2240 break;
2242 if (sge_len > 0)
2243 continue;
2245 sg_scmd = sg_next(sg_scmd);
2246 sge_addr = sg_dma_address(sg_scmd);
2247 sge_len = sg_dma_len(sg_scmd);
2250 main_chain_element->Length =
2251 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2252 return;
2255 static bool
2256 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2257 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2259 u32 data_length = 0;
2260 bool build_prp = true;
2262 data_length = scsi_bufflen(scmd);
2264 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2265 * we built IEEE SGL
2267 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2268 build_prp = false;
2270 return build_prp;
2274 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2275 * determine if the driver needs to build a native SGL. If so, that native
2276 * SGL is built in the special contiguous buffers allocated especially for
2277 * PCIe SGL creation. If the driver will not build a native SGL, return
2278 * TRUE and a normal IEEE SGL will be built. Currently this routine
2279 * supports NVMe.
2280 * @ioc: per adapter object
2281 * @mpi_request: mf request pointer
2282 * @smid: system request message index
2283 * @scmd: scsi command
2284 * @pcie_device: points to the PCIe device's info
2286 * Return: 0 if native SGL was built, 1 if no SGL was built
2288 static int
2289 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2290 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2291 struct _pcie_device *pcie_device)
2293 int sges_left;
2295 /* Get the SG list pointer and info. */
2296 sges_left = scsi_dma_map(scmd);
2297 if (sges_left < 0) {
2298 sdev_printk(KERN_ERR, scmd->device,
2299 "scsi_dma_map failed: request for %d bytes!\n",
2300 scsi_bufflen(scmd));
2301 return 1;
2304 /* Check if we need to build a native SG list. */
2305 if (base_is_prp_possible(ioc, pcie_device,
2306 scmd, sges_left) == 0) {
2307 /* We built a native SG list, just return. */
2308 goto out;
2312 * Build native NVMe PRP.
2314 base_make_prp_nvme(ioc, scmd, mpi_request,
2315 smid, sges_left);
2317 return 0;
2318 out:
2319 scsi_dma_unmap(scmd);
2320 return 1;
2324 * _base_add_sg_single_ieee - add sg element for IEEE format
2325 * @paddr: virtual address for SGE
2326 * @flags: SGE flags
2327 * @chain_offset: number of 128 byte elements from start of segment
2328 * @length: data transfer length
2329 * @dma_addr: Physical address
2331 static void
2332 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2333 dma_addr_t dma_addr)
2335 Mpi25IeeeSgeChain64_t *sgel = paddr;
2337 sgel->Flags = flags;
2338 sgel->NextChainOffset = chain_offset;
2339 sgel->Length = cpu_to_le32(length);
2340 sgel->Address = cpu_to_le64(dma_addr);
2344 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2345 * @ioc: per adapter object
2346 * @paddr: virtual address for SGE
2348 * Create a zero length scatter gather entry to insure the IOCs hardware has
2349 * something to use if the target device goes brain dead and tries
2350 * to send data even when none is asked for.
2352 static void
2353 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2355 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2356 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2357 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2359 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2363 * _base_build_sg_scmd - main sg creation routine
2364 * pcie_device is unused here!
2365 * @ioc: per adapter object
2366 * @scmd: scsi command
2367 * @smid: system request message index
2368 * @unused: unused pcie_device pointer
2369 * Context: none.
2371 * The main routine that builds scatter gather table from a given
2372 * scsi request sent via the .queuecommand main handler.
2374 * Return: 0 success, anything else error
2376 static int
2377 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2378 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2380 Mpi2SCSIIORequest_t *mpi_request;
2381 dma_addr_t chain_dma;
2382 struct scatterlist *sg_scmd;
2383 void *sg_local, *chain;
2384 u32 chain_offset;
2385 u32 chain_length;
2386 u32 chain_flags;
2387 int sges_left;
2388 u32 sges_in_segment;
2389 u32 sgl_flags;
2390 u32 sgl_flags_last_element;
2391 u32 sgl_flags_end_buffer;
2392 struct chain_tracker *chain_req;
2394 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2396 /* init scatter gather flags */
2397 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2398 if (scmd->sc_data_direction == DMA_TO_DEVICE)
2399 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2400 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2401 << MPI2_SGE_FLAGS_SHIFT;
2402 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2403 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2404 << MPI2_SGE_FLAGS_SHIFT;
2405 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2407 sg_scmd = scsi_sglist(scmd);
2408 sges_left = scsi_dma_map(scmd);
2409 if (sges_left < 0) {
2410 sdev_printk(KERN_ERR, scmd->device,
2411 "scsi_dma_map failed: request for %d bytes!\n",
2412 scsi_bufflen(scmd));
2413 return -ENOMEM;
2416 sg_local = &mpi_request->SGL;
2417 sges_in_segment = ioc->max_sges_in_main_message;
2418 if (sges_left <= sges_in_segment)
2419 goto fill_in_last_segment;
2421 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2422 (sges_in_segment * ioc->sge_size))/4;
2424 /* fill in main message segment when there is a chain following */
2425 while (sges_in_segment) {
2426 if (sges_in_segment == 1)
2427 ioc->base_add_sg_single(sg_local,
2428 sgl_flags_last_element | sg_dma_len(sg_scmd),
2429 sg_dma_address(sg_scmd));
2430 else
2431 ioc->base_add_sg_single(sg_local, sgl_flags |
2432 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2433 sg_scmd = sg_next(sg_scmd);
2434 sg_local += ioc->sge_size;
2435 sges_left--;
2436 sges_in_segment--;
2439 /* initializing the chain flags and pointers */
2440 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2441 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2442 if (!chain_req)
2443 return -1;
2444 chain = chain_req->chain_buffer;
2445 chain_dma = chain_req->chain_buffer_dma;
2446 do {
2447 sges_in_segment = (sges_left <=
2448 ioc->max_sges_in_chain_message) ? sges_left :
2449 ioc->max_sges_in_chain_message;
2450 chain_offset = (sges_left == sges_in_segment) ?
2451 0 : (sges_in_segment * ioc->sge_size)/4;
2452 chain_length = sges_in_segment * ioc->sge_size;
2453 if (chain_offset) {
2454 chain_offset = chain_offset <<
2455 MPI2_SGE_CHAIN_OFFSET_SHIFT;
2456 chain_length += ioc->sge_size;
2458 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2459 chain_length, chain_dma);
2460 sg_local = chain;
2461 if (!chain_offset)
2462 goto fill_in_last_segment;
2464 /* fill in chain segments */
2465 while (sges_in_segment) {
2466 if (sges_in_segment == 1)
2467 ioc->base_add_sg_single(sg_local,
2468 sgl_flags_last_element |
2469 sg_dma_len(sg_scmd),
2470 sg_dma_address(sg_scmd));
2471 else
2472 ioc->base_add_sg_single(sg_local, sgl_flags |
2473 sg_dma_len(sg_scmd),
2474 sg_dma_address(sg_scmd));
2475 sg_scmd = sg_next(sg_scmd);
2476 sg_local += ioc->sge_size;
2477 sges_left--;
2478 sges_in_segment--;
2481 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2482 if (!chain_req)
2483 return -1;
2484 chain = chain_req->chain_buffer;
2485 chain_dma = chain_req->chain_buffer_dma;
2486 } while (1);
2489 fill_in_last_segment:
2491 /* fill the last segment */
2492 while (sges_left) {
2493 if (sges_left == 1)
2494 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2495 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2496 else
2497 ioc->base_add_sg_single(sg_local, sgl_flags |
2498 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2499 sg_scmd = sg_next(sg_scmd);
2500 sg_local += ioc->sge_size;
2501 sges_left--;
2504 return 0;
2508 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2509 * @ioc: per adapter object
2510 * @scmd: scsi command
2511 * @smid: system request message index
2512 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2513 * constructed on need.
2514 * Context: none.
2516 * The main routine that builds scatter gather table from a given
2517 * scsi request sent via the .queuecommand main handler.
2519 * Return: 0 success, anything else error
2521 static int
2522 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2523 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2525 Mpi25SCSIIORequest_t *mpi_request;
2526 dma_addr_t chain_dma;
2527 struct scatterlist *sg_scmd;
2528 void *sg_local, *chain;
2529 u32 chain_offset;
2530 u32 chain_length;
2531 int sges_left;
2532 u32 sges_in_segment;
2533 u8 simple_sgl_flags;
2534 u8 simple_sgl_flags_last;
2535 u8 chain_sgl_flags;
2536 struct chain_tracker *chain_req;
2538 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2540 /* init scatter gather flags */
2541 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2542 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2543 simple_sgl_flags_last = simple_sgl_flags |
2544 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2545 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2546 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2548 /* Check if we need to build a native SG list. */
2549 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2550 smid, scmd, pcie_device) == 0)) {
2551 /* We built a native SG list, just return. */
2552 return 0;
2555 sg_scmd = scsi_sglist(scmd);
2556 sges_left = scsi_dma_map(scmd);
2557 if (sges_left < 0) {
2558 sdev_printk(KERN_ERR, scmd->device,
2559 "scsi_dma_map failed: request for %d bytes!\n",
2560 scsi_bufflen(scmd));
2561 return -ENOMEM;
2564 sg_local = &mpi_request->SGL;
2565 sges_in_segment = (ioc->request_sz -
2566 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2567 if (sges_left <= sges_in_segment)
2568 goto fill_in_last_segment;
2570 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2571 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2573 /* fill in main message segment when there is a chain following */
2574 while (sges_in_segment > 1) {
2575 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2576 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2577 sg_scmd = sg_next(sg_scmd);
2578 sg_local += ioc->sge_size_ieee;
2579 sges_left--;
2580 sges_in_segment--;
2583 /* initializing the pointers */
2584 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2585 if (!chain_req)
2586 return -1;
2587 chain = chain_req->chain_buffer;
2588 chain_dma = chain_req->chain_buffer_dma;
2589 do {
2590 sges_in_segment = (sges_left <=
2591 ioc->max_sges_in_chain_message) ? sges_left :
2592 ioc->max_sges_in_chain_message;
2593 chain_offset = (sges_left == sges_in_segment) ?
2594 0 : sges_in_segment;
2595 chain_length = sges_in_segment * ioc->sge_size_ieee;
2596 if (chain_offset)
2597 chain_length += ioc->sge_size_ieee;
2598 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2599 chain_offset, chain_length, chain_dma);
2601 sg_local = chain;
2602 if (!chain_offset)
2603 goto fill_in_last_segment;
2605 /* fill in chain segments */
2606 while (sges_in_segment) {
2607 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2608 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2609 sg_scmd = sg_next(sg_scmd);
2610 sg_local += ioc->sge_size_ieee;
2611 sges_left--;
2612 sges_in_segment--;
2615 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2616 if (!chain_req)
2617 return -1;
2618 chain = chain_req->chain_buffer;
2619 chain_dma = chain_req->chain_buffer_dma;
2620 } while (1);
2623 fill_in_last_segment:
2625 /* fill the last segment */
2626 while (sges_left > 0) {
2627 if (sges_left == 1)
2628 _base_add_sg_single_ieee(sg_local,
2629 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2630 sg_dma_address(sg_scmd));
2631 else
2632 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2633 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2634 sg_scmd = sg_next(sg_scmd);
2635 sg_local += ioc->sge_size_ieee;
2636 sges_left--;
2639 return 0;
2643 * _base_build_sg_ieee - build generic sg for IEEE format
2644 * @ioc: per adapter object
2645 * @psge: virtual address for SGE
2646 * @data_out_dma: physical address for WRITES
2647 * @data_out_sz: data xfer size for WRITES
2648 * @data_in_dma: physical address for READS
2649 * @data_in_sz: data xfer size for READS
2651 static void
2652 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2653 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2654 size_t data_in_sz)
2656 u8 sgl_flags;
2658 if (!data_out_sz && !data_in_sz) {
2659 _base_build_zero_len_sge_ieee(ioc, psge);
2660 return;
2663 if (data_out_sz && data_in_sz) {
2664 /* WRITE sgel first */
2665 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2666 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2667 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2668 data_out_dma);
2670 /* incr sgel */
2671 psge += ioc->sge_size_ieee;
2673 /* READ sgel last */
2674 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2675 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2676 data_in_dma);
2677 } else if (data_out_sz) /* WRITE */ {
2678 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2679 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2680 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2681 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2682 data_out_dma);
2683 } else if (data_in_sz) /* READ */ {
2684 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2685 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2686 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2687 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2688 data_in_dma);
2692 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2695 * _base_config_dma_addressing - set dma addressing
2696 * @ioc: per adapter object
2697 * @pdev: PCI device struct
2699 * Return: 0 for success, non-zero for failure.
2701 static int
2702 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2704 u64 required_mask, coherent_mask;
2705 struct sysinfo s;
2707 if (ioc->is_mcpu_endpoint)
2708 goto try_32bit;
2710 required_mask = dma_get_required_mask(&pdev->dev);
2711 if (sizeof(dma_addr_t) == 4 || required_mask == 32)
2712 goto try_32bit;
2714 if (ioc->dma_mask)
2715 coherent_mask = DMA_BIT_MASK(64);
2716 else
2717 coherent_mask = DMA_BIT_MASK(32);
2719 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) ||
2720 dma_set_coherent_mask(&pdev->dev, coherent_mask))
2721 goto try_32bit;
2723 ioc->base_add_sg_single = &_base_add_sg_single_64;
2724 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2725 ioc->dma_mask = 64;
2726 goto out;
2728 try_32bit:
2729 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2730 return -ENODEV;
2732 ioc->base_add_sg_single = &_base_add_sg_single_32;
2733 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2734 ioc->dma_mask = 32;
2735 out:
2736 si_meminfo(&s);
2737 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2738 ioc->dma_mask, convert_to_kb(s.totalram));
2740 return 0;
2743 static int
2744 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
2745 struct pci_dev *pdev)
2747 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
2748 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
2749 return -ENODEV;
2751 return 0;
2755 * _base_check_enable_msix - checks MSIX capabable.
2756 * @ioc: per adapter object
2758 * Check to see if card is capable of MSIX, and set number
2759 * of available msix vectors
2761 static int
2762 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2764 int base;
2765 u16 message_control;
2767 /* Check whether controller SAS2008 B0 controller,
2768 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2770 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2771 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2772 return -EINVAL;
2775 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2776 if (!base) {
2777 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
2778 return -EINVAL;
2781 /* get msix vector count */
2782 /* NUMA_IO not supported for older controllers */
2783 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2784 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2785 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2786 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2787 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2788 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2789 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2790 ioc->msix_vector_count = 1;
2791 else {
2792 pci_read_config_word(ioc->pdev, base + 2, &message_control);
2793 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2795 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
2796 ioc->msix_vector_count));
2797 return 0;
2801 * _base_free_irq - free irq
2802 * @ioc: per adapter object
2804 * Freeing respective reply_queue from the list.
2806 static void
2807 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2809 struct adapter_reply_queue *reply_q, *next;
2811 if (list_empty(&ioc->reply_queue_list))
2812 return;
2814 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2815 list_del(&reply_q->list);
2816 if (ioc->smp_affinity_enable)
2817 irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
2818 reply_q->msix_index), NULL);
2819 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2820 reply_q);
2821 kfree(reply_q);
2826 * _base_request_irq - request irq
2827 * @ioc: per adapter object
2828 * @index: msix index into vector table
2830 * Inserting respective reply_queue into the list.
2832 static int
2833 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2835 struct pci_dev *pdev = ioc->pdev;
2836 struct adapter_reply_queue *reply_q;
2837 int r;
2839 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2840 if (!reply_q) {
2841 ioc_err(ioc, "unable to allocate memory %zu!\n",
2842 sizeof(struct adapter_reply_queue));
2843 return -ENOMEM;
2845 reply_q->ioc = ioc;
2846 reply_q->msix_index = index;
2848 atomic_set(&reply_q->busy, 0);
2849 if (ioc->msix_enable)
2850 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2851 ioc->driver_name, ioc->id, index);
2852 else
2853 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2854 ioc->driver_name, ioc->id);
2855 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2856 IRQF_SHARED, reply_q->name, reply_q);
2857 if (r) {
2858 pr_err("%s: unable to allocate interrupt %d!\n",
2859 reply_q->name, pci_irq_vector(pdev, index));
2860 kfree(reply_q);
2861 return -EBUSY;
2864 INIT_LIST_HEAD(&reply_q->list);
2865 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2866 return 0;
2870 * _base_assign_reply_queues - assigning msix index for each cpu
2871 * @ioc: per adapter object
2873 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2875 * It would nice if we could call irq_set_affinity, however it is not
2876 * an exported symbol
2878 static void
2879 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
2881 unsigned int cpu, nr_cpus, nr_msix, index = 0;
2882 struct adapter_reply_queue *reply_q;
2883 int local_numa_node;
2885 if (!_base_is_controller_msix_enabled(ioc))
2886 return;
2888 if (ioc->msix_load_balance)
2889 return;
2891 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
2893 nr_cpus = num_online_cpus();
2894 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
2895 ioc->facts.MaxMSIxVectors);
2896 if (!nr_msix)
2897 return;
2899 if (ioc->smp_affinity_enable) {
2902 * set irq affinity to local numa node for those irqs
2903 * corresponding to high iops queues.
2905 if (ioc->high_iops_queues) {
2906 local_numa_node = dev_to_node(&ioc->pdev->dev);
2907 for (index = 0; index < ioc->high_iops_queues;
2908 index++) {
2909 irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
2910 index), cpumask_of_node(local_numa_node));
2914 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2915 const cpumask_t *mask;
2917 if (reply_q->msix_index < ioc->high_iops_queues)
2918 continue;
2920 mask = pci_irq_get_affinity(ioc->pdev,
2921 reply_q->msix_index);
2922 if (!mask) {
2923 ioc_warn(ioc, "no affinity for msi %x\n",
2924 reply_q->msix_index);
2925 goto fall_back;
2928 for_each_cpu_and(cpu, mask, cpu_online_mask) {
2929 if (cpu >= ioc->cpu_msix_table_sz)
2930 break;
2931 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2934 return;
2937 fall_back:
2938 cpu = cpumask_first(cpu_online_mask);
2939 nr_msix -= ioc->high_iops_queues;
2940 index = 0;
2942 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2943 unsigned int i, group = nr_cpus / nr_msix;
2945 if (reply_q->msix_index < ioc->high_iops_queues)
2946 continue;
2948 if (cpu >= nr_cpus)
2949 break;
2951 if (index < nr_cpus % nr_msix)
2952 group++;
2954 for (i = 0 ; i < group ; i++) {
2955 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2956 cpu = cpumask_next(cpu, cpu_online_mask);
2958 index++;
2963 * _base_check_and_enable_high_iops_queues - enable high iops mode
2964 * @ ioc - per adapter object
2965 * @ hba_msix_vector_count - msix vectors supported by HBA
2967 * Enable high iops queues only if
2968 * - HBA is a SEA/AERO controller and
2969 * - MSI-Xs vector supported by the HBA is 128 and
2970 * - total CPU count in the system >=16 and
2971 * - loaded driver with default max_msix_vectors module parameter and
2972 * - system booted in non kdump mode
2974 * returns nothing.
2976 static void
2977 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
2978 int hba_msix_vector_count)
2980 u16 lnksta, speed;
2982 if (perf_mode == MPT_PERF_MODE_IOPS ||
2983 perf_mode == MPT_PERF_MODE_LATENCY) {
2984 ioc->high_iops_queues = 0;
2985 return;
2988 if (perf_mode == MPT_PERF_MODE_DEFAULT) {
2990 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
2991 speed = lnksta & PCI_EXP_LNKSTA_CLS;
2993 if (speed < 0x4) {
2994 ioc->high_iops_queues = 0;
2995 return;
2999 if (!reset_devices && ioc->is_aero_ioc &&
3000 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3001 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3002 max_msix_vectors == -1)
3003 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3004 else
3005 ioc->high_iops_queues = 0;
3009 * _base_disable_msix - disables msix
3010 * @ioc: per adapter object
3013 static void
3014 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3016 if (!ioc->msix_enable)
3017 return;
3018 pci_free_irq_vectors(ioc->pdev);
3019 ioc->msix_enable = 0;
3023 * _base_alloc_irq_vectors - allocate msix vectors
3024 * @ioc: per adapter object
3027 static int
3028 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3030 int i, irq_flags = PCI_IRQ_MSIX;
3031 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3032 struct irq_affinity *descp = &desc;
3034 if (ioc->smp_affinity_enable)
3035 irq_flags |= PCI_IRQ_AFFINITY;
3036 else
3037 descp = NULL;
3039 ioc_info(ioc, " %d %d\n", ioc->high_iops_queues,
3040 ioc->msix_vector_count);
3042 i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3043 ioc->high_iops_queues,
3044 ioc->msix_vector_count, irq_flags, descp);
3046 return i;
3050 * _base_enable_msix - enables msix, failback to io_apic
3051 * @ioc: per adapter object
3054 static int
3055 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3057 int r;
3058 int i, local_max_msix_vectors;
3059 u8 try_msix = 0;
3061 ioc->msix_load_balance = false;
3063 if (msix_disable == -1 || msix_disable == 0)
3064 try_msix = 1;
3066 if (!try_msix)
3067 goto try_ioapic;
3069 if (_base_check_enable_msix(ioc) != 0)
3070 goto try_ioapic;
3072 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3073 pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3074 ioc->cpu_count, max_msix_vectors);
3075 if (ioc->is_aero_ioc)
3076 _base_check_and_enable_high_iops_queues(ioc,
3077 ioc->msix_vector_count);
3078 ioc->reply_queue_count =
3079 min_t(int, ioc->cpu_count + ioc->high_iops_queues,
3080 ioc->msix_vector_count);
3082 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3083 local_max_msix_vectors = (reset_devices) ? 1 : 8;
3084 else
3085 local_max_msix_vectors = max_msix_vectors;
3087 if (local_max_msix_vectors > 0)
3088 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3089 ioc->reply_queue_count);
3090 else if (local_max_msix_vectors == 0)
3091 goto try_ioapic;
3094 * Enable msix_load_balance only if combined reply queue mode is
3095 * disabled on SAS3 & above generation HBA devices.
3097 if (!ioc->combined_reply_queue &&
3098 ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3099 ioc->msix_load_balance = true;
3103 * smp affinity setting is not need when msix load balance
3104 * is enabled.
3106 if (ioc->msix_load_balance)
3107 ioc->smp_affinity_enable = 0;
3109 r = _base_alloc_irq_vectors(ioc);
3110 if (r < 0) {
3111 dfailprintk(ioc,
3112 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n",
3113 r));
3114 goto try_ioapic;
3117 ioc->msix_enable = 1;
3118 ioc->reply_queue_count = r;
3119 for (i = 0; i < ioc->reply_queue_count; i++) {
3120 r = _base_request_irq(ioc, i);
3121 if (r) {
3122 _base_free_irq(ioc);
3123 _base_disable_msix(ioc);
3124 goto try_ioapic;
3128 ioc_info(ioc, "High IOPs queues : %s\n",
3129 ioc->high_iops_queues ? "enabled" : "disabled");
3131 return 0;
3133 /* failback to io_apic interrupt routing */
3134 try_ioapic:
3135 ioc->high_iops_queues = 0;
3136 ioc_info(ioc, "High IOPs queues : disabled\n");
3137 ioc->reply_queue_count = 1;
3138 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3139 if (r < 0) {
3140 dfailprintk(ioc,
3141 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3142 r));
3143 } else
3144 r = _base_request_irq(ioc, 0);
3146 return r;
3150 * mpt3sas_base_unmap_resources - free controller resources
3151 * @ioc: per adapter object
3153 static void
3154 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3156 struct pci_dev *pdev = ioc->pdev;
3158 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3160 _base_free_irq(ioc);
3161 _base_disable_msix(ioc);
3163 kfree(ioc->replyPostRegisterIndex);
3164 ioc->replyPostRegisterIndex = NULL;
3167 if (ioc->chip_phys) {
3168 iounmap(ioc->chip);
3169 ioc->chip_phys = 0;
3172 if (pci_is_enabled(pdev)) {
3173 pci_release_selected_regions(ioc->pdev, ioc->bars);
3174 pci_disable_pcie_error_reporting(pdev);
3175 pci_disable_device(pdev);
3180 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3181 * @ioc: per adapter object
3183 * Return: 0 for success, non-zero for failure.
3186 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3188 struct pci_dev *pdev = ioc->pdev;
3189 u32 memap_sz;
3190 u32 pio_sz;
3191 int i, r = 0;
3192 u64 pio_chip = 0;
3193 phys_addr_t chip_phys = 0;
3194 struct adapter_reply_queue *reply_q;
3196 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3198 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3199 if (pci_enable_device_mem(pdev)) {
3200 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3201 ioc->bars = 0;
3202 return -ENODEV;
3206 if (pci_request_selected_regions(pdev, ioc->bars,
3207 ioc->driver_name)) {
3208 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3209 ioc->bars = 0;
3210 r = -ENODEV;
3211 goto out_fail;
3214 /* AER (Advanced Error Reporting) hooks */
3215 pci_enable_pcie_error_reporting(pdev);
3217 pci_set_master(pdev);
3220 if (_base_config_dma_addressing(ioc, pdev) != 0) {
3221 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3222 r = -ENODEV;
3223 goto out_fail;
3226 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3227 (!memap_sz || !pio_sz); i++) {
3228 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3229 if (pio_sz)
3230 continue;
3231 pio_chip = (u64)pci_resource_start(pdev, i);
3232 pio_sz = pci_resource_len(pdev, i);
3233 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3234 if (memap_sz)
3235 continue;
3236 ioc->chip_phys = pci_resource_start(pdev, i);
3237 chip_phys = ioc->chip_phys;
3238 memap_sz = pci_resource_len(pdev, i);
3239 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3243 if (ioc->chip == NULL) {
3244 ioc_err(ioc, "unable to map adapter memory! or resource not found\n");
3245 r = -EINVAL;
3246 goto out_fail;
3249 _base_mask_interrupts(ioc);
3251 r = _base_get_ioc_facts(ioc);
3252 if (r)
3253 goto out_fail;
3255 if (!ioc->rdpq_array_enable_assigned) {
3256 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3257 ioc->rdpq_array_enable_assigned = 1;
3260 r = _base_enable_msix(ioc);
3261 if (r)
3262 goto out_fail;
3264 if (!ioc->is_driver_loading)
3265 _base_init_irqpolls(ioc);
3266 /* Use the Combined reply queue feature only for SAS3 C0 & higher
3267 * revision HBAs and also only when reply queue count is greater than 8
3269 if (ioc->combined_reply_queue) {
3270 /* Determine the Supplemental Reply Post Host Index Registers
3271 * Addresse. Supplemental Reply Post Host Index Registers
3272 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3273 * each register is at offset bytes of
3274 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3276 ioc->replyPostRegisterIndex = kcalloc(
3277 ioc->combined_reply_index_count,
3278 sizeof(resource_size_t *), GFP_KERNEL);
3279 if (!ioc->replyPostRegisterIndex) {
3280 dfailprintk(ioc,
3281 ioc_warn(ioc, "allocation for reply Post Register Index failed!!!\n"));
3282 r = -ENOMEM;
3283 goto out_fail;
3286 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3287 ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3288 ((u8 __force *)&ioc->chip->Doorbell +
3289 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3290 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3294 if (ioc->is_warpdrive) {
3295 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3296 &ioc->chip->ReplyPostHostIndex;
3298 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3299 ioc->reply_post_host_index[i] =
3300 (resource_size_t __iomem *)
3301 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3302 * 4)));
3305 list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3306 pr_info("%s: %s enabled: IRQ %d\n",
3307 reply_q->name,
3308 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3309 pci_irq_vector(ioc->pdev, reply_q->msix_index));
3311 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3312 &chip_phys, ioc->chip, memap_sz);
3313 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3314 (unsigned long long)pio_chip, pio_sz);
3316 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3317 pci_save_state(pdev);
3318 return 0;
3320 out_fail:
3321 mpt3sas_base_unmap_resources(ioc);
3322 return r;
3326 * mpt3sas_base_get_msg_frame - obtain request mf pointer
3327 * @ioc: per adapter object
3328 * @smid: system request message index(smid zero is invalid)
3330 * Return: virt pointer to message frame.
3332 void *
3333 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3335 return (void *)(ioc->request + (smid * ioc->request_sz));
3339 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3340 * @ioc: per adapter object
3341 * @smid: system request message index
3343 * Return: virt pointer to sense buffer.
3345 void *
3346 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3348 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3352 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3353 * @ioc: per adapter object
3354 * @smid: system request message index
3356 * Return: phys pointer to the low 32bit address of the sense buffer.
3358 __le32
3359 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3361 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3362 SCSI_SENSE_BUFFERSIZE));
3366 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3367 * @ioc: per adapter object
3368 * @smid: system request message index
3370 * Return: virt pointer to a PCIe SGL.
3372 void *
3373 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3375 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3379 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3380 * @ioc: per adapter object
3381 * @smid: system request message index
3383 * Return: phys pointer to the address of the PCIe buffer.
3385 dma_addr_t
3386 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3388 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3392 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3393 * @ioc: per adapter object
3394 * @phys_addr: lower 32 physical addr of the reply
3396 * Converts 32bit lower physical addr into a virt address.
3398 void *
3399 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3401 if (!phys_addr)
3402 return NULL;
3403 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3407 * _base_get_msix_index - get the msix index
3408 * @ioc: per adapter object
3409 * @scmd: scsi_cmnd object
3411 * returns msix index of general reply queues,
3412 * i.e. reply queue on which IO request's reply
3413 * should be posted by the HBA firmware.
3415 static inline u8
3416 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3417 struct scsi_cmnd *scmd)
3419 /* Enables reply_queue load balancing */
3420 if (ioc->msix_load_balance)
3421 return ioc->reply_queue_count ?
3422 base_mod64(atomic64_add_return(1,
3423 &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3425 return ioc->cpu_msix_table[raw_smp_processor_id()];
3429 * _base_get_high_iops_msix_index - get the msix index of
3430 * high iops queues
3431 * @ioc: per adapter object
3432 * @scmd: scsi_cmnd object
3434 * Returns: msix index of high iops reply queues.
3435 * i.e. high iops reply queue on which IO request's
3436 * reply should be posted by the HBA firmware.
3438 static inline u8
3439 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3440 struct scsi_cmnd *scmd)
3443 * Round robin the IO interrupts among the high iops
3444 * reply queues in terms of batch count 16 when outstanding
3445 * IOs on the target device is >=8.
3447 if (atomic_read(&scmd->device->device_busy) >
3448 MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3449 return base_mod64((
3450 atomic64_add_return(1, &ioc->high_iops_outstanding) /
3451 MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3452 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3454 return _base_get_msix_index(ioc, scmd);
3458 * mpt3sas_base_get_smid - obtain a free smid from internal queue
3459 * @ioc: per adapter object
3460 * @cb_idx: callback index
3462 * Return: smid (zero is invalid)
3465 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3467 unsigned long flags;
3468 struct request_tracker *request;
3469 u16 smid;
3471 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3472 if (list_empty(&ioc->internal_free_list)) {
3473 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3474 ioc_err(ioc, "%s: smid not available\n", __func__);
3475 return 0;
3478 request = list_entry(ioc->internal_free_list.next,
3479 struct request_tracker, tracker_list);
3480 request->cb_idx = cb_idx;
3481 smid = request->smid;
3482 list_del(&request->tracker_list);
3483 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3484 return smid;
3488 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3489 * @ioc: per adapter object
3490 * @cb_idx: callback index
3491 * @scmd: pointer to scsi command object
3493 * Return: smid (zero is invalid)
3496 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3497 struct scsi_cmnd *scmd)
3499 struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3500 unsigned int tag = scmd->request->tag;
3501 u16 smid;
3503 smid = tag + 1;
3504 request->cb_idx = cb_idx;
3505 request->smid = smid;
3506 request->scmd = scmd;
3507 INIT_LIST_HEAD(&request->chain_list);
3508 return smid;
3512 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3513 * @ioc: per adapter object
3514 * @cb_idx: callback index
3516 * Return: smid (zero is invalid)
3519 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3521 unsigned long flags;
3522 struct request_tracker *request;
3523 u16 smid;
3525 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3526 if (list_empty(&ioc->hpr_free_list)) {
3527 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3528 return 0;
3531 request = list_entry(ioc->hpr_free_list.next,
3532 struct request_tracker, tracker_list);
3533 request->cb_idx = cb_idx;
3534 smid = request->smid;
3535 list_del(&request->tracker_list);
3536 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3537 return smid;
3540 static void
3541 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3544 * See _wait_for_commands_to_complete() call with regards to this code.
3546 if (ioc->shost_recovery && ioc->pending_io_count) {
3547 ioc->pending_io_count = scsi_host_busy(ioc->shost);
3548 if (ioc->pending_io_count == 0)
3549 wake_up(&ioc->reset_wq);
3553 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3554 struct scsiio_tracker *st)
3556 if (WARN_ON(st->smid == 0))
3557 return;
3558 st->cb_idx = 0xFF;
3559 st->direct_io = 0;
3560 st->scmd = NULL;
3561 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3562 st->smid = 0;
3566 * mpt3sas_base_free_smid - put smid back on free_list
3567 * @ioc: per adapter object
3568 * @smid: system request message index
3570 void
3571 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3573 unsigned long flags;
3574 int i;
3576 if (smid < ioc->hi_priority_smid) {
3577 struct scsiio_tracker *st;
3578 void *request;
3580 st = _get_st_from_smid(ioc, smid);
3581 if (!st) {
3582 _base_recovery_check(ioc);
3583 return;
3586 /* Clear MPI request frame */
3587 request = mpt3sas_base_get_msg_frame(ioc, smid);
3588 memset(request, 0, ioc->request_sz);
3590 mpt3sas_base_clear_st(ioc, st);
3591 _base_recovery_check(ioc);
3592 return;
3595 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3596 if (smid < ioc->internal_smid) {
3597 /* hi-priority */
3598 i = smid - ioc->hi_priority_smid;
3599 ioc->hpr_lookup[i].cb_idx = 0xFF;
3600 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3601 } else if (smid <= ioc->hba_queue_depth) {
3602 /* internal queue */
3603 i = smid - ioc->internal_smid;
3604 ioc->internal_lookup[i].cb_idx = 0xFF;
3605 list_add(&ioc->internal_lookup[i].tracker_list,
3606 &ioc->internal_free_list);
3608 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3612 * _base_mpi_ep_writeq - 32 bit write to MMIO
3613 * @b: data payload
3614 * @addr: address in MMIO space
3615 * @writeq_lock: spin lock
3617 * This special handling for MPI EP to take care of 32 bit
3618 * environment where its not quarenteed to send the entire word
3619 * in one transfer.
3621 static inline void
3622 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3623 spinlock_t *writeq_lock)
3625 unsigned long flags;
3627 spin_lock_irqsave(writeq_lock, flags);
3628 __raw_writel((u32)(b), addr);
3629 __raw_writel((u32)(b >> 32), (addr + 4));
3630 spin_unlock_irqrestore(writeq_lock, flags);
3634 * _base_writeq - 64 bit write to MMIO
3635 * @b: data payload
3636 * @addr: address in MMIO space
3637 * @writeq_lock: spin lock
3639 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3640 * care of 32 bit environment where its not quarenteed to send the entire word
3641 * in one transfer.
3643 #if defined(writeq) && defined(CONFIG_64BIT)
3644 static inline void
3645 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3647 wmb();
3648 __raw_writeq(b, addr);
3649 barrier();
3651 #else
3652 static inline void
3653 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3655 _base_mpi_ep_writeq(b, addr, writeq_lock);
3657 #endif
3660 * _base_set_and_get_msix_index - get the msix index and assign to msix_io
3661 * variable of scsi tracker
3662 * @ioc: per adapter object
3663 * @smid: system request message index
3665 * returns msix index.
3667 static u8
3668 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3670 struct scsiio_tracker *st = NULL;
3672 if (smid < ioc->hi_priority_smid)
3673 st = _get_st_from_smid(ioc, smid);
3675 if (st == NULL)
3676 return _base_get_msix_index(ioc, NULL);
3678 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
3679 return st->msix_io;
3683 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3684 * @ioc: per adapter object
3685 * @smid: system request message index
3686 * @handle: device handle
3688 static void
3689 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
3690 u16 smid, u16 handle)
3692 Mpi2RequestDescriptorUnion_t descriptor;
3693 u64 *request = (u64 *)&descriptor;
3694 void *mpi_req_iomem;
3695 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3697 _clone_sg_entries(ioc, (void *) mfp, smid);
3698 mpi_req_iomem = (void __force *)ioc->chip +
3699 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3700 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3701 ioc->request_sz);
3702 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3703 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3704 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3705 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3706 descriptor.SCSIIO.LMID = 0;
3707 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3708 &ioc->scsi_lookup_lock);
3712 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3713 * @ioc: per adapter object
3714 * @smid: system request message index
3715 * @handle: device handle
3717 static void
3718 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3720 Mpi2RequestDescriptorUnion_t descriptor;
3721 u64 *request = (u64 *)&descriptor;
3724 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3725 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3726 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3727 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3728 descriptor.SCSIIO.LMID = 0;
3729 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3730 &ioc->scsi_lookup_lock);
3734 * _base_put_smid_fast_path - send fast path request to firmware
3735 * @ioc: per adapter object
3736 * @smid: system request message index
3737 * @handle: device handle
3739 static void
3740 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3741 u16 handle)
3743 Mpi2RequestDescriptorUnion_t descriptor;
3744 u64 *request = (u64 *)&descriptor;
3746 descriptor.SCSIIO.RequestFlags =
3747 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3748 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3749 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3750 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3751 descriptor.SCSIIO.LMID = 0;
3752 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3753 &ioc->scsi_lookup_lock);
3757 * _base_put_smid_hi_priority - send Task Management request to firmware
3758 * @ioc: per adapter object
3759 * @smid: system request message index
3760 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3762 static void
3763 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3764 u16 msix_task)
3766 Mpi2RequestDescriptorUnion_t descriptor;
3767 void *mpi_req_iomem;
3768 u64 *request;
3770 if (ioc->is_mcpu_endpoint) {
3771 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3773 /* TBD 256 is offset within sys register. */
3774 mpi_req_iomem = (void __force *)ioc->chip
3775 + MPI_FRAME_START_OFFSET
3776 + (smid * ioc->request_sz);
3777 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3778 ioc->request_sz);
3781 request = (u64 *)&descriptor;
3783 descriptor.HighPriority.RequestFlags =
3784 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3785 descriptor.HighPriority.MSIxIndex = msix_task;
3786 descriptor.HighPriority.SMID = cpu_to_le16(smid);
3787 descriptor.HighPriority.LMID = 0;
3788 descriptor.HighPriority.Reserved1 = 0;
3789 if (ioc->is_mcpu_endpoint)
3790 _base_mpi_ep_writeq(*request,
3791 &ioc->chip->RequestDescriptorPostLow,
3792 &ioc->scsi_lookup_lock);
3793 else
3794 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3795 &ioc->scsi_lookup_lock);
3799 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3800 * firmware
3801 * @ioc: per adapter object
3802 * @smid: system request message index
3804 void
3805 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3807 Mpi2RequestDescriptorUnion_t descriptor;
3808 u64 *request = (u64 *)&descriptor;
3810 descriptor.Default.RequestFlags =
3811 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3812 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3813 descriptor.Default.SMID = cpu_to_le16(smid);
3814 descriptor.Default.LMID = 0;
3815 descriptor.Default.DescriptorTypeDependent = 0;
3816 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3817 &ioc->scsi_lookup_lock);
3821 * _base_put_smid_default - Default, primarily used for config pages
3822 * @ioc: per adapter object
3823 * @smid: system request message index
3825 static void
3826 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3828 Mpi2RequestDescriptorUnion_t descriptor;
3829 void *mpi_req_iomem;
3830 u64 *request;
3832 if (ioc->is_mcpu_endpoint) {
3833 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3835 _clone_sg_entries(ioc, (void *) mfp, smid);
3836 /* TBD 256 is offset within sys register */
3837 mpi_req_iomem = (void __force *)ioc->chip +
3838 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3839 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3840 ioc->request_sz);
3842 request = (u64 *)&descriptor;
3843 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3844 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3845 descriptor.Default.SMID = cpu_to_le16(smid);
3846 descriptor.Default.LMID = 0;
3847 descriptor.Default.DescriptorTypeDependent = 0;
3848 if (ioc->is_mcpu_endpoint)
3849 _base_mpi_ep_writeq(*request,
3850 &ioc->chip->RequestDescriptorPostLow,
3851 &ioc->scsi_lookup_lock);
3852 else
3853 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3854 &ioc->scsi_lookup_lock);
3858 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
3859 * Atomic Request Descriptor
3860 * @ioc: per adapter object
3861 * @smid: system request message index
3862 * @handle: device handle, unused in this function, for function type match
3864 * Return nothing.
3866 static void
3867 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3868 u16 handle)
3870 Mpi26AtomicRequestDescriptor_t descriptor;
3871 u32 *request = (u32 *)&descriptor;
3873 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3874 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3875 descriptor.SMID = cpu_to_le16(smid);
3877 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
3881 * _base_put_smid_fast_path_atomic - send fast path request to firmware
3882 * using Atomic Request Descriptor
3883 * @ioc: per adapter object
3884 * @smid: system request message index
3885 * @handle: device handle, unused in this function, for function type match
3886 * Return nothing
3888 static void
3889 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3890 u16 handle)
3892 Mpi26AtomicRequestDescriptor_t descriptor;
3893 u32 *request = (u32 *)&descriptor;
3895 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3896 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3897 descriptor.SMID = cpu_to_le16(smid);
3899 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
3903 * _base_put_smid_hi_priority_atomic - send Task Management request to
3904 * firmware using Atomic Request Descriptor
3905 * @ioc: per adapter object
3906 * @smid: system request message index
3907 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
3909 * Return nothing.
3911 static void
3912 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3913 u16 msix_task)
3915 Mpi26AtomicRequestDescriptor_t descriptor;
3916 u32 *request = (u32 *)&descriptor;
3918 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3919 descriptor.MSIxIndex = msix_task;
3920 descriptor.SMID = cpu_to_le16(smid);
3922 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
3926 * _base_put_smid_default - Default, primarily used for config pages
3927 * use Atomic Request Descriptor
3928 * @ioc: per adapter object
3929 * @smid: system request message index
3931 * Return nothing.
3933 static void
3934 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3936 Mpi26AtomicRequestDescriptor_t descriptor;
3937 u32 *request = (u32 *)&descriptor;
3939 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3940 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3941 descriptor.SMID = cpu_to_le16(smid);
3943 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
3947 * _base_display_OEMs_branding - Display branding string
3948 * @ioc: per adapter object
3950 static void
3951 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
3953 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
3954 return;
3956 switch (ioc->pdev->subsystem_vendor) {
3957 case PCI_VENDOR_ID_INTEL:
3958 switch (ioc->pdev->device) {
3959 case MPI2_MFGPAGE_DEVID_SAS2008:
3960 switch (ioc->pdev->subsystem_device) {
3961 case MPT2SAS_INTEL_RMS2LL080_SSDID:
3962 ioc_info(ioc, "%s\n",
3963 MPT2SAS_INTEL_RMS2LL080_BRANDING);
3964 break;
3965 case MPT2SAS_INTEL_RMS2LL040_SSDID:
3966 ioc_info(ioc, "%s\n",
3967 MPT2SAS_INTEL_RMS2LL040_BRANDING);
3968 break;
3969 case MPT2SAS_INTEL_SSD910_SSDID:
3970 ioc_info(ioc, "%s\n",
3971 MPT2SAS_INTEL_SSD910_BRANDING);
3972 break;
3973 default:
3974 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
3975 ioc->pdev->subsystem_device);
3976 break;
3978 break;
3979 case MPI2_MFGPAGE_DEVID_SAS2308_2:
3980 switch (ioc->pdev->subsystem_device) {
3981 case MPT2SAS_INTEL_RS25GB008_SSDID:
3982 ioc_info(ioc, "%s\n",
3983 MPT2SAS_INTEL_RS25GB008_BRANDING);
3984 break;
3985 case MPT2SAS_INTEL_RMS25JB080_SSDID:
3986 ioc_info(ioc, "%s\n",
3987 MPT2SAS_INTEL_RMS25JB080_BRANDING);
3988 break;
3989 case MPT2SAS_INTEL_RMS25JB040_SSDID:
3990 ioc_info(ioc, "%s\n",
3991 MPT2SAS_INTEL_RMS25JB040_BRANDING);
3992 break;
3993 case MPT2SAS_INTEL_RMS25KB080_SSDID:
3994 ioc_info(ioc, "%s\n",
3995 MPT2SAS_INTEL_RMS25KB080_BRANDING);
3996 break;
3997 case MPT2SAS_INTEL_RMS25KB040_SSDID:
3998 ioc_info(ioc, "%s\n",
3999 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4000 break;
4001 case MPT2SAS_INTEL_RMS25LB040_SSDID:
4002 ioc_info(ioc, "%s\n",
4003 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4004 break;
4005 case MPT2SAS_INTEL_RMS25LB080_SSDID:
4006 ioc_info(ioc, "%s\n",
4007 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4008 break;
4009 default:
4010 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4011 ioc->pdev->subsystem_device);
4012 break;
4014 break;
4015 case MPI25_MFGPAGE_DEVID_SAS3008:
4016 switch (ioc->pdev->subsystem_device) {
4017 case MPT3SAS_INTEL_RMS3JC080_SSDID:
4018 ioc_info(ioc, "%s\n",
4019 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4020 break;
4022 case MPT3SAS_INTEL_RS3GC008_SSDID:
4023 ioc_info(ioc, "%s\n",
4024 MPT3SAS_INTEL_RS3GC008_BRANDING);
4025 break;
4026 case MPT3SAS_INTEL_RS3FC044_SSDID:
4027 ioc_info(ioc, "%s\n",
4028 MPT3SAS_INTEL_RS3FC044_BRANDING);
4029 break;
4030 case MPT3SAS_INTEL_RS3UC080_SSDID:
4031 ioc_info(ioc, "%s\n",
4032 MPT3SAS_INTEL_RS3UC080_BRANDING);
4033 break;
4034 default:
4035 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4036 ioc->pdev->subsystem_device);
4037 break;
4039 break;
4040 default:
4041 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4042 ioc->pdev->subsystem_device);
4043 break;
4045 break;
4046 case PCI_VENDOR_ID_DELL:
4047 switch (ioc->pdev->device) {
4048 case MPI2_MFGPAGE_DEVID_SAS2008:
4049 switch (ioc->pdev->subsystem_device) {
4050 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4051 ioc_info(ioc, "%s\n",
4052 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4053 break;
4054 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4055 ioc_info(ioc, "%s\n",
4056 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4057 break;
4058 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4059 ioc_info(ioc, "%s\n",
4060 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4061 break;
4062 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4063 ioc_info(ioc, "%s\n",
4064 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4065 break;
4066 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4067 ioc_info(ioc, "%s\n",
4068 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4069 break;
4070 case MPT2SAS_DELL_PERC_H200_SSDID:
4071 ioc_info(ioc, "%s\n",
4072 MPT2SAS_DELL_PERC_H200_BRANDING);
4073 break;
4074 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4075 ioc_info(ioc, "%s\n",
4076 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4077 break;
4078 default:
4079 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4080 ioc->pdev->subsystem_device);
4081 break;
4083 break;
4084 case MPI25_MFGPAGE_DEVID_SAS3008:
4085 switch (ioc->pdev->subsystem_device) {
4086 case MPT3SAS_DELL_12G_HBA_SSDID:
4087 ioc_info(ioc, "%s\n",
4088 MPT3SAS_DELL_12G_HBA_BRANDING);
4089 break;
4090 default:
4091 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4092 ioc->pdev->subsystem_device);
4093 break;
4095 break;
4096 default:
4097 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4098 ioc->pdev->subsystem_device);
4099 break;
4101 break;
4102 case PCI_VENDOR_ID_CISCO:
4103 switch (ioc->pdev->device) {
4104 case MPI25_MFGPAGE_DEVID_SAS3008:
4105 switch (ioc->pdev->subsystem_device) {
4106 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4107 ioc_info(ioc, "%s\n",
4108 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4109 break;
4110 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4111 ioc_info(ioc, "%s\n",
4112 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4113 break;
4114 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4115 ioc_info(ioc, "%s\n",
4116 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4117 break;
4118 default:
4119 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4120 ioc->pdev->subsystem_device);
4121 break;
4123 break;
4124 case MPI25_MFGPAGE_DEVID_SAS3108_1:
4125 switch (ioc->pdev->subsystem_device) {
4126 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4127 ioc_info(ioc, "%s\n",
4128 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4129 break;
4130 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4131 ioc_info(ioc, "%s\n",
4132 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4133 break;
4134 default:
4135 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4136 ioc->pdev->subsystem_device);
4137 break;
4139 break;
4140 default:
4141 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4142 ioc->pdev->subsystem_device);
4143 break;
4145 break;
4146 case MPT2SAS_HP_3PAR_SSVID:
4147 switch (ioc->pdev->device) {
4148 case MPI2_MFGPAGE_DEVID_SAS2004:
4149 switch (ioc->pdev->subsystem_device) {
4150 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4151 ioc_info(ioc, "%s\n",
4152 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4153 break;
4154 default:
4155 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4156 ioc->pdev->subsystem_device);
4157 break;
4159 break;
4160 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4161 switch (ioc->pdev->subsystem_device) {
4162 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4163 ioc_info(ioc, "%s\n",
4164 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4165 break;
4166 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4167 ioc_info(ioc, "%s\n",
4168 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4169 break;
4170 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4171 ioc_info(ioc, "%s\n",
4172 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4173 break;
4174 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4175 ioc_info(ioc, "%s\n",
4176 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4177 break;
4178 default:
4179 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4180 ioc->pdev->subsystem_device);
4181 break;
4183 break;
4184 default:
4185 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4186 ioc->pdev->subsystem_device);
4187 break;
4189 default:
4190 break;
4195 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4196 * version from FW Image Header.
4197 * @ioc: per adapter object
4199 * Return: 0 for success, non-zero for failure.
4201 static int
4202 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4204 Mpi2FWImageHeader_t *FWImgHdr;
4205 Mpi25FWUploadRequest_t *mpi_request;
4206 Mpi2FWUploadReply_t mpi_reply;
4207 int r = 0;
4208 void *fwpkg_data = NULL;
4209 dma_addr_t fwpkg_data_dma;
4210 u16 smid, ioc_status;
4211 size_t data_length;
4213 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4215 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4216 ioc_err(ioc, "%s: internal command already in use\n", __func__);
4217 return -EAGAIN;
4220 data_length = sizeof(Mpi2FWImageHeader_t);
4221 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4222 &fwpkg_data_dma, GFP_KERNEL);
4223 if (!fwpkg_data) {
4224 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4225 __FILE__, __LINE__, __func__);
4226 return -ENOMEM;
4229 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4230 if (!smid) {
4231 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4232 r = -EAGAIN;
4233 goto out;
4236 ioc->base_cmds.status = MPT3_CMD_PENDING;
4237 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4238 ioc->base_cmds.smid = smid;
4239 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4240 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4241 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4242 mpi_request->ImageSize = cpu_to_le32(data_length);
4243 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4244 data_length);
4245 init_completion(&ioc->base_cmds.done);
4246 ioc->put_smid_default(ioc, smid);
4247 /* Wait for 15 seconds */
4248 wait_for_completion_timeout(&ioc->base_cmds.done,
4249 FW_IMG_HDR_READ_TIMEOUT*HZ);
4250 ioc_info(ioc, "%s: complete\n", __func__);
4251 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4252 ioc_err(ioc, "%s: timeout\n", __func__);
4253 _debug_dump_mf(mpi_request,
4254 sizeof(Mpi25FWUploadRequest_t)/4);
4255 r = -ETIME;
4256 } else {
4257 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4258 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4259 memcpy(&mpi_reply, ioc->base_cmds.reply,
4260 sizeof(Mpi2FWUploadReply_t));
4261 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4262 MPI2_IOCSTATUS_MASK;
4263 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4264 FWImgHdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4265 if (FWImgHdr->PackageVersion.Word) {
4266 ioc_info(ioc, "FW Package Version (%02d.%02d.%02d.%02d)\n",
4267 FWImgHdr->PackageVersion.Struct.Major,
4268 FWImgHdr->PackageVersion.Struct.Minor,
4269 FWImgHdr->PackageVersion.Struct.Unit,
4270 FWImgHdr->PackageVersion.Struct.Dev);
4272 } else {
4273 _debug_dump_mf(&mpi_reply,
4274 sizeof(Mpi2FWUploadReply_t)/4);
4278 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4279 out:
4280 if (fwpkg_data)
4281 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4282 fwpkg_data_dma);
4283 return r;
4287 * _base_display_ioc_capabilities - Disply IOC's capabilities.
4288 * @ioc: per adapter object
4290 static void
4291 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4293 int i = 0;
4294 char desc[16];
4295 u32 iounit_pg1_flags;
4296 u32 bios_version;
4298 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4299 strncpy(desc, ioc->manu_pg0.ChipName, 16);
4300 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4301 desc,
4302 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4303 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4304 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4305 ioc->facts.FWVersion.Word & 0x000000FF,
4306 ioc->pdev->revision,
4307 (bios_version & 0xFF000000) >> 24,
4308 (bios_version & 0x00FF0000) >> 16,
4309 (bios_version & 0x0000FF00) >> 8,
4310 bios_version & 0x000000FF);
4312 _base_display_OEMs_branding(ioc);
4314 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4315 pr_info("%sNVMe", i ? "," : "");
4316 i++;
4319 ioc_info(ioc, "Protocol=(");
4321 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4322 pr_cont("Initiator");
4323 i++;
4326 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4327 pr_cont("%sTarget", i ? "," : "");
4328 i++;
4331 i = 0;
4332 pr_cont("), Capabilities=(");
4334 if (!ioc->hide_ir_msg) {
4335 if (ioc->facts.IOCCapabilities &
4336 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4337 pr_cont("Raid");
4338 i++;
4342 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4343 pr_cont("%sTLR", i ? "," : "");
4344 i++;
4347 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4348 pr_cont("%sMulticast", i ? "," : "");
4349 i++;
4352 if (ioc->facts.IOCCapabilities &
4353 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4354 pr_cont("%sBIDI Target", i ? "," : "");
4355 i++;
4358 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4359 pr_cont("%sEEDP", i ? "," : "");
4360 i++;
4363 if (ioc->facts.IOCCapabilities &
4364 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4365 pr_cont("%sSnapshot Buffer", i ? "," : "");
4366 i++;
4369 if (ioc->facts.IOCCapabilities &
4370 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4371 pr_cont("%sDiag Trace Buffer", i ? "," : "");
4372 i++;
4375 if (ioc->facts.IOCCapabilities &
4376 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4377 pr_cont("%sDiag Extended Buffer", i ? "," : "");
4378 i++;
4381 if (ioc->facts.IOCCapabilities &
4382 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4383 pr_cont("%sTask Set Full", i ? "," : "");
4384 i++;
4387 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4388 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4389 pr_cont("%sNCQ", i ? "," : "");
4390 i++;
4393 pr_cont(")\n");
4397 * mpt3sas_base_update_missing_delay - change the missing delay timers
4398 * @ioc: per adapter object
4399 * @device_missing_delay: amount of time till device is reported missing
4400 * @io_missing_delay: interval IO is returned when there is a missing device
4402 * Passed on the command line, this function will modify the device missing
4403 * delay, as well as the io missing delay. This should be called at driver
4404 * load time.
4406 void
4407 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4408 u16 device_missing_delay, u8 io_missing_delay)
4410 u16 dmd, dmd_new, dmd_orignal;
4411 u8 io_missing_delay_original;
4412 u16 sz;
4413 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4414 Mpi2ConfigReply_t mpi_reply;
4415 u8 num_phys = 0;
4416 u16 ioc_status;
4418 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4419 if (!num_phys)
4420 return;
4422 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4423 sizeof(Mpi2SasIOUnit1PhyData_t));
4424 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4425 if (!sas_iounit_pg1) {
4426 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4427 __FILE__, __LINE__, __func__);
4428 goto out;
4430 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4431 sas_iounit_pg1, sz))) {
4432 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4433 __FILE__, __LINE__, __func__);
4434 goto out;
4436 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4437 MPI2_IOCSTATUS_MASK;
4438 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4439 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4440 __FILE__, __LINE__, __func__);
4441 goto out;
4444 /* device missing delay */
4445 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4446 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4447 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4448 else
4449 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4450 dmd_orignal = dmd;
4451 if (device_missing_delay > 0x7F) {
4452 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4453 device_missing_delay;
4454 dmd = dmd / 16;
4455 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4456 } else
4457 dmd = device_missing_delay;
4458 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4460 /* io missing delay */
4461 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4462 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4464 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4465 sz)) {
4466 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4467 dmd_new = (dmd &
4468 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4469 else
4470 dmd_new =
4471 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4472 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4473 dmd_orignal, dmd_new);
4474 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4475 io_missing_delay_original,
4476 io_missing_delay);
4477 ioc->device_missing_delay = dmd_new;
4478 ioc->io_missing_delay = io_missing_delay;
4481 out:
4482 kfree(sas_iounit_pg1);
4486 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4487 * according to performance mode.
4488 * @ioc : per adapter object
4490 * Return nothing.
4492 static void
4493 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4495 Mpi2IOCPage1_t ioc_pg1;
4496 Mpi2ConfigReply_t mpi_reply;
4498 mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4499 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4501 switch (perf_mode) {
4502 case MPT_PERF_MODE_DEFAULT:
4503 case MPT_PERF_MODE_BALANCED:
4504 if (ioc->high_iops_queues) {
4505 ioc_info(ioc,
4506 "Enable interrupt coalescing only for first\t"
4507 "%d reply queues\n",
4508 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4510 * If 31st bit is zero then interrupt coalescing is
4511 * enabled for all reply descriptor post queues.
4512 * If 31st bit is set to one then user can
4513 * enable/disable interrupt coalescing on per reply
4514 * descriptor post queue group(8) basis. So to enable
4515 * interrupt coalescing only on first reply descriptor
4516 * post queue group 31st bit and zero th bit is enabled.
4518 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4519 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4520 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4521 ioc_info(ioc, "performance mode: balanced\n");
4522 return;
4524 /* Fall through */
4525 case MPT_PERF_MODE_LATENCY:
4527 * Enable interrupt coalescing on all reply queues
4528 * with timeout value 0xA
4530 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
4531 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4532 ioc_pg1.ProductSpecific = 0;
4533 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4534 ioc_info(ioc, "performance mode: latency\n");
4535 break;
4536 case MPT_PERF_MODE_IOPS:
4538 * Enable interrupt coalescing on all reply queues.
4540 ioc_info(ioc,
4541 "performance mode: iops with coalescing timeout: 0x%x\n",
4542 le32_to_cpu(ioc_pg1.CoalescingTimeout));
4543 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4544 ioc_pg1.ProductSpecific = 0;
4545 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4546 break;
4551 * _base_static_config_pages - static start of day config pages
4552 * @ioc: per adapter object
4554 static void
4555 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
4557 Mpi2ConfigReply_t mpi_reply;
4558 u32 iounit_pg1_flags;
4560 ioc->nvme_abort_timeout = 30;
4561 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
4562 if (ioc->ir_firmware)
4563 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
4564 &ioc->manu_pg10);
4567 * Ensure correct T10 PI operation if vendor left EEDPTagMode
4568 * flag unset in NVDATA.
4570 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
4571 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
4572 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4573 ioc->name);
4574 ioc->manu_pg11.EEDPTagMode &= ~0x3;
4575 ioc->manu_pg11.EEDPTagMode |= 0x1;
4576 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
4577 &ioc->manu_pg11);
4579 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
4580 ioc->tm_custom_handling = 1;
4581 else {
4582 ioc->tm_custom_handling = 0;
4583 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
4584 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
4585 else if (ioc->manu_pg11.NVMeAbortTO >
4586 NVME_TASK_ABORT_MAX_TIMEOUT)
4587 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
4588 else
4589 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
4592 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
4593 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
4594 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
4595 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
4596 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4597 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
4598 _base_display_ioc_capabilities(ioc);
4601 * Enable task_set_full handling in iounit_pg1 when the
4602 * facts capabilities indicate that its supported.
4604 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4605 if ((ioc->facts.IOCCapabilities &
4606 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
4607 iounit_pg1_flags &=
4608 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4609 else
4610 iounit_pg1_flags |=
4611 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4612 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
4613 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4615 if (ioc->iounit_pg8.NumSensors)
4616 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
4617 if (ioc->is_aero_ioc)
4618 _base_update_ioc_page1_inlinewith_perf_mode(ioc);
4622 * mpt3sas_free_enclosure_list - release memory
4623 * @ioc: per adapter object
4625 * Free memory allocated during encloure add.
4627 void
4628 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
4630 struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
4632 /* Free enclosure list */
4633 list_for_each_entry_safe(enclosure_dev,
4634 enclosure_dev_next, &ioc->enclosure_list, list) {
4635 list_del(&enclosure_dev->list);
4636 kfree(enclosure_dev);
4641 * _base_release_memory_pools - release memory
4642 * @ioc: per adapter object
4644 * Free memory allocated from _base_allocate_memory_pools.
4646 static void
4647 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4649 int i = 0;
4650 int j = 0;
4651 struct chain_tracker *ct;
4652 struct reply_post_struct *rps;
4654 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4656 if (ioc->request) {
4657 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
4658 ioc->request, ioc->request_dma);
4659 dexitprintk(ioc,
4660 ioc_info(ioc, "request_pool(0x%p): free\n",
4661 ioc->request));
4662 ioc->request = NULL;
4665 if (ioc->sense) {
4666 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4667 dma_pool_destroy(ioc->sense_dma_pool);
4668 dexitprintk(ioc,
4669 ioc_info(ioc, "sense_pool(0x%p): free\n",
4670 ioc->sense));
4671 ioc->sense = NULL;
4674 if (ioc->reply) {
4675 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
4676 dma_pool_destroy(ioc->reply_dma_pool);
4677 dexitprintk(ioc,
4678 ioc_info(ioc, "reply_pool(0x%p): free\n",
4679 ioc->reply));
4680 ioc->reply = NULL;
4683 if (ioc->reply_free) {
4684 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
4685 ioc->reply_free_dma);
4686 dma_pool_destroy(ioc->reply_free_dma_pool);
4687 dexitprintk(ioc,
4688 ioc_info(ioc, "reply_free_pool(0x%p): free\n",
4689 ioc->reply_free));
4690 ioc->reply_free = NULL;
4693 if (ioc->reply_post) {
4694 do {
4695 rps = &ioc->reply_post[i];
4696 if (rps->reply_post_free) {
4697 dma_pool_free(
4698 ioc->reply_post_free_dma_pool,
4699 rps->reply_post_free,
4700 rps->reply_post_free_dma);
4701 dexitprintk(ioc,
4702 ioc_info(ioc, "reply_post_free_pool(0x%p): free\n",
4703 rps->reply_post_free));
4704 rps->reply_post_free = NULL;
4706 } while (ioc->rdpq_array_enable &&
4707 (++i < ioc->reply_queue_count));
4708 if (ioc->reply_post_free_array &&
4709 ioc->rdpq_array_enable) {
4710 dma_pool_free(ioc->reply_post_free_array_dma_pool,
4711 ioc->reply_post_free_array,
4712 ioc->reply_post_free_array_dma);
4713 ioc->reply_post_free_array = NULL;
4715 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
4716 dma_pool_destroy(ioc->reply_post_free_dma_pool);
4717 kfree(ioc->reply_post);
4720 if (ioc->pcie_sgl_dma_pool) {
4721 for (i = 0; i < ioc->scsiio_depth; i++) {
4722 dma_pool_free(ioc->pcie_sgl_dma_pool,
4723 ioc->pcie_sg_lookup[i].pcie_sgl,
4724 ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4726 if (ioc->pcie_sgl_dma_pool)
4727 dma_pool_destroy(ioc->pcie_sgl_dma_pool);
4730 if (ioc->config_page) {
4731 dexitprintk(ioc,
4732 ioc_info(ioc, "config_page(0x%p): free\n",
4733 ioc->config_page));
4734 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
4735 ioc->config_page, ioc->config_page_dma);
4738 kfree(ioc->hpr_lookup);
4739 kfree(ioc->internal_lookup);
4740 if (ioc->chain_lookup) {
4741 for (i = 0; i < ioc->scsiio_depth; i++) {
4742 for (j = ioc->chains_per_prp_buffer;
4743 j < ioc->chains_needed_per_io; j++) {
4744 ct = &ioc->chain_lookup[i].chains_per_smid[j];
4745 if (ct && ct->chain_buffer)
4746 dma_pool_free(ioc->chain_dma_pool,
4747 ct->chain_buffer,
4748 ct->chain_buffer_dma);
4750 kfree(ioc->chain_lookup[i].chains_per_smid);
4752 dma_pool_destroy(ioc->chain_dma_pool);
4753 kfree(ioc->chain_lookup);
4754 ioc->chain_lookup = NULL;
4759 * is_MSB_are_same - checks whether all reply queues in a set are
4760 * having same upper 32bits in their base memory address.
4761 * @reply_pool_start_address: Base address of a reply queue set
4762 * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4764 * Return: 1 if reply queues in a set have a same upper 32bits in their base
4765 * memory address, else 0.
4768 static int
4769 is_MSB_are_same(long reply_pool_start_address, u32 pool_sz)
4771 long reply_pool_end_address;
4773 reply_pool_end_address = reply_pool_start_address + pool_sz;
4775 if (upper_32_bits(reply_pool_start_address) ==
4776 upper_32_bits(reply_pool_end_address))
4777 return 1;
4778 else
4779 return 0;
4783 * _base_allocate_memory_pools - allocate start of day memory pools
4784 * @ioc: per adapter object
4786 * Return: 0 success, anything else error.
4788 static int
4789 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4791 struct mpt3sas_facts *facts;
4792 u16 max_sge_elements;
4793 u16 chains_needed_per_io;
4794 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
4795 u32 retry_sz;
4796 u16 max_request_credit, nvme_blocks_needed;
4797 unsigned short sg_tablesize;
4798 u16 sge_size;
4799 int i, j;
4800 struct chain_tracker *ct;
4802 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4805 retry_sz = 0;
4806 facts = &ioc->facts;
4808 /* command line tunables for max sgl entries */
4809 if (max_sgl_entries != -1)
4810 sg_tablesize = max_sgl_entries;
4811 else {
4812 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
4813 sg_tablesize = MPT2SAS_SG_DEPTH;
4814 else
4815 sg_tablesize = MPT3SAS_SG_DEPTH;
4818 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
4819 if (reset_devices)
4820 sg_tablesize = min_t(unsigned short, sg_tablesize,
4821 MPT_KDUMP_MIN_PHYS_SEGMENTS);
4823 if (ioc->is_mcpu_endpoint)
4824 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
4825 else {
4826 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
4827 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
4828 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
4829 sg_tablesize = min_t(unsigned short, sg_tablesize,
4830 SG_MAX_SEGMENTS);
4831 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
4832 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
4834 ioc->shost->sg_tablesize = sg_tablesize;
4837 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
4838 (facts->RequestCredit / 4));
4839 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
4840 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
4841 INTERNAL_SCSIIO_CMDS_COUNT)) {
4842 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
4843 facts->RequestCredit);
4844 return -ENOMEM;
4846 ioc->internal_depth = 10;
4849 ioc->hi_priority_depth = ioc->internal_depth - (5);
4850 /* command line tunables for max controller queue depth */
4851 if (max_queue_depth != -1 && max_queue_depth != 0) {
4852 max_request_credit = min_t(u16, max_queue_depth +
4853 ioc->internal_depth, facts->RequestCredit);
4854 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
4855 max_request_credit = MAX_HBA_QUEUE_DEPTH;
4856 } else if (reset_devices)
4857 max_request_credit = min_t(u16, facts->RequestCredit,
4858 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
4859 else
4860 max_request_credit = min_t(u16, facts->RequestCredit,
4861 MAX_HBA_QUEUE_DEPTH);
4863 /* Firmware maintains additional facts->HighPriorityCredit number of
4864 * credits for HiPriprity Request messages, so hba queue depth will be
4865 * sum of max_request_credit and high priority queue depth.
4867 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
4869 /* request frame size */
4870 ioc->request_sz = facts->IOCRequestFrameSize * 4;
4872 /* reply frame size */
4873 ioc->reply_sz = facts->ReplyFrameSize * 4;
4875 /* chain segment size */
4876 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4877 if (facts->IOCMaxChainSegmentSize)
4878 ioc->chain_segment_sz =
4879 facts->IOCMaxChainSegmentSize *
4880 MAX_CHAIN_ELEMT_SZ;
4881 else
4882 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
4883 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
4884 MAX_CHAIN_ELEMT_SZ;
4885 } else
4886 ioc->chain_segment_sz = ioc->request_sz;
4888 /* calculate the max scatter element size */
4889 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
4891 retry_allocation:
4892 total_sz = 0;
4893 /* calculate number of sg elements left over in the 1st frame */
4894 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
4895 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
4896 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
4898 /* now do the same for a chain buffer */
4899 max_sge_elements = ioc->chain_segment_sz - sge_size;
4900 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
4903 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
4905 chains_needed_per_io = ((ioc->shost->sg_tablesize -
4906 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
4907 + 1;
4908 if (chains_needed_per_io > facts->MaxChainDepth) {
4909 chains_needed_per_io = facts->MaxChainDepth;
4910 ioc->shost->sg_tablesize = min_t(u16,
4911 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
4912 * chains_needed_per_io), ioc->shost->sg_tablesize);
4914 ioc->chains_needed_per_io = chains_needed_per_io;
4916 /* reply free queue sizing - taking into account for 64 FW events */
4917 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4919 /* mCPU manage single counters for simplicity */
4920 if (ioc->is_mcpu_endpoint)
4921 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
4922 else {
4923 /* calculate reply descriptor post queue depth */
4924 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
4925 ioc->reply_free_queue_depth + 1;
4926 /* align the reply post queue on the next 16 count boundary */
4927 if (ioc->reply_post_queue_depth % 16)
4928 ioc->reply_post_queue_depth += 16 -
4929 (ioc->reply_post_queue_depth % 16);
4932 if (ioc->reply_post_queue_depth >
4933 facts->MaxReplyDescriptorPostQueueDepth) {
4934 ioc->reply_post_queue_depth =
4935 facts->MaxReplyDescriptorPostQueueDepth -
4936 (facts->MaxReplyDescriptorPostQueueDepth % 16);
4937 ioc->hba_queue_depth =
4938 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
4939 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4942 dinitprintk(ioc,
4943 ioc_info(ioc, "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), chains_per_io(%d)\n",
4944 ioc->max_sges_in_main_message,
4945 ioc->max_sges_in_chain_message,
4946 ioc->shost->sg_tablesize,
4947 ioc->chains_needed_per_io));
4949 /* reply post queue, 16 byte align */
4950 reply_post_free_sz = ioc->reply_post_queue_depth *
4951 sizeof(Mpi2DefaultReplyDescriptor_t);
4953 sz = reply_post_free_sz;
4954 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
4955 sz *= ioc->reply_queue_count;
4957 ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
4958 (ioc->reply_queue_count):1,
4959 sizeof(struct reply_post_struct), GFP_KERNEL);
4961 if (!ioc->reply_post) {
4962 ioc_err(ioc, "reply_post_free pool: kcalloc failed\n");
4963 goto out;
4965 ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool",
4966 &ioc->pdev->dev, sz, 16, 0);
4967 if (!ioc->reply_post_free_dma_pool) {
4968 ioc_err(ioc, "reply_post_free pool: dma_pool_create failed\n");
4969 goto out;
4971 i = 0;
4972 do {
4973 ioc->reply_post[i].reply_post_free =
4974 dma_pool_zalloc(ioc->reply_post_free_dma_pool,
4975 GFP_KERNEL,
4976 &ioc->reply_post[i].reply_post_free_dma);
4977 if (!ioc->reply_post[i].reply_post_free) {
4978 ioc_err(ioc, "reply_post_free pool: dma_pool_alloc failed\n");
4979 goto out;
4981 dinitprintk(ioc,
4982 ioc_info(ioc, "reply post free pool (0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
4983 ioc->reply_post[i].reply_post_free,
4984 ioc->reply_post_queue_depth,
4985 8, sz / 1024));
4986 dinitprintk(ioc,
4987 ioc_info(ioc, "reply_post_free_dma = (0x%llx)\n",
4988 (u64)ioc->reply_post[i].reply_post_free_dma));
4989 total_sz += sz;
4990 } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
4992 if (ioc->dma_mask == 64) {
4993 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
4994 ioc_warn(ioc, "no suitable consistent DMA mask for %s\n",
4995 pci_name(ioc->pdev));
4996 goto out;
5000 ioc->scsiio_depth = ioc->hba_queue_depth -
5001 ioc->hi_priority_depth - ioc->internal_depth;
5003 /* set the scsi host can_queue depth
5004 * with some internal commands that could be outstanding
5006 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
5007 dinitprintk(ioc,
5008 ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
5009 ioc->shost->can_queue));
5012 /* contiguous pool for request and chains, 16 byte align, one extra "
5013 * "frame for smid=0
5015 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
5016 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
5018 /* hi-priority queue */
5019 sz += (ioc->hi_priority_depth * ioc->request_sz);
5021 /* internal queue */
5022 sz += (ioc->internal_depth * ioc->request_sz);
5024 ioc->request_dma_sz = sz;
5025 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
5026 &ioc->request_dma, GFP_KERNEL);
5027 if (!ioc->request) {
5028 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
5029 ioc->hba_queue_depth, ioc->chains_needed_per_io,
5030 ioc->request_sz, sz / 1024);
5031 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
5032 goto out;
5033 retry_sz = 64;
5034 ioc->hba_queue_depth -= retry_sz;
5035 _base_release_memory_pools(ioc);
5036 goto retry_allocation;
5039 if (retry_sz)
5040 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
5041 ioc->hba_queue_depth, ioc->chains_needed_per_io,
5042 ioc->request_sz, sz / 1024);
5044 /* hi-priority queue */
5045 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
5046 ioc->request_sz);
5047 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
5048 ioc->request_sz);
5050 /* internal queue */
5051 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
5052 ioc->request_sz);
5053 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
5054 ioc->request_sz);
5056 dinitprintk(ioc,
5057 ioc_info(ioc, "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5058 ioc->request, ioc->hba_queue_depth,
5059 ioc->request_sz,
5060 (ioc->hba_queue_depth * ioc->request_sz) / 1024));
5062 dinitprintk(ioc,
5063 ioc_info(ioc, "request pool: dma(0x%llx)\n",
5064 (unsigned long long)ioc->request_dma));
5065 total_sz += sz;
5067 dinitprintk(ioc,
5068 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
5069 ioc->request, ioc->scsiio_depth));
5071 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
5072 sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
5073 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
5074 if (!ioc->chain_lookup) {
5075 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
5076 goto out;
5079 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
5080 for (i = 0; i < ioc->scsiio_depth; i++) {
5081 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
5082 if (!ioc->chain_lookup[i].chains_per_smid) {
5083 ioc_err(ioc, "chain_lookup: kzalloc failed\n");
5084 goto out;
5088 /* initialize hi-priority queue smid's */
5089 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
5090 sizeof(struct request_tracker), GFP_KERNEL);
5091 if (!ioc->hpr_lookup) {
5092 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
5093 goto out;
5095 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
5096 dinitprintk(ioc,
5097 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
5098 ioc->hi_priority,
5099 ioc->hi_priority_depth, ioc->hi_priority_smid));
5101 /* initialize internal queue smid's */
5102 ioc->internal_lookup = kcalloc(ioc->internal_depth,
5103 sizeof(struct request_tracker), GFP_KERNEL);
5104 if (!ioc->internal_lookup) {
5105 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
5106 goto out;
5108 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
5109 dinitprintk(ioc,
5110 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
5111 ioc->internal,
5112 ioc->internal_depth, ioc->internal_smid));
5114 * The number of NVMe page sized blocks needed is:
5115 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
5116 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
5117 * that is placed in the main message frame. 8 is the size of each PRP
5118 * entry or PRP list pointer entry. 8 is subtracted from page_size
5119 * because of the PRP list pointer entry at the end of a page, so this
5120 * is not counted as a PRP entry. The 1 added page is a round up.
5122 * To avoid allocation failures due to the amount of memory that could
5123 * be required for NVMe PRP's, only each set of NVMe blocks will be
5124 * contiguous, so a new set is allocated for each possible I/O.
5126 ioc->chains_per_prp_buffer = 0;
5127 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
5128 nvme_blocks_needed =
5129 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
5130 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
5131 nvme_blocks_needed++;
5133 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
5134 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
5135 if (!ioc->pcie_sg_lookup) {
5136 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
5137 goto out;
5139 sz = nvme_blocks_needed * ioc->page_size;
5140 ioc->pcie_sgl_dma_pool =
5141 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
5142 if (!ioc->pcie_sgl_dma_pool) {
5143 ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5144 goto out;
5147 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5148 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer,
5149 ioc->chains_needed_per_io);
5151 for (i = 0; i < ioc->scsiio_depth; i++) {
5152 ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
5153 ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5154 &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5155 if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5156 ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5157 goto out;
5159 for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5160 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5161 ct->chain_buffer =
5162 ioc->pcie_sg_lookup[i].pcie_sgl +
5163 (j * ioc->chain_segment_sz);
5164 ct->chain_buffer_dma =
5165 ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5166 (j * ioc->chain_segment_sz);
5170 dinitprintk(ioc,
5171 ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5172 ioc->scsiio_depth, sz,
5173 (sz * ioc->scsiio_depth) / 1024));
5174 dinitprintk(ioc,
5175 ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n",
5176 ioc->chains_per_prp_buffer));
5177 total_sz += sz * ioc->scsiio_depth;
5180 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5181 ioc->chain_segment_sz, 16, 0);
5182 if (!ioc->chain_dma_pool) {
5183 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n");
5184 goto out;
5186 for (i = 0; i < ioc->scsiio_depth; i++) {
5187 for (j = ioc->chains_per_prp_buffer;
5188 j < ioc->chains_needed_per_io; j++) {
5189 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5190 ct->chain_buffer = dma_pool_alloc(
5191 ioc->chain_dma_pool, GFP_KERNEL,
5192 &ct->chain_buffer_dma);
5193 if (!ct->chain_buffer) {
5194 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n");
5195 _base_release_memory_pools(ioc);
5196 goto out;
5199 total_sz += ioc->chain_segment_sz;
5202 dinitprintk(ioc,
5203 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
5204 ioc->chain_depth, ioc->chain_segment_sz,
5205 (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
5207 /* sense buffers, 4 byte align */
5208 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
5209 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5210 4, 0);
5211 if (!ioc->sense_dma_pool) {
5212 ioc_err(ioc, "sense pool: dma_pool_create failed\n");
5213 goto out;
5215 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5216 &ioc->sense_dma);
5217 if (!ioc->sense) {
5218 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n");
5219 goto out;
5221 /* sense buffer requires to be in same 4 gb region.
5222 * Below function will check the same.
5223 * In case of failure, new pci pool will be created with updated
5224 * alignment. Older allocation and pool will be destroyed.
5225 * Alignment will be used such a way that next allocation if
5226 * success, will always meet same 4gb region requirement.
5227 * Actual requirement is not alignment, but we need start and end of
5228 * DMA address must have same upper 32 bit address.
5230 if (!is_MSB_are_same((long)ioc->sense, sz)) {
5231 //Release Sense pool & Reallocate
5232 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5233 dma_pool_destroy(ioc->sense_dma_pool);
5234 ioc->sense = NULL;
5236 ioc->sense_dma_pool =
5237 dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5238 roundup_pow_of_two(sz), 0);
5239 if (!ioc->sense_dma_pool) {
5240 ioc_err(ioc, "sense pool: pci_pool_create failed\n");
5241 goto out;
5243 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5244 &ioc->sense_dma);
5245 if (!ioc->sense) {
5246 ioc_err(ioc, "sense pool: pci_pool_alloc failed\n");
5247 goto out;
5250 dinitprintk(ioc,
5251 ioc_info(ioc, "sense pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5252 ioc->sense, ioc->scsiio_depth,
5253 SCSI_SENSE_BUFFERSIZE, sz / 1024));
5254 dinitprintk(ioc,
5255 ioc_info(ioc, "sense_dma(0x%llx)\n",
5256 (unsigned long long)ioc->sense_dma));
5257 total_sz += sz;
5259 /* reply pool, 4 byte align */
5260 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
5261 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
5262 4, 0);
5263 if (!ioc->reply_dma_pool) {
5264 ioc_err(ioc, "reply pool: dma_pool_create failed\n");
5265 goto out;
5267 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5268 &ioc->reply_dma);
5269 if (!ioc->reply) {
5270 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n");
5271 goto out;
5273 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5274 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5275 dinitprintk(ioc,
5276 ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5277 ioc->reply, ioc->reply_free_queue_depth,
5278 ioc->reply_sz, sz / 1024));
5279 dinitprintk(ioc,
5280 ioc_info(ioc, "reply_dma(0x%llx)\n",
5281 (unsigned long long)ioc->reply_dma));
5282 total_sz += sz;
5284 /* reply free queue, 16 byte align */
5285 sz = ioc->reply_free_queue_depth * 4;
5286 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
5287 &ioc->pdev->dev, sz, 16, 0);
5288 if (!ioc->reply_free_dma_pool) {
5289 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n");
5290 goto out;
5292 ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL,
5293 &ioc->reply_free_dma);
5294 if (!ioc->reply_free) {
5295 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n");
5296 goto out;
5298 dinitprintk(ioc,
5299 ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5300 ioc->reply_free, ioc->reply_free_queue_depth,
5301 4, sz / 1024));
5302 dinitprintk(ioc,
5303 ioc_info(ioc, "reply_free_dma (0x%llx)\n",
5304 (unsigned long long)ioc->reply_free_dma));
5305 total_sz += sz;
5307 if (ioc->rdpq_array_enable) {
5308 reply_post_free_array_sz = ioc->reply_queue_count *
5309 sizeof(Mpi2IOCInitRDPQArrayEntry);
5310 ioc->reply_post_free_array_dma_pool =
5311 dma_pool_create("reply_post_free_array pool",
5312 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5313 if (!ioc->reply_post_free_array_dma_pool) {
5314 dinitprintk(ioc,
5315 ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n"));
5316 goto out;
5318 ioc->reply_post_free_array =
5319 dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
5320 GFP_KERNEL, &ioc->reply_post_free_array_dma);
5321 if (!ioc->reply_post_free_array) {
5322 dinitprintk(ioc,
5323 ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n"));
5324 goto out;
5327 ioc->config_page_sz = 512;
5328 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
5329 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
5330 if (!ioc->config_page) {
5331 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
5332 goto out;
5334 dinitprintk(ioc,
5335 ioc_info(ioc, "config page(0x%p): size(%d)\n",
5336 ioc->config_page, ioc->config_page_sz));
5337 dinitprintk(ioc,
5338 ioc_info(ioc, "config_page_dma(0x%llx)\n",
5339 (unsigned long long)ioc->config_page_dma));
5340 total_sz += ioc->config_page_sz;
5342 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
5343 total_sz / 1024);
5344 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
5345 ioc->shost->can_queue, facts->RequestCredit);
5346 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
5347 ioc->shost->sg_tablesize);
5348 return 0;
5350 out:
5351 return -ENOMEM;
5355 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
5356 * @ioc: Pointer to MPT_ADAPTER structure
5357 * @cooked: Request raw or cooked IOC state
5359 * Return: all IOC Doorbell register bits if cooked==0, else just the
5360 * Doorbell bits in MPI_IOC_STATE_MASK.
5363 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
5365 u32 s, sc;
5367 s = ioc->base_readl(&ioc->chip->Doorbell);
5368 sc = s & MPI2_IOC_STATE_MASK;
5369 return cooked ? sc : s;
5373 * _base_wait_on_iocstate - waiting on a particular ioc state
5374 * @ioc: ?
5375 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
5376 * @timeout: timeout in second
5378 * Return: 0 for success, non-zero for failure.
5380 static int
5381 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
5383 u32 count, cntdn;
5384 u32 current_state;
5386 count = 0;
5387 cntdn = 1000 * timeout;
5388 do {
5389 current_state = mpt3sas_base_get_iocstate(ioc, 1);
5390 if (current_state == ioc_state)
5391 return 0;
5392 if (count && current_state == MPI2_IOC_STATE_FAULT)
5393 break;
5395 usleep_range(1000, 1500);
5396 count++;
5397 } while (--cntdn);
5399 return current_state;
5403 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
5404 * a write to the doorbell)
5405 * @ioc: per adapter object
5407 * Return: 0 for success, non-zero for failure.
5409 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
5411 static int
5412 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
5414 static int
5415 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5417 u32 cntdn, count;
5418 u32 int_status;
5420 count = 0;
5421 cntdn = 1000 * timeout;
5422 do {
5423 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5424 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5425 dhsprintk(ioc,
5426 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5427 __func__, count, timeout));
5428 return 0;
5431 usleep_range(1000, 1500);
5432 count++;
5433 } while (--cntdn);
5435 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5436 __func__, count, int_status);
5437 return -EFAULT;
5440 static int
5441 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5443 u32 cntdn, count;
5444 u32 int_status;
5446 count = 0;
5447 cntdn = 2000 * timeout;
5448 do {
5449 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5450 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5451 dhsprintk(ioc,
5452 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5453 __func__, count, timeout));
5454 return 0;
5457 udelay(500);
5458 count++;
5459 } while (--cntdn);
5461 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5462 __func__, count, int_status);
5463 return -EFAULT;
5468 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
5469 * @ioc: per adapter object
5470 * @timeout: timeout in second
5472 * Return: 0 for success, non-zero for failure.
5474 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
5475 * doorbell.
5477 static int
5478 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
5480 u32 cntdn, count;
5481 u32 int_status;
5482 u32 doorbell;
5484 count = 0;
5485 cntdn = 1000 * timeout;
5486 do {
5487 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5488 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
5489 dhsprintk(ioc,
5490 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5491 __func__, count, timeout));
5492 return 0;
5493 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5494 doorbell = ioc->base_readl(&ioc->chip->Doorbell);
5495 if ((doorbell & MPI2_IOC_STATE_MASK) ==
5496 MPI2_IOC_STATE_FAULT) {
5497 mpt3sas_base_fault_info(ioc , doorbell);
5498 return -EFAULT;
5500 } else if (int_status == 0xFFFFFFFF)
5501 goto out;
5503 usleep_range(1000, 1500);
5504 count++;
5505 } while (--cntdn);
5507 out:
5508 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5509 __func__, count, int_status);
5510 return -EFAULT;
5514 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5515 * @ioc: per adapter object
5516 * @timeout: timeout in second
5518 * Return: 0 for success, non-zero for failure.
5520 static int
5521 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
5523 u32 cntdn, count;
5524 u32 doorbell_reg;
5526 count = 0;
5527 cntdn = 1000 * timeout;
5528 do {
5529 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
5530 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
5531 dhsprintk(ioc,
5532 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5533 __func__, count, timeout));
5534 return 0;
5537 usleep_range(1000, 1500);
5538 count++;
5539 } while (--cntdn);
5541 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5542 __func__, count, doorbell_reg);
5543 return -EFAULT;
5547 * _base_send_ioc_reset - send doorbell reset
5548 * @ioc: per adapter object
5549 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5550 * @timeout: timeout in second
5552 * Return: 0 for success, non-zero for failure.
5554 static int
5555 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
5557 u32 ioc_state;
5558 int r = 0;
5560 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
5561 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
5562 return -EFAULT;
5565 if (!(ioc->facts.IOCCapabilities &
5566 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
5567 return -EFAULT;
5569 ioc_info(ioc, "sending message unit reset !!\n");
5571 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
5572 &ioc->chip->Doorbell);
5573 if ((_base_wait_for_doorbell_ack(ioc, 15))) {
5574 r = -EFAULT;
5575 goto out;
5577 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5578 if (ioc_state) {
5579 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
5580 __func__, ioc_state);
5581 r = -EFAULT;
5582 goto out;
5584 out:
5585 ioc_info(ioc, "message unit reset: %s\n",
5586 r == 0 ? "SUCCESS" : "FAILED");
5587 return r;
5591 * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
5592 * @ioc: per adapter object
5593 * @wait_count: timeout in seconds
5595 * Return: Waits up to timeout seconds for the IOC to
5596 * become operational. Returns 0 if IOC is present
5597 * and operational; otherwise returns -EFAULT.
5601 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
5603 int wait_state_count = 0;
5604 u32 ioc_state;
5606 do {
5607 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5608 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
5609 break;
5610 ssleep(1);
5611 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
5612 __func__, ++wait_state_count);
5613 } while (--timeout);
5614 if (!timeout) {
5615 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
5616 return -EFAULT;
5618 if (wait_state_count)
5619 ioc_info(ioc, "ioc is operational\n");
5620 return 0;
5624 * _base_handshake_req_reply_wait - send request thru doorbell interface
5625 * @ioc: per adapter object
5626 * @request_bytes: request length
5627 * @request: pointer having request payload
5628 * @reply_bytes: reply length
5629 * @reply: pointer to reply payload
5630 * @timeout: timeout in second
5632 * Return: 0 for success, non-zero for failure.
5634 static int
5635 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
5636 u32 *request, int reply_bytes, u16 *reply, int timeout)
5638 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
5639 int i;
5640 u8 failed;
5641 __le32 *mfp;
5643 /* make sure doorbell is not in use */
5644 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
5645 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
5646 return -EFAULT;
5649 /* clear pending doorbell interrupts from previous state changes */
5650 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
5651 MPI2_HIS_IOC2SYS_DB_STATUS)
5652 writel(0, &ioc->chip->HostInterruptStatus);
5654 /* send message to ioc */
5655 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
5656 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
5657 &ioc->chip->Doorbell);
5659 if ((_base_spin_on_doorbell_int(ioc, 5))) {
5660 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5661 __LINE__);
5662 return -EFAULT;
5664 writel(0, &ioc->chip->HostInterruptStatus);
5666 if ((_base_wait_for_doorbell_ack(ioc, 5))) {
5667 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
5668 __LINE__);
5669 return -EFAULT;
5672 /* send message 32-bits at a time */
5673 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
5674 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
5675 if ((_base_wait_for_doorbell_ack(ioc, 5)))
5676 failed = 1;
5679 if (failed) {
5680 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
5681 __LINE__);
5682 return -EFAULT;
5685 /* now wait for the reply */
5686 if ((_base_wait_for_doorbell_int(ioc, timeout))) {
5687 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5688 __LINE__);
5689 return -EFAULT;
5692 /* read the first two 16-bits, it gives the total length of the reply */
5693 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5694 & MPI2_DOORBELL_DATA_MASK);
5695 writel(0, &ioc->chip->HostInterruptStatus);
5696 if ((_base_wait_for_doorbell_int(ioc, 5))) {
5697 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5698 __LINE__);
5699 return -EFAULT;
5701 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5702 & MPI2_DOORBELL_DATA_MASK);
5703 writel(0, &ioc->chip->HostInterruptStatus);
5705 for (i = 2; i < default_reply->MsgLength * 2; i++) {
5706 if ((_base_wait_for_doorbell_int(ioc, 5))) {
5707 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5708 __LINE__);
5709 return -EFAULT;
5711 if (i >= reply_bytes/2) /* overflow case */
5712 ioc->base_readl(&ioc->chip->Doorbell);
5713 else
5714 reply[i] = le16_to_cpu(
5715 ioc->base_readl(&ioc->chip->Doorbell)
5716 & MPI2_DOORBELL_DATA_MASK);
5717 writel(0, &ioc->chip->HostInterruptStatus);
5720 _base_wait_for_doorbell_int(ioc, 5);
5721 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
5722 dhsprintk(ioc,
5723 ioc_info(ioc, "doorbell is in use (line=%d)\n",
5724 __LINE__));
5726 writel(0, &ioc->chip->HostInterruptStatus);
5728 if (ioc->logging_level & MPT_DEBUG_INIT) {
5729 mfp = (__le32 *)reply;
5730 pr_info("\toffset:data\n");
5731 for (i = 0; i < reply_bytes/4; i++)
5732 pr_info("\t[0x%02x]:%08x\n", i*4,
5733 le32_to_cpu(mfp[i]));
5735 return 0;
5739 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
5740 * @ioc: per adapter object
5741 * @mpi_reply: the reply payload from FW
5742 * @mpi_request: the request payload sent to FW
5744 * The SAS IO Unit Control Request message allows the host to perform low-level
5745 * operations, such as resets on the PHYs of the IO Unit, also allows the host
5746 * to obtain the IOC assigned device handles for a device if it has other
5747 * identifying information about the device, in addition allows the host to
5748 * remove IOC resources associated with the device.
5750 * Return: 0 for success, non-zero for failure.
5753 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
5754 Mpi2SasIoUnitControlReply_t *mpi_reply,
5755 Mpi2SasIoUnitControlRequest_t *mpi_request)
5757 u16 smid;
5758 u8 issue_reset = 0;
5759 int rc;
5760 void *request;
5762 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5764 mutex_lock(&ioc->base_cmds.mutex);
5766 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5767 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
5768 rc = -EAGAIN;
5769 goto out;
5772 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
5773 if (rc)
5774 goto out;
5776 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5777 if (!smid) {
5778 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
5779 rc = -EAGAIN;
5780 goto out;
5783 rc = 0;
5784 ioc->base_cmds.status = MPT3_CMD_PENDING;
5785 request = mpt3sas_base_get_msg_frame(ioc, smid);
5786 ioc->base_cmds.smid = smid;
5787 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
5788 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5789 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
5790 ioc->ioc_link_reset_in_progress = 1;
5791 init_completion(&ioc->base_cmds.done);
5792 ioc->put_smid_default(ioc, smid);
5793 wait_for_completion_timeout(&ioc->base_cmds.done,
5794 msecs_to_jiffies(10000));
5795 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5796 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
5797 ioc->ioc_link_reset_in_progress)
5798 ioc->ioc_link_reset_in_progress = 0;
5799 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5800 issue_reset =
5801 mpt3sas_base_check_cmd_timeout(ioc,
5802 ioc->base_cmds.status, mpi_request,
5803 sizeof(Mpi2SasIoUnitControlRequest_t)/4);
5804 goto issue_host_reset;
5806 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
5807 memcpy(mpi_reply, ioc->base_cmds.reply,
5808 sizeof(Mpi2SasIoUnitControlReply_t));
5809 else
5810 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
5811 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5812 goto out;
5814 issue_host_reset:
5815 if (issue_reset)
5816 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
5817 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5818 rc = -EFAULT;
5819 out:
5820 mutex_unlock(&ioc->base_cmds.mutex);
5821 return rc;
5825 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
5826 * @ioc: per adapter object
5827 * @mpi_reply: the reply payload from FW
5828 * @mpi_request: the request payload sent to FW
5830 * The SCSI Enclosure Processor request message causes the IOC to
5831 * communicate with SES devices to control LED status signals.
5833 * Return: 0 for success, non-zero for failure.
5836 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
5837 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
5839 u16 smid;
5840 u8 issue_reset = 0;
5841 int rc;
5842 void *request;
5844 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5846 mutex_lock(&ioc->base_cmds.mutex);
5848 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5849 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
5850 rc = -EAGAIN;
5851 goto out;
5854 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
5855 if (rc)
5856 goto out;
5858 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5859 if (!smid) {
5860 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
5861 rc = -EAGAIN;
5862 goto out;
5865 rc = 0;
5866 ioc->base_cmds.status = MPT3_CMD_PENDING;
5867 request = mpt3sas_base_get_msg_frame(ioc, smid);
5868 ioc->base_cmds.smid = smid;
5869 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
5870 init_completion(&ioc->base_cmds.done);
5871 ioc->put_smid_default(ioc, smid);
5872 wait_for_completion_timeout(&ioc->base_cmds.done,
5873 msecs_to_jiffies(10000));
5874 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5875 issue_reset =
5876 mpt3sas_base_check_cmd_timeout(ioc,
5877 ioc->base_cmds.status, mpi_request,
5878 sizeof(Mpi2SepRequest_t)/4);
5879 goto issue_host_reset;
5881 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
5882 memcpy(mpi_reply, ioc->base_cmds.reply,
5883 sizeof(Mpi2SepReply_t));
5884 else
5885 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
5886 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5887 goto out;
5889 issue_host_reset:
5890 if (issue_reset)
5891 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
5892 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5893 rc = -EFAULT;
5894 out:
5895 mutex_unlock(&ioc->base_cmds.mutex);
5896 return rc;
5900 * _base_get_port_facts - obtain port facts reply and save in ioc
5901 * @ioc: per adapter object
5902 * @port: ?
5904 * Return: 0 for success, non-zero for failure.
5906 static int
5907 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
5909 Mpi2PortFactsRequest_t mpi_request;
5910 Mpi2PortFactsReply_t mpi_reply;
5911 struct mpt3sas_port_facts *pfacts;
5912 int mpi_reply_sz, mpi_request_sz, r;
5914 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5916 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
5917 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
5918 memset(&mpi_request, 0, mpi_request_sz);
5919 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
5920 mpi_request.PortNumber = port;
5921 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
5922 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
5924 if (r != 0) {
5925 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
5926 return r;
5929 pfacts = &ioc->pfacts[port];
5930 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
5931 pfacts->PortNumber = mpi_reply.PortNumber;
5932 pfacts->VP_ID = mpi_reply.VP_ID;
5933 pfacts->VF_ID = mpi_reply.VF_ID;
5934 pfacts->MaxPostedCmdBuffers =
5935 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
5937 return 0;
5941 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
5942 * @ioc: per adapter object
5943 * @timeout:
5945 * Return: 0 for success, non-zero for failure.
5947 static int
5948 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
5950 u32 ioc_state;
5951 int rc;
5953 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5955 if (ioc->pci_error_recovery) {
5956 dfailprintk(ioc,
5957 ioc_info(ioc, "%s: host in pci error recovery\n",
5958 __func__));
5959 return -EFAULT;
5962 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5963 dhsprintk(ioc,
5964 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
5965 __func__, ioc_state));
5967 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
5968 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
5969 return 0;
5971 if (ioc_state & MPI2_DOORBELL_USED) {
5972 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
5973 goto issue_diag_reset;
5976 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
5977 mpt3sas_base_fault_info(ioc, ioc_state &
5978 MPI2_DOORBELL_DATA_MASK);
5979 goto issue_diag_reset;
5982 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5983 if (ioc_state) {
5984 dfailprintk(ioc,
5985 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
5986 __func__, ioc_state));
5987 return -EFAULT;
5990 issue_diag_reset:
5991 rc = _base_diag_reset(ioc);
5992 return rc;
5996 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
5997 * @ioc: per adapter object
5999 * Return: 0 for success, non-zero for failure.
6001 static int
6002 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
6004 Mpi2IOCFactsRequest_t mpi_request;
6005 Mpi2IOCFactsReply_t mpi_reply;
6006 struct mpt3sas_facts *facts;
6007 int mpi_reply_sz, mpi_request_sz, r;
6009 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6011 r = _base_wait_for_iocstate(ioc, 10);
6012 if (r) {
6013 dfailprintk(ioc,
6014 ioc_info(ioc, "%s: failed getting to correct state\n",
6015 __func__));
6016 return r;
6018 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
6019 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
6020 memset(&mpi_request, 0, mpi_request_sz);
6021 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
6022 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6023 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6025 if (r != 0) {
6026 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6027 return r;
6030 facts = &ioc->facts;
6031 memset(facts, 0, sizeof(struct mpt3sas_facts));
6032 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
6033 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
6034 facts->VP_ID = mpi_reply.VP_ID;
6035 facts->VF_ID = mpi_reply.VF_ID;
6036 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
6037 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
6038 facts->WhoInit = mpi_reply.WhoInit;
6039 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
6040 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
6041 if (ioc->msix_enable && (facts->MaxMSIxVectors <=
6042 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
6043 ioc->combined_reply_queue = 0;
6044 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
6045 facts->MaxReplyDescriptorPostQueueDepth =
6046 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
6047 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
6048 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
6049 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
6050 ioc->ir_firmware = 1;
6051 if ((facts->IOCCapabilities &
6052 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
6053 ioc->rdpq_array_capable = 1;
6054 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
6055 && ioc->is_aero_ioc)
6056 ioc->atomic_desc_capable = 1;
6057 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
6058 facts->IOCRequestFrameSize =
6059 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
6060 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6061 facts->IOCMaxChainSegmentSize =
6062 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
6064 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
6065 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
6066 ioc->shost->max_id = -1;
6067 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
6068 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
6069 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
6070 facts->HighPriorityCredit =
6071 le16_to_cpu(mpi_reply.HighPriorityCredit);
6072 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
6073 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
6074 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
6077 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
6079 ioc->page_size = 1 << facts->CurrentHostPageSize;
6080 if (ioc->page_size == 1) {
6081 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
6082 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
6084 dinitprintk(ioc,
6085 ioc_info(ioc, "CurrentHostPageSize(%d)\n",
6086 facts->CurrentHostPageSize));
6088 dinitprintk(ioc,
6089 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
6090 facts->RequestCredit, facts->MaxChainDepth));
6091 dinitprintk(ioc,
6092 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
6093 facts->IOCRequestFrameSize * 4,
6094 facts->ReplyFrameSize * 4));
6095 return 0;
6099 * _base_send_ioc_init - send ioc_init to firmware
6100 * @ioc: per adapter object
6102 * Return: 0 for success, non-zero for failure.
6104 static int
6105 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
6107 Mpi2IOCInitRequest_t mpi_request;
6108 Mpi2IOCInitReply_t mpi_reply;
6109 int i, r = 0;
6110 ktime_t current_time;
6111 u16 ioc_status;
6112 u32 reply_post_free_array_sz = 0;
6114 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6116 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
6117 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
6118 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
6119 mpi_request.VF_ID = 0; /* TODO */
6120 mpi_request.VP_ID = 0;
6121 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
6122 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
6123 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
6125 if (_base_is_controller_msix_enabled(ioc))
6126 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
6127 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
6128 mpi_request.ReplyDescriptorPostQueueDepth =
6129 cpu_to_le16(ioc->reply_post_queue_depth);
6130 mpi_request.ReplyFreeQueueDepth =
6131 cpu_to_le16(ioc->reply_free_queue_depth);
6133 mpi_request.SenseBufferAddressHigh =
6134 cpu_to_le32((u64)ioc->sense_dma >> 32);
6135 mpi_request.SystemReplyAddressHigh =
6136 cpu_to_le32((u64)ioc->reply_dma >> 32);
6137 mpi_request.SystemRequestFrameBaseAddress =
6138 cpu_to_le64((u64)ioc->request_dma);
6139 mpi_request.ReplyFreeQueueAddress =
6140 cpu_to_le64((u64)ioc->reply_free_dma);
6142 if (ioc->rdpq_array_enable) {
6143 reply_post_free_array_sz = ioc->reply_queue_count *
6144 sizeof(Mpi2IOCInitRDPQArrayEntry);
6145 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
6146 for (i = 0; i < ioc->reply_queue_count; i++)
6147 ioc->reply_post_free_array[i].RDPQBaseAddress =
6148 cpu_to_le64(
6149 (u64)ioc->reply_post[i].reply_post_free_dma);
6150 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
6151 mpi_request.ReplyDescriptorPostQueueAddress =
6152 cpu_to_le64((u64)ioc->reply_post_free_array_dma);
6153 } else {
6154 mpi_request.ReplyDescriptorPostQueueAddress =
6155 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
6158 /* This time stamp specifies number of milliseconds
6159 * since epoch ~ midnight January 1, 1970.
6161 current_time = ktime_get_real();
6162 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
6164 if (ioc->logging_level & MPT_DEBUG_INIT) {
6165 __le32 *mfp;
6166 int i;
6168 mfp = (__le32 *)&mpi_request;
6169 pr_info("\toffset:data\n");
6170 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
6171 pr_info("\t[0x%02x]:%08x\n", i*4,
6172 le32_to_cpu(mfp[i]));
6175 r = _base_handshake_req_reply_wait(ioc,
6176 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
6177 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
6179 if (r != 0) {
6180 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6181 return r;
6184 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
6185 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
6186 mpi_reply.IOCLogInfo) {
6187 ioc_err(ioc, "%s: failed\n", __func__);
6188 r = -EIO;
6191 return r;
6195 * mpt3sas_port_enable_done - command completion routine for port enable
6196 * @ioc: per adapter object
6197 * @smid: system request message index
6198 * @msix_index: MSIX table index supplied by the OS
6199 * @reply: reply message frame(lower 32bit addr)
6201 * Return: 1 meaning mf should be freed from _base_interrupt
6202 * 0 means the mf is freed from this function.
6205 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
6206 u32 reply)
6208 MPI2DefaultReply_t *mpi_reply;
6209 u16 ioc_status;
6211 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
6212 return 1;
6214 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
6215 if (!mpi_reply)
6216 return 1;
6218 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
6219 return 1;
6221 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
6222 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
6223 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
6224 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
6225 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6226 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
6227 ioc->port_enable_failed = 1;
6229 if (ioc->is_driver_loading) {
6230 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
6231 mpt3sas_port_enable_complete(ioc);
6232 return 1;
6233 } else {
6234 ioc->start_scan_failed = ioc_status;
6235 ioc->start_scan = 0;
6236 return 1;
6239 complete(&ioc->port_enable_cmds.done);
6240 return 1;
6244 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
6245 * @ioc: per adapter object
6247 * Return: 0 for success, non-zero for failure.
6249 static int
6250 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
6252 Mpi2PortEnableRequest_t *mpi_request;
6253 Mpi2PortEnableReply_t *mpi_reply;
6254 int r = 0;
6255 u16 smid;
6256 u16 ioc_status;
6258 ioc_info(ioc, "sending port enable !!\n");
6260 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6261 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6262 return -EAGAIN;
6265 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6266 if (!smid) {
6267 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6268 return -EAGAIN;
6271 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6272 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6273 ioc->port_enable_cmds.smid = smid;
6274 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6275 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6277 init_completion(&ioc->port_enable_cmds.done);
6278 ioc->put_smid_default(ioc, smid);
6279 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
6280 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
6281 ioc_err(ioc, "%s: timeout\n", __func__);
6282 _debug_dump_mf(mpi_request,
6283 sizeof(Mpi2PortEnableRequest_t)/4);
6284 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
6285 r = -EFAULT;
6286 else
6287 r = -ETIME;
6288 goto out;
6291 mpi_reply = ioc->port_enable_cmds.reply;
6292 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6293 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
6294 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
6295 __func__, ioc_status);
6296 r = -EFAULT;
6297 goto out;
6300 out:
6301 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6302 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
6303 return r;
6307 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
6308 * @ioc: per adapter object
6310 * Return: 0 for success, non-zero for failure.
6313 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
6315 Mpi2PortEnableRequest_t *mpi_request;
6316 u16 smid;
6318 ioc_info(ioc, "sending port enable !!\n");
6320 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6321 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6322 return -EAGAIN;
6325 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6326 if (!smid) {
6327 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6328 return -EAGAIN;
6331 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6332 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6333 ioc->port_enable_cmds.smid = smid;
6334 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6335 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6337 ioc->put_smid_default(ioc, smid);
6338 return 0;
6342 * _base_determine_wait_on_discovery - desposition
6343 * @ioc: per adapter object
6345 * Decide whether to wait on discovery to complete. Used to either
6346 * locate boot device, or report volumes ahead of physical devices.
6348 * Return: 1 for wait, 0 for don't wait.
6350 static int
6351 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
6353 /* We wait for discovery to complete if IR firmware is loaded.
6354 * The sas topology events arrive before PD events, so we need time to
6355 * turn on the bit in ioc->pd_handles to indicate PD
6356 * Also, it maybe required to report Volumes ahead of physical
6357 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
6359 if (ioc->ir_firmware)
6360 return 1;
6362 /* if no Bios, then we don't need to wait */
6363 if (!ioc->bios_pg3.BiosVersion)
6364 return 0;
6366 /* Bios is present, then we drop down here.
6368 * If there any entries in the Bios Page 2, then we wait
6369 * for discovery to complete.
6372 /* Current Boot Device */
6373 if ((ioc->bios_pg2.CurrentBootDeviceForm &
6374 MPI2_BIOSPAGE2_FORM_MASK) ==
6375 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6376 /* Request Boot Device */
6377 (ioc->bios_pg2.ReqBootDeviceForm &
6378 MPI2_BIOSPAGE2_FORM_MASK) ==
6379 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6380 /* Alternate Request Boot Device */
6381 (ioc->bios_pg2.ReqAltBootDeviceForm &
6382 MPI2_BIOSPAGE2_FORM_MASK) ==
6383 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
6384 return 0;
6386 return 1;
6390 * _base_unmask_events - turn on notification for this event
6391 * @ioc: per adapter object
6392 * @event: firmware event
6394 * The mask is stored in ioc->event_masks.
6396 static void
6397 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
6399 u32 desired_event;
6401 if (event >= 128)
6402 return;
6404 desired_event = (1 << (event % 32));
6406 if (event < 32)
6407 ioc->event_masks[0] &= ~desired_event;
6408 else if (event < 64)
6409 ioc->event_masks[1] &= ~desired_event;
6410 else if (event < 96)
6411 ioc->event_masks[2] &= ~desired_event;
6412 else if (event < 128)
6413 ioc->event_masks[3] &= ~desired_event;
6417 * _base_event_notification - send event notification
6418 * @ioc: per adapter object
6420 * Return: 0 for success, non-zero for failure.
6422 static int
6423 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
6425 Mpi2EventNotificationRequest_t *mpi_request;
6426 u16 smid;
6427 int r = 0;
6428 int i;
6430 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6432 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6433 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6434 return -EAGAIN;
6437 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6438 if (!smid) {
6439 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6440 return -EAGAIN;
6442 ioc->base_cmds.status = MPT3_CMD_PENDING;
6443 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6444 ioc->base_cmds.smid = smid;
6445 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
6446 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
6447 mpi_request->VF_ID = 0; /* TODO */
6448 mpi_request->VP_ID = 0;
6449 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6450 mpi_request->EventMasks[i] =
6451 cpu_to_le32(ioc->event_masks[i]);
6452 init_completion(&ioc->base_cmds.done);
6453 ioc->put_smid_default(ioc, smid);
6454 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
6455 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6456 ioc_err(ioc, "%s: timeout\n", __func__);
6457 _debug_dump_mf(mpi_request,
6458 sizeof(Mpi2EventNotificationRequest_t)/4);
6459 if (ioc->base_cmds.status & MPT3_CMD_RESET)
6460 r = -EFAULT;
6461 else
6462 r = -ETIME;
6463 } else
6464 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
6465 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6466 return r;
6470 * mpt3sas_base_validate_event_type - validating event types
6471 * @ioc: per adapter object
6472 * @event_type: firmware event
6474 * This will turn on firmware event notification when application
6475 * ask for that event. We don't mask events that are already enabled.
6477 void
6478 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
6480 int i, j;
6481 u32 event_mask, desired_event;
6482 u8 send_update_to_fw;
6484 for (i = 0, send_update_to_fw = 0; i <
6485 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
6486 event_mask = ~event_type[i];
6487 desired_event = 1;
6488 for (j = 0; j < 32; j++) {
6489 if (!(event_mask & desired_event) &&
6490 (ioc->event_masks[i] & desired_event)) {
6491 ioc->event_masks[i] &= ~desired_event;
6492 send_update_to_fw = 1;
6494 desired_event = (desired_event << 1);
6498 if (!send_update_to_fw)
6499 return;
6501 mutex_lock(&ioc->base_cmds.mutex);
6502 _base_event_notification(ioc);
6503 mutex_unlock(&ioc->base_cmds.mutex);
6507 * _base_diag_reset - the "big hammer" start of day reset
6508 * @ioc: per adapter object
6510 * Return: 0 for success, non-zero for failure.
6512 static int
6513 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
6515 u32 host_diagnostic;
6516 u32 ioc_state;
6517 u32 count;
6518 u32 hcb_size;
6520 ioc_info(ioc, "sending diag reset !!\n");
6522 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
6524 count = 0;
6525 do {
6526 /* Write magic sequence to WriteSequence register
6527 * Loop until in diagnostic mode
6529 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
6530 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6531 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
6532 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
6533 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
6534 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
6535 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
6536 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
6538 /* wait 100 msec */
6539 msleep(100);
6541 if (count++ > 20)
6542 goto out;
6544 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6545 drsprintk(ioc,
6546 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6547 count, host_diagnostic));
6549 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
6551 hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
6553 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
6554 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
6555 &ioc->chip->HostDiagnostic);
6557 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
6558 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
6560 /* Approximately 300 second max wait */
6561 for (count = 0; count < (300000000 /
6562 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
6564 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6566 if (host_diagnostic == 0xFFFFFFFF)
6567 goto out;
6568 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
6569 break;
6571 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
6574 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
6576 drsprintk(ioc,
6577 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
6578 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
6579 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
6580 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
6582 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
6583 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
6584 &ioc->chip->HCBSize);
6587 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
6588 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
6589 &ioc->chip->HostDiagnostic);
6591 drsprintk(ioc,
6592 ioc_info(ioc, "disable writes to the diagnostic register\n"));
6593 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6595 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
6596 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
6597 if (ioc_state) {
6598 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6599 __func__, ioc_state);
6600 goto out;
6603 ioc_info(ioc, "diag reset: SUCCESS\n");
6604 return 0;
6606 out:
6607 ioc_err(ioc, "diag reset: FAILED\n");
6608 return -EFAULT;
6612 * _base_make_ioc_ready - put controller in READY state
6613 * @ioc: per adapter object
6614 * @type: FORCE_BIG_HAMMER or SOFT_RESET
6616 * Return: 0 for success, non-zero for failure.
6618 static int
6619 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
6621 u32 ioc_state;
6622 int rc;
6623 int count;
6625 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6627 if (ioc->pci_error_recovery)
6628 return 0;
6630 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6631 dhsprintk(ioc,
6632 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6633 __func__, ioc_state));
6635 /* if in RESET state, it should move to READY state shortly */
6636 count = 0;
6637 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
6638 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
6639 MPI2_IOC_STATE_READY) {
6640 if (count++ == 10) {
6641 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6642 __func__, ioc_state);
6643 return -EFAULT;
6645 ssleep(1);
6646 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6650 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
6651 return 0;
6653 if (ioc_state & MPI2_DOORBELL_USED) {
6654 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
6655 goto issue_diag_reset;
6658 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6659 mpt3sas_base_fault_info(ioc, ioc_state &
6660 MPI2_DOORBELL_DATA_MASK);
6661 goto issue_diag_reset;
6664 if (type == FORCE_BIG_HAMMER)
6665 goto issue_diag_reset;
6667 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6668 if (!(_base_send_ioc_reset(ioc,
6669 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
6670 return 0;
6673 issue_diag_reset:
6674 rc = _base_diag_reset(ioc);
6675 return rc;
6679 * _base_make_ioc_operational - put controller in OPERATIONAL state
6680 * @ioc: per adapter object
6682 * Return: 0 for success, non-zero for failure.
6684 static int
6685 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
6687 int r, i, index;
6688 unsigned long flags;
6689 u32 reply_address;
6690 u16 smid;
6691 struct _tr_list *delayed_tr, *delayed_tr_next;
6692 struct _sc_list *delayed_sc, *delayed_sc_next;
6693 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
6694 u8 hide_flag;
6695 struct adapter_reply_queue *reply_q;
6696 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
6698 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6700 /* clean the delayed target reset list */
6701 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6702 &ioc->delayed_tr_list, list) {
6703 list_del(&delayed_tr->list);
6704 kfree(delayed_tr);
6708 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6709 &ioc->delayed_tr_volume_list, list) {
6710 list_del(&delayed_tr->list);
6711 kfree(delayed_tr);
6714 list_for_each_entry_safe(delayed_sc, delayed_sc_next,
6715 &ioc->delayed_sc_list, list) {
6716 list_del(&delayed_sc->list);
6717 kfree(delayed_sc);
6720 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
6721 &ioc->delayed_event_ack_list, list) {
6722 list_del(&delayed_event_ack->list);
6723 kfree(delayed_event_ack);
6726 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
6728 /* hi-priority queue */
6729 INIT_LIST_HEAD(&ioc->hpr_free_list);
6730 smid = ioc->hi_priority_smid;
6731 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
6732 ioc->hpr_lookup[i].cb_idx = 0xFF;
6733 ioc->hpr_lookup[i].smid = smid;
6734 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
6735 &ioc->hpr_free_list);
6738 /* internal queue */
6739 INIT_LIST_HEAD(&ioc->internal_free_list);
6740 smid = ioc->internal_smid;
6741 for (i = 0; i < ioc->internal_depth; i++, smid++) {
6742 ioc->internal_lookup[i].cb_idx = 0xFF;
6743 ioc->internal_lookup[i].smid = smid;
6744 list_add_tail(&ioc->internal_lookup[i].tracker_list,
6745 &ioc->internal_free_list);
6748 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
6750 /* initialize Reply Free Queue */
6751 for (i = 0, reply_address = (u32)ioc->reply_dma ;
6752 i < ioc->reply_free_queue_depth ; i++, reply_address +=
6753 ioc->reply_sz) {
6754 ioc->reply_free[i] = cpu_to_le32(reply_address);
6755 if (ioc->is_mcpu_endpoint)
6756 _base_clone_reply_to_sys_mem(ioc,
6757 reply_address, i);
6760 /* initialize reply queues */
6761 if (ioc->is_driver_loading)
6762 _base_assign_reply_queues(ioc);
6764 /* initialize Reply Post Free Queue */
6765 index = 0;
6766 reply_post_free_contig = ioc->reply_post[0].reply_post_free;
6767 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
6769 * If RDPQ is enabled, switch to the next allocation.
6770 * Otherwise advance within the contiguous region.
6772 if (ioc->rdpq_array_enable) {
6773 reply_q->reply_post_free =
6774 ioc->reply_post[index++].reply_post_free;
6775 } else {
6776 reply_q->reply_post_free = reply_post_free_contig;
6777 reply_post_free_contig += ioc->reply_post_queue_depth;
6780 reply_q->reply_post_host_index = 0;
6781 for (i = 0; i < ioc->reply_post_queue_depth; i++)
6782 reply_q->reply_post_free[i].Words =
6783 cpu_to_le64(ULLONG_MAX);
6784 if (!_base_is_controller_msix_enabled(ioc))
6785 goto skip_init_reply_post_free_queue;
6787 skip_init_reply_post_free_queue:
6789 r = _base_send_ioc_init(ioc);
6790 if (r)
6791 return r;
6793 /* initialize reply free host index */
6794 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
6795 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
6797 /* initialize reply post host index */
6798 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
6799 if (ioc->combined_reply_queue)
6800 writel((reply_q->msix_index & 7)<<
6801 MPI2_RPHI_MSIX_INDEX_SHIFT,
6802 ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
6803 else
6804 writel(reply_q->msix_index <<
6805 MPI2_RPHI_MSIX_INDEX_SHIFT,
6806 &ioc->chip->ReplyPostHostIndex);
6808 if (!_base_is_controller_msix_enabled(ioc))
6809 goto skip_init_reply_post_host_index;
6812 skip_init_reply_post_host_index:
6814 _base_unmask_interrupts(ioc);
6816 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6817 r = _base_display_fwpkg_version(ioc);
6818 if (r)
6819 return r;
6822 _base_static_config_pages(ioc);
6823 r = _base_event_notification(ioc);
6824 if (r)
6825 return r;
6827 if (ioc->is_driver_loading) {
6829 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
6830 == 0x80) {
6831 hide_flag = (u8) (
6832 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
6833 MFG_PAGE10_HIDE_SSDS_MASK);
6834 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
6835 ioc->mfg_pg10_hide_flag = hide_flag;
6838 ioc->wait_for_discovery_to_complete =
6839 _base_determine_wait_on_discovery(ioc);
6841 return r; /* scan_start and scan_finished support */
6844 r = _base_send_port_enable(ioc);
6845 if (r)
6846 return r;
6848 return r;
6852 * mpt3sas_base_free_resources - free resources controller resources
6853 * @ioc: per adapter object
6855 void
6856 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
6858 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6860 /* synchronizing freeing resource with pci_access_mutex lock */
6861 mutex_lock(&ioc->pci_access_mutex);
6862 if (ioc->chip_phys && ioc->chip) {
6863 _base_mask_interrupts(ioc);
6864 ioc->shost_recovery = 1;
6865 _base_make_ioc_ready(ioc, SOFT_RESET);
6866 ioc->shost_recovery = 0;
6869 mpt3sas_base_unmap_resources(ioc);
6870 mutex_unlock(&ioc->pci_access_mutex);
6871 return;
6875 * mpt3sas_base_attach - attach controller instance
6876 * @ioc: per adapter object
6878 * Return: 0 for success, non-zero for failure.
6881 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
6883 int r, i;
6884 int cpu_id, last_cpu_id = 0;
6886 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6888 /* setup cpu_msix_table */
6889 ioc->cpu_count = num_online_cpus();
6890 for_each_online_cpu(cpu_id)
6891 last_cpu_id = cpu_id;
6892 ioc->cpu_msix_table_sz = last_cpu_id + 1;
6893 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
6894 ioc->reply_queue_count = 1;
6895 if (!ioc->cpu_msix_table) {
6896 dfailprintk(ioc,
6897 ioc_info(ioc, "allocation for cpu_msix_table failed!!!\n"));
6898 r = -ENOMEM;
6899 goto out_free_resources;
6902 if (ioc->is_warpdrive) {
6903 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
6904 sizeof(resource_size_t *), GFP_KERNEL);
6905 if (!ioc->reply_post_host_index) {
6906 dfailprintk(ioc,
6907 ioc_info(ioc, "allocation for reply_post_host_index failed!!!\n"));
6908 r = -ENOMEM;
6909 goto out_free_resources;
6913 ioc->smp_affinity_enable = smp_affinity_enable;
6915 ioc->rdpq_array_enable_assigned = 0;
6916 ioc->dma_mask = 0;
6917 if (ioc->is_aero_ioc)
6918 ioc->base_readl = &_base_readl_aero;
6919 else
6920 ioc->base_readl = &_base_readl;
6921 r = mpt3sas_base_map_resources(ioc);
6922 if (r)
6923 goto out_free_resources;
6925 pci_set_drvdata(ioc->pdev, ioc->shost);
6926 r = _base_get_ioc_facts(ioc);
6927 if (r)
6928 goto out_free_resources;
6930 switch (ioc->hba_mpi_version_belonged) {
6931 case MPI2_VERSION:
6932 ioc->build_sg_scmd = &_base_build_sg_scmd;
6933 ioc->build_sg = &_base_build_sg;
6934 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
6935 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
6936 break;
6937 case MPI25_VERSION:
6938 case MPI26_VERSION:
6940 * In SAS3.0,
6941 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
6942 * Target Status - all require the IEEE formated scatter gather
6943 * elements.
6945 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
6946 ioc->build_sg = &_base_build_sg_ieee;
6947 ioc->build_nvme_prp = &_base_build_nvme_prp;
6948 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
6949 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
6950 if (ioc->high_iops_queues)
6951 ioc->get_msix_index_for_smlio =
6952 &_base_get_high_iops_msix_index;
6953 else
6954 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
6955 break;
6957 if (ioc->atomic_desc_capable) {
6958 ioc->put_smid_default = &_base_put_smid_default_atomic;
6959 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
6960 ioc->put_smid_fast_path =
6961 &_base_put_smid_fast_path_atomic;
6962 ioc->put_smid_hi_priority =
6963 &_base_put_smid_hi_priority_atomic;
6964 } else {
6965 ioc->put_smid_default = &_base_put_smid_default;
6966 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
6967 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
6968 if (ioc->is_mcpu_endpoint)
6969 ioc->put_smid_scsi_io =
6970 &_base_put_smid_mpi_ep_scsi_io;
6971 else
6972 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
6975 * These function pointers for other requests that don't
6976 * the require IEEE scatter gather elements.
6978 * For example Configuration Pages and SAS IOUNIT Control don't.
6980 ioc->build_sg_mpi = &_base_build_sg;
6981 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
6983 r = _base_make_ioc_ready(ioc, SOFT_RESET);
6984 if (r)
6985 goto out_free_resources;
6987 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
6988 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
6989 if (!ioc->pfacts) {
6990 r = -ENOMEM;
6991 goto out_free_resources;
6994 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
6995 r = _base_get_port_facts(ioc, i);
6996 if (r)
6997 goto out_free_resources;
7000 r = _base_allocate_memory_pools(ioc);
7001 if (r)
7002 goto out_free_resources;
7004 if (irqpoll_weight > 0)
7005 ioc->thresh_hold = irqpoll_weight;
7006 else
7007 ioc->thresh_hold = ioc->hba_queue_depth/4;
7009 _base_init_irqpolls(ioc);
7010 init_waitqueue_head(&ioc->reset_wq);
7012 /* allocate memory pd handle bitmask list */
7013 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7014 if (ioc->facts.MaxDevHandle % 8)
7015 ioc->pd_handles_sz++;
7016 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
7017 GFP_KERNEL);
7018 if (!ioc->pd_handles) {
7019 r = -ENOMEM;
7020 goto out_free_resources;
7022 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
7023 GFP_KERNEL);
7024 if (!ioc->blocking_handles) {
7025 r = -ENOMEM;
7026 goto out_free_resources;
7029 /* allocate memory for pending OS device add list */
7030 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
7031 if (ioc->facts.MaxDevHandle % 8)
7032 ioc->pend_os_device_add_sz++;
7033 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
7034 GFP_KERNEL);
7035 if (!ioc->pend_os_device_add)
7036 goto out_free_resources;
7038 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
7039 ioc->device_remove_in_progress =
7040 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
7041 if (!ioc->device_remove_in_progress)
7042 goto out_free_resources;
7044 ioc->fwfault_debug = mpt3sas_fwfault_debug;
7046 /* base internal command bits */
7047 mutex_init(&ioc->base_cmds.mutex);
7048 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7049 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7051 /* port_enable command bits */
7052 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7053 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7055 /* transport internal command bits */
7056 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7057 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
7058 mutex_init(&ioc->transport_cmds.mutex);
7060 /* scsih internal command bits */
7061 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7062 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
7063 mutex_init(&ioc->scsih_cmds.mutex);
7065 /* task management internal command bits */
7066 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7067 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
7068 mutex_init(&ioc->tm_cmds.mutex);
7070 /* config page internal command bits */
7071 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7072 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
7073 mutex_init(&ioc->config_cmds.mutex);
7075 /* ctl module internal command bits */
7076 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7077 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
7078 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
7079 mutex_init(&ioc->ctl_cmds.mutex);
7081 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
7082 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
7083 !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
7084 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
7085 r = -ENOMEM;
7086 goto out_free_resources;
7089 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7090 ioc->event_masks[i] = -1;
7092 /* here we enable the events we care about */
7093 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
7094 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
7095 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
7096 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
7097 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
7098 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
7099 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
7100 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
7101 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
7102 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
7103 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
7104 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
7105 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
7106 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
7107 if (ioc->is_gen35_ioc) {
7108 _base_unmask_events(ioc,
7109 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
7110 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
7111 _base_unmask_events(ioc,
7112 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
7115 r = _base_make_ioc_operational(ioc);
7116 if (r)
7117 goto out_free_resources;
7119 ioc->non_operational_loop = 0;
7120 ioc->got_task_abort_from_ioctl = 0;
7121 return 0;
7123 out_free_resources:
7125 ioc->remove_host = 1;
7127 mpt3sas_base_free_resources(ioc);
7128 _base_release_memory_pools(ioc);
7129 pci_set_drvdata(ioc->pdev, NULL);
7130 kfree(ioc->cpu_msix_table);
7131 if (ioc->is_warpdrive)
7132 kfree(ioc->reply_post_host_index);
7133 kfree(ioc->pd_handles);
7134 kfree(ioc->blocking_handles);
7135 kfree(ioc->device_remove_in_progress);
7136 kfree(ioc->pend_os_device_add);
7137 kfree(ioc->tm_cmds.reply);
7138 kfree(ioc->transport_cmds.reply);
7139 kfree(ioc->scsih_cmds.reply);
7140 kfree(ioc->config_cmds.reply);
7141 kfree(ioc->base_cmds.reply);
7142 kfree(ioc->port_enable_cmds.reply);
7143 kfree(ioc->ctl_cmds.reply);
7144 kfree(ioc->ctl_cmds.sense);
7145 kfree(ioc->pfacts);
7146 ioc->ctl_cmds.reply = NULL;
7147 ioc->base_cmds.reply = NULL;
7148 ioc->tm_cmds.reply = NULL;
7149 ioc->scsih_cmds.reply = NULL;
7150 ioc->transport_cmds.reply = NULL;
7151 ioc->config_cmds.reply = NULL;
7152 ioc->pfacts = NULL;
7153 return r;
7158 * mpt3sas_base_detach - remove controller instance
7159 * @ioc: per adapter object
7161 void
7162 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
7164 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7166 mpt3sas_base_stop_watchdog(ioc);
7167 mpt3sas_base_free_resources(ioc);
7168 _base_release_memory_pools(ioc);
7169 mpt3sas_free_enclosure_list(ioc);
7170 pci_set_drvdata(ioc->pdev, NULL);
7171 kfree(ioc->cpu_msix_table);
7172 if (ioc->is_warpdrive)
7173 kfree(ioc->reply_post_host_index);
7174 kfree(ioc->pd_handles);
7175 kfree(ioc->blocking_handles);
7176 kfree(ioc->device_remove_in_progress);
7177 kfree(ioc->pend_os_device_add);
7178 kfree(ioc->pfacts);
7179 kfree(ioc->ctl_cmds.reply);
7180 kfree(ioc->ctl_cmds.sense);
7181 kfree(ioc->base_cmds.reply);
7182 kfree(ioc->port_enable_cmds.reply);
7183 kfree(ioc->tm_cmds.reply);
7184 kfree(ioc->transport_cmds.reply);
7185 kfree(ioc->scsih_cmds.reply);
7186 kfree(ioc->config_cmds.reply);
7190 * _base_pre_reset_handler - pre reset handler
7191 * @ioc: per adapter object
7193 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
7195 mpt3sas_scsih_pre_reset_handler(ioc);
7196 mpt3sas_ctl_pre_reset_handler(ioc);
7197 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
7201 * _base_after_reset_handler - after reset handler
7202 * @ioc: per adapter object
7204 static void _base_after_reset_handler(struct MPT3SAS_ADAPTER *ioc)
7206 mpt3sas_scsih_after_reset_handler(ioc);
7207 mpt3sas_ctl_after_reset_handler(ioc);
7208 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_AFTER_RESET\n", __func__));
7209 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
7210 ioc->transport_cmds.status |= MPT3_CMD_RESET;
7211 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
7212 complete(&ioc->transport_cmds.done);
7214 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7215 ioc->base_cmds.status |= MPT3_CMD_RESET;
7216 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
7217 complete(&ioc->base_cmds.done);
7219 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7220 ioc->port_enable_failed = 1;
7221 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
7222 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
7223 if (ioc->is_driver_loading) {
7224 ioc->start_scan_failed =
7225 MPI2_IOCSTATUS_INTERNAL_ERROR;
7226 ioc->start_scan = 0;
7227 ioc->port_enable_cmds.status =
7228 MPT3_CMD_NOT_USED;
7229 } else {
7230 complete(&ioc->port_enable_cmds.done);
7233 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
7234 ioc->config_cmds.status |= MPT3_CMD_RESET;
7235 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
7236 ioc->config_cmds.smid = USHRT_MAX;
7237 complete(&ioc->config_cmds.done);
7242 * _base_reset_done_handler - reset done handler
7243 * @ioc: per adapter object
7245 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
7247 mpt3sas_scsih_reset_done_handler(ioc);
7248 mpt3sas_ctl_reset_done_handler(ioc);
7249 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
7253 * mpt3sas_wait_for_commands_to_complete - reset controller
7254 * @ioc: Pointer to MPT_ADAPTER structure
7256 * This function is waiting 10s for all pending commands to complete
7257 * prior to putting controller in reset.
7259 void
7260 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
7262 u32 ioc_state;
7264 ioc->pending_io_count = 0;
7266 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7267 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
7268 return;
7270 /* pending command count */
7271 ioc->pending_io_count = scsi_host_busy(ioc->shost);
7273 if (!ioc->pending_io_count)
7274 return;
7276 /* wait for pending commands to complete */
7277 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
7281 * mpt3sas_base_hard_reset_handler - reset controller
7282 * @ioc: Pointer to MPT_ADAPTER structure
7283 * @type: FORCE_BIG_HAMMER or SOFT_RESET
7285 * Return: 0 for success, non-zero for failure.
7288 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
7289 enum reset_type type)
7291 int r;
7292 unsigned long flags;
7293 u32 ioc_state;
7294 u8 is_fault = 0, is_trigger = 0;
7296 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
7298 if (ioc->pci_error_recovery) {
7299 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
7300 r = 0;
7301 goto out_unlocked;
7304 if (mpt3sas_fwfault_debug)
7305 mpt3sas_halt_firmware(ioc);
7307 /* wait for an active reset in progress to complete */
7308 mutex_lock(&ioc->reset_in_progress_mutex);
7310 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7311 ioc->shost_recovery = 1;
7312 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7314 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7315 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
7316 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7317 MPT3_DIAG_BUFFER_IS_RELEASED))) {
7318 is_trigger = 1;
7319 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7320 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
7321 is_fault = 1;
7323 _base_pre_reset_handler(ioc);
7324 mpt3sas_wait_for_commands_to_complete(ioc);
7325 _base_mask_interrupts(ioc);
7326 r = _base_make_ioc_ready(ioc, type);
7327 if (r)
7328 goto out;
7329 _base_after_reset_handler(ioc);
7331 /* If this hard reset is called while port enable is active, then
7332 * there is no reason to call make_ioc_operational
7334 if (ioc->is_driver_loading && ioc->port_enable_failed) {
7335 ioc->remove_host = 1;
7336 r = -EFAULT;
7337 goto out;
7339 r = _base_get_ioc_facts(ioc);
7340 if (r)
7341 goto out;
7343 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
7344 panic("%s: Issue occurred with flashing controller firmware."
7345 "Please reboot the system and ensure that the correct"
7346 " firmware version is running\n", ioc->name);
7348 r = _base_make_ioc_operational(ioc);
7349 if (!r)
7350 _base_reset_done_handler(ioc);
7352 out:
7353 dtmprintk(ioc,
7354 ioc_info(ioc, "%s: %s\n",
7355 __func__, r == 0 ? "SUCCESS" : "FAILED"));
7357 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7358 ioc->shost_recovery = 0;
7359 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7360 ioc->ioc_reset_count++;
7361 mutex_unlock(&ioc->reset_in_progress_mutex);
7363 out_unlocked:
7364 if ((r == 0) && is_trigger) {
7365 if (is_fault)
7366 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
7367 else
7368 mpt3sas_trigger_master(ioc,
7369 MASTER_TRIGGER_ADAPTER_RESET);
7371 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
7372 return r;