2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h> /* To get host page size per arch */
63 #include <linux/aer.h>
66 #include "mpt3sas_base.h"
68 static MPT_CALLBACK mpt_callbacks
[MPT_MAX_CALLBACKS
];
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
73 /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH 30000
75 #define MAX_CHAIN_DEPTH 100000
76 static int max_queue_depth
= -1;
77 module_param(max_queue_depth
, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth
, " max controller queue depth ");
80 static int max_sgl_entries
= -1;
81 module_param(max_sgl_entries
, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries
, " max sg entries ");
84 static int msix_disable
= -1;
85 module_param(msix_disable
, int, 0444);
86 MODULE_PARM_DESC(msix_disable
, " disable msix routed interrupts (default=0)");
88 static int smp_affinity_enable
= 1;
89 module_param(smp_affinity_enable
, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable
, "SMP affinity feature enable/disable Default: enable(1)");
92 static int max_msix_vectors
= -1;
93 module_param(max_msix_vectors
, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors
,
97 static int irqpoll_weight
= -1;
98 module_param(irqpoll_weight
, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight
,
100 "irq poll weight (default= one fourth of HBA queue depth)");
102 static int mpt3sas_fwfault_debug
;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug
,
104 " enable detection of firmware fault and halt firmware - (default=0)");
106 static int perf_mode
= -1;
107 module_param(perf_mode
, int, 0444);
108 MODULE_PARM_DESC(perf_mode
,
109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110 "0 - balanced: high iops mode is enabled &\n\t\t"
111 "interrupt coalescing is enabled only on high iops queues,\n\t\t"
112 "1 - iops: high iops mode is disabled &\n\t\t"
113 "interrupt coalescing is enabled on all queues,\n\t\t"
114 "2 - latency: high iops mode is disabled &\n\t\t"
115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116 "\t\tdefault - default perf_mode is 'balanced'"
119 enum mpt3sas_perf_mode
{
120 MPT_PERF_MODE_DEFAULT
= -1,
121 MPT_PERF_MODE_BALANCED
= 0,
122 MPT_PERF_MODE_IOPS
= 1,
123 MPT_PERF_MODE_LATENCY
= 2,
127 _base_get_ioc_facts(struct MPT3SAS_ADAPTER
*ioc
);
130 * mpt3sas_base_check_cmd_timeout - Function
131 * to check timeout and command termination due
134 * @ioc: per adapter object.
135 * @status: Status of issued command.
136 * @mpi_request:mf request pointer.
137 * @sz: size of buffer.
139 * @Returns - 1/0 Reset to be done or Not
142 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER
*ioc
,
143 u8 status
, void *mpi_request
, int sz
)
147 if (!(status
& MPT3_CMD_RESET
))
150 ioc_err(ioc
, "Command %s\n",
151 issue_reset
== 0 ? "terminated due to Host Reset" : "Timeout");
152 _debug_dump_mf(mpi_request
, sz
);
158 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
165 _scsih_set_fwfault_debug(const char *val
, const struct kernel_param
*kp
)
167 int ret
= param_set_int(val
, kp
);
168 struct MPT3SAS_ADAPTER
*ioc
;
173 /* global ioc spinlock to protect controller list on list operations */
174 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug
);
175 spin_lock(&gioc_lock
);
176 list_for_each_entry(ioc
, &mpt3sas_ioc_list
, list
)
177 ioc
->fwfault_debug
= mpt3sas_fwfault_debug
;
178 spin_unlock(&gioc_lock
);
181 module_param_call(mpt3sas_fwfault_debug
, _scsih_set_fwfault_debug
,
182 param_get_int
, &mpt3sas_fwfault_debug
, 0644);
185 * _base_readl_aero - retry readl for max three times.
186 * @addr - MPT Fusion system interface register address
188 * Retry the readl() for max three times if it gets zero value
189 * while reading the system interface register.
192 _base_readl_aero(const volatile void __iomem
*addr
)
197 ret_val
= readl(addr
);
199 } while (ret_val
== 0 && i
< 3);
205 _base_readl(const volatile void __iomem
*addr
)
211 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
214 * @ioc: per adapter object
215 * @reply: reply message frame(lower 32bit addr)
216 * @index: System request message index.
219 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER
*ioc
, u32 reply
,
223 * 256 is offset within sys register.
224 * 256 offset MPI frame starts. Max MPI frame supported is 32.
225 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
227 u16 cmd_credit
= ioc
->facts
.RequestCredit
+ 1;
228 void __iomem
*reply_free_iomem
= (void __iomem
*)ioc
->chip
+
229 MPI_FRAME_START_OFFSET
+
230 (cmd_credit
* ioc
->request_sz
) + (index
* sizeof(u32
));
232 writel(reply
, reply_free_iomem
);
236 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
237 * to system/BAR0 region.
239 * @dst_iomem: Pointer to the destination location in BAR0 space.
240 * @src: Pointer to the Source data.
241 * @size: Size of data to be copied.
244 _base_clone_mpi_to_sys_mem(void *dst_iomem
, void *src
, u32 size
)
247 u32
*src_virt_mem
= (u32
*)src
;
249 for (i
= 0; i
< size
/4; i
++)
250 writel((u32
)src_virt_mem
[i
],
251 (void __iomem
*)dst_iomem
+ (i
* 4));
255 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
257 * @dst_iomem: Pointer to the destination location in BAR0 space.
258 * @src: Pointer to the Source data.
259 * @size: Size of data to be copied.
262 _base_clone_to_sys_mem(void __iomem
*dst_iomem
, void *src
, u32 size
)
265 u32
*src_virt_mem
= (u32
*)(src
);
267 for (i
= 0; i
< size
/4; i
++)
268 writel((u32
)src_virt_mem
[i
],
269 (void __iomem
*)dst_iomem
+ (i
* 4));
273 * _base_get_chain - Calculates and Returns virtual chain address
274 * for the provided smid in BAR0 space.
276 * @ioc: per adapter object
277 * @smid: system request message index
278 * @sge_chain_count: Scatter gather chain count.
280 * Return: the chain address.
282 static inline void __iomem
*
283 _base_get_chain(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
286 void __iomem
*base_chain
, *chain_virt
;
287 u16 cmd_credit
= ioc
->facts
.RequestCredit
+ 1;
289 base_chain
= (void __iomem
*)ioc
->chip
+ MPI_FRAME_START_OFFSET
+
290 (cmd_credit
* ioc
->request_sz
) +
291 REPLY_FREE_POOL_SIZE
;
292 chain_virt
= base_chain
+ (smid
* ioc
->facts
.MaxChainDepth
*
293 ioc
->request_sz
) + (sge_chain_count
* ioc
->request_sz
);
298 * _base_get_chain_phys - Calculates and Returns physical address
299 * in BAR0 for scatter gather chains, for
302 * @ioc: per adapter object
303 * @smid: system request message index
304 * @sge_chain_count: Scatter gather chain count.
306 * Return: Physical chain address.
308 static inline phys_addr_t
309 _base_get_chain_phys(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
312 phys_addr_t base_chain_phys
, chain_phys
;
313 u16 cmd_credit
= ioc
->facts
.RequestCredit
+ 1;
315 base_chain_phys
= ioc
->chip_phys
+ MPI_FRAME_START_OFFSET
+
316 (cmd_credit
* ioc
->request_sz
) +
317 REPLY_FREE_POOL_SIZE
;
318 chain_phys
= base_chain_phys
+ (smid
* ioc
->facts
.MaxChainDepth
*
319 ioc
->request_sz
) + (sge_chain_count
* ioc
->request_sz
);
324 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
325 * buffer address for the provided smid.
326 * (Each smid can have 64K starts from 17024)
328 * @ioc: per adapter object
329 * @smid: system request message index
331 * Return: Pointer to buffer location in BAR0.
334 static void __iomem
*
335 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
337 u16 cmd_credit
= ioc
->facts
.RequestCredit
+ 1;
338 // Added extra 1 to reach end of chain.
339 void __iomem
*chain_end
= _base_get_chain(ioc
,
341 ioc
->facts
.MaxChainDepth
);
342 return chain_end
+ (smid
* 64 * 1024);
346 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
347 * Host buffer Physical address for the provided smid.
348 * (Each smid can have 64K starts from 17024)
350 * @ioc: per adapter object
351 * @smid: system request message index
353 * Return: Pointer to buffer location in BAR0.
356 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
358 u16 cmd_credit
= ioc
->facts
.RequestCredit
+ 1;
359 phys_addr_t chain_end_phys
= _base_get_chain_phys(ioc
,
361 ioc
->facts
.MaxChainDepth
);
362 return chain_end_phys
+ (smid
* 64 * 1024);
366 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
367 * lookup list and Provides chain_buffer
368 * address for the matching dma address.
369 * (Each smid can have 64K starts from 17024)
371 * @ioc: per adapter object
372 * @chain_buffer_dma: Chain buffer dma address.
374 * Return: Pointer to chain buffer. Or Null on Failure.
377 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER
*ioc
,
378 dma_addr_t chain_buffer_dma
)
381 struct chain_tracker
*ct
;
383 for (index
= 0; index
< ioc
->scsiio_depth
; index
++) {
384 for (j
= 0; j
< ioc
->chains_needed_per_io
; j
++) {
385 ct
= &ioc
->chain_lookup
[index
].chains_per_smid
[j
];
386 if (ct
&& ct
->chain_buffer_dma
== chain_buffer_dma
)
387 return ct
->chain_buffer
;
390 ioc_info(ioc
, "Provided chain_buffer_dma address is not in the lookup list\n");
395 * _clone_sg_entries - MPI EP's scsiio and config requests
396 * are handled here. Base function for
397 * double buffering, before submitting
400 * @ioc: per adapter object.
401 * @mpi_request: mf request pointer.
402 * @smid: system request message index.
404 static void _clone_sg_entries(struct MPT3SAS_ADAPTER
*ioc
,
405 void *mpi_request
, u16 smid
)
407 Mpi2SGESimple32_t
*sgel
, *sgel_next
;
408 u32 sgl_flags
, sge_chain_count
= 0;
411 void __iomem
*buffer_iomem
;
412 phys_addr_t buffer_iomem_phys
;
413 void __iomem
*buff_ptr
;
414 phys_addr_t buff_ptr_phys
;
415 void __iomem
*dst_chain_addr
[MCPU_MAX_CHAINS_PER_IO
];
416 void *src_chain_addr
[MCPU_MAX_CHAINS_PER_IO
];
417 phys_addr_t dst_addr_phys
;
418 MPI2RequestHeader_t
*request_hdr
;
419 struct scsi_cmnd
*scmd
;
420 struct scatterlist
*sg_scmd
= NULL
;
421 int is_scsiio_req
= 0;
423 request_hdr
= (MPI2RequestHeader_t
*) mpi_request
;
425 if (request_hdr
->Function
== MPI2_FUNCTION_SCSI_IO_REQUEST
) {
426 Mpi25SCSIIORequest_t
*scsiio_request
=
427 (Mpi25SCSIIORequest_t
*)mpi_request
;
428 sgel
= (Mpi2SGESimple32_t
*) &scsiio_request
->SGL
;
430 } else if (request_hdr
->Function
== MPI2_FUNCTION_CONFIG
) {
431 Mpi2ConfigRequest_t
*config_req
=
432 (Mpi2ConfigRequest_t
*)mpi_request
;
433 sgel
= (Mpi2SGESimple32_t
*) &config_req
->PageBufferSGE
;
437 /* From smid we can get scsi_cmd, once we have sg_scmd,
438 * we just need to get sg_virt and sg_next to get virual
439 * address associated with sgel->Address.
443 /* Get scsi_cmd using smid */
444 scmd
= mpt3sas_scsih_scsi_lookup_get(ioc
, smid
);
446 ioc_err(ioc
, "scmd is NULL\n");
450 /* Get sg_scmd from scmd provided */
451 sg_scmd
= scsi_sglist(scmd
);
455 * 0 - 255 System register
456 * 256 - 4352 MPI Frame. (This is based on maxCredit 32)
457 * 4352 - 4864 Reply_free pool (512 byte is reserved
458 * considering maxCredit 32. Reply need extra
459 * room, for mCPU case kept four times of
461 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
462 * 128 byte size = 12288)
463 * 17152 - x Host buffer mapped with smid.
464 * (Each smid can have 64K Max IO.)
465 * BAR0+Last 1K MSIX Addr and Data
466 * Total size in use 2113664 bytes of 4MB BAR0
469 buffer_iomem
= _base_get_buffer_bar0(ioc
, smid
);
470 buffer_iomem_phys
= _base_get_buffer_phys_bar0(ioc
, smid
);
472 buff_ptr
= buffer_iomem
;
473 buff_ptr_phys
= buffer_iomem_phys
;
474 WARN_ON(buff_ptr_phys
> U32_MAX
);
476 if (le32_to_cpu(sgel
->FlagsLength
) &
477 (MPI2_SGE_FLAGS_HOST_TO_IOC
<< MPI2_SGE_FLAGS_SHIFT
))
480 for (i
= 0; i
< MPT_MIN_PHYS_SEGMENTS
+ ioc
->facts
.MaxChainDepth
; i
++) {
483 (le32_to_cpu(sgel
->FlagsLength
) >> MPI2_SGE_FLAGS_SHIFT
);
485 switch (sgl_flags
& MPI2_SGE_FLAGS_ELEMENT_MASK
) {
486 case MPI2_SGE_FLAGS_CHAIN_ELEMENT
:
488 * Helper function which on passing
489 * chain_buffer_dma returns chain_buffer. Get
490 * the virtual address for sgel->Address
493 _base_get_chain_buffer_dma_to_chain_buffer(ioc
,
494 le32_to_cpu(sgel
->Address
));
495 if (sgel_next
== NULL
)
498 * This is coping 128 byte chain
499 * frame (not a host buffer)
501 dst_chain_addr
[sge_chain_count
] =
503 smid
, sge_chain_count
);
504 src_chain_addr
[sge_chain_count
] =
506 dst_addr_phys
= _base_get_chain_phys(ioc
,
507 smid
, sge_chain_count
);
508 WARN_ON(dst_addr_phys
> U32_MAX
);
510 cpu_to_le32(lower_32_bits(dst_addr_phys
));
514 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT
:
517 _base_clone_to_sys_mem(buff_ptr
,
519 (le32_to_cpu(sgel
->FlagsLength
) &
522 * FIXME: this relies on a a zero
526 cpu_to_le32((u32
)buff_ptr_phys
);
528 _base_clone_to_sys_mem(buff_ptr
,
530 (le32_to_cpu(sgel
->FlagsLength
) &
533 cpu_to_le32((u32
)buff_ptr_phys
);
536 buff_ptr
+= (le32_to_cpu(sgel
->FlagsLength
) &
538 buff_ptr_phys
+= (le32_to_cpu(sgel
->FlagsLength
) &
540 if ((le32_to_cpu(sgel
->FlagsLength
) &
541 (MPI2_SGE_FLAGS_END_OF_BUFFER
542 << MPI2_SGE_FLAGS_SHIFT
)))
543 goto eob_clone_chain
;
546 * Every single element in MPT will have
547 * associated sg_next. Better to sanity that
548 * sg_next is not NULL, but it will be a bug
552 sg_scmd
= sg_next(sg_scmd
);
556 goto eob_clone_chain
;
564 for (i
= 0; i
< sge_chain_count
; i
++) {
566 _base_clone_to_sys_mem(dst_chain_addr
[i
],
567 src_chain_addr
[i
], ioc
->request_sz
);
572 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
573 * @arg: input argument, used to derive ioc
576 * 0 if controller is removed from pci subsystem.
579 static int mpt3sas_remove_dead_ioc_func(void *arg
)
581 struct MPT3SAS_ADAPTER
*ioc
= (struct MPT3SAS_ADAPTER
*)arg
;
582 struct pci_dev
*pdev
;
590 pci_stop_and_remove_bus_device_locked(pdev
);
595 * _base_fault_reset_work - workq handling ioc fault conditions
596 * @work: input argument, used to derive ioc
601 _base_fault_reset_work(struct work_struct
*work
)
603 struct MPT3SAS_ADAPTER
*ioc
=
604 container_of(work
, struct MPT3SAS_ADAPTER
, fault_reset_work
.work
);
608 struct task_struct
*p
;
611 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
612 if (ioc
->shost_recovery
|| ioc
->pci_error_recovery
)
614 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
616 doorbell
= mpt3sas_base_get_iocstate(ioc
, 0);
617 if ((doorbell
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_MASK
) {
618 ioc_err(ioc
, "SAS host is non-operational !!!!\n");
620 /* It may be possible that EEH recovery can resolve some of
621 * pci bus failure issues rather removing the dead ioc function
622 * by considering controller is in a non-operational state. So
623 * here priority is given to the EEH recovery. If it doesn't
624 * not resolve this issue, mpt3sas driver will consider this
625 * controller to non-operational state and remove the dead ioc
628 if (ioc
->non_operational_loop
++ < 5) {
629 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
,
635 * Call _scsih_flush_pending_cmds callback so that we flush all
636 * pending commands back to OS. This call is required to aovid
637 * deadlock at block layer. Dead IOC will fail to do diag reset,
638 * and this call is safe since dead ioc will never return any
639 * command back from HW.
641 ioc
->schedule_dead_ioc_flush_running_cmds(ioc
);
643 * Set remove_host flag early since kernel thread will
644 * take some time to execute.
646 ioc
->remove_host
= 1;
647 /*Remove the Dead Host */
648 p
= kthread_run(mpt3sas_remove_dead_ioc_func
, ioc
,
649 "%s_dead_ioc_%d", ioc
->driver_name
, ioc
->id
);
651 ioc_err(ioc
, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
654 ioc_err(ioc
, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
656 return; /* don't rearm timer */
659 ioc
->non_operational_loop
= 0;
661 if ((doorbell
& MPI2_IOC_STATE_MASK
) != MPI2_IOC_STATE_OPERATIONAL
) {
662 rc
= mpt3sas_base_hard_reset_handler(ioc
, FORCE_BIG_HAMMER
);
663 ioc_warn(ioc
, "%s: hard reset: %s\n",
664 __func__
, rc
== 0 ? "success" : "failed");
665 doorbell
= mpt3sas_base_get_iocstate(ioc
, 0);
666 if ((doorbell
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
)
667 mpt3sas_base_fault_info(ioc
, doorbell
&
668 MPI2_DOORBELL_DATA_MASK
);
669 if (rc
&& (doorbell
& MPI2_IOC_STATE_MASK
) !=
670 MPI2_IOC_STATE_OPERATIONAL
)
671 return; /* don't rearm timer */
674 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
676 if (ioc
->fault_reset_work_q
)
677 queue_delayed_work(ioc
->fault_reset_work_q
,
678 &ioc
->fault_reset_work
,
679 msecs_to_jiffies(FAULT_POLLING_INTERVAL
));
680 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
684 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
685 * @ioc: per adapter object
690 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER
*ioc
)
694 if (ioc
->fault_reset_work_q
)
697 /* initialize fault polling */
699 INIT_DELAYED_WORK(&ioc
->fault_reset_work
, _base_fault_reset_work
);
700 snprintf(ioc
->fault_reset_work_q_name
,
701 sizeof(ioc
->fault_reset_work_q_name
), "poll_%s%d_status",
702 ioc
->driver_name
, ioc
->id
);
703 ioc
->fault_reset_work_q
=
704 create_singlethread_workqueue(ioc
->fault_reset_work_q_name
);
705 if (!ioc
->fault_reset_work_q
) {
706 ioc_err(ioc
, "%s: failed (line=%d)\n", __func__
, __LINE__
);
709 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
710 if (ioc
->fault_reset_work_q
)
711 queue_delayed_work(ioc
->fault_reset_work_q
,
712 &ioc
->fault_reset_work
,
713 msecs_to_jiffies(FAULT_POLLING_INTERVAL
));
714 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
718 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
719 * @ioc: per adapter object
724 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER
*ioc
)
727 struct workqueue_struct
*wq
;
729 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
730 wq
= ioc
->fault_reset_work_q
;
731 ioc
->fault_reset_work_q
= NULL
;
732 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
734 if (!cancel_delayed_work_sync(&ioc
->fault_reset_work
))
736 destroy_workqueue(wq
);
741 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
742 * @ioc: per adapter object
743 * @fault_code: fault code
746 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER
*ioc
, u16 fault_code
)
748 ioc_err(ioc
, "fault_state(0x%04x)!\n", fault_code
);
752 * mpt3sas_halt_firmware - halt's mpt controller firmware
753 * @ioc: per adapter object
755 * For debugging timeout related issues. Writing 0xCOFFEE00
756 * to the doorbell register will halt controller firmware. With
757 * the purpose to stop both driver and firmware, the enduser can
758 * obtain a ring buffer from controller UART.
761 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER
*ioc
)
765 if (!ioc
->fwfault_debug
)
770 doorbell
= ioc
->base_readl(&ioc
->chip
->Doorbell
);
771 if ((doorbell
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
)
772 mpt3sas_base_fault_info(ioc
, doorbell
);
774 writel(0xC0FFEE00, &ioc
->chip
->Doorbell
);
775 ioc_err(ioc
, "Firmware is halted due to command timeout\n");
778 if (ioc
->fwfault_debug
== 2)
782 panic("panic in %s\n", __func__
);
786 * _base_sas_ioc_info - verbose translation of the ioc status
787 * @ioc: per adapter object
788 * @mpi_reply: reply mf payload returned from firmware
789 * @request_hdr: request mf
792 _base_sas_ioc_info(struct MPT3SAS_ADAPTER
*ioc
, MPI2DefaultReply_t
*mpi_reply
,
793 MPI2RequestHeader_t
*request_hdr
)
795 u16 ioc_status
= le16_to_cpu(mpi_reply
->IOCStatus
) &
799 char *func_str
= NULL
;
801 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
802 if (request_hdr
->Function
== MPI2_FUNCTION_SCSI_IO_REQUEST
||
803 request_hdr
->Function
== MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH
||
804 request_hdr
->Function
== MPI2_FUNCTION_EVENT_NOTIFICATION
)
807 if (ioc_status
== MPI2_IOCSTATUS_CONFIG_INVALID_PAGE
)
810 switch (ioc_status
) {
812 /****************************************************************************
813 * Common IOCStatus values for all replies
814 ****************************************************************************/
816 case MPI2_IOCSTATUS_INVALID_FUNCTION
:
817 desc
= "invalid function";
819 case MPI2_IOCSTATUS_BUSY
:
822 case MPI2_IOCSTATUS_INVALID_SGL
:
823 desc
= "invalid sgl";
825 case MPI2_IOCSTATUS_INTERNAL_ERROR
:
826 desc
= "internal error";
828 case MPI2_IOCSTATUS_INVALID_VPID
:
829 desc
= "invalid vpid";
831 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES
:
832 desc
= "insufficient resources";
834 case MPI2_IOCSTATUS_INSUFFICIENT_POWER
:
835 desc
= "insufficient power";
837 case MPI2_IOCSTATUS_INVALID_FIELD
:
838 desc
= "invalid field";
840 case MPI2_IOCSTATUS_INVALID_STATE
:
841 desc
= "invalid state";
843 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED
:
844 desc
= "op state not supported";
847 /****************************************************************************
848 * Config IOCStatus values
849 ****************************************************************************/
851 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION
:
852 desc
= "config invalid action";
854 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE
:
855 desc
= "config invalid type";
857 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE
:
858 desc
= "config invalid page";
860 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA
:
861 desc
= "config invalid data";
863 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS
:
864 desc
= "config no defaults";
866 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT
:
867 desc
= "config cant commit";
870 /****************************************************************************
872 ****************************************************************************/
874 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR
:
875 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE
:
876 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE
:
877 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN
:
878 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN
:
879 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR
:
880 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR
:
881 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED
:
882 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH
:
883 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED
:
884 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED
:
885 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED
:
888 /****************************************************************************
889 * For use by SCSI Initiator and SCSI Target end-to-end data protection
890 ****************************************************************************/
892 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR
:
893 desc
= "eedp guard error";
895 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR
:
896 desc
= "eedp ref tag error";
898 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR
:
899 desc
= "eedp app tag error";
902 /****************************************************************************
904 ****************************************************************************/
906 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX
:
907 desc
= "target invalid io index";
909 case MPI2_IOCSTATUS_TARGET_ABORTED
:
910 desc
= "target aborted";
912 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE
:
913 desc
= "target no conn retryable";
915 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION
:
916 desc
= "target no connection";
918 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH
:
919 desc
= "target xfer count mismatch";
921 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR
:
922 desc
= "target data offset error";
924 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA
:
925 desc
= "target too much write data";
927 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT
:
928 desc
= "target iu too short";
930 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT
:
931 desc
= "target ack nak timeout";
933 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED
:
934 desc
= "target nak received";
937 /****************************************************************************
938 * Serial Attached SCSI values
939 ****************************************************************************/
941 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED
:
942 desc
= "smp request failed";
944 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN
:
945 desc
= "smp data overrun";
948 /****************************************************************************
949 * Diagnostic Buffer Post / Diagnostic Release values
950 ****************************************************************************/
952 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED
:
953 desc
= "diagnostic released";
962 switch (request_hdr
->Function
) {
963 case MPI2_FUNCTION_CONFIG
:
964 frame_sz
= sizeof(Mpi2ConfigRequest_t
) + ioc
->sge_size
;
965 func_str
= "config_page";
967 case MPI2_FUNCTION_SCSI_TASK_MGMT
:
968 frame_sz
= sizeof(Mpi2SCSITaskManagementRequest_t
);
969 func_str
= "task_mgmt";
971 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL
:
972 frame_sz
= sizeof(Mpi2SasIoUnitControlRequest_t
);
973 func_str
= "sas_iounit_ctl";
975 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR
:
976 frame_sz
= sizeof(Mpi2SepRequest_t
);
977 func_str
= "enclosure";
979 case MPI2_FUNCTION_IOC_INIT
:
980 frame_sz
= sizeof(Mpi2IOCInitRequest_t
);
981 func_str
= "ioc_init";
983 case MPI2_FUNCTION_PORT_ENABLE
:
984 frame_sz
= sizeof(Mpi2PortEnableRequest_t
);
985 func_str
= "port_enable";
987 case MPI2_FUNCTION_SMP_PASSTHROUGH
:
988 frame_sz
= sizeof(Mpi2SmpPassthroughRequest_t
) + ioc
->sge_size
;
989 func_str
= "smp_passthru";
991 case MPI2_FUNCTION_NVME_ENCAPSULATED
:
992 frame_sz
= sizeof(Mpi26NVMeEncapsulatedRequest_t
) +
994 func_str
= "nvme_encapsulated";
998 func_str
= "unknown";
1002 ioc_warn(ioc
, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1003 desc
, ioc_status
, request_hdr
, func_str
);
1005 _debug_dump_mf(request_hdr
, frame_sz
/4);
1009 * _base_display_event_data - verbose translation of firmware asyn events
1010 * @ioc: per adapter object
1011 * @mpi_reply: reply mf payload returned from firmware
1014 _base_display_event_data(struct MPT3SAS_ADAPTER
*ioc
,
1015 Mpi2EventNotificationReply_t
*mpi_reply
)
1020 if (!(ioc
->logging_level
& MPT_DEBUG_EVENTS
))
1023 event
= le16_to_cpu(mpi_reply
->Event
);
1026 case MPI2_EVENT_LOG_DATA
:
1029 case MPI2_EVENT_STATE_CHANGE
:
1030 desc
= "Status Change";
1032 case MPI2_EVENT_HARD_RESET_RECEIVED
:
1033 desc
= "Hard Reset Received";
1035 case MPI2_EVENT_EVENT_CHANGE
:
1036 desc
= "Event Change";
1038 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE
:
1039 desc
= "Device Status Change";
1041 case MPI2_EVENT_IR_OPERATION_STATUS
:
1042 if (!ioc
->hide_ir_msg
)
1043 desc
= "IR Operation Status";
1045 case MPI2_EVENT_SAS_DISCOVERY
:
1047 Mpi2EventDataSasDiscovery_t
*event_data
=
1048 (Mpi2EventDataSasDiscovery_t
*)mpi_reply
->EventData
;
1049 ioc_info(ioc
, "Discovery: (%s)",
1050 event_data
->ReasonCode
== MPI2_EVENT_SAS_DISC_RC_STARTED
?
1052 if (event_data
->DiscoveryStatus
)
1053 pr_cont(" discovery_status(0x%08x)",
1054 le32_to_cpu(event_data
->DiscoveryStatus
));
1058 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE
:
1059 desc
= "SAS Broadcast Primitive";
1061 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE
:
1062 desc
= "SAS Init Device Status Change";
1064 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW
:
1065 desc
= "SAS Init Table Overflow";
1067 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST
:
1068 desc
= "SAS Topology Change List";
1070 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE
:
1071 desc
= "SAS Enclosure Device Status Change";
1073 case MPI2_EVENT_IR_VOLUME
:
1074 if (!ioc
->hide_ir_msg
)
1077 case MPI2_EVENT_IR_PHYSICAL_DISK
:
1078 if (!ioc
->hide_ir_msg
)
1079 desc
= "IR Physical Disk";
1081 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST
:
1082 if (!ioc
->hide_ir_msg
)
1083 desc
= "IR Configuration Change List";
1085 case MPI2_EVENT_LOG_ENTRY_ADDED
:
1086 if (!ioc
->hide_ir_msg
)
1087 desc
= "Log Entry Added";
1089 case MPI2_EVENT_TEMP_THRESHOLD
:
1090 desc
= "Temperature Threshold";
1092 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION
:
1093 desc
= "Cable Event";
1095 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR
:
1096 desc
= "SAS Device Discovery Error";
1098 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE
:
1099 desc
= "PCIE Device Status Change";
1101 case MPI2_EVENT_PCIE_ENUMERATION
:
1103 Mpi26EventDataPCIeEnumeration_t
*event_data
=
1104 (Mpi26EventDataPCIeEnumeration_t
*)mpi_reply
->EventData
;
1105 ioc_info(ioc
, "PCIE Enumeration: (%s)",
1106 event_data
->ReasonCode
== MPI26_EVENT_PCIE_ENUM_RC_STARTED
?
1108 if (event_data
->EnumerationStatus
)
1109 pr_cont("enumeration_status(0x%08x)",
1110 le32_to_cpu(event_data
->EnumerationStatus
));
1114 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST
:
1115 desc
= "PCIE Topology Change List";
1122 ioc_info(ioc
, "%s\n", desc
);
1126 * _base_sas_log_info - verbose translation of firmware log info
1127 * @ioc: per adapter object
1128 * @log_info: log info
1131 _base_sas_log_info(struct MPT3SAS_ADAPTER
*ioc
, u32 log_info
)
1133 union loginfo_type
{
1142 union loginfo_type sas_loginfo
;
1143 char *originator_str
= NULL
;
1145 sas_loginfo
.loginfo
= log_info
;
1146 if (sas_loginfo
.dw
.bus_type
!= 3 /*SAS*/)
1149 /* each nexus loss loginfo */
1150 if (log_info
== 0x31170000)
1153 /* eat the loginfos associated with task aborts */
1154 if (ioc
->ignore_loginfos
&& (log_info
== 0x30050000 || log_info
==
1155 0x31140000 || log_info
== 0x31130000))
1158 switch (sas_loginfo
.dw
.originator
) {
1160 originator_str
= "IOP";
1163 originator_str
= "PL";
1166 if (!ioc
->hide_ir_msg
)
1167 originator_str
= "IR";
1169 originator_str
= "WarpDrive";
1173 ioc_warn(ioc
, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1175 originator_str
, sas_loginfo
.dw
.code
, sas_loginfo
.dw
.subcode
);
1179 * _base_display_reply_info -
1180 * @ioc: per adapter object
1181 * @smid: system request message index
1182 * @msix_index: MSIX table index supplied by the OS
1183 * @reply: reply message frame(lower 32bit addr)
1186 _base_display_reply_info(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
, u8 msix_index
,
1189 MPI2DefaultReply_t
*mpi_reply
;
1193 mpi_reply
= mpt3sas_base_get_reply_virt_addr(ioc
, reply
);
1194 if (unlikely(!mpi_reply
)) {
1195 ioc_err(ioc
, "mpi_reply not valid at %s:%d/%s()!\n",
1196 __FILE__
, __LINE__
, __func__
);
1199 ioc_status
= le16_to_cpu(mpi_reply
->IOCStatus
);
1201 if ((ioc_status
& MPI2_IOCSTATUS_MASK
) &&
1202 (ioc
->logging_level
& MPT_DEBUG_REPLY
)) {
1203 _base_sas_ioc_info(ioc
, mpi_reply
,
1204 mpt3sas_base_get_msg_frame(ioc
, smid
));
1207 if (ioc_status
& MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE
) {
1208 loginfo
= le32_to_cpu(mpi_reply
->IOCLogInfo
);
1209 _base_sas_log_info(ioc
, loginfo
);
1212 if (ioc_status
|| loginfo
) {
1213 ioc_status
&= MPI2_IOCSTATUS_MASK
;
1214 mpt3sas_trigger_mpi(ioc
, ioc_status
, loginfo
);
1219 * mpt3sas_base_done - base internal command completion routine
1220 * @ioc: per adapter object
1221 * @smid: system request message index
1222 * @msix_index: MSIX table index supplied by the OS
1223 * @reply: reply message frame(lower 32bit addr)
1226 * 1 meaning mf should be freed from _base_interrupt
1227 * 0 means the mf is freed from this function.
1230 mpt3sas_base_done(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
, u8 msix_index
,
1233 MPI2DefaultReply_t
*mpi_reply
;
1235 mpi_reply
= mpt3sas_base_get_reply_virt_addr(ioc
, reply
);
1236 if (mpi_reply
&& mpi_reply
->Function
== MPI2_FUNCTION_EVENT_ACK
)
1237 return mpt3sas_check_for_pending_internal_cmds(ioc
, smid
);
1239 if (ioc
->base_cmds
.status
== MPT3_CMD_NOT_USED
)
1242 ioc
->base_cmds
.status
|= MPT3_CMD_COMPLETE
;
1244 ioc
->base_cmds
.status
|= MPT3_CMD_REPLY_VALID
;
1245 memcpy(ioc
->base_cmds
.reply
, mpi_reply
, mpi_reply
->MsgLength
*4);
1247 ioc
->base_cmds
.status
&= ~MPT3_CMD_PENDING
;
1249 complete(&ioc
->base_cmds
.done
);
1254 * _base_async_event - main callback handler for firmware asyn events
1255 * @ioc: per adapter object
1256 * @msix_index: MSIX table index supplied by the OS
1257 * @reply: reply message frame(lower 32bit addr)
1260 * 1 meaning mf should be freed from _base_interrupt
1261 * 0 means the mf is freed from this function.
1264 _base_async_event(struct MPT3SAS_ADAPTER
*ioc
, u8 msix_index
, u32 reply
)
1266 Mpi2EventNotificationReply_t
*mpi_reply
;
1267 Mpi2EventAckRequest_t
*ack_request
;
1269 struct _event_ack_list
*delayed_event_ack
;
1271 mpi_reply
= mpt3sas_base_get_reply_virt_addr(ioc
, reply
);
1274 if (mpi_reply
->Function
!= MPI2_FUNCTION_EVENT_NOTIFICATION
)
1277 _base_display_event_data(ioc
, mpi_reply
);
1279 if (!(mpi_reply
->AckRequired
& MPI2_EVENT_NOTIFICATION_ACK_REQUIRED
))
1281 smid
= mpt3sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
1283 delayed_event_ack
= kzalloc(sizeof(*delayed_event_ack
),
1285 if (!delayed_event_ack
)
1287 INIT_LIST_HEAD(&delayed_event_ack
->list
);
1288 delayed_event_ack
->Event
= mpi_reply
->Event
;
1289 delayed_event_ack
->EventContext
= mpi_reply
->EventContext
;
1290 list_add_tail(&delayed_event_ack
->list
,
1291 &ioc
->delayed_event_ack_list
);
1293 ioc_info(ioc
, "DELAYED: EVENT ACK: event (0x%04x)\n",
1294 le16_to_cpu(mpi_reply
->Event
)));
1298 ack_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
1299 memset(ack_request
, 0, sizeof(Mpi2EventAckRequest_t
));
1300 ack_request
->Function
= MPI2_FUNCTION_EVENT_ACK
;
1301 ack_request
->Event
= mpi_reply
->Event
;
1302 ack_request
->EventContext
= mpi_reply
->EventContext
;
1303 ack_request
->VF_ID
= 0; /* TODO */
1304 ack_request
->VP_ID
= 0;
1305 ioc
->put_smid_default(ioc
, smid
);
1309 /* scsih callback handler */
1310 mpt3sas_scsih_event_callback(ioc
, msix_index
, reply
);
1312 /* ctl callback handler */
1313 mpt3sas_ctl_event_callback(ioc
, msix_index
, reply
);
1318 static struct scsiio_tracker
*
1319 _get_st_from_smid(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
1321 struct scsi_cmnd
*cmd
;
1323 if (WARN_ON(!smid
) ||
1324 WARN_ON(smid
>= ioc
->hi_priority_smid
))
1327 cmd
= mpt3sas_scsih_scsi_lookup_get(ioc
, smid
);
1329 return scsi_cmd_priv(cmd
);
1335 * _base_get_cb_idx - obtain the callback index
1336 * @ioc: per adapter object
1337 * @smid: system request message index
1339 * Return: callback index.
1342 _base_get_cb_idx(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
1345 u16 ctl_smid
= ioc
->scsiio_depth
- INTERNAL_SCSIIO_CMDS_COUNT
+ 1;
1348 if (smid
< ioc
->hi_priority_smid
) {
1349 struct scsiio_tracker
*st
;
1351 if (smid
< ctl_smid
) {
1352 st
= _get_st_from_smid(ioc
, smid
);
1354 cb_idx
= st
->cb_idx
;
1355 } else if (smid
== ctl_smid
)
1356 cb_idx
= ioc
->ctl_cb_idx
;
1357 } else if (smid
< ioc
->internal_smid
) {
1358 i
= smid
- ioc
->hi_priority_smid
;
1359 cb_idx
= ioc
->hpr_lookup
[i
].cb_idx
;
1360 } else if (smid
<= ioc
->hba_queue_depth
) {
1361 i
= smid
- ioc
->internal_smid
;
1362 cb_idx
= ioc
->internal_lookup
[i
].cb_idx
;
1368 * _base_mask_interrupts - disable interrupts
1369 * @ioc: per adapter object
1371 * Disabling ResetIRQ, Reply and Doorbell Interrupts
1374 _base_mask_interrupts(struct MPT3SAS_ADAPTER
*ioc
)
1378 ioc
->mask_interrupts
= 1;
1379 him_register
= ioc
->base_readl(&ioc
->chip
->HostInterruptMask
);
1380 him_register
|= MPI2_HIM_DIM
+ MPI2_HIM_RIM
+ MPI2_HIM_RESET_IRQ_MASK
;
1381 writel(him_register
, &ioc
->chip
->HostInterruptMask
);
1382 ioc
->base_readl(&ioc
->chip
->HostInterruptMask
);
1386 * _base_unmask_interrupts - enable interrupts
1387 * @ioc: per adapter object
1389 * Enabling only Reply Interrupts
1392 _base_unmask_interrupts(struct MPT3SAS_ADAPTER
*ioc
)
1396 him_register
= ioc
->base_readl(&ioc
->chip
->HostInterruptMask
);
1397 him_register
&= ~MPI2_HIM_RIM
;
1398 writel(him_register
, &ioc
->chip
->HostInterruptMask
);
1399 ioc
->mask_interrupts
= 0;
1402 union reply_descriptor
{
1410 static u32
base_mod64(u64 dividend
, u32 divisor
)
1415 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1416 remainder
= do_div(dividend
, divisor
);
1421 * _base_process_reply_queue - Process reply descriptors from reply
1422 * descriptor post queue.
1423 * @reply_q: per IRQ's reply queue object.
1425 * Return: number of reply descriptors processed from reply
1429 _base_process_reply_queue(struct adapter_reply_queue
*reply_q
)
1431 union reply_descriptor rd
;
1433 u8 request_descript_type
;
1437 u8 msix_index
= reply_q
->msix_index
;
1438 struct MPT3SAS_ADAPTER
*ioc
= reply_q
->ioc
;
1439 Mpi2ReplyDescriptorsUnion_t
*rpf
;
1443 if (!atomic_add_unless(&reply_q
->busy
, 1, 1))
1444 return completed_cmds
;
1446 rpf
= &reply_q
->reply_post_free
[reply_q
->reply_post_host_index
];
1447 request_descript_type
= rpf
->Default
.ReplyFlags
1448 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK
;
1449 if (request_descript_type
== MPI2_RPY_DESCRIPT_FLAGS_UNUSED
) {
1450 atomic_dec(&reply_q
->busy
);
1451 return completed_cmds
;
1456 rd
.word
= le64_to_cpu(rpf
->Words
);
1457 if (rd
.u
.low
== UINT_MAX
|| rd
.u
.high
== UINT_MAX
)
1460 smid
= le16_to_cpu(rpf
->Default
.DescriptorTypeDependent1
);
1461 if (request_descript_type
==
1462 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS
||
1463 request_descript_type
==
1464 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS
||
1465 request_descript_type
==
1466 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS
) {
1467 cb_idx
= _base_get_cb_idx(ioc
, smid
);
1468 if ((likely(cb_idx
< MPT_MAX_CALLBACKS
)) &&
1469 (likely(mpt_callbacks
[cb_idx
] != NULL
))) {
1470 rc
= mpt_callbacks
[cb_idx
](ioc
, smid
,
1473 mpt3sas_base_free_smid(ioc
, smid
);
1475 } else if (request_descript_type
==
1476 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY
) {
1477 reply
= le32_to_cpu(
1478 rpf
->AddressReply
.ReplyFrameAddress
);
1479 if (reply
> ioc
->reply_dma_max_address
||
1480 reply
< ioc
->reply_dma_min_address
)
1483 cb_idx
= _base_get_cb_idx(ioc
, smid
);
1484 if ((likely(cb_idx
< MPT_MAX_CALLBACKS
)) &&
1485 (likely(mpt_callbacks
[cb_idx
] != NULL
))) {
1486 rc
= mpt_callbacks
[cb_idx
](ioc
, smid
,
1489 _base_display_reply_info(ioc
,
1490 smid
, msix_index
, reply
);
1492 mpt3sas_base_free_smid(ioc
,
1496 _base_async_event(ioc
, msix_index
, reply
);
1499 /* reply free queue handling */
1501 ioc
->reply_free_host_index
=
1502 (ioc
->reply_free_host_index
==
1503 (ioc
->reply_free_queue_depth
- 1)) ?
1504 0 : ioc
->reply_free_host_index
+ 1;
1505 ioc
->reply_free
[ioc
->reply_free_host_index
] =
1507 if (ioc
->is_mcpu_endpoint
)
1508 _base_clone_reply_to_sys_mem(ioc
,
1510 ioc
->reply_free_host_index
);
1511 writel(ioc
->reply_free_host_index
,
1512 &ioc
->chip
->ReplyFreeHostIndex
);
1516 rpf
->Words
= cpu_to_le64(ULLONG_MAX
);
1517 reply_q
->reply_post_host_index
=
1518 (reply_q
->reply_post_host_index
==
1519 (ioc
->reply_post_queue_depth
- 1)) ? 0 :
1520 reply_q
->reply_post_host_index
+ 1;
1521 request_descript_type
=
1522 reply_q
->reply_post_free
[reply_q
->reply_post_host_index
].
1523 Default
.ReplyFlags
& MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK
;
1525 /* Update the reply post host index after continuously
1526 * processing the threshold number of Reply Descriptors.
1527 * So that FW can find enough entries to post the Reply
1528 * Descriptors in the reply descriptor post queue.
1530 if (!base_mod64(completed_cmds
, ioc
->thresh_hold
)) {
1531 if (ioc
->combined_reply_queue
) {
1532 writel(reply_q
->reply_post_host_index
|
1533 ((msix_index
& 7) <<
1534 MPI2_RPHI_MSIX_INDEX_SHIFT
),
1535 ioc
->replyPostRegisterIndex
[msix_index
/8]);
1537 writel(reply_q
->reply_post_host_index
|
1539 MPI2_RPHI_MSIX_INDEX_SHIFT
),
1540 &ioc
->chip
->ReplyPostHostIndex
);
1542 if (!reply_q
->irq_poll_scheduled
) {
1543 reply_q
->irq_poll_scheduled
= true;
1544 irq_poll_sched(&reply_q
->irqpoll
);
1546 atomic_dec(&reply_q
->busy
);
1547 return completed_cmds
;
1549 if (request_descript_type
== MPI2_RPY_DESCRIPT_FLAGS_UNUSED
)
1551 if (!reply_q
->reply_post_host_index
)
1552 rpf
= reply_q
->reply_post_free
;
1559 if (!completed_cmds
) {
1560 atomic_dec(&reply_q
->busy
);
1561 return completed_cmds
;
1564 if (ioc
->is_warpdrive
) {
1565 writel(reply_q
->reply_post_host_index
,
1566 ioc
->reply_post_host_index
[msix_index
]);
1567 atomic_dec(&reply_q
->busy
);
1568 return completed_cmds
;
1571 /* Update Reply Post Host Index.
1572 * For those HBA's which support combined reply queue feature
1573 * 1. Get the correct Supplemental Reply Post Host Index Register.
1574 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1575 * Index Register address bank i.e replyPostRegisterIndex[],
1576 * 2. Then update this register with new reply host index value
1577 * in ReplyPostIndex field and the MSIxIndex field with
1578 * msix_index value reduced to a value between 0 and 7,
1579 * using a modulo 8 operation. Since each Supplemental Reply Post
1580 * Host Index Register supports 8 MSI-X vectors.
1582 * For other HBA's just update the Reply Post Host Index register with
1583 * new reply host index value in ReplyPostIndex Field and msix_index
1584 * value in MSIxIndex field.
1586 if (ioc
->combined_reply_queue
)
1587 writel(reply_q
->reply_post_host_index
| ((msix_index
& 7) <<
1588 MPI2_RPHI_MSIX_INDEX_SHIFT
),
1589 ioc
->replyPostRegisterIndex
[msix_index
/8]);
1591 writel(reply_q
->reply_post_host_index
| (msix_index
<<
1592 MPI2_RPHI_MSIX_INDEX_SHIFT
),
1593 &ioc
->chip
->ReplyPostHostIndex
);
1594 atomic_dec(&reply_q
->busy
);
1595 return completed_cmds
;
1599 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1600 * @irq: irq number (not used)
1601 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1603 * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1606 _base_interrupt(int irq
, void *bus_id
)
1608 struct adapter_reply_queue
*reply_q
= bus_id
;
1609 struct MPT3SAS_ADAPTER
*ioc
= reply_q
->ioc
;
1611 if (ioc
->mask_interrupts
)
1613 if (reply_q
->irq_poll_scheduled
)
1615 return ((_base_process_reply_queue(reply_q
) > 0) ?
1616 IRQ_HANDLED
: IRQ_NONE
);
1620 * _base_irqpoll - IRQ poll callback handler
1621 * @irqpoll - irq_poll object
1622 * @budget - irq poll weight
1624 * returns number of reply descriptors processed
1627 _base_irqpoll(struct irq_poll
*irqpoll
, int budget
)
1629 struct adapter_reply_queue
*reply_q
;
1630 int num_entries
= 0;
1632 reply_q
= container_of(irqpoll
, struct adapter_reply_queue
,
1634 if (reply_q
->irq_line_enable
) {
1635 disable_irq(reply_q
->os_irq
);
1636 reply_q
->irq_line_enable
= false;
1638 num_entries
= _base_process_reply_queue(reply_q
);
1639 if (num_entries
< budget
) {
1640 irq_poll_complete(irqpoll
);
1641 reply_q
->irq_poll_scheduled
= false;
1642 reply_q
->irq_line_enable
= true;
1643 enable_irq(reply_q
->os_irq
);
1650 * _base_init_irqpolls - initliaze IRQ polls
1651 * @ioc: per adapter object
1656 _base_init_irqpolls(struct MPT3SAS_ADAPTER
*ioc
)
1658 struct adapter_reply_queue
*reply_q
, *next
;
1660 if (list_empty(&ioc
->reply_queue_list
))
1663 list_for_each_entry_safe(reply_q
, next
, &ioc
->reply_queue_list
, list
) {
1664 irq_poll_init(&reply_q
->irqpoll
,
1665 ioc
->hba_queue_depth
/4, _base_irqpoll
);
1666 reply_q
->irq_poll_scheduled
= false;
1667 reply_q
->irq_line_enable
= true;
1668 reply_q
->os_irq
= pci_irq_vector(ioc
->pdev
,
1669 reply_q
->msix_index
);
1674 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1675 * @ioc: per adapter object
1677 * Return: Whether or not MSI/X is enabled.
1680 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER
*ioc
)
1682 return (ioc
->facts
.IOCCapabilities
&
1683 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX
) && ioc
->msix_enable
;
1687 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1688 * @ioc: per adapter object
1689 * Context: non ISR conext
1691 * Called when a Task Management request has completed.
1694 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER
*ioc
)
1696 struct adapter_reply_queue
*reply_q
;
1698 /* If MSIX capability is turned off
1699 * then multi-queues are not enabled
1701 if (!_base_is_controller_msix_enabled(ioc
))
1704 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
) {
1705 if (ioc
->shost_recovery
|| ioc
->remove_host
||
1706 ioc
->pci_error_recovery
)
1708 /* TMs are on msix_index == 0 */
1709 if (reply_q
->msix_index
== 0)
1711 if (reply_q
->irq_poll_scheduled
) {
1712 /* Calling irq_poll_disable will wait for any pending
1713 * callbacks to have completed.
1715 irq_poll_disable(&reply_q
->irqpoll
);
1716 irq_poll_enable(&reply_q
->irqpoll
);
1717 reply_q
->irq_poll_scheduled
= false;
1718 reply_q
->irq_line_enable
= true;
1719 enable_irq(reply_q
->os_irq
);
1722 synchronize_irq(pci_irq_vector(ioc
->pdev
, reply_q
->msix_index
));
1727 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1728 * @cb_idx: callback index
1731 mpt3sas_base_release_callback_handler(u8 cb_idx
)
1733 mpt_callbacks
[cb_idx
] = NULL
;
1737 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1738 * @cb_func: callback function
1740 * Return: Index of @cb_func.
1743 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func
)
1747 for (cb_idx
= MPT_MAX_CALLBACKS
-1; cb_idx
; cb_idx
--)
1748 if (mpt_callbacks
[cb_idx
] == NULL
)
1751 mpt_callbacks
[cb_idx
] = cb_func
;
1756 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1759 mpt3sas_base_initialize_callback_handler(void)
1763 for (cb_idx
= 0; cb_idx
< MPT_MAX_CALLBACKS
; cb_idx
++)
1764 mpt3sas_base_release_callback_handler(cb_idx
);
1769 * _base_build_zero_len_sge - build zero length sg entry
1770 * @ioc: per adapter object
1771 * @paddr: virtual address for SGE
1773 * Create a zero length scatter gather entry to insure the IOCs hardware has
1774 * something to use if the target device goes brain dead and tries
1775 * to send data even when none is asked for.
1778 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER
*ioc
, void *paddr
)
1780 u32 flags_length
= (u32
)((MPI2_SGE_FLAGS_LAST_ELEMENT
|
1781 MPI2_SGE_FLAGS_END_OF_BUFFER
| MPI2_SGE_FLAGS_END_OF_LIST
|
1782 MPI2_SGE_FLAGS_SIMPLE_ELEMENT
) <<
1783 MPI2_SGE_FLAGS_SHIFT
);
1784 ioc
->base_add_sg_single(paddr
, flags_length
, -1);
1788 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1789 * @paddr: virtual address for SGE
1790 * @flags_length: SGE flags and data transfer length
1791 * @dma_addr: Physical address
1794 _base_add_sg_single_32(void *paddr
, u32 flags_length
, dma_addr_t dma_addr
)
1796 Mpi2SGESimple32_t
*sgel
= paddr
;
1798 flags_length
|= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING
|
1799 MPI2_SGE_FLAGS_SYSTEM_ADDRESS
) << MPI2_SGE_FLAGS_SHIFT
;
1800 sgel
->FlagsLength
= cpu_to_le32(flags_length
);
1801 sgel
->Address
= cpu_to_le32(dma_addr
);
1806 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1807 * @paddr: virtual address for SGE
1808 * @flags_length: SGE flags and data transfer length
1809 * @dma_addr: Physical address
1812 _base_add_sg_single_64(void *paddr
, u32 flags_length
, dma_addr_t dma_addr
)
1814 Mpi2SGESimple64_t
*sgel
= paddr
;
1816 flags_length
|= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING
|
1817 MPI2_SGE_FLAGS_SYSTEM_ADDRESS
) << MPI2_SGE_FLAGS_SHIFT
;
1818 sgel
->FlagsLength
= cpu_to_le32(flags_length
);
1819 sgel
->Address
= cpu_to_le64(dma_addr
);
1823 * _base_get_chain_buffer_tracker - obtain chain tracker
1824 * @ioc: per adapter object
1825 * @scmd: SCSI commands of the IO request
1827 * Return: chain tracker from chain_lookup table using key as
1828 * smid and smid's chain_offset.
1830 static struct chain_tracker
*
1831 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER
*ioc
,
1832 struct scsi_cmnd
*scmd
)
1834 struct chain_tracker
*chain_req
;
1835 struct scsiio_tracker
*st
= scsi_cmd_priv(scmd
);
1836 u16 smid
= st
->smid
;
1838 atomic_read(&ioc
->chain_lookup
[smid
- 1].chain_offset
);
1840 if (chain_offset
== ioc
->chains_needed_per_io
)
1843 chain_req
= &ioc
->chain_lookup
[smid
- 1].chains_per_smid
[chain_offset
];
1844 atomic_inc(&ioc
->chain_lookup
[smid
- 1].chain_offset
);
1850 * _base_build_sg - build generic sg
1851 * @ioc: per adapter object
1852 * @psge: virtual address for SGE
1853 * @data_out_dma: physical address for WRITES
1854 * @data_out_sz: data xfer size for WRITES
1855 * @data_in_dma: physical address for READS
1856 * @data_in_sz: data xfer size for READS
1859 _base_build_sg(struct MPT3SAS_ADAPTER
*ioc
, void *psge
,
1860 dma_addr_t data_out_dma
, size_t data_out_sz
, dma_addr_t data_in_dma
,
1865 if (!data_out_sz
&& !data_in_sz
) {
1866 _base_build_zero_len_sge(ioc
, psge
);
1870 if (data_out_sz
&& data_in_sz
) {
1871 /* WRITE sgel first */
1872 sgl_flags
= (MPI2_SGE_FLAGS_SIMPLE_ELEMENT
|
1873 MPI2_SGE_FLAGS_END_OF_BUFFER
| MPI2_SGE_FLAGS_HOST_TO_IOC
);
1874 sgl_flags
= sgl_flags
<< MPI2_SGE_FLAGS_SHIFT
;
1875 ioc
->base_add_sg_single(psge
, sgl_flags
|
1876 data_out_sz
, data_out_dma
);
1879 psge
+= ioc
->sge_size
;
1881 /* READ sgel last */
1882 sgl_flags
= (MPI2_SGE_FLAGS_SIMPLE_ELEMENT
|
1883 MPI2_SGE_FLAGS_LAST_ELEMENT
| MPI2_SGE_FLAGS_END_OF_BUFFER
|
1884 MPI2_SGE_FLAGS_END_OF_LIST
);
1885 sgl_flags
= sgl_flags
<< MPI2_SGE_FLAGS_SHIFT
;
1886 ioc
->base_add_sg_single(psge
, sgl_flags
|
1887 data_in_sz
, data_in_dma
);
1888 } else if (data_out_sz
) /* WRITE */ {
1889 sgl_flags
= (MPI2_SGE_FLAGS_SIMPLE_ELEMENT
|
1890 MPI2_SGE_FLAGS_LAST_ELEMENT
| MPI2_SGE_FLAGS_END_OF_BUFFER
|
1891 MPI2_SGE_FLAGS_END_OF_LIST
| MPI2_SGE_FLAGS_HOST_TO_IOC
);
1892 sgl_flags
= sgl_flags
<< MPI2_SGE_FLAGS_SHIFT
;
1893 ioc
->base_add_sg_single(psge
, sgl_flags
|
1894 data_out_sz
, data_out_dma
);
1895 } else if (data_in_sz
) /* READ */ {
1896 sgl_flags
= (MPI2_SGE_FLAGS_SIMPLE_ELEMENT
|
1897 MPI2_SGE_FLAGS_LAST_ELEMENT
| MPI2_SGE_FLAGS_END_OF_BUFFER
|
1898 MPI2_SGE_FLAGS_END_OF_LIST
);
1899 sgl_flags
= sgl_flags
<< MPI2_SGE_FLAGS_SHIFT
;
1900 ioc
->base_add_sg_single(psge
, sgl_flags
|
1901 data_in_sz
, data_in_dma
);
1905 /* IEEE format sgls */
1908 * _base_build_nvme_prp - This function is called for NVMe end devices to build
1909 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
1910 * entry of the NVMe message (PRP1). If the data buffer is small enough to be
1911 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is
1912 * used to describe a larger data buffer. If the data buffer is too large to
1913 * describe using the two PRP entriess inside the NVMe message, then PRP1
1914 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
1915 * list located elsewhere in memory to describe the remaining data memory
1916 * segments. The PRP list will be contiguous.
1918 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
1919 * consists of a list of PRP entries to describe a number of noncontigous
1920 * physical memory segments as a single memory buffer, just as a SGL does. Note
1921 * however, that this function is only used by the IOCTL call, so the memory
1922 * given will be guaranteed to be contiguous. There is no need to translate
1923 * non-contiguous SGL into a PRP in this case. All PRPs will describe
1924 * contiguous space that is one page size each.
1926 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
1927 * a PRP list pointer or a PRP element, depending upon the command. PRP2
1928 * contains the second PRP element if the memory being described fits within 2
1929 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
1931 * A PRP list pointer contains the address of a PRP list, structured as a linear
1932 * array of PRP entries. Each PRP entry in this list describes a segment of
1935 * Each 64-bit PRP entry comprises an address and an offset field. The address
1936 * always points at the beginning of a 4KB physical memory page, and the offset
1937 * describes where within that 4KB page the memory segment begins. Only the
1938 * first element in a PRP list may contain a non-zero offest, implying that all
1939 * memory segments following the first begin at the start of a 4KB page.
1941 * Each PRP element normally describes 4KB of physical memory, with exceptions
1942 * for the first and last elements in the list. If the memory being described
1943 * by the list begins at a non-zero offset within the first 4KB page, then the
1944 * first PRP element will contain a non-zero offset indicating where the region
1945 * begins within the 4KB page. The last memory segment may end before the end
1946 * of the 4KB segment, depending upon the overall size of the memory being
1947 * described by the PRP list.
1949 * Since PRP entries lack any indication of size, the overall data buffer length
1950 * is used to determine where the end of the data memory buffer is located, and
1951 * how many PRP entries are required to describe it.
1953 * @ioc: per adapter object
1954 * @smid: system request message index for getting asscociated SGL
1955 * @nvme_encap_request: the NVMe request msg frame pointer
1956 * @data_out_dma: physical address for WRITES
1957 * @data_out_sz: data xfer size for WRITES
1958 * @data_in_dma: physical address for READS
1959 * @data_in_sz: data xfer size for READS
1962 _base_build_nvme_prp(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
1963 Mpi26NVMeEncapsulatedRequest_t
*nvme_encap_request
,
1964 dma_addr_t data_out_dma
, size_t data_out_sz
, dma_addr_t data_in_dma
,
1967 int prp_size
= NVME_PRP_SIZE
;
1968 __le64
*prp_entry
, *prp1_entry
, *prp2_entry
;
1970 dma_addr_t prp_entry_dma
, prp_page_dma
, dma_addr
;
1971 u32 offset
, entry_len
;
1972 u32 page_mask_result
, page_mask
;
1974 struct mpt3sas_nvme_cmd
*nvme_cmd
=
1975 (void *)nvme_encap_request
->NVMe_Command
;
1978 * Not all commands require a data transfer. If no data, just return
1979 * without constructing any PRP.
1981 if (!data_in_sz
&& !data_out_sz
)
1983 prp1_entry
= &nvme_cmd
->prp1
;
1984 prp2_entry
= &nvme_cmd
->prp2
;
1985 prp_entry
= prp1_entry
;
1987 * For the PRP entries, use the specially allocated buffer of
1988 * contiguous memory.
1990 prp_page
= (__le64
*)mpt3sas_base_get_pcie_sgl(ioc
, smid
);
1991 prp_page_dma
= mpt3sas_base_get_pcie_sgl_dma(ioc
, smid
);
1994 * Check if we are within 1 entry of a page boundary we don't
1995 * want our first entry to be a PRP List entry.
1997 page_mask
= ioc
->page_size
- 1;
1998 page_mask_result
= (uintptr_t)((u8
*)prp_page
+ prp_size
) & page_mask
;
1999 if (!page_mask_result
) {
2000 /* Bump up to next page boundary. */
2001 prp_page
= (__le64
*)((u8
*)prp_page
+ prp_size
);
2002 prp_page_dma
= prp_page_dma
+ prp_size
;
2006 * Set PRP physical pointer, which initially points to the current PRP
2009 prp_entry_dma
= prp_page_dma
;
2011 /* Get physical address and length of the data buffer. */
2013 dma_addr
= data_in_dma
;
2014 length
= data_in_sz
;
2016 dma_addr
= data_out_dma
;
2017 length
= data_out_sz
;
2020 /* Loop while the length is not zero. */
2023 * Check if we need to put a list pointer here if we are at
2024 * page boundary - prp_size (8 bytes).
2026 page_mask_result
= (prp_entry_dma
+ prp_size
) & page_mask
;
2027 if (!page_mask_result
) {
2029 * This is the last entry in a PRP List, so we need to
2030 * put a PRP list pointer here. What this does is:
2031 * - bump the current memory pointer to the next
2032 * address, which will be the next full page.
2033 * - set the PRP Entry to point to that page. This
2034 * is now the PRP List pointer.
2035 * - bump the PRP Entry pointer the start of the
2036 * next page. Since all of this PRP memory is
2037 * contiguous, no need to get a new page - it's
2038 * just the next address.
2041 *prp_entry
= cpu_to_le64(prp_entry_dma
);
2045 /* Need to handle if entry will be part of a page. */
2046 offset
= dma_addr
& page_mask
;
2047 entry_len
= ioc
->page_size
- offset
;
2049 if (prp_entry
== prp1_entry
) {
2051 * Must fill in the first PRP pointer (PRP1) before
2054 *prp1_entry
= cpu_to_le64(dma_addr
);
2057 * Now point to the second PRP entry within the
2060 prp_entry
= prp2_entry
;
2061 } else if (prp_entry
== prp2_entry
) {
2063 * Should the PRP2 entry be a PRP List pointer or just
2064 * a regular PRP pointer? If there is more than one
2065 * more page of data, must use a PRP List pointer.
2067 if (length
> ioc
->page_size
) {
2069 * PRP2 will contain a PRP List pointer because
2070 * more PRP's are needed with this command. The
2071 * list will start at the beginning of the
2072 * contiguous buffer.
2074 *prp2_entry
= cpu_to_le64(prp_entry_dma
);
2077 * The next PRP Entry will be the start of the
2080 prp_entry
= prp_page
;
2083 * After this, the PRP Entries are complete.
2084 * This command uses 2 PRP's and no PRP list.
2086 *prp2_entry
= cpu_to_le64(dma_addr
);
2090 * Put entry in list and bump the addresses.
2092 * After PRP1 and PRP2 are filled in, this will fill in
2093 * all remaining PRP entries in a PRP List, one per
2094 * each time through the loop.
2096 *prp_entry
= cpu_to_le64(dma_addr
);
2102 * Bump the phys address of the command's data buffer by the
2105 dma_addr
+= entry_len
;
2107 /* Decrement length accounting for last partial page. */
2108 if (entry_len
> length
)
2111 length
-= entry_len
;
2116 * base_make_prp_nvme -
2117 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
2119 * @ioc: per adapter object
2120 * @scmd: SCSI command from the mid-layer
2121 * @mpi_request: mpi request
2123 * @sge_count: scatter gather element count.
2125 * Return: true: PRPs are built
2126 * false: IEEE SGLs needs to be built
2129 base_make_prp_nvme(struct MPT3SAS_ADAPTER
*ioc
,
2130 struct scsi_cmnd
*scmd
,
2131 Mpi25SCSIIORequest_t
*mpi_request
,
2132 u16 smid
, int sge_count
)
2134 int sge_len
, num_prp_in_chain
= 0;
2135 Mpi25IeeeSgeChain64_t
*main_chain_element
, *ptr_first_sgl
;
2137 dma_addr_t msg_dma
, sge_addr
, offset
;
2138 u32 page_mask
, page_mask_result
;
2139 struct scatterlist
*sg_scmd
;
2141 int data_len
= scsi_bufflen(scmd
);
2144 nvme_pg_size
= max_t(u32
, ioc
->page_size
, NVME_PRP_PAGE_SIZE
);
2146 * Nvme has a very convoluted prp format. One prp is required
2147 * for each page or partial page. Driver need to split up OS sg_list
2148 * entries if it is longer than one page or cross a page
2149 * boundary. Driver also have to insert a PRP list pointer entry as
2150 * the last entry in each physical page of the PRP list.
2152 * NOTE: The first PRP "entry" is actually placed in the first
2153 * SGL entry in the main message as IEEE 64 format. The 2nd
2154 * entry in the main message is the chain element, and the rest
2155 * of the PRP entries are built in the contiguous pcie buffer.
2157 page_mask
= nvme_pg_size
- 1;
2160 * Native SGL is needed.
2161 * Put a chain element in main message frame that points to the first
2164 * NOTE: The ChainOffset field must be 0 when using a chain pointer to
2168 /* Set main message chain element pointer */
2169 main_chain_element
= (pMpi25IeeeSgeChain64_t
)&mpi_request
->SGL
;
2171 * For NVMe the chain element needs to be the 2nd SG entry in the main
2174 main_chain_element
= (Mpi25IeeeSgeChain64_t
*)
2175 ((u8
*)main_chain_element
+ sizeof(MPI25_IEEE_SGE_CHAIN64
));
2178 * For the PRP entries, use the specially allocated buffer of
2179 * contiguous memory. Normal chain buffers can't be used
2180 * because each chain buffer would need to be the size of an OS
2183 curr_buff
= mpt3sas_base_get_pcie_sgl(ioc
, smid
);
2184 msg_dma
= mpt3sas_base_get_pcie_sgl_dma(ioc
, smid
);
2186 main_chain_element
->Address
= cpu_to_le64(msg_dma
);
2187 main_chain_element
->NextChainOffset
= 0;
2188 main_chain_element
->Flags
= MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT
|
2189 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
|
2190 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP
;
2192 /* Build first prp, sge need not to be page aligned*/
2193 ptr_first_sgl
= (pMpi25IeeeSgeChain64_t
)&mpi_request
->SGL
;
2194 sg_scmd
= scsi_sglist(scmd
);
2195 sge_addr
= sg_dma_address(sg_scmd
);
2196 sge_len
= sg_dma_len(sg_scmd
);
2198 offset
= sge_addr
& page_mask
;
2199 first_prp_len
= nvme_pg_size
- offset
;
2201 ptr_first_sgl
->Address
= cpu_to_le64(sge_addr
);
2202 ptr_first_sgl
->Length
= cpu_to_le32(first_prp_len
);
2204 data_len
-= first_prp_len
;
2206 if (sge_len
> first_prp_len
) {
2207 sge_addr
+= first_prp_len
;
2208 sge_len
-= first_prp_len
;
2209 } else if (data_len
&& (sge_len
== first_prp_len
)) {
2210 sg_scmd
= sg_next(sg_scmd
);
2211 sge_addr
= sg_dma_address(sg_scmd
);
2212 sge_len
= sg_dma_len(sg_scmd
);
2216 offset
= sge_addr
& page_mask
;
2218 /* Put PRP pointer due to page boundary*/
2219 page_mask_result
= (uintptr_t)(curr_buff
+ 1) & page_mask
;
2220 if (unlikely(!page_mask_result
)) {
2221 scmd_printk(KERN_NOTICE
,
2222 scmd
, "page boundary curr_buff: 0x%p\n",
2225 *curr_buff
= cpu_to_le64(msg_dma
);
2230 *curr_buff
= cpu_to_le64(sge_addr
);
2235 sge_addr
+= nvme_pg_size
;
2236 sge_len
-= nvme_pg_size
;
2237 data_len
-= nvme_pg_size
;
2245 sg_scmd
= sg_next(sg_scmd
);
2246 sge_addr
= sg_dma_address(sg_scmd
);
2247 sge_len
= sg_dma_len(sg_scmd
);
2250 main_chain_element
->Length
=
2251 cpu_to_le32(num_prp_in_chain
* sizeof(u64
));
2256 base_is_prp_possible(struct MPT3SAS_ADAPTER
*ioc
,
2257 struct _pcie_device
*pcie_device
, struct scsi_cmnd
*scmd
, int sge_count
)
2259 u32 data_length
= 0;
2260 bool build_prp
= true;
2262 data_length
= scsi_bufflen(scmd
);
2264 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2267 if ((data_length
<= NVME_PRP_PAGE_SIZE
*4) && (sge_count
<= 2))
2274 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2275 * determine if the driver needs to build a native SGL. If so, that native
2276 * SGL is built in the special contiguous buffers allocated especially for
2277 * PCIe SGL creation. If the driver will not build a native SGL, return
2278 * TRUE and a normal IEEE SGL will be built. Currently this routine
2280 * @ioc: per adapter object
2281 * @mpi_request: mf request pointer
2282 * @smid: system request message index
2283 * @scmd: scsi command
2284 * @pcie_device: points to the PCIe device's info
2286 * Return: 0 if native SGL was built, 1 if no SGL was built
2289 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER
*ioc
,
2290 Mpi25SCSIIORequest_t
*mpi_request
, u16 smid
, struct scsi_cmnd
*scmd
,
2291 struct _pcie_device
*pcie_device
)
2295 /* Get the SG list pointer and info. */
2296 sges_left
= scsi_dma_map(scmd
);
2297 if (sges_left
< 0) {
2298 sdev_printk(KERN_ERR
, scmd
->device
,
2299 "scsi_dma_map failed: request for %d bytes!\n",
2300 scsi_bufflen(scmd
));
2304 /* Check if we need to build a native SG list. */
2305 if (base_is_prp_possible(ioc
, pcie_device
,
2306 scmd
, sges_left
) == 0) {
2307 /* We built a native SG list, just return. */
2312 * Build native NVMe PRP.
2314 base_make_prp_nvme(ioc
, scmd
, mpi_request
,
2319 scsi_dma_unmap(scmd
);
2324 * _base_add_sg_single_ieee - add sg element for IEEE format
2325 * @paddr: virtual address for SGE
2327 * @chain_offset: number of 128 byte elements from start of segment
2328 * @length: data transfer length
2329 * @dma_addr: Physical address
2332 _base_add_sg_single_ieee(void *paddr
, u8 flags
, u8 chain_offset
, u32 length
,
2333 dma_addr_t dma_addr
)
2335 Mpi25IeeeSgeChain64_t
*sgel
= paddr
;
2337 sgel
->Flags
= flags
;
2338 sgel
->NextChainOffset
= chain_offset
;
2339 sgel
->Length
= cpu_to_le32(length
);
2340 sgel
->Address
= cpu_to_le64(dma_addr
);
2344 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2345 * @ioc: per adapter object
2346 * @paddr: virtual address for SGE
2348 * Create a zero length scatter gather entry to insure the IOCs hardware has
2349 * something to use if the target device goes brain dead and tries
2350 * to send data even when none is asked for.
2353 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER
*ioc
, void *paddr
)
2355 u8 sgl_flags
= (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT
|
2356 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
|
2357 MPI25_IEEE_SGE_FLAGS_END_OF_LIST
);
2359 _base_add_sg_single_ieee(paddr
, sgl_flags
, 0, 0, -1);
2363 * _base_build_sg_scmd - main sg creation routine
2364 * pcie_device is unused here!
2365 * @ioc: per adapter object
2366 * @scmd: scsi command
2367 * @smid: system request message index
2368 * @unused: unused pcie_device pointer
2371 * The main routine that builds scatter gather table from a given
2372 * scsi request sent via the .queuecommand main handler.
2374 * Return: 0 success, anything else error
2377 _base_build_sg_scmd(struct MPT3SAS_ADAPTER
*ioc
,
2378 struct scsi_cmnd
*scmd
, u16 smid
, struct _pcie_device
*unused
)
2380 Mpi2SCSIIORequest_t
*mpi_request
;
2381 dma_addr_t chain_dma
;
2382 struct scatterlist
*sg_scmd
;
2383 void *sg_local
, *chain
;
2388 u32 sges_in_segment
;
2390 u32 sgl_flags_last_element
;
2391 u32 sgl_flags_end_buffer
;
2392 struct chain_tracker
*chain_req
;
2394 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
2396 /* init scatter gather flags */
2397 sgl_flags
= MPI2_SGE_FLAGS_SIMPLE_ELEMENT
;
2398 if (scmd
->sc_data_direction
== DMA_TO_DEVICE
)
2399 sgl_flags
|= MPI2_SGE_FLAGS_HOST_TO_IOC
;
2400 sgl_flags_last_element
= (sgl_flags
| MPI2_SGE_FLAGS_LAST_ELEMENT
)
2401 << MPI2_SGE_FLAGS_SHIFT
;
2402 sgl_flags_end_buffer
= (sgl_flags
| MPI2_SGE_FLAGS_LAST_ELEMENT
|
2403 MPI2_SGE_FLAGS_END_OF_BUFFER
| MPI2_SGE_FLAGS_END_OF_LIST
)
2404 << MPI2_SGE_FLAGS_SHIFT
;
2405 sgl_flags
= sgl_flags
<< MPI2_SGE_FLAGS_SHIFT
;
2407 sg_scmd
= scsi_sglist(scmd
);
2408 sges_left
= scsi_dma_map(scmd
);
2409 if (sges_left
< 0) {
2410 sdev_printk(KERN_ERR
, scmd
->device
,
2411 "scsi_dma_map failed: request for %d bytes!\n",
2412 scsi_bufflen(scmd
));
2416 sg_local
= &mpi_request
->SGL
;
2417 sges_in_segment
= ioc
->max_sges_in_main_message
;
2418 if (sges_left
<= sges_in_segment
)
2419 goto fill_in_last_segment
;
2421 mpi_request
->ChainOffset
= (offsetof(Mpi2SCSIIORequest_t
, SGL
) +
2422 (sges_in_segment
* ioc
->sge_size
))/4;
2424 /* fill in main message segment when there is a chain following */
2425 while (sges_in_segment
) {
2426 if (sges_in_segment
== 1)
2427 ioc
->base_add_sg_single(sg_local
,
2428 sgl_flags_last_element
| sg_dma_len(sg_scmd
),
2429 sg_dma_address(sg_scmd
));
2431 ioc
->base_add_sg_single(sg_local
, sgl_flags
|
2432 sg_dma_len(sg_scmd
), sg_dma_address(sg_scmd
));
2433 sg_scmd
= sg_next(sg_scmd
);
2434 sg_local
+= ioc
->sge_size
;
2439 /* initializing the chain flags and pointers */
2440 chain_flags
= MPI2_SGE_FLAGS_CHAIN_ELEMENT
<< MPI2_SGE_FLAGS_SHIFT
;
2441 chain_req
= _base_get_chain_buffer_tracker(ioc
, scmd
);
2444 chain
= chain_req
->chain_buffer
;
2445 chain_dma
= chain_req
->chain_buffer_dma
;
2447 sges_in_segment
= (sges_left
<=
2448 ioc
->max_sges_in_chain_message
) ? sges_left
:
2449 ioc
->max_sges_in_chain_message
;
2450 chain_offset
= (sges_left
== sges_in_segment
) ?
2451 0 : (sges_in_segment
* ioc
->sge_size
)/4;
2452 chain_length
= sges_in_segment
* ioc
->sge_size
;
2454 chain_offset
= chain_offset
<<
2455 MPI2_SGE_CHAIN_OFFSET_SHIFT
;
2456 chain_length
+= ioc
->sge_size
;
2458 ioc
->base_add_sg_single(sg_local
, chain_flags
| chain_offset
|
2459 chain_length
, chain_dma
);
2462 goto fill_in_last_segment
;
2464 /* fill in chain segments */
2465 while (sges_in_segment
) {
2466 if (sges_in_segment
== 1)
2467 ioc
->base_add_sg_single(sg_local
,
2468 sgl_flags_last_element
|
2469 sg_dma_len(sg_scmd
),
2470 sg_dma_address(sg_scmd
));
2472 ioc
->base_add_sg_single(sg_local
, sgl_flags
|
2473 sg_dma_len(sg_scmd
),
2474 sg_dma_address(sg_scmd
));
2475 sg_scmd
= sg_next(sg_scmd
);
2476 sg_local
+= ioc
->sge_size
;
2481 chain_req
= _base_get_chain_buffer_tracker(ioc
, scmd
);
2484 chain
= chain_req
->chain_buffer
;
2485 chain_dma
= chain_req
->chain_buffer_dma
;
2489 fill_in_last_segment
:
2491 /* fill the last segment */
2494 ioc
->base_add_sg_single(sg_local
, sgl_flags_end_buffer
|
2495 sg_dma_len(sg_scmd
), sg_dma_address(sg_scmd
));
2497 ioc
->base_add_sg_single(sg_local
, sgl_flags
|
2498 sg_dma_len(sg_scmd
), sg_dma_address(sg_scmd
));
2499 sg_scmd
= sg_next(sg_scmd
);
2500 sg_local
+= ioc
->sge_size
;
2508 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2509 * @ioc: per adapter object
2510 * @scmd: scsi command
2511 * @smid: system request message index
2512 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2513 * constructed on need.
2516 * The main routine that builds scatter gather table from a given
2517 * scsi request sent via the .queuecommand main handler.
2519 * Return: 0 success, anything else error
2522 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER
*ioc
,
2523 struct scsi_cmnd
*scmd
, u16 smid
, struct _pcie_device
*pcie_device
)
2525 Mpi25SCSIIORequest_t
*mpi_request
;
2526 dma_addr_t chain_dma
;
2527 struct scatterlist
*sg_scmd
;
2528 void *sg_local
, *chain
;
2532 u32 sges_in_segment
;
2533 u8 simple_sgl_flags
;
2534 u8 simple_sgl_flags_last
;
2536 struct chain_tracker
*chain_req
;
2538 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
2540 /* init scatter gather flags */
2541 simple_sgl_flags
= MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT
|
2542 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
;
2543 simple_sgl_flags_last
= simple_sgl_flags
|
2544 MPI25_IEEE_SGE_FLAGS_END_OF_LIST
;
2545 chain_sgl_flags
= MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT
|
2546 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
;
2548 /* Check if we need to build a native SG list. */
2549 if ((pcie_device
) && (_base_check_pcie_native_sgl(ioc
, mpi_request
,
2550 smid
, scmd
, pcie_device
) == 0)) {
2551 /* We built a native SG list, just return. */
2555 sg_scmd
= scsi_sglist(scmd
);
2556 sges_left
= scsi_dma_map(scmd
);
2557 if (sges_left
< 0) {
2558 sdev_printk(KERN_ERR
, scmd
->device
,
2559 "scsi_dma_map failed: request for %d bytes!\n",
2560 scsi_bufflen(scmd
));
2564 sg_local
= &mpi_request
->SGL
;
2565 sges_in_segment
= (ioc
->request_sz
-
2566 offsetof(Mpi25SCSIIORequest_t
, SGL
))/ioc
->sge_size_ieee
;
2567 if (sges_left
<= sges_in_segment
)
2568 goto fill_in_last_segment
;
2570 mpi_request
->ChainOffset
= (sges_in_segment
- 1 /* chain element */) +
2571 (offsetof(Mpi25SCSIIORequest_t
, SGL
)/ioc
->sge_size_ieee
);
2573 /* fill in main message segment when there is a chain following */
2574 while (sges_in_segment
> 1) {
2575 _base_add_sg_single_ieee(sg_local
, simple_sgl_flags
, 0,
2576 sg_dma_len(sg_scmd
), sg_dma_address(sg_scmd
));
2577 sg_scmd
= sg_next(sg_scmd
);
2578 sg_local
+= ioc
->sge_size_ieee
;
2583 /* initializing the pointers */
2584 chain_req
= _base_get_chain_buffer_tracker(ioc
, scmd
);
2587 chain
= chain_req
->chain_buffer
;
2588 chain_dma
= chain_req
->chain_buffer_dma
;
2590 sges_in_segment
= (sges_left
<=
2591 ioc
->max_sges_in_chain_message
) ? sges_left
:
2592 ioc
->max_sges_in_chain_message
;
2593 chain_offset
= (sges_left
== sges_in_segment
) ?
2594 0 : sges_in_segment
;
2595 chain_length
= sges_in_segment
* ioc
->sge_size_ieee
;
2597 chain_length
+= ioc
->sge_size_ieee
;
2598 _base_add_sg_single_ieee(sg_local
, chain_sgl_flags
,
2599 chain_offset
, chain_length
, chain_dma
);
2603 goto fill_in_last_segment
;
2605 /* fill in chain segments */
2606 while (sges_in_segment
) {
2607 _base_add_sg_single_ieee(sg_local
, simple_sgl_flags
, 0,
2608 sg_dma_len(sg_scmd
), sg_dma_address(sg_scmd
));
2609 sg_scmd
= sg_next(sg_scmd
);
2610 sg_local
+= ioc
->sge_size_ieee
;
2615 chain_req
= _base_get_chain_buffer_tracker(ioc
, scmd
);
2618 chain
= chain_req
->chain_buffer
;
2619 chain_dma
= chain_req
->chain_buffer_dma
;
2623 fill_in_last_segment
:
2625 /* fill the last segment */
2626 while (sges_left
> 0) {
2628 _base_add_sg_single_ieee(sg_local
,
2629 simple_sgl_flags_last
, 0, sg_dma_len(sg_scmd
),
2630 sg_dma_address(sg_scmd
));
2632 _base_add_sg_single_ieee(sg_local
, simple_sgl_flags
, 0,
2633 sg_dma_len(sg_scmd
), sg_dma_address(sg_scmd
));
2634 sg_scmd
= sg_next(sg_scmd
);
2635 sg_local
+= ioc
->sge_size_ieee
;
2643 * _base_build_sg_ieee - build generic sg for IEEE format
2644 * @ioc: per adapter object
2645 * @psge: virtual address for SGE
2646 * @data_out_dma: physical address for WRITES
2647 * @data_out_sz: data xfer size for WRITES
2648 * @data_in_dma: physical address for READS
2649 * @data_in_sz: data xfer size for READS
2652 _base_build_sg_ieee(struct MPT3SAS_ADAPTER
*ioc
, void *psge
,
2653 dma_addr_t data_out_dma
, size_t data_out_sz
, dma_addr_t data_in_dma
,
2658 if (!data_out_sz
&& !data_in_sz
) {
2659 _base_build_zero_len_sge_ieee(ioc
, psge
);
2663 if (data_out_sz
&& data_in_sz
) {
2664 /* WRITE sgel first */
2665 sgl_flags
= MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT
|
2666 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
;
2667 _base_add_sg_single_ieee(psge
, sgl_flags
, 0, data_out_sz
,
2671 psge
+= ioc
->sge_size_ieee
;
2673 /* READ sgel last */
2674 sgl_flags
|= MPI25_IEEE_SGE_FLAGS_END_OF_LIST
;
2675 _base_add_sg_single_ieee(psge
, sgl_flags
, 0, data_in_sz
,
2677 } else if (data_out_sz
) /* WRITE */ {
2678 sgl_flags
= MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT
|
2679 MPI25_IEEE_SGE_FLAGS_END_OF_LIST
|
2680 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
;
2681 _base_add_sg_single_ieee(psge
, sgl_flags
, 0, data_out_sz
,
2683 } else if (data_in_sz
) /* READ */ {
2684 sgl_flags
= MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT
|
2685 MPI25_IEEE_SGE_FLAGS_END_OF_LIST
|
2686 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
;
2687 _base_add_sg_single_ieee(psge
, sgl_flags
, 0, data_in_sz
,
2692 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2695 * _base_config_dma_addressing - set dma addressing
2696 * @ioc: per adapter object
2697 * @pdev: PCI device struct
2699 * Return: 0 for success, non-zero for failure.
2702 _base_config_dma_addressing(struct MPT3SAS_ADAPTER
*ioc
, struct pci_dev
*pdev
)
2704 u64 required_mask
, coherent_mask
;
2707 if (ioc
->is_mcpu_endpoint
)
2710 required_mask
= dma_get_required_mask(&pdev
->dev
);
2711 if (sizeof(dma_addr_t
) == 4 || required_mask
== 32)
2715 coherent_mask
= DMA_BIT_MASK(64);
2717 coherent_mask
= DMA_BIT_MASK(32);
2719 if (dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64)) ||
2720 dma_set_coherent_mask(&pdev
->dev
, coherent_mask
))
2723 ioc
->base_add_sg_single
= &_base_add_sg_single_64
;
2724 ioc
->sge_size
= sizeof(Mpi2SGESimple64_t
);
2729 if (dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32)))
2732 ioc
->base_add_sg_single
= &_base_add_sg_single_32
;
2733 ioc
->sge_size
= sizeof(Mpi2SGESimple32_t
);
2737 ioc_info(ioc
, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2738 ioc
->dma_mask
, convert_to_kb(s
.totalram
));
2744 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER
*ioc
,
2745 struct pci_dev
*pdev
)
2747 if (pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64))) {
2748 if (pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32)))
2755 * _base_check_enable_msix - checks MSIX capabable.
2756 * @ioc: per adapter object
2758 * Check to see if card is capable of MSIX, and set number
2759 * of available msix vectors
2762 _base_check_enable_msix(struct MPT3SAS_ADAPTER
*ioc
)
2765 u16 message_control
;
2767 /* Check whether controller SAS2008 B0 controller,
2768 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2770 if (ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2008
&&
2771 ioc
->pdev
->revision
== SAS2_PCI_DEVICE_B0_REVISION
) {
2775 base
= pci_find_capability(ioc
->pdev
, PCI_CAP_ID_MSIX
);
2777 dfailprintk(ioc
, ioc_info(ioc
, "msix not supported\n"));
2781 /* get msix vector count */
2782 /* NUMA_IO not supported for older controllers */
2783 if (ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2004
||
2784 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2008
||
2785 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2108_1
||
2786 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2108_2
||
2787 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2108_3
||
2788 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2116_1
||
2789 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2116_2
)
2790 ioc
->msix_vector_count
= 1;
2792 pci_read_config_word(ioc
->pdev
, base
+ 2, &message_control
);
2793 ioc
->msix_vector_count
= (message_control
& 0x3FF) + 1;
2795 dinitprintk(ioc
, ioc_info(ioc
, "msix is supported, vector_count(%d)\n",
2796 ioc
->msix_vector_count
));
2801 * _base_free_irq - free irq
2802 * @ioc: per adapter object
2804 * Freeing respective reply_queue from the list.
2807 _base_free_irq(struct MPT3SAS_ADAPTER
*ioc
)
2809 struct adapter_reply_queue
*reply_q
, *next
;
2811 if (list_empty(&ioc
->reply_queue_list
))
2814 list_for_each_entry_safe(reply_q
, next
, &ioc
->reply_queue_list
, list
) {
2815 list_del(&reply_q
->list
);
2816 if (ioc
->smp_affinity_enable
)
2817 irq_set_affinity_hint(pci_irq_vector(ioc
->pdev
,
2818 reply_q
->msix_index
), NULL
);
2819 free_irq(pci_irq_vector(ioc
->pdev
, reply_q
->msix_index
),
2826 * _base_request_irq - request irq
2827 * @ioc: per adapter object
2828 * @index: msix index into vector table
2830 * Inserting respective reply_queue into the list.
2833 _base_request_irq(struct MPT3SAS_ADAPTER
*ioc
, u8 index
)
2835 struct pci_dev
*pdev
= ioc
->pdev
;
2836 struct adapter_reply_queue
*reply_q
;
2839 reply_q
= kzalloc(sizeof(struct adapter_reply_queue
), GFP_KERNEL
);
2841 ioc_err(ioc
, "unable to allocate memory %zu!\n",
2842 sizeof(struct adapter_reply_queue
));
2846 reply_q
->msix_index
= index
;
2848 atomic_set(&reply_q
->busy
, 0);
2849 if (ioc
->msix_enable
)
2850 snprintf(reply_q
->name
, MPT_NAME_LENGTH
, "%s%d-msix%d",
2851 ioc
->driver_name
, ioc
->id
, index
);
2853 snprintf(reply_q
->name
, MPT_NAME_LENGTH
, "%s%d",
2854 ioc
->driver_name
, ioc
->id
);
2855 r
= request_irq(pci_irq_vector(pdev
, index
), _base_interrupt
,
2856 IRQF_SHARED
, reply_q
->name
, reply_q
);
2858 pr_err("%s: unable to allocate interrupt %d!\n",
2859 reply_q
->name
, pci_irq_vector(pdev
, index
));
2864 INIT_LIST_HEAD(&reply_q
->list
);
2865 list_add_tail(&reply_q
->list
, &ioc
->reply_queue_list
);
2870 * _base_assign_reply_queues - assigning msix index for each cpu
2871 * @ioc: per adapter object
2873 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2875 * It would nice if we could call irq_set_affinity, however it is not
2876 * an exported symbol
2879 _base_assign_reply_queues(struct MPT3SAS_ADAPTER
*ioc
)
2881 unsigned int cpu
, nr_cpus
, nr_msix
, index
= 0;
2882 struct adapter_reply_queue
*reply_q
;
2883 int local_numa_node
;
2885 if (!_base_is_controller_msix_enabled(ioc
))
2888 if (ioc
->msix_load_balance
)
2891 memset(ioc
->cpu_msix_table
, 0, ioc
->cpu_msix_table_sz
);
2893 nr_cpus
= num_online_cpus();
2894 nr_msix
= ioc
->reply_queue_count
= min(ioc
->reply_queue_count
,
2895 ioc
->facts
.MaxMSIxVectors
);
2899 if (ioc
->smp_affinity_enable
) {
2902 * set irq affinity to local numa node for those irqs
2903 * corresponding to high iops queues.
2905 if (ioc
->high_iops_queues
) {
2906 local_numa_node
= dev_to_node(&ioc
->pdev
->dev
);
2907 for (index
= 0; index
< ioc
->high_iops_queues
;
2909 irq_set_affinity_hint(pci_irq_vector(ioc
->pdev
,
2910 index
), cpumask_of_node(local_numa_node
));
2914 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
) {
2915 const cpumask_t
*mask
;
2917 if (reply_q
->msix_index
< ioc
->high_iops_queues
)
2920 mask
= pci_irq_get_affinity(ioc
->pdev
,
2921 reply_q
->msix_index
);
2923 ioc_warn(ioc
, "no affinity for msi %x\n",
2924 reply_q
->msix_index
);
2928 for_each_cpu_and(cpu
, mask
, cpu_online_mask
) {
2929 if (cpu
>= ioc
->cpu_msix_table_sz
)
2931 ioc
->cpu_msix_table
[cpu
] = reply_q
->msix_index
;
2938 cpu
= cpumask_first(cpu_online_mask
);
2939 nr_msix
-= ioc
->high_iops_queues
;
2942 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
) {
2943 unsigned int i
, group
= nr_cpus
/ nr_msix
;
2945 if (reply_q
->msix_index
< ioc
->high_iops_queues
)
2951 if (index
< nr_cpus
% nr_msix
)
2954 for (i
= 0 ; i
< group
; i
++) {
2955 ioc
->cpu_msix_table
[cpu
] = reply_q
->msix_index
;
2956 cpu
= cpumask_next(cpu
, cpu_online_mask
);
2963 * _base_check_and_enable_high_iops_queues - enable high iops mode
2964 * @ ioc - per adapter object
2965 * @ hba_msix_vector_count - msix vectors supported by HBA
2967 * Enable high iops queues only if
2968 * - HBA is a SEA/AERO controller and
2969 * - MSI-Xs vector supported by the HBA is 128 and
2970 * - total CPU count in the system >=16 and
2971 * - loaded driver with default max_msix_vectors module parameter and
2972 * - system booted in non kdump mode
2977 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER
*ioc
,
2978 int hba_msix_vector_count
)
2982 if (perf_mode
== MPT_PERF_MODE_IOPS
||
2983 perf_mode
== MPT_PERF_MODE_LATENCY
) {
2984 ioc
->high_iops_queues
= 0;
2988 if (perf_mode
== MPT_PERF_MODE_DEFAULT
) {
2990 pcie_capability_read_word(ioc
->pdev
, PCI_EXP_LNKSTA
, &lnksta
);
2991 speed
= lnksta
& PCI_EXP_LNKSTA_CLS
;
2994 ioc
->high_iops_queues
= 0;
2999 if (!reset_devices
&& ioc
->is_aero_ioc
&&
3000 hba_msix_vector_count
== MPT3SAS_GEN35_MAX_MSIX_QUEUES
&&
3001 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES
&&
3002 max_msix_vectors
== -1)
3003 ioc
->high_iops_queues
= MPT3SAS_HIGH_IOPS_REPLY_QUEUES
;
3005 ioc
->high_iops_queues
= 0;
3009 * _base_disable_msix - disables msix
3010 * @ioc: per adapter object
3014 _base_disable_msix(struct MPT3SAS_ADAPTER
*ioc
)
3016 if (!ioc
->msix_enable
)
3018 pci_free_irq_vectors(ioc
->pdev
);
3019 ioc
->msix_enable
= 0;
3023 * _base_alloc_irq_vectors - allocate msix vectors
3024 * @ioc: per adapter object
3028 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER
*ioc
)
3030 int i
, irq_flags
= PCI_IRQ_MSIX
;
3031 struct irq_affinity desc
= { .pre_vectors
= ioc
->high_iops_queues
};
3032 struct irq_affinity
*descp
= &desc
;
3034 if (ioc
->smp_affinity_enable
)
3035 irq_flags
|= PCI_IRQ_AFFINITY
;
3039 ioc_info(ioc
, " %d %d\n", ioc
->high_iops_queues
,
3040 ioc
->msix_vector_count
);
3042 i
= pci_alloc_irq_vectors_affinity(ioc
->pdev
,
3043 ioc
->high_iops_queues
,
3044 ioc
->msix_vector_count
, irq_flags
, descp
);
3050 * _base_enable_msix - enables msix, failback to io_apic
3051 * @ioc: per adapter object
3055 _base_enable_msix(struct MPT3SAS_ADAPTER
*ioc
)
3058 int i
, local_max_msix_vectors
;
3061 ioc
->msix_load_balance
= false;
3063 if (msix_disable
== -1 || msix_disable
== 0)
3069 if (_base_check_enable_msix(ioc
) != 0)
3072 ioc_info(ioc
, "MSI-X vectors supported: %d\n", ioc
->msix_vector_count
);
3073 pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3074 ioc
->cpu_count
, max_msix_vectors
);
3075 if (ioc
->is_aero_ioc
)
3076 _base_check_and_enable_high_iops_queues(ioc
,
3077 ioc
->msix_vector_count
);
3078 ioc
->reply_queue_count
=
3079 min_t(int, ioc
->cpu_count
+ ioc
->high_iops_queues
,
3080 ioc
->msix_vector_count
);
3082 if (!ioc
->rdpq_array_enable
&& max_msix_vectors
== -1)
3083 local_max_msix_vectors
= (reset_devices
) ? 1 : 8;
3085 local_max_msix_vectors
= max_msix_vectors
;
3087 if (local_max_msix_vectors
> 0)
3088 ioc
->reply_queue_count
= min_t(int, local_max_msix_vectors
,
3089 ioc
->reply_queue_count
);
3090 else if (local_max_msix_vectors
== 0)
3094 * Enable msix_load_balance only if combined reply queue mode is
3095 * disabled on SAS3 & above generation HBA devices.
3097 if (!ioc
->combined_reply_queue
&&
3098 ioc
->hba_mpi_version_belonged
!= MPI2_VERSION
) {
3099 ioc
->msix_load_balance
= true;
3103 * smp affinity setting is not need when msix load balance
3106 if (ioc
->msix_load_balance
)
3107 ioc
->smp_affinity_enable
= 0;
3109 r
= _base_alloc_irq_vectors(ioc
);
3112 ioc_info(ioc
, "pci_alloc_irq_vectors failed (r=%d) !!!\n",
3117 ioc
->msix_enable
= 1;
3118 ioc
->reply_queue_count
= r
;
3119 for (i
= 0; i
< ioc
->reply_queue_count
; i
++) {
3120 r
= _base_request_irq(ioc
, i
);
3122 _base_free_irq(ioc
);
3123 _base_disable_msix(ioc
);
3128 ioc_info(ioc
, "High IOPs queues : %s\n",
3129 ioc
->high_iops_queues
? "enabled" : "disabled");
3133 /* failback to io_apic interrupt routing */
3135 ioc
->high_iops_queues
= 0;
3136 ioc_info(ioc
, "High IOPs queues : disabled\n");
3137 ioc
->reply_queue_count
= 1;
3138 r
= pci_alloc_irq_vectors(ioc
->pdev
, 1, 1, PCI_IRQ_LEGACY
);
3141 ioc_info(ioc
, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3144 r
= _base_request_irq(ioc
, 0);
3150 * mpt3sas_base_unmap_resources - free controller resources
3151 * @ioc: per adapter object
3154 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER
*ioc
)
3156 struct pci_dev
*pdev
= ioc
->pdev
;
3158 dexitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
3160 _base_free_irq(ioc
);
3161 _base_disable_msix(ioc
);
3163 kfree(ioc
->replyPostRegisterIndex
);
3164 ioc
->replyPostRegisterIndex
= NULL
;
3167 if (ioc
->chip_phys
) {
3172 if (pci_is_enabled(pdev
)) {
3173 pci_release_selected_regions(ioc
->pdev
, ioc
->bars
);
3174 pci_disable_pcie_error_reporting(pdev
);
3175 pci_disable_device(pdev
);
3180 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3181 * @ioc: per adapter object
3183 * Return: 0 for success, non-zero for failure.
3186 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER
*ioc
)
3188 struct pci_dev
*pdev
= ioc
->pdev
;
3193 phys_addr_t chip_phys
= 0;
3194 struct adapter_reply_queue
*reply_q
;
3196 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
3198 ioc
->bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
3199 if (pci_enable_device_mem(pdev
)) {
3200 ioc_warn(ioc
, "pci_enable_device_mem: failed\n");
3206 if (pci_request_selected_regions(pdev
, ioc
->bars
,
3207 ioc
->driver_name
)) {
3208 ioc_warn(ioc
, "pci_request_selected_regions: failed\n");
3214 /* AER (Advanced Error Reporting) hooks */
3215 pci_enable_pcie_error_reporting(pdev
);
3217 pci_set_master(pdev
);
3220 if (_base_config_dma_addressing(ioc
, pdev
) != 0) {
3221 ioc_warn(ioc
, "no suitable DMA mask for %s\n", pci_name(pdev
));
3226 for (i
= 0, memap_sz
= 0, pio_sz
= 0; (i
< DEVICE_COUNT_RESOURCE
) &&
3227 (!memap_sz
|| !pio_sz
); i
++) {
3228 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
3231 pio_chip
= (u64
)pci_resource_start(pdev
, i
);
3232 pio_sz
= pci_resource_len(pdev
, i
);
3233 } else if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
3236 ioc
->chip_phys
= pci_resource_start(pdev
, i
);
3237 chip_phys
= ioc
->chip_phys
;
3238 memap_sz
= pci_resource_len(pdev
, i
);
3239 ioc
->chip
= ioremap(ioc
->chip_phys
, memap_sz
);
3243 if (ioc
->chip
== NULL
) {
3244 ioc_err(ioc
, "unable to map adapter memory! or resource not found\n");
3249 _base_mask_interrupts(ioc
);
3251 r
= _base_get_ioc_facts(ioc
);
3255 if (!ioc
->rdpq_array_enable_assigned
) {
3256 ioc
->rdpq_array_enable
= ioc
->rdpq_array_capable
;
3257 ioc
->rdpq_array_enable_assigned
= 1;
3260 r
= _base_enable_msix(ioc
);
3264 if (!ioc
->is_driver_loading
)
3265 _base_init_irqpolls(ioc
);
3266 /* Use the Combined reply queue feature only for SAS3 C0 & higher
3267 * revision HBAs and also only when reply queue count is greater than 8
3269 if (ioc
->combined_reply_queue
) {
3270 /* Determine the Supplemental Reply Post Host Index Registers
3271 * Addresse. Supplemental Reply Post Host Index Registers
3272 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3273 * each register is at offset bytes of
3274 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3276 ioc
->replyPostRegisterIndex
= kcalloc(
3277 ioc
->combined_reply_index_count
,
3278 sizeof(resource_size_t
*), GFP_KERNEL
);
3279 if (!ioc
->replyPostRegisterIndex
) {
3281 ioc_warn(ioc
, "allocation for reply Post Register Index failed!!!\n"));
3286 for (i
= 0; i
< ioc
->combined_reply_index_count
; i
++) {
3287 ioc
->replyPostRegisterIndex
[i
] = (resource_size_t
*)
3288 ((u8 __force
*)&ioc
->chip
->Doorbell
+
3289 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET
+
3290 (i
* MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET
));
3294 if (ioc
->is_warpdrive
) {
3295 ioc
->reply_post_host_index
[0] = (resource_size_t __iomem
*)
3296 &ioc
->chip
->ReplyPostHostIndex
;
3298 for (i
= 1; i
< ioc
->cpu_msix_table_sz
; i
++)
3299 ioc
->reply_post_host_index
[i
] =
3300 (resource_size_t __iomem
*)
3301 ((u8 __iomem
*)&ioc
->chip
->Doorbell
+ (0x4000 + ((i
- 1)
3305 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
)
3306 pr_info("%s: %s enabled: IRQ %d\n",
3308 ioc
->msix_enable
? "PCI-MSI-X" : "IO-APIC",
3309 pci_irq_vector(ioc
->pdev
, reply_q
->msix_index
));
3311 ioc_info(ioc
, "iomem(%pap), mapped(0x%p), size(%d)\n",
3312 &chip_phys
, ioc
->chip
, memap_sz
);
3313 ioc_info(ioc
, "ioport(0x%016llx), size(%d)\n",
3314 (unsigned long long)pio_chip
, pio_sz
);
3316 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3317 pci_save_state(pdev
);
3321 mpt3sas_base_unmap_resources(ioc
);
3326 * mpt3sas_base_get_msg_frame - obtain request mf pointer
3327 * @ioc: per adapter object
3328 * @smid: system request message index(smid zero is invalid)
3330 * Return: virt pointer to message frame.
3333 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3335 return (void *)(ioc
->request
+ (smid
* ioc
->request_sz
));
3339 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3340 * @ioc: per adapter object
3341 * @smid: system request message index
3343 * Return: virt pointer to sense buffer.
3346 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3348 return (void *)(ioc
->sense
+ ((smid
- 1) * SCSI_SENSE_BUFFERSIZE
));
3352 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3353 * @ioc: per adapter object
3354 * @smid: system request message index
3356 * Return: phys pointer to the low 32bit address of the sense buffer.
3359 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3361 return cpu_to_le32(ioc
->sense_dma
+ ((smid
- 1) *
3362 SCSI_SENSE_BUFFERSIZE
));
3366 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3367 * @ioc: per adapter object
3368 * @smid: system request message index
3370 * Return: virt pointer to a PCIe SGL.
3373 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3375 return (void *)(ioc
->pcie_sg_lookup
[smid
- 1].pcie_sgl
);
3379 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3380 * @ioc: per adapter object
3381 * @smid: system request message index
3383 * Return: phys pointer to the address of the PCIe buffer.
3386 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3388 return ioc
->pcie_sg_lookup
[smid
- 1].pcie_sgl_dma
;
3392 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3393 * @ioc: per adapter object
3394 * @phys_addr: lower 32 physical addr of the reply
3396 * Converts 32bit lower physical addr into a virt address.
3399 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER
*ioc
, u32 phys_addr
)
3403 return ioc
->reply
+ (phys_addr
- (u32
)ioc
->reply_dma
);
3407 * _base_get_msix_index - get the msix index
3408 * @ioc: per adapter object
3409 * @scmd: scsi_cmnd object
3411 * returns msix index of general reply queues,
3412 * i.e. reply queue on which IO request's reply
3413 * should be posted by the HBA firmware.
3416 _base_get_msix_index(struct MPT3SAS_ADAPTER
*ioc
,
3417 struct scsi_cmnd
*scmd
)
3419 /* Enables reply_queue load balancing */
3420 if (ioc
->msix_load_balance
)
3421 return ioc
->reply_queue_count
?
3422 base_mod64(atomic64_add_return(1,
3423 &ioc
->total_io_cnt
), ioc
->reply_queue_count
) : 0;
3425 return ioc
->cpu_msix_table
[raw_smp_processor_id()];
3429 * _base_get_high_iops_msix_index - get the msix index of
3431 * @ioc: per adapter object
3432 * @scmd: scsi_cmnd object
3434 * Returns: msix index of high iops reply queues.
3435 * i.e. high iops reply queue on which IO request's
3436 * reply should be posted by the HBA firmware.
3439 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER
*ioc
,
3440 struct scsi_cmnd
*scmd
)
3443 * Round robin the IO interrupts among the high iops
3444 * reply queues in terms of batch count 16 when outstanding
3445 * IOs on the target device is >=8.
3447 if (atomic_read(&scmd
->device
->device_busy
) >
3448 MPT3SAS_DEVICE_HIGH_IOPS_DEPTH
)
3450 atomic64_add_return(1, &ioc
->high_iops_outstanding
) /
3451 MPT3SAS_HIGH_IOPS_BATCH_COUNT
),
3452 MPT3SAS_HIGH_IOPS_REPLY_QUEUES
);
3454 return _base_get_msix_index(ioc
, scmd
);
3458 * mpt3sas_base_get_smid - obtain a free smid from internal queue
3459 * @ioc: per adapter object
3460 * @cb_idx: callback index
3462 * Return: smid (zero is invalid)
3465 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER
*ioc
, u8 cb_idx
)
3467 unsigned long flags
;
3468 struct request_tracker
*request
;
3471 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
3472 if (list_empty(&ioc
->internal_free_list
)) {
3473 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
3474 ioc_err(ioc
, "%s: smid not available\n", __func__
);
3478 request
= list_entry(ioc
->internal_free_list
.next
,
3479 struct request_tracker
, tracker_list
);
3480 request
->cb_idx
= cb_idx
;
3481 smid
= request
->smid
;
3482 list_del(&request
->tracker_list
);
3483 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
3488 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3489 * @ioc: per adapter object
3490 * @cb_idx: callback index
3491 * @scmd: pointer to scsi command object
3493 * Return: smid (zero is invalid)
3496 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER
*ioc
, u8 cb_idx
,
3497 struct scsi_cmnd
*scmd
)
3499 struct scsiio_tracker
*request
= scsi_cmd_priv(scmd
);
3500 unsigned int tag
= scmd
->request
->tag
;
3504 request
->cb_idx
= cb_idx
;
3505 request
->smid
= smid
;
3506 request
->scmd
= scmd
;
3507 INIT_LIST_HEAD(&request
->chain_list
);
3512 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3513 * @ioc: per adapter object
3514 * @cb_idx: callback index
3516 * Return: smid (zero is invalid)
3519 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER
*ioc
, u8 cb_idx
)
3521 unsigned long flags
;
3522 struct request_tracker
*request
;
3525 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
3526 if (list_empty(&ioc
->hpr_free_list
)) {
3527 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
3531 request
= list_entry(ioc
->hpr_free_list
.next
,
3532 struct request_tracker
, tracker_list
);
3533 request
->cb_idx
= cb_idx
;
3534 smid
= request
->smid
;
3535 list_del(&request
->tracker_list
);
3536 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
3541 _base_recovery_check(struct MPT3SAS_ADAPTER
*ioc
)
3544 * See _wait_for_commands_to_complete() call with regards to this code.
3546 if (ioc
->shost_recovery
&& ioc
->pending_io_count
) {
3547 ioc
->pending_io_count
= scsi_host_busy(ioc
->shost
);
3548 if (ioc
->pending_io_count
== 0)
3549 wake_up(&ioc
->reset_wq
);
3553 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER
*ioc
,
3554 struct scsiio_tracker
*st
)
3556 if (WARN_ON(st
->smid
== 0))
3561 atomic_set(&ioc
->chain_lookup
[st
->smid
- 1].chain_offset
, 0);
3566 * mpt3sas_base_free_smid - put smid back on free_list
3567 * @ioc: per adapter object
3568 * @smid: system request message index
3571 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3573 unsigned long flags
;
3576 if (smid
< ioc
->hi_priority_smid
) {
3577 struct scsiio_tracker
*st
;
3580 st
= _get_st_from_smid(ioc
, smid
);
3582 _base_recovery_check(ioc
);
3586 /* Clear MPI request frame */
3587 request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
3588 memset(request
, 0, ioc
->request_sz
);
3590 mpt3sas_base_clear_st(ioc
, st
);
3591 _base_recovery_check(ioc
);
3595 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
3596 if (smid
< ioc
->internal_smid
) {
3598 i
= smid
- ioc
->hi_priority_smid
;
3599 ioc
->hpr_lookup
[i
].cb_idx
= 0xFF;
3600 list_add(&ioc
->hpr_lookup
[i
].tracker_list
, &ioc
->hpr_free_list
);
3601 } else if (smid
<= ioc
->hba_queue_depth
) {
3602 /* internal queue */
3603 i
= smid
- ioc
->internal_smid
;
3604 ioc
->internal_lookup
[i
].cb_idx
= 0xFF;
3605 list_add(&ioc
->internal_lookup
[i
].tracker_list
,
3606 &ioc
->internal_free_list
);
3608 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
3612 * _base_mpi_ep_writeq - 32 bit write to MMIO
3614 * @addr: address in MMIO space
3615 * @writeq_lock: spin lock
3617 * This special handling for MPI EP to take care of 32 bit
3618 * environment where its not quarenteed to send the entire word
3622 _base_mpi_ep_writeq(__u64 b
, volatile void __iomem
*addr
,
3623 spinlock_t
*writeq_lock
)
3625 unsigned long flags
;
3627 spin_lock_irqsave(writeq_lock
, flags
);
3628 __raw_writel((u32
)(b
), addr
);
3629 __raw_writel((u32
)(b
>> 32), (addr
+ 4));
3630 spin_unlock_irqrestore(writeq_lock
, flags
);
3634 * _base_writeq - 64 bit write to MMIO
3636 * @addr: address in MMIO space
3637 * @writeq_lock: spin lock
3639 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3640 * care of 32 bit environment where its not quarenteed to send the entire word
3643 #if defined(writeq) && defined(CONFIG_64BIT)
3645 _base_writeq(__u64 b
, volatile void __iomem
*addr
, spinlock_t
*writeq_lock
)
3648 __raw_writeq(b
, addr
);
3653 _base_writeq(__u64 b
, volatile void __iomem
*addr
, spinlock_t
*writeq_lock
)
3655 _base_mpi_ep_writeq(b
, addr
, writeq_lock
);
3660 * _base_set_and_get_msix_index - get the msix index and assign to msix_io
3661 * variable of scsi tracker
3662 * @ioc: per adapter object
3663 * @smid: system request message index
3665 * returns msix index.
3668 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3670 struct scsiio_tracker
*st
= NULL
;
3672 if (smid
< ioc
->hi_priority_smid
)
3673 st
= _get_st_from_smid(ioc
, smid
);
3676 return _base_get_msix_index(ioc
, NULL
);
3678 st
->msix_io
= ioc
->get_msix_index_for_smlio(ioc
, st
->scmd
);
3683 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3684 * @ioc: per adapter object
3685 * @smid: system request message index
3686 * @handle: device handle
3689 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER
*ioc
,
3690 u16 smid
, u16 handle
)
3692 Mpi2RequestDescriptorUnion_t descriptor
;
3693 u64
*request
= (u64
*)&descriptor
;
3694 void *mpi_req_iomem
;
3695 __le32
*mfp
= (__le32
*)mpt3sas_base_get_msg_frame(ioc
, smid
);
3697 _clone_sg_entries(ioc
, (void *) mfp
, smid
);
3698 mpi_req_iomem
= (void __force
*)ioc
->chip
+
3699 MPI_FRAME_START_OFFSET
+ (smid
* ioc
->request_sz
);
3700 _base_clone_mpi_to_sys_mem(mpi_req_iomem
, (void *)mfp
,
3702 descriptor
.SCSIIO
.RequestFlags
= MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO
;
3703 descriptor
.SCSIIO
.MSIxIndex
= _base_set_and_get_msix_index(ioc
, smid
);
3704 descriptor
.SCSIIO
.SMID
= cpu_to_le16(smid
);
3705 descriptor
.SCSIIO
.DevHandle
= cpu_to_le16(handle
);
3706 descriptor
.SCSIIO
.LMID
= 0;
3707 _base_mpi_ep_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
3708 &ioc
->scsi_lookup_lock
);
3712 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3713 * @ioc: per adapter object
3714 * @smid: system request message index
3715 * @handle: device handle
3718 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
, u16 handle
)
3720 Mpi2RequestDescriptorUnion_t descriptor
;
3721 u64
*request
= (u64
*)&descriptor
;
3724 descriptor
.SCSIIO
.RequestFlags
= MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO
;
3725 descriptor
.SCSIIO
.MSIxIndex
= _base_set_and_get_msix_index(ioc
, smid
);
3726 descriptor
.SCSIIO
.SMID
= cpu_to_le16(smid
);
3727 descriptor
.SCSIIO
.DevHandle
= cpu_to_le16(handle
);
3728 descriptor
.SCSIIO
.LMID
= 0;
3729 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
3730 &ioc
->scsi_lookup_lock
);
3734 * _base_put_smid_fast_path - send fast path request to firmware
3735 * @ioc: per adapter object
3736 * @smid: system request message index
3737 * @handle: device handle
3740 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
3743 Mpi2RequestDescriptorUnion_t descriptor
;
3744 u64
*request
= (u64
*)&descriptor
;
3746 descriptor
.SCSIIO
.RequestFlags
=
3747 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO
;
3748 descriptor
.SCSIIO
.MSIxIndex
= _base_set_and_get_msix_index(ioc
, smid
);
3749 descriptor
.SCSIIO
.SMID
= cpu_to_le16(smid
);
3750 descriptor
.SCSIIO
.DevHandle
= cpu_to_le16(handle
);
3751 descriptor
.SCSIIO
.LMID
= 0;
3752 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
3753 &ioc
->scsi_lookup_lock
);
3757 * _base_put_smid_hi_priority - send Task Management request to firmware
3758 * @ioc: per adapter object
3759 * @smid: system request message index
3760 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3763 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
3766 Mpi2RequestDescriptorUnion_t descriptor
;
3767 void *mpi_req_iomem
;
3770 if (ioc
->is_mcpu_endpoint
) {
3771 __le32
*mfp
= (__le32
*)mpt3sas_base_get_msg_frame(ioc
, smid
);
3773 /* TBD 256 is offset within sys register. */
3774 mpi_req_iomem
= (void __force
*)ioc
->chip
3775 + MPI_FRAME_START_OFFSET
3776 + (smid
* ioc
->request_sz
);
3777 _base_clone_mpi_to_sys_mem(mpi_req_iomem
, (void *)mfp
,
3781 request
= (u64
*)&descriptor
;
3783 descriptor
.HighPriority
.RequestFlags
=
3784 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY
;
3785 descriptor
.HighPriority
.MSIxIndex
= msix_task
;
3786 descriptor
.HighPriority
.SMID
= cpu_to_le16(smid
);
3787 descriptor
.HighPriority
.LMID
= 0;
3788 descriptor
.HighPriority
.Reserved1
= 0;
3789 if (ioc
->is_mcpu_endpoint
)
3790 _base_mpi_ep_writeq(*request
,
3791 &ioc
->chip
->RequestDescriptorPostLow
,
3792 &ioc
->scsi_lookup_lock
);
3794 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
3795 &ioc
->scsi_lookup_lock
);
3799 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3801 * @ioc: per adapter object
3802 * @smid: system request message index
3805 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3807 Mpi2RequestDescriptorUnion_t descriptor
;
3808 u64
*request
= (u64
*)&descriptor
;
3810 descriptor
.Default
.RequestFlags
=
3811 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED
;
3812 descriptor
.Default
.MSIxIndex
= _base_set_and_get_msix_index(ioc
, smid
);
3813 descriptor
.Default
.SMID
= cpu_to_le16(smid
);
3814 descriptor
.Default
.LMID
= 0;
3815 descriptor
.Default
.DescriptorTypeDependent
= 0;
3816 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
3817 &ioc
->scsi_lookup_lock
);
3821 * _base_put_smid_default - Default, primarily used for config pages
3822 * @ioc: per adapter object
3823 * @smid: system request message index
3826 _base_put_smid_default(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3828 Mpi2RequestDescriptorUnion_t descriptor
;
3829 void *mpi_req_iomem
;
3832 if (ioc
->is_mcpu_endpoint
) {
3833 __le32
*mfp
= (__le32
*)mpt3sas_base_get_msg_frame(ioc
, smid
);
3835 _clone_sg_entries(ioc
, (void *) mfp
, smid
);
3836 /* TBD 256 is offset within sys register */
3837 mpi_req_iomem
= (void __force
*)ioc
->chip
+
3838 MPI_FRAME_START_OFFSET
+ (smid
* ioc
->request_sz
);
3839 _base_clone_mpi_to_sys_mem(mpi_req_iomem
, (void *)mfp
,
3842 request
= (u64
*)&descriptor
;
3843 descriptor
.Default
.RequestFlags
= MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE
;
3844 descriptor
.Default
.MSIxIndex
= _base_set_and_get_msix_index(ioc
, smid
);
3845 descriptor
.Default
.SMID
= cpu_to_le16(smid
);
3846 descriptor
.Default
.LMID
= 0;
3847 descriptor
.Default
.DescriptorTypeDependent
= 0;
3848 if (ioc
->is_mcpu_endpoint
)
3849 _base_mpi_ep_writeq(*request
,
3850 &ioc
->chip
->RequestDescriptorPostLow
,
3851 &ioc
->scsi_lookup_lock
);
3853 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
3854 &ioc
->scsi_lookup_lock
);
3858 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
3859 * Atomic Request Descriptor
3860 * @ioc: per adapter object
3861 * @smid: system request message index
3862 * @handle: device handle, unused in this function, for function type match
3867 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
3870 Mpi26AtomicRequestDescriptor_t descriptor
;
3871 u32
*request
= (u32
*)&descriptor
;
3873 descriptor
.RequestFlags
= MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO
;
3874 descriptor
.MSIxIndex
= _base_set_and_get_msix_index(ioc
, smid
);
3875 descriptor
.SMID
= cpu_to_le16(smid
);
3877 writel(cpu_to_le32(*request
), &ioc
->chip
->AtomicRequestDescriptorPost
);
3881 * _base_put_smid_fast_path_atomic - send fast path request to firmware
3882 * using Atomic Request Descriptor
3883 * @ioc: per adapter object
3884 * @smid: system request message index
3885 * @handle: device handle, unused in this function, for function type match
3889 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
3892 Mpi26AtomicRequestDescriptor_t descriptor
;
3893 u32
*request
= (u32
*)&descriptor
;
3895 descriptor
.RequestFlags
= MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO
;
3896 descriptor
.MSIxIndex
= _base_set_and_get_msix_index(ioc
, smid
);
3897 descriptor
.SMID
= cpu_to_le16(smid
);
3899 writel(cpu_to_le32(*request
), &ioc
->chip
->AtomicRequestDescriptorPost
);
3903 * _base_put_smid_hi_priority_atomic - send Task Management request to
3904 * firmware using Atomic Request Descriptor
3905 * @ioc: per adapter object
3906 * @smid: system request message index
3907 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
3912 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
3915 Mpi26AtomicRequestDescriptor_t descriptor
;
3916 u32
*request
= (u32
*)&descriptor
;
3918 descriptor
.RequestFlags
= MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY
;
3919 descriptor
.MSIxIndex
= msix_task
;
3920 descriptor
.SMID
= cpu_to_le16(smid
);
3922 writel(cpu_to_le32(*request
), &ioc
->chip
->AtomicRequestDescriptorPost
);
3926 * _base_put_smid_default - Default, primarily used for config pages
3927 * use Atomic Request Descriptor
3928 * @ioc: per adapter object
3929 * @smid: system request message index
3934 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3936 Mpi26AtomicRequestDescriptor_t descriptor
;
3937 u32
*request
= (u32
*)&descriptor
;
3939 descriptor
.RequestFlags
= MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE
;
3940 descriptor
.MSIxIndex
= _base_set_and_get_msix_index(ioc
, smid
);
3941 descriptor
.SMID
= cpu_to_le16(smid
);
3943 writel(cpu_to_le32(*request
), &ioc
->chip
->AtomicRequestDescriptorPost
);
3947 * _base_display_OEMs_branding - Display branding string
3948 * @ioc: per adapter object
3951 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER
*ioc
)
3953 if (ioc
->pdev
->subsystem_vendor
!= PCI_VENDOR_ID_INTEL
)
3956 switch (ioc
->pdev
->subsystem_vendor
) {
3957 case PCI_VENDOR_ID_INTEL
:
3958 switch (ioc
->pdev
->device
) {
3959 case MPI2_MFGPAGE_DEVID_SAS2008
:
3960 switch (ioc
->pdev
->subsystem_device
) {
3961 case MPT2SAS_INTEL_RMS2LL080_SSDID
:
3962 ioc_info(ioc
, "%s\n",
3963 MPT2SAS_INTEL_RMS2LL080_BRANDING
);
3965 case MPT2SAS_INTEL_RMS2LL040_SSDID
:
3966 ioc_info(ioc
, "%s\n",
3967 MPT2SAS_INTEL_RMS2LL040_BRANDING
);
3969 case MPT2SAS_INTEL_SSD910_SSDID
:
3970 ioc_info(ioc
, "%s\n",
3971 MPT2SAS_INTEL_SSD910_BRANDING
);
3974 ioc_info(ioc
, "Intel(R) Controller: Subsystem ID: 0x%X\n",
3975 ioc
->pdev
->subsystem_device
);
3979 case MPI2_MFGPAGE_DEVID_SAS2308_2
:
3980 switch (ioc
->pdev
->subsystem_device
) {
3981 case MPT2SAS_INTEL_RS25GB008_SSDID
:
3982 ioc_info(ioc
, "%s\n",
3983 MPT2SAS_INTEL_RS25GB008_BRANDING
);
3985 case MPT2SAS_INTEL_RMS25JB080_SSDID
:
3986 ioc_info(ioc
, "%s\n",
3987 MPT2SAS_INTEL_RMS25JB080_BRANDING
);
3989 case MPT2SAS_INTEL_RMS25JB040_SSDID
:
3990 ioc_info(ioc
, "%s\n",
3991 MPT2SAS_INTEL_RMS25JB040_BRANDING
);
3993 case MPT2SAS_INTEL_RMS25KB080_SSDID
:
3994 ioc_info(ioc
, "%s\n",
3995 MPT2SAS_INTEL_RMS25KB080_BRANDING
);
3997 case MPT2SAS_INTEL_RMS25KB040_SSDID
:
3998 ioc_info(ioc
, "%s\n",
3999 MPT2SAS_INTEL_RMS25KB040_BRANDING
);
4001 case MPT2SAS_INTEL_RMS25LB040_SSDID
:
4002 ioc_info(ioc
, "%s\n",
4003 MPT2SAS_INTEL_RMS25LB040_BRANDING
);
4005 case MPT2SAS_INTEL_RMS25LB080_SSDID
:
4006 ioc_info(ioc
, "%s\n",
4007 MPT2SAS_INTEL_RMS25LB080_BRANDING
);
4010 ioc_info(ioc
, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4011 ioc
->pdev
->subsystem_device
);
4015 case MPI25_MFGPAGE_DEVID_SAS3008
:
4016 switch (ioc
->pdev
->subsystem_device
) {
4017 case MPT3SAS_INTEL_RMS3JC080_SSDID
:
4018 ioc_info(ioc
, "%s\n",
4019 MPT3SAS_INTEL_RMS3JC080_BRANDING
);
4022 case MPT3SAS_INTEL_RS3GC008_SSDID
:
4023 ioc_info(ioc
, "%s\n",
4024 MPT3SAS_INTEL_RS3GC008_BRANDING
);
4026 case MPT3SAS_INTEL_RS3FC044_SSDID
:
4027 ioc_info(ioc
, "%s\n",
4028 MPT3SAS_INTEL_RS3FC044_BRANDING
);
4030 case MPT3SAS_INTEL_RS3UC080_SSDID
:
4031 ioc_info(ioc
, "%s\n",
4032 MPT3SAS_INTEL_RS3UC080_BRANDING
);
4035 ioc_info(ioc
, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4036 ioc
->pdev
->subsystem_device
);
4041 ioc_info(ioc
, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4042 ioc
->pdev
->subsystem_device
);
4046 case PCI_VENDOR_ID_DELL
:
4047 switch (ioc
->pdev
->device
) {
4048 case MPI2_MFGPAGE_DEVID_SAS2008
:
4049 switch (ioc
->pdev
->subsystem_device
) {
4050 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID
:
4051 ioc_info(ioc
, "%s\n",
4052 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING
);
4054 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID
:
4055 ioc_info(ioc
, "%s\n",
4056 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING
);
4058 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID
:
4059 ioc_info(ioc
, "%s\n",
4060 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING
);
4062 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID
:
4063 ioc_info(ioc
, "%s\n",
4064 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING
);
4066 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID
:
4067 ioc_info(ioc
, "%s\n",
4068 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING
);
4070 case MPT2SAS_DELL_PERC_H200_SSDID
:
4071 ioc_info(ioc
, "%s\n",
4072 MPT2SAS_DELL_PERC_H200_BRANDING
);
4074 case MPT2SAS_DELL_6GBPS_SAS_SSDID
:
4075 ioc_info(ioc
, "%s\n",
4076 MPT2SAS_DELL_6GBPS_SAS_BRANDING
);
4079 ioc_info(ioc
, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4080 ioc
->pdev
->subsystem_device
);
4084 case MPI25_MFGPAGE_DEVID_SAS3008
:
4085 switch (ioc
->pdev
->subsystem_device
) {
4086 case MPT3SAS_DELL_12G_HBA_SSDID
:
4087 ioc_info(ioc
, "%s\n",
4088 MPT3SAS_DELL_12G_HBA_BRANDING
);
4091 ioc_info(ioc
, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4092 ioc
->pdev
->subsystem_device
);
4097 ioc_info(ioc
, "Dell HBA: Subsystem ID: 0x%X\n",
4098 ioc
->pdev
->subsystem_device
);
4102 case PCI_VENDOR_ID_CISCO
:
4103 switch (ioc
->pdev
->device
) {
4104 case MPI25_MFGPAGE_DEVID_SAS3008
:
4105 switch (ioc
->pdev
->subsystem_device
) {
4106 case MPT3SAS_CISCO_12G_8E_HBA_SSDID
:
4107 ioc_info(ioc
, "%s\n",
4108 MPT3SAS_CISCO_12G_8E_HBA_BRANDING
);
4110 case MPT3SAS_CISCO_12G_8I_HBA_SSDID
:
4111 ioc_info(ioc
, "%s\n",
4112 MPT3SAS_CISCO_12G_8I_HBA_BRANDING
);
4114 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID
:
4115 ioc_info(ioc
, "%s\n",
4116 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING
);
4119 ioc_info(ioc
, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4120 ioc
->pdev
->subsystem_device
);
4124 case MPI25_MFGPAGE_DEVID_SAS3108_1
:
4125 switch (ioc
->pdev
->subsystem_device
) {
4126 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID
:
4127 ioc_info(ioc
, "%s\n",
4128 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING
);
4130 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID
:
4131 ioc_info(ioc
, "%s\n",
4132 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
);
4135 ioc_info(ioc
, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4136 ioc
->pdev
->subsystem_device
);
4141 ioc_info(ioc
, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4142 ioc
->pdev
->subsystem_device
);
4146 case MPT2SAS_HP_3PAR_SSVID
:
4147 switch (ioc
->pdev
->device
) {
4148 case MPI2_MFGPAGE_DEVID_SAS2004
:
4149 switch (ioc
->pdev
->subsystem_device
) {
4150 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID
:
4151 ioc_info(ioc
, "%s\n",
4152 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING
);
4155 ioc_info(ioc
, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4156 ioc
->pdev
->subsystem_device
);
4160 case MPI2_MFGPAGE_DEVID_SAS2308_2
:
4161 switch (ioc
->pdev
->subsystem_device
) {
4162 case MPT2SAS_HP_2_4_INTERNAL_SSDID
:
4163 ioc_info(ioc
, "%s\n",
4164 MPT2SAS_HP_2_4_INTERNAL_BRANDING
);
4166 case MPT2SAS_HP_2_4_EXTERNAL_SSDID
:
4167 ioc_info(ioc
, "%s\n",
4168 MPT2SAS_HP_2_4_EXTERNAL_BRANDING
);
4170 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID
:
4171 ioc_info(ioc
, "%s\n",
4172 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING
);
4174 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID
:
4175 ioc_info(ioc
, "%s\n",
4176 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING
);
4179 ioc_info(ioc
, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4180 ioc
->pdev
->subsystem_device
);
4185 ioc_info(ioc
, "HP SAS HBA: Subsystem ID: 0x%X\n",
4186 ioc
->pdev
->subsystem_device
);
4195 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4196 * version from FW Image Header.
4197 * @ioc: per adapter object
4199 * Return: 0 for success, non-zero for failure.
4202 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER
*ioc
)
4204 Mpi2FWImageHeader_t
*FWImgHdr
;
4205 Mpi25FWUploadRequest_t
*mpi_request
;
4206 Mpi2FWUploadReply_t mpi_reply
;
4208 void *fwpkg_data
= NULL
;
4209 dma_addr_t fwpkg_data_dma
;
4210 u16 smid
, ioc_status
;
4213 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
4215 if (ioc
->base_cmds
.status
& MPT3_CMD_PENDING
) {
4216 ioc_err(ioc
, "%s: internal command already in use\n", __func__
);
4220 data_length
= sizeof(Mpi2FWImageHeader_t
);
4221 fwpkg_data
= dma_alloc_coherent(&ioc
->pdev
->dev
, data_length
,
4222 &fwpkg_data_dma
, GFP_KERNEL
);
4224 ioc_err(ioc
, "failure at %s:%d/%s()!\n",
4225 __FILE__
, __LINE__
, __func__
);
4229 smid
= mpt3sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
4231 ioc_err(ioc
, "%s: failed obtaining a smid\n", __func__
);
4236 ioc
->base_cmds
.status
= MPT3_CMD_PENDING
;
4237 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
4238 ioc
->base_cmds
.smid
= smid
;
4239 memset(mpi_request
, 0, sizeof(Mpi25FWUploadRequest_t
));
4240 mpi_request
->Function
= MPI2_FUNCTION_FW_UPLOAD
;
4241 mpi_request
->ImageType
= MPI2_FW_UPLOAD_ITYPE_FW_FLASH
;
4242 mpi_request
->ImageSize
= cpu_to_le32(data_length
);
4243 ioc
->build_sg(ioc
, &mpi_request
->SGL
, 0, 0, fwpkg_data_dma
,
4245 init_completion(&ioc
->base_cmds
.done
);
4246 ioc
->put_smid_default(ioc
, smid
);
4247 /* Wait for 15 seconds */
4248 wait_for_completion_timeout(&ioc
->base_cmds
.done
,
4249 FW_IMG_HDR_READ_TIMEOUT
*HZ
);
4250 ioc_info(ioc
, "%s: complete\n", __func__
);
4251 if (!(ioc
->base_cmds
.status
& MPT3_CMD_COMPLETE
)) {
4252 ioc_err(ioc
, "%s: timeout\n", __func__
);
4253 _debug_dump_mf(mpi_request
,
4254 sizeof(Mpi25FWUploadRequest_t
)/4);
4257 memset(&mpi_reply
, 0, sizeof(Mpi2FWUploadReply_t
));
4258 if (ioc
->base_cmds
.status
& MPT3_CMD_REPLY_VALID
) {
4259 memcpy(&mpi_reply
, ioc
->base_cmds
.reply
,
4260 sizeof(Mpi2FWUploadReply_t
));
4261 ioc_status
= le16_to_cpu(mpi_reply
.IOCStatus
) &
4262 MPI2_IOCSTATUS_MASK
;
4263 if (ioc_status
== MPI2_IOCSTATUS_SUCCESS
) {
4264 FWImgHdr
= (Mpi2FWImageHeader_t
*)fwpkg_data
;
4265 if (FWImgHdr
->PackageVersion
.Word
) {
4266 ioc_info(ioc
, "FW Package Version (%02d.%02d.%02d.%02d)\n",
4267 FWImgHdr
->PackageVersion
.Struct
.Major
,
4268 FWImgHdr
->PackageVersion
.Struct
.Minor
,
4269 FWImgHdr
->PackageVersion
.Struct
.Unit
,
4270 FWImgHdr
->PackageVersion
.Struct
.Dev
);
4273 _debug_dump_mf(&mpi_reply
,
4274 sizeof(Mpi2FWUploadReply_t
)/4);
4278 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
4281 dma_free_coherent(&ioc
->pdev
->dev
, data_length
, fwpkg_data
,
4287 * _base_display_ioc_capabilities - Disply IOC's capabilities.
4288 * @ioc: per adapter object
4291 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER
*ioc
)
4295 u32 iounit_pg1_flags
;
4298 bios_version
= le32_to_cpu(ioc
->bios_pg3
.BiosVersion
);
4299 strncpy(desc
, ioc
->manu_pg0
.ChipName
, 16);
4300 ioc_info(ioc
, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4302 (ioc
->facts
.FWVersion
.Word
& 0xFF000000) >> 24,
4303 (ioc
->facts
.FWVersion
.Word
& 0x00FF0000) >> 16,
4304 (ioc
->facts
.FWVersion
.Word
& 0x0000FF00) >> 8,
4305 ioc
->facts
.FWVersion
.Word
& 0x000000FF,
4306 ioc
->pdev
->revision
,
4307 (bios_version
& 0xFF000000) >> 24,
4308 (bios_version
& 0x00FF0000) >> 16,
4309 (bios_version
& 0x0000FF00) >> 8,
4310 bios_version
& 0x000000FF);
4312 _base_display_OEMs_branding(ioc
);
4314 if (ioc
->facts
.ProtocolFlags
& MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES
) {
4315 pr_info("%sNVMe", i
? "," : "");
4319 ioc_info(ioc
, "Protocol=(");
4321 if (ioc
->facts
.ProtocolFlags
& MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR
) {
4322 pr_cont("Initiator");
4326 if (ioc
->facts
.ProtocolFlags
& MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET
) {
4327 pr_cont("%sTarget", i
? "," : "");
4332 pr_cont("), Capabilities=(");
4334 if (!ioc
->hide_ir_msg
) {
4335 if (ioc
->facts
.IOCCapabilities
&
4336 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID
) {
4342 if (ioc
->facts
.IOCCapabilities
& MPI2_IOCFACTS_CAPABILITY_TLR
) {
4343 pr_cont("%sTLR", i
? "," : "");
4347 if (ioc
->facts
.IOCCapabilities
& MPI2_IOCFACTS_CAPABILITY_MULTICAST
) {
4348 pr_cont("%sMulticast", i
? "," : "");
4352 if (ioc
->facts
.IOCCapabilities
&
4353 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET
) {
4354 pr_cont("%sBIDI Target", i
? "," : "");
4358 if (ioc
->facts
.IOCCapabilities
& MPI2_IOCFACTS_CAPABILITY_EEDP
) {
4359 pr_cont("%sEEDP", i
? "," : "");
4363 if (ioc
->facts
.IOCCapabilities
&
4364 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER
) {
4365 pr_cont("%sSnapshot Buffer", i
? "," : "");
4369 if (ioc
->facts
.IOCCapabilities
&
4370 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER
) {
4371 pr_cont("%sDiag Trace Buffer", i
? "," : "");
4375 if (ioc
->facts
.IOCCapabilities
&
4376 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER
) {
4377 pr_cont("%sDiag Extended Buffer", i
? "," : "");
4381 if (ioc
->facts
.IOCCapabilities
&
4382 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING
) {
4383 pr_cont("%sTask Set Full", i
? "," : "");
4387 iounit_pg1_flags
= le32_to_cpu(ioc
->iounit_pg1
.Flags
);
4388 if (!(iounit_pg1_flags
& MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE
)) {
4389 pr_cont("%sNCQ", i
? "," : "");
4397 * mpt3sas_base_update_missing_delay - change the missing delay timers
4398 * @ioc: per adapter object
4399 * @device_missing_delay: amount of time till device is reported missing
4400 * @io_missing_delay: interval IO is returned when there is a missing device
4402 * Passed on the command line, this function will modify the device missing
4403 * delay, as well as the io missing delay. This should be called at driver
4407 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER
*ioc
,
4408 u16 device_missing_delay
, u8 io_missing_delay
)
4410 u16 dmd
, dmd_new
, dmd_orignal
;
4411 u8 io_missing_delay_original
;
4413 Mpi2SasIOUnitPage1_t
*sas_iounit_pg1
= NULL
;
4414 Mpi2ConfigReply_t mpi_reply
;
4418 mpt3sas_config_get_number_hba_phys(ioc
, &num_phys
);
4422 sz
= offsetof(Mpi2SasIOUnitPage1_t
, PhyData
) + (num_phys
*
4423 sizeof(Mpi2SasIOUnit1PhyData_t
));
4424 sas_iounit_pg1
= kzalloc(sz
, GFP_KERNEL
);
4425 if (!sas_iounit_pg1
) {
4426 ioc_err(ioc
, "failure at %s:%d/%s()!\n",
4427 __FILE__
, __LINE__
, __func__
);
4430 if ((mpt3sas_config_get_sas_iounit_pg1(ioc
, &mpi_reply
,
4431 sas_iounit_pg1
, sz
))) {
4432 ioc_err(ioc
, "failure at %s:%d/%s()!\n",
4433 __FILE__
, __LINE__
, __func__
);
4436 ioc_status
= le16_to_cpu(mpi_reply
.IOCStatus
) &
4437 MPI2_IOCSTATUS_MASK
;
4438 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
) {
4439 ioc_err(ioc
, "failure at %s:%d/%s()!\n",
4440 __FILE__
, __LINE__
, __func__
);
4444 /* device missing delay */
4445 dmd
= sas_iounit_pg1
->ReportDeviceMissingDelay
;
4446 if (dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16
)
4447 dmd
= (dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK
) * 16;
4449 dmd
= dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK
;
4451 if (device_missing_delay
> 0x7F) {
4452 dmd
= (device_missing_delay
> 0x7F0) ? 0x7F0 :
4453 device_missing_delay
;
4455 dmd
|= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16
;
4457 dmd
= device_missing_delay
;
4458 sas_iounit_pg1
->ReportDeviceMissingDelay
= dmd
;
4460 /* io missing delay */
4461 io_missing_delay_original
= sas_iounit_pg1
->IODeviceMissingDelay
;
4462 sas_iounit_pg1
->IODeviceMissingDelay
= io_missing_delay
;
4464 if (!mpt3sas_config_set_sas_iounit_pg1(ioc
, &mpi_reply
, sas_iounit_pg1
,
4466 if (dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16
)
4468 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK
) * 16;
4471 dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK
;
4472 ioc_info(ioc
, "device_missing_delay: old(%d), new(%d)\n",
4473 dmd_orignal
, dmd_new
);
4474 ioc_info(ioc
, "ioc_missing_delay: old(%d), new(%d)\n",
4475 io_missing_delay_original
,
4477 ioc
->device_missing_delay
= dmd_new
;
4478 ioc
->io_missing_delay
= io_missing_delay
;
4482 kfree(sas_iounit_pg1
);
4486 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4487 * according to performance mode.
4488 * @ioc : per adapter object
4493 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER
*ioc
)
4495 Mpi2IOCPage1_t ioc_pg1
;
4496 Mpi2ConfigReply_t mpi_reply
;
4498 mpt3sas_config_get_ioc_pg1(ioc
, &mpi_reply
, &ioc
->ioc_pg1_copy
);
4499 memcpy(&ioc_pg1
, &ioc
->ioc_pg1_copy
, sizeof(Mpi2IOCPage1_t
));
4501 switch (perf_mode
) {
4502 case MPT_PERF_MODE_DEFAULT
:
4503 case MPT_PERF_MODE_BALANCED
:
4504 if (ioc
->high_iops_queues
) {
4506 "Enable interrupt coalescing only for first\t"
4507 "%d reply queues\n",
4508 MPT3SAS_HIGH_IOPS_REPLY_QUEUES
);
4510 * If 31st bit is zero then interrupt coalescing is
4511 * enabled for all reply descriptor post queues.
4512 * If 31st bit is set to one then user can
4513 * enable/disable interrupt coalescing on per reply
4514 * descriptor post queue group(8) basis. So to enable
4515 * interrupt coalescing only on first reply descriptor
4516 * post queue group 31st bit and zero th bit is enabled.
4518 ioc_pg1
.ProductSpecific
= cpu_to_le32(0x80000000 |
4519 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES
/8) - 1));
4520 mpt3sas_config_set_ioc_pg1(ioc
, &mpi_reply
, &ioc_pg1
);
4521 ioc_info(ioc
, "performance mode: balanced\n");
4525 case MPT_PERF_MODE_LATENCY
:
4527 * Enable interrupt coalescing on all reply queues
4528 * with timeout value 0xA
4530 ioc_pg1
.CoalescingTimeout
= cpu_to_le32(0xa);
4531 ioc_pg1
.Flags
|= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING
);
4532 ioc_pg1
.ProductSpecific
= 0;
4533 mpt3sas_config_set_ioc_pg1(ioc
, &mpi_reply
, &ioc_pg1
);
4534 ioc_info(ioc
, "performance mode: latency\n");
4536 case MPT_PERF_MODE_IOPS
:
4538 * Enable interrupt coalescing on all reply queues.
4541 "performance mode: iops with coalescing timeout: 0x%x\n",
4542 le32_to_cpu(ioc_pg1
.CoalescingTimeout
));
4543 ioc_pg1
.Flags
|= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING
);
4544 ioc_pg1
.ProductSpecific
= 0;
4545 mpt3sas_config_set_ioc_pg1(ioc
, &mpi_reply
, &ioc_pg1
);
4551 * _base_static_config_pages - static start of day config pages
4552 * @ioc: per adapter object
4555 _base_static_config_pages(struct MPT3SAS_ADAPTER
*ioc
)
4557 Mpi2ConfigReply_t mpi_reply
;
4558 u32 iounit_pg1_flags
;
4560 ioc
->nvme_abort_timeout
= 30;
4561 mpt3sas_config_get_manufacturing_pg0(ioc
, &mpi_reply
, &ioc
->manu_pg0
);
4562 if (ioc
->ir_firmware
)
4563 mpt3sas_config_get_manufacturing_pg10(ioc
, &mpi_reply
,
4567 * Ensure correct T10 PI operation if vendor left EEDPTagMode
4568 * flag unset in NVDATA.
4570 mpt3sas_config_get_manufacturing_pg11(ioc
, &mpi_reply
, &ioc
->manu_pg11
);
4571 if (!ioc
->is_gen35_ioc
&& ioc
->manu_pg11
.EEDPTagMode
== 0) {
4572 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4574 ioc
->manu_pg11
.EEDPTagMode
&= ~0x3;
4575 ioc
->manu_pg11
.EEDPTagMode
|= 0x1;
4576 mpt3sas_config_set_manufacturing_pg11(ioc
, &mpi_reply
,
4579 if (ioc
->manu_pg11
.AddlFlags2
& NVME_TASK_MNGT_CUSTOM_MASK
)
4580 ioc
->tm_custom_handling
= 1;
4582 ioc
->tm_custom_handling
= 0;
4583 if (ioc
->manu_pg11
.NVMeAbortTO
< NVME_TASK_ABORT_MIN_TIMEOUT
)
4584 ioc
->nvme_abort_timeout
= NVME_TASK_ABORT_MIN_TIMEOUT
;
4585 else if (ioc
->manu_pg11
.NVMeAbortTO
>
4586 NVME_TASK_ABORT_MAX_TIMEOUT
)
4587 ioc
->nvme_abort_timeout
= NVME_TASK_ABORT_MAX_TIMEOUT
;
4589 ioc
->nvme_abort_timeout
= ioc
->manu_pg11
.NVMeAbortTO
;
4592 mpt3sas_config_get_bios_pg2(ioc
, &mpi_reply
, &ioc
->bios_pg2
);
4593 mpt3sas_config_get_bios_pg3(ioc
, &mpi_reply
, &ioc
->bios_pg3
);
4594 mpt3sas_config_get_ioc_pg8(ioc
, &mpi_reply
, &ioc
->ioc_pg8
);
4595 mpt3sas_config_get_iounit_pg0(ioc
, &mpi_reply
, &ioc
->iounit_pg0
);
4596 mpt3sas_config_get_iounit_pg1(ioc
, &mpi_reply
, &ioc
->iounit_pg1
);
4597 mpt3sas_config_get_iounit_pg8(ioc
, &mpi_reply
, &ioc
->iounit_pg8
);
4598 _base_display_ioc_capabilities(ioc
);
4601 * Enable task_set_full handling in iounit_pg1 when the
4602 * facts capabilities indicate that its supported.
4604 iounit_pg1_flags
= le32_to_cpu(ioc
->iounit_pg1
.Flags
);
4605 if ((ioc
->facts
.IOCCapabilities
&
4606 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING
))
4608 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING
;
4611 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING
;
4612 ioc
->iounit_pg1
.Flags
= cpu_to_le32(iounit_pg1_flags
);
4613 mpt3sas_config_set_iounit_pg1(ioc
, &mpi_reply
, &ioc
->iounit_pg1
);
4615 if (ioc
->iounit_pg8
.NumSensors
)
4616 ioc
->temp_sensors_count
= ioc
->iounit_pg8
.NumSensors
;
4617 if (ioc
->is_aero_ioc
)
4618 _base_update_ioc_page1_inlinewith_perf_mode(ioc
);
4622 * mpt3sas_free_enclosure_list - release memory
4623 * @ioc: per adapter object
4625 * Free memory allocated during encloure add.
4628 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER
*ioc
)
4630 struct _enclosure_node
*enclosure_dev
, *enclosure_dev_next
;
4632 /* Free enclosure list */
4633 list_for_each_entry_safe(enclosure_dev
,
4634 enclosure_dev_next
, &ioc
->enclosure_list
, list
) {
4635 list_del(&enclosure_dev
->list
);
4636 kfree(enclosure_dev
);
4641 * _base_release_memory_pools - release memory
4642 * @ioc: per adapter object
4644 * Free memory allocated from _base_allocate_memory_pools.
4647 _base_release_memory_pools(struct MPT3SAS_ADAPTER
*ioc
)
4651 struct chain_tracker
*ct
;
4652 struct reply_post_struct
*rps
;
4654 dexitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
4657 dma_free_coherent(&ioc
->pdev
->dev
, ioc
->request_dma_sz
,
4658 ioc
->request
, ioc
->request_dma
);
4660 ioc_info(ioc
, "request_pool(0x%p): free\n",
4662 ioc
->request
= NULL
;
4666 dma_pool_free(ioc
->sense_dma_pool
, ioc
->sense
, ioc
->sense_dma
);
4667 dma_pool_destroy(ioc
->sense_dma_pool
);
4669 ioc_info(ioc
, "sense_pool(0x%p): free\n",
4675 dma_pool_free(ioc
->reply_dma_pool
, ioc
->reply
, ioc
->reply_dma
);
4676 dma_pool_destroy(ioc
->reply_dma_pool
);
4678 ioc_info(ioc
, "reply_pool(0x%p): free\n",
4683 if (ioc
->reply_free
) {
4684 dma_pool_free(ioc
->reply_free_dma_pool
, ioc
->reply_free
,
4685 ioc
->reply_free_dma
);
4686 dma_pool_destroy(ioc
->reply_free_dma_pool
);
4688 ioc_info(ioc
, "reply_free_pool(0x%p): free\n",
4690 ioc
->reply_free
= NULL
;
4693 if (ioc
->reply_post
) {
4695 rps
= &ioc
->reply_post
[i
];
4696 if (rps
->reply_post_free
) {
4698 ioc
->reply_post_free_dma_pool
,
4699 rps
->reply_post_free
,
4700 rps
->reply_post_free_dma
);
4702 ioc_info(ioc
, "reply_post_free_pool(0x%p): free\n",
4703 rps
->reply_post_free
));
4704 rps
->reply_post_free
= NULL
;
4706 } while (ioc
->rdpq_array_enable
&&
4707 (++i
< ioc
->reply_queue_count
));
4708 if (ioc
->reply_post_free_array
&&
4709 ioc
->rdpq_array_enable
) {
4710 dma_pool_free(ioc
->reply_post_free_array_dma_pool
,
4711 ioc
->reply_post_free_array
,
4712 ioc
->reply_post_free_array_dma
);
4713 ioc
->reply_post_free_array
= NULL
;
4715 dma_pool_destroy(ioc
->reply_post_free_array_dma_pool
);
4716 dma_pool_destroy(ioc
->reply_post_free_dma_pool
);
4717 kfree(ioc
->reply_post
);
4720 if (ioc
->pcie_sgl_dma_pool
) {
4721 for (i
= 0; i
< ioc
->scsiio_depth
; i
++) {
4722 dma_pool_free(ioc
->pcie_sgl_dma_pool
,
4723 ioc
->pcie_sg_lookup
[i
].pcie_sgl
,
4724 ioc
->pcie_sg_lookup
[i
].pcie_sgl_dma
);
4726 if (ioc
->pcie_sgl_dma_pool
)
4727 dma_pool_destroy(ioc
->pcie_sgl_dma_pool
);
4730 if (ioc
->config_page
) {
4732 ioc_info(ioc
, "config_page(0x%p): free\n",
4734 dma_free_coherent(&ioc
->pdev
->dev
, ioc
->config_page_sz
,
4735 ioc
->config_page
, ioc
->config_page_dma
);
4738 kfree(ioc
->hpr_lookup
);
4739 kfree(ioc
->internal_lookup
);
4740 if (ioc
->chain_lookup
) {
4741 for (i
= 0; i
< ioc
->scsiio_depth
; i
++) {
4742 for (j
= ioc
->chains_per_prp_buffer
;
4743 j
< ioc
->chains_needed_per_io
; j
++) {
4744 ct
= &ioc
->chain_lookup
[i
].chains_per_smid
[j
];
4745 if (ct
&& ct
->chain_buffer
)
4746 dma_pool_free(ioc
->chain_dma_pool
,
4748 ct
->chain_buffer_dma
);
4750 kfree(ioc
->chain_lookup
[i
].chains_per_smid
);
4752 dma_pool_destroy(ioc
->chain_dma_pool
);
4753 kfree(ioc
->chain_lookup
);
4754 ioc
->chain_lookup
= NULL
;
4759 * is_MSB_are_same - checks whether all reply queues in a set are
4760 * having same upper 32bits in their base memory address.
4761 * @reply_pool_start_address: Base address of a reply queue set
4762 * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4764 * Return: 1 if reply queues in a set have a same upper 32bits in their base
4765 * memory address, else 0.
4769 is_MSB_are_same(long reply_pool_start_address
, u32 pool_sz
)
4771 long reply_pool_end_address
;
4773 reply_pool_end_address
= reply_pool_start_address
+ pool_sz
;
4775 if (upper_32_bits(reply_pool_start_address
) ==
4776 upper_32_bits(reply_pool_end_address
))
4783 * _base_allocate_memory_pools - allocate start of day memory pools
4784 * @ioc: per adapter object
4786 * Return: 0 success, anything else error.
4789 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER
*ioc
)
4791 struct mpt3sas_facts
*facts
;
4792 u16 max_sge_elements
;
4793 u16 chains_needed_per_io
;
4794 u32 sz
, total_sz
, reply_post_free_sz
, reply_post_free_array_sz
;
4796 u16 max_request_credit
, nvme_blocks_needed
;
4797 unsigned short sg_tablesize
;
4800 struct chain_tracker
*ct
;
4802 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
4806 facts
= &ioc
->facts
;
4808 /* command line tunables for max sgl entries */
4809 if (max_sgl_entries
!= -1)
4810 sg_tablesize
= max_sgl_entries
;
4812 if (ioc
->hba_mpi_version_belonged
== MPI2_VERSION
)
4813 sg_tablesize
= MPT2SAS_SG_DEPTH
;
4815 sg_tablesize
= MPT3SAS_SG_DEPTH
;
4818 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
4820 sg_tablesize
= min_t(unsigned short, sg_tablesize
,
4821 MPT_KDUMP_MIN_PHYS_SEGMENTS
);
4823 if (ioc
->is_mcpu_endpoint
)
4824 ioc
->shost
->sg_tablesize
= MPT_MIN_PHYS_SEGMENTS
;
4826 if (sg_tablesize
< MPT_MIN_PHYS_SEGMENTS
)
4827 sg_tablesize
= MPT_MIN_PHYS_SEGMENTS
;
4828 else if (sg_tablesize
> MPT_MAX_PHYS_SEGMENTS
) {
4829 sg_tablesize
= min_t(unsigned short, sg_tablesize
,
4831 ioc_warn(ioc
, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
4832 sg_tablesize
, MPT_MAX_PHYS_SEGMENTS
);
4834 ioc
->shost
->sg_tablesize
= sg_tablesize
;
4837 ioc
->internal_depth
= min_t(int, (facts
->HighPriorityCredit
+ (5)),
4838 (facts
->RequestCredit
/ 4));
4839 if (ioc
->internal_depth
< INTERNAL_CMDS_COUNT
) {
4840 if (facts
->RequestCredit
<= (INTERNAL_CMDS_COUNT
+
4841 INTERNAL_SCSIIO_CMDS_COUNT
)) {
4842 ioc_err(ioc
, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
4843 facts
->RequestCredit
);
4846 ioc
->internal_depth
= 10;
4849 ioc
->hi_priority_depth
= ioc
->internal_depth
- (5);
4850 /* command line tunables for max controller queue depth */
4851 if (max_queue_depth
!= -1 && max_queue_depth
!= 0) {
4852 max_request_credit
= min_t(u16
, max_queue_depth
+
4853 ioc
->internal_depth
, facts
->RequestCredit
);
4854 if (max_request_credit
> MAX_HBA_QUEUE_DEPTH
)
4855 max_request_credit
= MAX_HBA_QUEUE_DEPTH
;
4856 } else if (reset_devices
)
4857 max_request_credit
= min_t(u16
, facts
->RequestCredit
,
4858 (MPT3SAS_KDUMP_SCSI_IO_DEPTH
+ ioc
->internal_depth
));
4860 max_request_credit
= min_t(u16
, facts
->RequestCredit
,
4861 MAX_HBA_QUEUE_DEPTH
);
4863 /* Firmware maintains additional facts->HighPriorityCredit number of
4864 * credits for HiPriprity Request messages, so hba queue depth will be
4865 * sum of max_request_credit and high priority queue depth.
4867 ioc
->hba_queue_depth
= max_request_credit
+ ioc
->hi_priority_depth
;
4869 /* request frame size */
4870 ioc
->request_sz
= facts
->IOCRequestFrameSize
* 4;
4872 /* reply frame size */
4873 ioc
->reply_sz
= facts
->ReplyFrameSize
* 4;
4875 /* chain segment size */
4876 if (ioc
->hba_mpi_version_belonged
!= MPI2_VERSION
) {
4877 if (facts
->IOCMaxChainSegmentSize
)
4878 ioc
->chain_segment_sz
=
4879 facts
->IOCMaxChainSegmentSize
*
4882 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
4883 ioc
->chain_segment_sz
= DEFAULT_NUM_FWCHAIN_ELEMTS
*
4886 ioc
->chain_segment_sz
= ioc
->request_sz
;
4888 /* calculate the max scatter element size */
4889 sge_size
= max_t(u16
, ioc
->sge_size
, ioc
->sge_size_ieee
);
4893 /* calculate number of sg elements left over in the 1st frame */
4894 max_sge_elements
= ioc
->request_sz
- ((sizeof(Mpi2SCSIIORequest_t
) -
4895 sizeof(Mpi2SGEIOUnion_t
)) + sge_size
);
4896 ioc
->max_sges_in_main_message
= max_sge_elements
/sge_size
;
4898 /* now do the same for a chain buffer */
4899 max_sge_elements
= ioc
->chain_segment_sz
- sge_size
;
4900 ioc
->max_sges_in_chain_message
= max_sge_elements
/sge_size
;
4903 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
4905 chains_needed_per_io
= ((ioc
->shost
->sg_tablesize
-
4906 ioc
->max_sges_in_main_message
)/ioc
->max_sges_in_chain_message
)
4908 if (chains_needed_per_io
> facts
->MaxChainDepth
) {
4909 chains_needed_per_io
= facts
->MaxChainDepth
;
4910 ioc
->shost
->sg_tablesize
= min_t(u16
,
4911 ioc
->max_sges_in_main_message
+ (ioc
->max_sges_in_chain_message
4912 * chains_needed_per_io
), ioc
->shost
->sg_tablesize
);
4914 ioc
->chains_needed_per_io
= chains_needed_per_io
;
4916 /* reply free queue sizing - taking into account for 64 FW events */
4917 ioc
->reply_free_queue_depth
= ioc
->hba_queue_depth
+ 64;
4919 /* mCPU manage single counters for simplicity */
4920 if (ioc
->is_mcpu_endpoint
)
4921 ioc
->reply_post_queue_depth
= ioc
->reply_free_queue_depth
;
4923 /* calculate reply descriptor post queue depth */
4924 ioc
->reply_post_queue_depth
= ioc
->hba_queue_depth
+
4925 ioc
->reply_free_queue_depth
+ 1;
4926 /* align the reply post queue on the next 16 count boundary */
4927 if (ioc
->reply_post_queue_depth
% 16)
4928 ioc
->reply_post_queue_depth
+= 16 -
4929 (ioc
->reply_post_queue_depth
% 16);
4932 if (ioc
->reply_post_queue_depth
>
4933 facts
->MaxReplyDescriptorPostQueueDepth
) {
4934 ioc
->reply_post_queue_depth
=
4935 facts
->MaxReplyDescriptorPostQueueDepth
-
4936 (facts
->MaxReplyDescriptorPostQueueDepth
% 16);
4937 ioc
->hba_queue_depth
=
4938 ((ioc
->reply_post_queue_depth
- 64) / 2) - 1;
4939 ioc
->reply_free_queue_depth
= ioc
->hba_queue_depth
+ 64;
4943 ioc_info(ioc
, "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), chains_per_io(%d)\n",
4944 ioc
->max_sges_in_main_message
,
4945 ioc
->max_sges_in_chain_message
,
4946 ioc
->shost
->sg_tablesize
,
4947 ioc
->chains_needed_per_io
));
4949 /* reply post queue, 16 byte align */
4950 reply_post_free_sz
= ioc
->reply_post_queue_depth
*
4951 sizeof(Mpi2DefaultReplyDescriptor_t
);
4953 sz
= reply_post_free_sz
;
4954 if (_base_is_controller_msix_enabled(ioc
) && !ioc
->rdpq_array_enable
)
4955 sz
*= ioc
->reply_queue_count
;
4957 ioc
->reply_post
= kcalloc((ioc
->rdpq_array_enable
) ?
4958 (ioc
->reply_queue_count
):1,
4959 sizeof(struct reply_post_struct
), GFP_KERNEL
);
4961 if (!ioc
->reply_post
) {
4962 ioc_err(ioc
, "reply_post_free pool: kcalloc failed\n");
4965 ioc
->reply_post_free_dma_pool
= dma_pool_create("reply_post_free pool",
4966 &ioc
->pdev
->dev
, sz
, 16, 0);
4967 if (!ioc
->reply_post_free_dma_pool
) {
4968 ioc_err(ioc
, "reply_post_free pool: dma_pool_create failed\n");
4973 ioc
->reply_post
[i
].reply_post_free
=
4974 dma_pool_zalloc(ioc
->reply_post_free_dma_pool
,
4976 &ioc
->reply_post
[i
].reply_post_free_dma
);
4977 if (!ioc
->reply_post
[i
].reply_post_free
) {
4978 ioc_err(ioc
, "reply_post_free pool: dma_pool_alloc failed\n");
4982 ioc_info(ioc
, "reply post free pool (0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
4983 ioc
->reply_post
[i
].reply_post_free
,
4984 ioc
->reply_post_queue_depth
,
4987 ioc_info(ioc
, "reply_post_free_dma = (0x%llx)\n",
4988 (u64
)ioc
->reply_post
[i
].reply_post_free_dma
));
4990 } while (ioc
->rdpq_array_enable
&& (++i
< ioc
->reply_queue_count
));
4992 if (ioc
->dma_mask
== 64) {
4993 if (_base_change_consistent_dma_mask(ioc
, ioc
->pdev
) != 0) {
4994 ioc_warn(ioc
, "no suitable consistent DMA mask for %s\n",
4995 pci_name(ioc
->pdev
));
5000 ioc
->scsiio_depth
= ioc
->hba_queue_depth
-
5001 ioc
->hi_priority_depth
- ioc
->internal_depth
;
5003 /* set the scsi host can_queue depth
5004 * with some internal commands that could be outstanding
5006 ioc
->shost
->can_queue
= ioc
->scsiio_depth
- INTERNAL_SCSIIO_CMDS_COUNT
;
5008 ioc_info(ioc
, "scsi host: can_queue depth (%d)\n",
5009 ioc
->shost
->can_queue
));
5012 /* contiguous pool for request and chains, 16 byte align, one extra "
5015 ioc
->chain_depth
= ioc
->chains_needed_per_io
* ioc
->scsiio_depth
;
5016 sz
= ((ioc
->scsiio_depth
+ 1) * ioc
->request_sz
);
5018 /* hi-priority queue */
5019 sz
+= (ioc
->hi_priority_depth
* ioc
->request_sz
);
5021 /* internal queue */
5022 sz
+= (ioc
->internal_depth
* ioc
->request_sz
);
5024 ioc
->request_dma_sz
= sz
;
5025 ioc
->request
= dma_alloc_coherent(&ioc
->pdev
->dev
, sz
,
5026 &ioc
->request_dma
, GFP_KERNEL
);
5027 if (!ioc
->request
) {
5028 ioc_err(ioc
, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
5029 ioc
->hba_queue_depth
, ioc
->chains_needed_per_io
,
5030 ioc
->request_sz
, sz
/ 1024);
5031 if (ioc
->scsiio_depth
< MPT3SAS_SAS_QUEUE_DEPTH
)
5034 ioc
->hba_queue_depth
-= retry_sz
;
5035 _base_release_memory_pools(ioc
);
5036 goto retry_allocation
;
5040 ioc_err(ioc
, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
5041 ioc
->hba_queue_depth
, ioc
->chains_needed_per_io
,
5042 ioc
->request_sz
, sz
/ 1024);
5044 /* hi-priority queue */
5045 ioc
->hi_priority
= ioc
->request
+ ((ioc
->scsiio_depth
+ 1) *
5047 ioc
->hi_priority_dma
= ioc
->request_dma
+ ((ioc
->scsiio_depth
+ 1) *
5050 /* internal queue */
5051 ioc
->internal
= ioc
->hi_priority
+ (ioc
->hi_priority_depth
*
5053 ioc
->internal_dma
= ioc
->hi_priority_dma
+ (ioc
->hi_priority_depth
*
5057 ioc_info(ioc
, "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5058 ioc
->request
, ioc
->hba_queue_depth
,
5060 (ioc
->hba_queue_depth
* ioc
->request_sz
) / 1024));
5063 ioc_info(ioc
, "request pool: dma(0x%llx)\n",
5064 (unsigned long long)ioc
->request_dma
));
5068 ioc_info(ioc
, "scsiio(0x%p): depth(%d)\n",
5069 ioc
->request
, ioc
->scsiio_depth
));
5071 ioc
->chain_depth
= min_t(u32
, ioc
->chain_depth
, MAX_CHAIN_DEPTH
);
5072 sz
= ioc
->scsiio_depth
* sizeof(struct chain_lookup
);
5073 ioc
->chain_lookup
= kzalloc(sz
, GFP_KERNEL
);
5074 if (!ioc
->chain_lookup
) {
5075 ioc_err(ioc
, "chain_lookup: __get_free_pages failed\n");
5079 sz
= ioc
->chains_needed_per_io
* sizeof(struct chain_tracker
);
5080 for (i
= 0; i
< ioc
->scsiio_depth
; i
++) {
5081 ioc
->chain_lookup
[i
].chains_per_smid
= kzalloc(sz
, GFP_KERNEL
);
5082 if (!ioc
->chain_lookup
[i
].chains_per_smid
) {
5083 ioc_err(ioc
, "chain_lookup: kzalloc failed\n");
5088 /* initialize hi-priority queue smid's */
5089 ioc
->hpr_lookup
= kcalloc(ioc
->hi_priority_depth
,
5090 sizeof(struct request_tracker
), GFP_KERNEL
);
5091 if (!ioc
->hpr_lookup
) {
5092 ioc_err(ioc
, "hpr_lookup: kcalloc failed\n");
5095 ioc
->hi_priority_smid
= ioc
->scsiio_depth
+ 1;
5097 ioc_info(ioc
, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
5099 ioc
->hi_priority_depth
, ioc
->hi_priority_smid
));
5101 /* initialize internal queue smid's */
5102 ioc
->internal_lookup
= kcalloc(ioc
->internal_depth
,
5103 sizeof(struct request_tracker
), GFP_KERNEL
);
5104 if (!ioc
->internal_lookup
) {
5105 ioc_err(ioc
, "internal_lookup: kcalloc failed\n");
5108 ioc
->internal_smid
= ioc
->hi_priority_smid
+ ioc
->hi_priority_depth
;
5110 ioc_info(ioc
, "internal(0x%p): depth(%d), start smid(%d)\n",
5112 ioc
->internal_depth
, ioc
->internal_smid
));
5114 * The number of NVMe page sized blocks needed is:
5115 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
5116 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
5117 * that is placed in the main message frame. 8 is the size of each PRP
5118 * entry or PRP list pointer entry. 8 is subtracted from page_size
5119 * because of the PRP list pointer entry at the end of a page, so this
5120 * is not counted as a PRP entry. The 1 added page is a round up.
5122 * To avoid allocation failures due to the amount of memory that could
5123 * be required for NVMe PRP's, only each set of NVMe blocks will be
5124 * contiguous, so a new set is allocated for each possible I/O.
5126 ioc
->chains_per_prp_buffer
= 0;
5127 if (ioc
->facts
.ProtocolFlags
& MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES
) {
5128 nvme_blocks_needed
=
5129 (ioc
->shost
->sg_tablesize
* NVME_PRP_SIZE
) - 1;
5130 nvme_blocks_needed
/= (ioc
->page_size
- NVME_PRP_SIZE
);
5131 nvme_blocks_needed
++;
5133 sz
= sizeof(struct pcie_sg_list
) * ioc
->scsiio_depth
;
5134 ioc
->pcie_sg_lookup
= kzalloc(sz
, GFP_KERNEL
);
5135 if (!ioc
->pcie_sg_lookup
) {
5136 ioc_info(ioc
, "PCIe SGL lookup: kzalloc failed\n");
5139 sz
= nvme_blocks_needed
* ioc
->page_size
;
5140 ioc
->pcie_sgl_dma_pool
=
5141 dma_pool_create("PCIe SGL pool", &ioc
->pdev
->dev
, sz
, 16, 0);
5142 if (!ioc
->pcie_sgl_dma_pool
) {
5143 ioc_info(ioc
, "PCIe SGL pool: dma_pool_create failed\n");
5147 ioc
->chains_per_prp_buffer
= sz
/ioc
->chain_segment_sz
;
5148 ioc
->chains_per_prp_buffer
= min(ioc
->chains_per_prp_buffer
,
5149 ioc
->chains_needed_per_io
);
5151 for (i
= 0; i
< ioc
->scsiio_depth
; i
++) {
5152 ioc
->pcie_sg_lookup
[i
].pcie_sgl
= dma_pool_alloc(
5153 ioc
->pcie_sgl_dma_pool
, GFP_KERNEL
,
5154 &ioc
->pcie_sg_lookup
[i
].pcie_sgl_dma
);
5155 if (!ioc
->pcie_sg_lookup
[i
].pcie_sgl
) {
5156 ioc_info(ioc
, "PCIe SGL pool: dma_pool_alloc failed\n");
5159 for (j
= 0; j
< ioc
->chains_per_prp_buffer
; j
++) {
5160 ct
= &ioc
->chain_lookup
[i
].chains_per_smid
[j
];
5162 ioc
->pcie_sg_lookup
[i
].pcie_sgl
+
5163 (j
* ioc
->chain_segment_sz
);
5164 ct
->chain_buffer_dma
=
5165 ioc
->pcie_sg_lookup
[i
].pcie_sgl_dma
+
5166 (j
* ioc
->chain_segment_sz
);
5171 ioc_info(ioc
, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5172 ioc
->scsiio_depth
, sz
,
5173 (sz
* ioc
->scsiio_depth
) / 1024));
5175 ioc_info(ioc
, "Number of chains can fit in a PRP page(%d)\n",
5176 ioc
->chains_per_prp_buffer
));
5177 total_sz
+= sz
* ioc
->scsiio_depth
;
5180 ioc
->chain_dma_pool
= dma_pool_create("chain pool", &ioc
->pdev
->dev
,
5181 ioc
->chain_segment_sz
, 16, 0);
5182 if (!ioc
->chain_dma_pool
) {
5183 ioc_err(ioc
, "chain_dma_pool: dma_pool_create failed\n");
5186 for (i
= 0; i
< ioc
->scsiio_depth
; i
++) {
5187 for (j
= ioc
->chains_per_prp_buffer
;
5188 j
< ioc
->chains_needed_per_io
; j
++) {
5189 ct
= &ioc
->chain_lookup
[i
].chains_per_smid
[j
];
5190 ct
->chain_buffer
= dma_pool_alloc(
5191 ioc
->chain_dma_pool
, GFP_KERNEL
,
5192 &ct
->chain_buffer_dma
);
5193 if (!ct
->chain_buffer
) {
5194 ioc_err(ioc
, "chain_lookup: pci_pool_alloc failed\n");
5195 _base_release_memory_pools(ioc
);
5199 total_sz
+= ioc
->chain_segment_sz
;
5203 ioc_info(ioc
, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
5204 ioc
->chain_depth
, ioc
->chain_segment_sz
,
5205 (ioc
->chain_depth
* ioc
->chain_segment_sz
) / 1024));
5207 /* sense buffers, 4 byte align */
5208 sz
= ioc
->scsiio_depth
* SCSI_SENSE_BUFFERSIZE
;
5209 ioc
->sense_dma_pool
= dma_pool_create("sense pool", &ioc
->pdev
->dev
, sz
,
5211 if (!ioc
->sense_dma_pool
) {
5212 ioc_err(ioc
, "sense pool: dma_pool_create failed\n");
5215 ioc
->sense
= dma_pool_alloc(ioc
->sense_dma_pool
, GFP_KERNEL
,
5218 ioc_err(ioc
, "sense pool: dma_pool_alloc failed\n");
5221 /* sense buffer requires to be in same 4 gb region.
5222 * Below function will check the same.
5223 * In case of failure, new pci pool will be created with updated
5224 * alignment. Older allocation and pool will be destroyed.
5225 * Alignment will be used such a way that next allocation if
5226 * success, will always meet same 4gb region requirement.
5227 * Actual requirement is not alignment, but we need start and end of
5228 * DMA address must have same upper 32 bit address.
5230 if (!is_MSB_are_same((long)ioc
->sense
, sz
)) {
5231 //Release Sense pool & Reallocate
5232 dma_pool_free(ioc
->sense_dma_pool
, ioc
->sense
, ioc
->sense_dma
);
5233 dma_pool_destroy(ioc
->sense_dma_pool
);
5236 ioc
->sense_dma_pool
=
5237 dma_pool_create("sense pool", &ioc
->pdev
->dev
, sz
,
5238 roundup_pow_of_two(sz
), 0);
5239 if (!ioc
->sense_dma_pool
) {
5240 ioc_err(ioc
, "sense pool: pci_pool_create failed\n");
5243 ioc
->sense
= dma_pool_alloc(ioc
->sense_dma_pool
, GFP_KERNEL
,
5246 ioc_err(ioc
, "sense pool: pci_pool_alloc failed\n");
5251 ioc_info(ioc
, "sense pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5252 ioc
->sense
, ioc
->scsiio_depth
,
5253 SCSI_SENSE_BUFFERSIZE
, sz
/ 1024));
5255 ioc_info(ioc
, "sense_dma(0x%llx)\n",
5256 (unsigned long long)ioc
->sense_dma
));
5259 /* reply pool, 4 byte align */
5260 sz
= ioc
->reply_free_queue_depth
* ioc
->reply_sz
;
5261 ioc
->reply_dma_pool
= dma_pool_create("reply pool", &ioc
->pdev
->dev
, sz
,
5263 if (!ioc
->reply_dma_pool
) {
5264 ioc_err(ioc
, "reply pool: dma_pool_create failed\n");
5267 ioc
->reply
= dma_pool_alloc(ioc
->reply_dma_pool
, GFP_KERNEL
,
5270 ioc_err(ioc
, "reply pool: dma_pool_alloc failed\n");
5273 ioc
->reply_dma_min_address
= (u32
)(ioc
->reply_dma
);
5274 ioc
->reply_dma_max_address
= (u32
)(ioc
->reply_dma
) + sz
;
5276 ioc_info(ioc
, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5277 ioc
->reply
, ioc
->reply_free_queue_depth
,
5278 ioc
->reply_sz
, sz
/ 1024));
5280 ioc_info(ioc
, "reply_dma(0x%llx)\n",
5281 (unsigned long long)ioc
->reply_dma
));
5284 /* reply free queue, 16 byte align */
5285 sz
= ioc
->reply_free_queue_depth
* 4;
5286 ioc
->reply_free_dma_pool
= dma_pool_create("reply_free pool",
5287 &ioc
->pdev
->dev
, sz
, 16, 0);
5288 if (!ioc
->reply_free_dma_pool
) {
5289 ioc_err(ioc
, "reply_free pool: dma_pool_create failed\n");
5292 ioc
->reply_free
= dma_pool_zalloc(ioc
->reply_free_dma_pool
, GFP_KERNEL
,
5293 &ioc
->reply_free_dma
);
5294 if (!ioc
->reply_free
) {
5295 ioc_err(ioc
, "reply_free pool: dma_pool_alloc failed\n");
5299 ioc_info(ioc
, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5300 ioc
->reply_free
, ioc
->reply_free_queue_depth
,
5303 ioc_info(ioc
, "reply_free_dma (0x%llx)\n",
5304 (unsigned long long)ioc
->reply_free_dma
));
5307 if (ioc
->rdpq_array_enable
) {
5308 reply_post_free_array_sz
= ioc
->reply_queue_count
*
5309 sizeof(Mpi2IOCInitRDPQArrayEntry
);
5310 ioc
->reply_post_free_array_dma_pool
=
5311 dma_pool_create("reply_post_free_array pool",
5312 &ioc
->pdev
->dev
, reply_post_free_array_sz
, 16, 0);
5313 if (!ioc
->reply_post_free_array_dma_pool
) {
5315 ioc_info(ioc
, "reply_post_free_array pool: dma_pool_create failed\n"));
5318 ioc
->reply_post_free_array
=
5319 dma_pool_alloc(ioc
->reply_post_free_array_dma_pool
,
5320 GFP_KERNEL
, &ioc
->reply_post_free_array_dma
);
5321 if (!ioc
->reply_post_free_array
) {
5323 ioc_info(ioc
, "reply_post_free_array pool: dma_pool_alloc failed\n"));
5327 ioc
->config_page_sz
= 512;
5328 ioc
->config_page
= dma_alloc_coherent(&ioc
->pdev
->dev
,
5329 ioc
->config_page_sz
, &ioc
->config_page_dma
, GFP_KERNEL
);
5330 if (!ioc
->config_page
) {
5331 ioc_err(ioc
, "config page: dma_pool_alloc failed\n");
5335 ioc_info(ioc
, "config page(0x%p): size(%d)\n",
5336 ioc
->config_page
, ioc
->config_page_sz
));
5338 ioc_info(ioc
, "config_page_dma(0x%llx)\n",
5339 (unsigned long long)ioc
->config_page_dma
));
5340 total_sz
+= ioc
->config_page_sz
;
5342 ioc_info(ioc
, "Allocated physical memory: size(%d kB)\n",
5344 ioc_info(ioc
, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
5345 ioc
->shost
->can_queue
, facts
->RequestCredit
);
5346 ioc_info(ioc
, "Scatter Gather Elements per IO(%d)\n",
5347 ioc
->shost
->sg_tablesize
);
5355 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
5356 * @ioc: Pointer to MPT_ADAPTER structure
5357 * @cooked: Request raw or cooked IOC state
5359 * Return: all IOC Doorbell register bits if cooked==0, else just the
5360 * Doorbell bits in MPI_IOC_STATE_MASK.
5363 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER
*ioc
, int cooked
)
5367 s
= ioc
->base_readl(&ioc
->chip
->Doorbell
);
5368 sc
= s
& MPI2_IOC_STATE_MASK
;
5369 return cooked
? sc
: s
;
5373 * _base_wait_on_iocstate - waiting on a particular ioc state
5375 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
5376 * @timeout: timeout in second
5378 * Return: 0 for success, non-zero for failure.
5381 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER
*ioc
, u32 ioc_state
, int timeout
)
5387 cntdn
= 1000 * timeout
;
5389 current_state
= mpt3sas_base_get_iocstate(ioc
, 1);
5390 if (current_state
== ioc_state
)
5392 if (count
&& current_state
== MPI2_IOC_STATE_FAULT
)
5395 usleep_range(1000, 1500);
5399 return current_state
;
5403 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
5404 * a write to the doorbell)
5405 * @ioc: per adapter object
5407 * Return: 0 for success, non-zero for failure.
5409 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
5412 _base_diag_reset(struct MPT3SAS_ADAPTER
*ioc
);
5415 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER
*ioc
, int timeout
)
5421 cntdn
= 1000 * timeout
;
5423 int_status
= ioc
->base_readl(&ioc
->chip
->HostInterruptStatus
);
5424 if (int_status
& MPI2_HIS_IOC2SYS_DB_STATUS
) {
5426 ioc_info(ioc
, "%s: successful count(%d), timeout(%d)\n",
5427 __func__
, count
, timeout
));
5431 usleep_range(1000, 1500);
5435 ioc_err(ioc
, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5436 __func__
, count
, int_status
);
5441 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER
*ioc
, int timeout
)
5447 cntdn
= 2000 * timeout
;
5449 int_status
= ioc
->base_readl(&ioc
->chip
->HostInterruptStatus
);
5450 if (int_status
& MPI2_HIS_IOC2SYS_DB_STATUS
) {
5452 ioc_info(ioc
, "%s: successful count(%d), timeout(%d)\n",
5453 __func__
, count
, timeout
));
5461 ioc_err(ioc
, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5462 __func__
, count
, int_status
);
5468 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
5469 * @ioc: per adapter object
5470 * @timeout: timeout in second
5472 * Return: 0 for success, non-zero for failure.
5474 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
5478 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER
*ioc
, int timeout
)
5485 cntdn
= 1000 * timeout
;
5487 int_status
= ioc
->base_readl(&ioc
->chip
->HostInterruptStatus
);
5488 if (!(int_status
& MPI2_HIS_SYS2IOC_DB_STATUS
)) {
5490 ioc_info(ioc
, "%s: successful count(%d), timeout(%d)\n",
5491 __func__
, count
, timeout
));
5493 } else if (int_status
& MPI2_HIS_IOC2SYS_DB_STATUS
) {
5494 doorbell
= ioc
->base_readl(&ioc
->chip
->Doorbell
);
5495 if ((doorbell
& MPI2_IOC_STATE_MASK
) ==
5496 MPI2_IOC_STATE_FAULT
) {
5497 mpt3sas_base_fault_info(ioc
, doorbell
);
5500 } else if (int_status
== 0xFFFFFFFF)
5503 usleep_range(1000, 1500);
5508 ioc_err(ioc
, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5509 __func__
, count
, int_status
);
5514 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5515 * @ioc: per adapter object
5516 * @timeout: timeout in second
5518 * Return: 0 for success, non-zero for failure.
5521 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER
*ioc
, int timeout
)
5527 cntdn
= 1000 * timeout
;
5529 doorbell_reg
= ioc
->base_readl(&ioc
->chip
->Doorbell
);
5530 if (!(doorbell_reg
& MPI2_DOORBELL_USED
)) {
5532 ioc_info(ioc
, "%s: successful count(%d), timeout(%d)\n",
5533 __func__
, count
, timeout
));
5537 usleep_range(1000, 1500);
5541 ioc_err(ioc
, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5542 __func__
, count
, doorbell_reg
);
5547 * _base_send_ioc_reset - send doorbell reset
5548 * @ioc: per adapter object
5549 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5550 * @timeout: timeout in second
5552 * Return: 0 for success, non-zero for failure.
5555 _base_send_ioc_reset(struct MPT3SAS_ADAPTER
*ioc
, u8 reset_type
, int timeout
)
5560 if (reset_type
!= MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
) {
5561 ioc_err(ioc
, "%s: unknown reset_type\n", __func__
);
5565 if (!(ioc
->facts
.IOCCapabilities
&
5566 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY
))
5569 ioc_info(ioc
, "sending message unit reset !!\n");
5571 writel(reset_type
<< MPI2_DOORBELL_FUNCTION_SHIFT
,
5572 &ioc
->chip
->Doorbell
);
5573 if ((_base_wait_for_doorbell_ack(ioc
, 15))) {
5577 ioc_state
= _base_wait_on_iocstate(ioc
, MPI2_IOC_STATE_READY
, timeout
);
5579 ioc_err(ioc
, "%s: failed going to ready state (ioc_state=0x%x)\n",
5580 __func__
, ioc_state
);
5585 ioc_info(ioc
, "message unit reset: %s\n",
5586 r
== 0 ? "SUCCESS" : "FAILED");
5591 * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
5592 * @ioc: per adapter object
5593 * @wait_count: timeout in seconds
5595 * Return: Waits up to timeout seconds for the IOC to
5596 * become operational. Returns 0 if IOC is present
5597 * and operational; otherwise returns -EFAULT.
5601 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER
*ioc
, int timeout
)
5603 int wait_state_count
= 0;
5607 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 1);
5608 if (ioc_state
== MPI2_IOC_STATE_OPERATIONAL
)
5611 ioc_info(ioc
, "%s: waiting for operational state(count=%d)\n",
5612 __func__
, ++wait_state_count
);
5613 } while (--timeout
);
5615 ioc_err(ioc
, "%s: failed due to ioc not operational\n", __func__
);
5618 if (wait_state_count
)
5619 ioc_info(ioc
, "ioc is operational\n");
5624 * _base_handshake_req_reply_wait - send request thru doorbell interface
5625 * @ioc: per adapter object
5626 * @request_bytes: request length
5627 * @request: pointer having request payload
5628 * @reply_bytes: reply length
5629 * @reply: pointer to reply payload
5630 * @timeout: timeout in second
5632 * Return: 0 for success, non-zero for failure.
5635 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER
*ioc
, int request_bytes
,
5636 u32
*request
, int reply_bytes
, u16
*reply
, int timeout
)
5638 MPI2DefaultReply_t
*default_reply
= (MPI2DefaultReply_t
*)reply
;
5643 /* make sure doorbell is not in use */
5644 if ((ioc
->base_readl(&ioc
->chip
->Doorbell
) & MPI2_DOORBELL_USED
)) {
5645 ioc_err(ioc
, "doorbell is in use (line=%d)\n", __LINE__
);
5649 /* clear pending doorbell interrupts from previous state changes */
5650 if (ioc
->base_readl(&ioc
->chip
->HostInterruptStatus
) &
5651 MPI2_HIS_IOC2SYS_DB_STATUS
)
5652 writel(0, &ioc
->chip
->HostInterruptStatus
);
5654 /* send message to ioc */
5655 writel(((MPI2_FUNCTION_HANDSHAKE
<<MPI2_DOORBELL_FUNCTION_SHIFT
) |
5656 ((request_bytes
/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT
)),
5657 &ioc
->chip
->Doorbell
);
5659 if ((_base_spin_on_doorbell_int(ioc
, 5))) {
5660 ioc_err(ioc
, "doorbell handshake int failed (line=%d)\n",
5664 writel(0, &ioc
->chip
->HostInterruptStatus
);
5666 if ((_base_wait_for_doorbell_ack(ioc
, 5))) {
5667 ioc_err(ioc
, "doorbell handshake ack failed (line=%d)\n",
5672 /* send message 32-bits at a time */
5673 for (i
= 0, failed
= 0; i
< request_bytes
/4 && !failed
; i
++) {
5674 writel(cpu_to_le32(request
[i
]), &ioc
->chip
->Doorbell
);
5675 if ((_base_wait_for_doorbell_ack(ioc
, 5)))
5680 ioc_err(ioc
, "doorbell handshake sending request failed (line=%d)\n",
5685 /* now wait for the reply */
5686 if ((_base_wait_for_doorbell_int(ioc
, timeout
))) {
5687 ioc_err(ioc
, "doorbell handshake int failed (line=%d)\n",
5692 /* read the first two 16-bits, it gives the total length of the reply */
5693 reply
[0] = le16_to_cpu(ioc
->base_readl(&ioc
->chip
->Doorbell
)
5694 & MPI2_DOORBELL_DATA_MASK
);
5695 writel(0, &ioc
->chip
->HostInterruptStatus
);
5696 if ((_base_wait_for_doorbell_int(ioc
, 5))) {
5697 ioc_err(ioc
, "doorbell handshake int failed (line=%d)\n",
5701 reply
[1] = le16_to_cpu(ioc
->base_readl(&ioc
->chip
->Doorbell
)
5702 & MPI2_DOORBELL_DATA_MASK
);
5703 writel(0, &ioc
->chip
->HostInterruptStatus
);
5705 for (i
= 2; i
< default_reply
->MsgLength
* 2; i
++) {
5706 if ((_base_wait_for_doorbell_int(ioc
, 5))) {
5707 ioc_err(ioc
, "doorbell handshake int failed (line=%d)\n",
5711 if (i
>= reply_bytes
/2) /* overflow case */
5712 ioc
->base_readl(&ioc
->chip
->Doorbell
);
5714 reply
[i
] = le16_to_cpu(
5715 ioc
->base_readl(&ioc
->chip
->Doorbell
)
5716 & MPI2_DOORBELL_DATA_MASK
);
5717 writel(0, &ioc
->chip
->HostInterruptStatus
);
5720 _base_wait_for_doorbell_int(ioc
, 5);
5721 if (_base_wait_for_doorbell_not_used(ioc
, 5) != 0) {
5723 ioc_info(ioc
, "doorbell is in use (line=%d)\n",
5726 writel(0, &ioc
->chip
->HostInterruptStatus
);
5728 if (ioc
->logging_level
& MPT_DEBUG_INIT
) {
5729 mfp
= (__le32
*)reply
;
5730 pr_info("\toffset:data\n");
5731 for (i
= 0; i
< reply_bytes
/4; i
++)
5732 pr_info("\t[0x%02x]:%08x\n", i
*4,
5733 le32_to_cpu(mfp
[i
]));
5739 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
5740 * @ioc: per adapter object
5741 * @mpi_reply: the reply payload from FW
5742 * @mpi_request: the request payload sent to FW
5744 * The SAS IO Unit Control Request message allows the host to perform low-level
5745 * operations, such as resets on the PHYs of the IO Unit, also allows the host
5746 * to obtain the IOC assigned device handles for a device if it has other
5747 * identifying information about the device, in addition allows the host to
5748 * remove IOC resources associated with the device.
5750 * Return: 0 for success, non-zero for failure.
5753 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER
*ioc
,
5754 Mpi2SasIoUnitControlReply_t
*mpi_reply
,
5755 Mpi2SasIoUnitControlRequest_t
*mpi_request
)
5762 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
5764 mutex_lock(&ioc
->base_cmds
.mutex
);
5766 if (ioc
->base_cmds
.status
!= MPT3_CMD_NOT_USED
) {
5767 ioc_err(ioc
, "%s: base_cmd in use\n", __func__
);
5772 rc
= mpt3sas_wait_for_ioc(ioc
, IOC_OPERATIONAL_WAIT_COUNT
);
5776 smid
= mpt3sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
5778 ioc_err(ioc
, "%s: failed obtaining a smid\n", __func__
);
5784 ioc
->base_cmds
.status
= MPT3_CMD_PENDING
;
5785 request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
5786 ioc
->base_cmds
.smid
= smid
;
5787 memcpy(request
, mpi_request
, sizeof(Mpi2SasIoUnitControlRequest_t
));
5788 if (mpi_request
->Operation
== MPI2_SAS_OP_PHY_HARD_RESET
||
5789 mpi_request
->Operation
== MPI2_SAS_OP_PHY_LINK_RESET
)
5790 ioc
->ioc_link_reset_in_progress
= 1;
5791 init_completion(&ioc
->base_cmds
.done
);
5792 ioc
->put_smid_default(ioc
, smid
);
5793 wait_for_completion_timeout(&ioc
->base_cmds
.done
,
5794 msecs_to_jiffies(10000));
5795 if ((mpi_request
->Operation
== MPI2_SAS_OP_PHY_HARD_RESET
||
5796 mpi_request
->Operation
== MPI2_SAS_OP_PHY_LINK_RESET
) &&
5797 ioc
->ioc_link_reset_in_progress
)
5798 ioc
->ioc_link_reset_in_progress
= 0;
5799 if (!(ioc
->base_cmds
.status
& MPT3_CMD_COMPLETE
)) {
5801 mpt3sas_base_check_cmd_timeout(ioc
,
5802 ioc
->base_cmds
.status
, mpi_request
,
5803 sizeof(Mpi2SasIoUnitControlRequest_t
)/4);
5804 goto issue_host_reset
;
5806 if (ioc
->base_cmds
.status
& MPT3_CMD_REPLY_VALID
)
5807 memcpy(mpi_reply
, ioc
->base_cmds
.reply
,
5808 sizeof(Mpi2SasIoUnitControlReply_t
));
5810 memset(mpi_reply
, 0, sizeof(Mpi2SasIoUnitControlReply_t
));
5811 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
5816 mpt3sas_base_hard_reset_handler(ioc
, FORCE_BIG_HAMMER
);
5817 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
5820 mutex_unlock(&ioc
->base_cmds
.mutex
);
5825 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
5826 * @ioc: per adapter object
5827 * @mpi_reply: the reply payload from FW
5828 * @mpi_request: the request payload sent to FW
5830 * The SCSI Enclosure Processor request message causes the IOC to
5831 * communicate with SES devices to control LED status signals.
5833 * Return: 0 for success, non-zero for failure.
5836 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER
*ioc
,
5837 Mpi2SepReply_t
*mpi_reply
, Mpi2SepRequest_t
*mpi_request
)
5844 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
5846 mutex_lock(&ioc
->base_cmds
.mutex
);
5848 if (ioc
->base_cmds
.status
!= MPT3_CMD_NOT_USED
) {
5849 ioc_err(ioc
, "%s: base_cmd in use\n", __func__
);
5854 rc
= mpt3sas_wait_for_ioc(ioc
, IOC_OPERATIONAL_WAIT_COUNT
);
5858 smid
= mpt3sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
5860 ioc_err(ioc
, "%s: failed obtaining a smid\n", __func__
);
5866 ioc
->base_cmds
.status
= MPT3_CMD_PENDING
;
5867 request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
5868 ioc
->base_cmds
.smid
= smid
;
5869 memcpy(request
, mpi_request
, sizeof(Mpi2SepReply_t
));
5870 init_completion(&ioc
->base_cmds
.done
);
5871 ioc
->put_smid_default(ioc
, smid
);
5872 wait_for_completion_timeout(&ioc
->base_cmds
.done
,
5873 msecs_to_jiffies(10000));
5874 if (!(ioc
->base_cmds
.status
& MPT3_CMD_COMPLETE
)) {
5876 mpt3sas_base_check_cmd_timeout(ioc
,
5877 ioc
->base_cmds
.status
, mpi_request
,
5878 sizeof(Mpi2SepRequest_t
)/4);
5879 goto issue_host_reset
;
5881 if (ioc
->base_cmds
.status
& MPT3_CMD_REPLY_VALID
)
5882 memcpy(mpi_reply
, ioc
->base_cmds
.reply
,
5883 sizeof(Mpi2SepReply_t
));
5885 memset(mpi_reply
, 0, sizeof(Mpi2SepReply_t
));
5886 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
5891 mpt3sas_base_hard_reset_handler(ioc
, FORCE_BIG_HAMMER
);
5892 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
5895 mutex_unlock(&ioc
->base_cmds
.mutex
);
5900 * _base_get_port_facts - obtain port facts reply and save in ioc
5901 * @ioc: per adapter object
5904 * Return: 0 for success, non-zero for failure.
5907 _base_get_port_facts(struct MPT3SAS_ADAPTER
*ioc
, int port
)
5909 Mpi2PortFactsRequest_t mpi_request
;
5910 Mpi2PortFactsReply_t mpi_reply
;
5911 struct mpt3sas_port_facts
*pfacts
;
5912 int mpi_reply_sz
, mpi_request_sz
, r
;
5914 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
5916 mpi_reply_sz
= sizeof(Mpi2PortFactsReply_t
);
5917 mpi_request_sz
= sizeof(Mpi2PortFactsRequest_t
);
5918 memset(&mpi_request
, 0, mpi_request_sz
);
5919 mpi_request
.Function
= MPI2_FUNCTION_PORT_FACTS
;
5920 mpi_request
.PortNumber
= port
;
5921 r
= _base_handshake_req_reply_wait(ioc
, mpi_request_sz
,
5922 (u32
*)&mpi_request
, mpi_reply_sz
, (u16
*)&mpi_reply
, 5);
5925 ioc_err(ioc
, "%s: handshake failed (r=%d)\n", __func__
, r
);
5929 pfacts
= &ioc
->pfacts
[port
];
5930 memset(pfacts
, 0, sizeof(struct mpt3sas_port_facts
));
5931 pfacts
->PortNumber
= mpi_reply
.PortNumber
;
5932 pfacts
->VP_ID
= mpi_reply
.VP_ID
;
5933 pfacts
->VF_ID
= mpi_reply
.VF_ID
;
5934 pfacts
->MaxPostedCmdBuffers
=
5935 le16_to_cpu(mpi_reply
.MaxPostedCmdBuffers
);
5941 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
5942 * @ioc: per adapter object
5945 * Return: 0 for success, non-zero for failure.
5948 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER
*ioc
, int timeout
)
5953 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
5955 if (ioc
->pci_error_recovery
) {
5957 ioc_info(ioc
, "%s: host in pci error recovery\n",
5962 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 0);
5964 ioc_info(ioc
, "%s: ioc_state(0x%08x)\n",
5965 __func__
, ioc_state
));
5967 if (((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_READY
) ||
5968 (ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_OPERATIONAL
)
5971 if (ioc_state
& MPI2_DOORBELL_USED
) {
5972 dhsprintk(ioc
, ioc_info(ioc
, "unexpected doorbell active!\n"));
5973 goto issue_diag_reset
;
5976 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
) {
5977 mpt3sas_base_fault_info(ioc
, ioc_state
&
5978 MPI2_DOORBELL_DATA_MASK
);
5979 goto issue_diag_reset
;
5982 ioc_state
= _base_wait_on_iocstate(ioc
, MPI2_IOC_STATE_READY
, timeout
);
5985 ioc_info(ioc
, "%s: failed going to ready state (ioc_state=0x%x)\n",
5986 __func__
, ioc_state
));
5991 rc
= _base_diag_reset(ioc
);
5996 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
5997 * @ioc: per adapter object
5999 * Return: 0 for success, non-zero for failure.
6002 _base_get_ioc_facts(struct MPT3SAS_ADAPTER
*ioc
)
6004 Mpi2IOCFactsRequest_t mpi_request
;
6005 Mpi2IOCFactsReply_t mpi_reply
;
6006 struct mpt3sas_facts
*facts
;
6007 int mpi_reply_sz
, mpi_request_sz
, r
;
6009 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
6011 r
= _base_wait_for_iocstate(ioc
, 10);
6014 ioc_info(ioc
, "%s: failed getting to correct state\n",
6018 mpi_reply_sz
= sizeof(Mpi2IOCFactsReply_t
);
6019 mpi_request_sz
= sizeof(Mpi2IOCFactsRequest_t
);
6020 memset(&mpi_request
, 0, mpi_request_sz
);
6021 mpi_request
.Function
= MPI2_FUNCTION_IOC_FACTS
;
6022 r
= _base_handshake_req_reply_wait(ioc
, mpi_request_sz
,
6023 (u32
*)&mpi_request
, mpi_reply_sz
, (u16
*)&mpi_reply
, 5);
6026 ioc_err(ioc
, "%s: handshake failed (r=%d)\n", __func__
, r
);
6030 facts
= &ioc
->facts
;
6031 memset(facts
, 0, sizeof(struct mpt3sas_facts
));
6032 facts
->MsgVersion
= le16_to_cpu(mpi_reply
.MsgVersion
);
6033 facts
->HeaderVersion
= le16_to_cpu(mpi_reply
.HeaderVersion
);
6034 facts
->VP_ID
= mpi_reply
.VP_ID
;
6035 facts
->VF_ID
= mpi_reply
.VF_ID
;
6036 facts
->IOCExceptions
= le16_to_cpu(mpi_reply
.IOCExceptions
);
6037 facts
->MaxChainDepth
= mpi_reply
.MaxChainDepth
;
6038 facts
->WhoInit
= mpi_reply
.WhoInit
;
6039 facts
->NumberOfPorts
= mpi_reply
.NumberOfPorts
;
6040 facts
->MaxMSIxVectors
= mpi_reply
.MaxMSIxVectors
;
6041 if (ioc
->msix_enable
&& (facts
->MaxMSIxVectors
<=
6042 MAX_COMBINED_MSIX_VECTORS(ioc
->is_gen35_ioc
)))
6043 ioc
->combined_reply_queue
= 0;
6044 facts
->RequestCredit
= le16_to_cpu(mpi_reply
.RequestCredit
);
6045 facts
->MaxReplyDescriptorPostQueueDepth
=
6046 le16_to_cpu(mpi_reply
.MaxReplyDescriptorPostQueueDepth
);
6047 facts
->ProductID
= le16_to_cpu(mpi_reply
.ProductID
);
6048 facts
->IOCCapabilities
= le32_to_cpu(mpi_reply
.IOCCapabilities
);
6049 if ((facts
->IOCCapabilities
& MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID
))
6050 ioc
->ir_firmware
= 1;
6051 if ((facts
->IOCCapabilities
&
6052 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE
) && (!reset_devices
))
6053 ioc
->rdpq_array_capable
= 1;
6054 if ((facts
->IOCCapabilities
& MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ
)
6055 && ioc
->is_aero_ioc
)
6056 ioc
->atomic_desc_capable
= 1;
6057 facts
->FWVersion
.Word
= le32_to_cpu(mpi_reply
.FWVersion
.Word
);
6058 facts
->IOCRequestFrameSize
=
6059 le16_to_cpu(mpi_reply
.IOCRequestFrameSize
);
6060 if (ioc
->hba_mpi_version_belonged
!= MPI2_VERSION
) {
6061 facts
->IOCMaxChainSegmentSize
=
6062 le16_to_cpu(mpi_reply
.IOCMaxChainSegmentSize
);
6064 facts
->MaxInitiators
= le16_to_cpu(mpi_reply
.MaxInitiators
);
6065 facts
->MaxTargets
= le16_to_cpu(mpi_reply
.MaxTargets
);
6066 ioc
->shost
->max_id
= -1;
6067 facts
->MaxSasExpanders
= le16_to_cpu(mpi_reply
.MaxSasExpanders
);
6068 facts
->MaxEnclosures
= le16_to_cpu(mpi_reply
.MaxEnclosures
);
6069 facts
->ProtocolFlags
= le16_to_cpu(mpi_reply
.ProtocolFlags
);
6070 facts
->HighPriorityCredit
=
6071 le16_to_cpu(mpi_reply
.HighPriorityCredit
);
6072 facts
->ReplyFrameSize
= mpi_reply
.ReplyFrameSize
;
6073 facts
->MaxDevHandle
= le16_to_cpu(mpi_reply
.MaxDevHandle
);
6074 facts
->CurrentHostPageSize
= mpi_reply
.CurrentHostPageSize
;
6077 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
6079 ioc
->page_size
= 1 << facts
->CurrentHostPageSize
;
6080 if (ioc
->page_size
== 1) {
6081 ioc_info(ioc
, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
6082 ioc
->page_size
= 1 << MPT3SAS_HOST_PAGE_SIZE_4K
;
6085 ioc_info(ioc
, "CurrentHostPageSize(%d)\n",
6086 facts
->CurrentHostPageSize
));
6089 ioc_info(ioc
, "hba queue depth(%d), max chains per io(%d)\n",
6090 facts
->RequestCredit
, facts
->MaxChainDepth
));
6092 ioc_info(ioc
, "request frame size(%d), reply frame size(%d)\n",
6093 facts
->IOCRequestFrameSize
* 4,
6094 facts
->ReplyFrameSize
* 4));
6099 * _base_send_ioc_init - send ioc_init to firmware
6100 * @ioc: per adapter object
6102 * Return: 0 for success, non-zero for failure.
6105 _base_send_ioc_init(struct MPT3SAS_ADAPTER
*ioc
)
6107 Mpi2IOCInitRequest_t mpi_request
;
6108 Mpi2IOCInitReply_t mpi_reply
;
6110 ktime_t current_time
;
6112 u32 reply_post_free_array_sz
= 0;
6114 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
6116 memset(&mpi_request
, 0, sizeof(Mpi2IOCInitRequest_t
));
6117 mpi_request
.Function
= MPI2_FUNCTION_IOC_INIT
;
6118 mpi_request
.WhoInit
= MPI2_WHOINIT_HOST_DRIVER
;
6119 mpi_request
.VF_ID
= 0; /* TODO */
6120 mpi_request
.VP_ID
= 0;
6121 mpi_request
.MsgVersion
= cpu_to_le16(ioc
->hba_mpi_version_belonged
);
6122 mpi_request
.HeaderVersion
= cpu_to_le16(MPI2_HEADER_VERSION
);
6123 mpi_request
.HostPageSize
= MPT3SAS_HOST_PAGE_SIZE_4K
;
6125 if (_base_is_controller_msix_enabled(ioc
))
6126 mpi_request
.HostMSIxVectors
= ioc
->reply_queue_count
;
6127 mpi_request
.SystemRequestFrameSize
= cpu_to_le16(ioc
->request_sz
/4);
6128 mpi_request
.ReplyDescriptorPostQueueDepth
=
6129 cpu_to_le16(ioc
->reply_post_queue_depth
);
6130 mpi_request
.ReplyFreeQueueDepth
=
6131 cpu_to_le16(ioc
->reply_free_queue_depth
);
6133 mpi_request
.SenseBufferAddressHigh
=
6134 cpu_to_le32((u64
)ioc
->sense_dma
>> 32);
6135 mpi_request
.SystemReplyAddressHigh
=
6136 cpu_to_le32((u64
)ioc
->reply_dma
>> 32);
6137 mpi_request
.SystemRequestFrameBaseAddress
=
6138 cpu_to_le64((u64
)ioc
->request_dma
);
6139 mpi_request
.ReplyFreeQueueAddress
=
6140 cpu_to_le64((u64
)ioc
->reply_free_dma
);
6142 if (ioc
->rdpq_array_enable
) {
6143 reply_post_free_array_sz
= ioc
->reply_queue_count
*
6144 sizeof(Mpi2IOCInitRDPQArrayEntry
);
6145 memset(ioc
->reply_post_free_array
, 0, reply_post_free_array_sz
);
6146 for (i
= 0; i
< ioc
->reply_queue_count
; i
++)
6147 ioc
->reply_post_free_array
[i
].RDPQBaseAddress
=
6149 (u64
)ioc
->reply_post
[i
].reply_post_free_dma
);
6150 mpi_request
.MsgFlags
= MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE
;
6151 mpi_request
.ReplyDescriptorPostQueueAddress
=
6152 cpu_to_le64((u64
)ioc
->reply_post_free_array_dma
);
6154 mpi_request
.ReplyDescriptorPostQueueAddress
=
6155 cpu_to_le64((u64
)ioc
->reply_post
[0].reply_post_free_dma
);
6158 /* This time stamp specifies number of milliseconds
6159 * since epoch ~ midnight January 1, 1970.
6161 current_time
= ktime_get_real();
6162 mpi_request
.TimeStamp
= cpu_to_le64(ktime_to_ms(current_time
));
6164 if (ioc
->logging_level
& MPT_DEBUG_INIT
) {
6168 mfp
= (__le32
*)&mpi_request
;
6169 pr_info("\toffset:data\n");
6170 for (i
= 0; i
< sizeof(Mpi2IOCInitRequest_t
)/4; i
++)
6171 pr_info("\t[0x%02x]:%08x\n", i
*4,
6172 le32_to_cpu(mfp
[i
]));
6175 r
= _base_handshake_req_reply_wait(ioc
,
6176 sizeof(Mpi2IOCInitRequest_t
), (u32
*)&mpi_request
,
6177 sizeof(Mpi2IOCInitReply_t
), (u16
*)&mpi_reply
, 10);
6180 ioc_err(ioc
, "%s: handshake failed (r=%d)\n", __func__
, r
);
6184 ioc_status
= le16_to_cpu(mpi_reply
.IOCStatus
) & MPI2_IOCSTATUS_MASK
;
6185 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
||
6186 mpi_reply
.IOCLogInfo
) {
6187 ioc_err(ioc
, "%s: failed\n", __func__
);
6195 * mpt3sas_port_enable_done - command completion routine for port enable
6196 * @ioc: per adapter object
6197 * @smid: system request message index
6198 * @msix_index: MSIX table index supplied by the OS
6199 * @reply: reply message frame(lower 32bit addr)
6201 * Return: 1 meaning mf should be freed from _base_interrupt
6202 * 0 means the mf is freed from this function.
6205 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
, u8 msix_index
,
6208 MPI2DefaultReply_t
*mpi_reply
;
6211 if (ioc
->port_enable_cmds
.status
== MPT3_CMD_NOT_USED
)
6214 mpi_reply
= mpt3sas_base_get_reply_virt_addr(ioc
, reply
);
6218 if (mpi_reply
->Function
!= MPI2_FUNCTION_PORT_ENABLE
)
6221 ioc
->port_enable_cmds
.status
&= ~MPT3_CMD_PENDING
;
6222 ioc
->port_enable_cmds
.status
|= MPT3_CMD_COMPLETE
;
6223 ioc
->port_enable_cmds
.status
|= MPT3_CMD_REPLY_VALID
;
6224 memcpy(ioc
->port_enable_cmds
.reply
, mpi_reply
, mpi_reply
->MsgLength
*4);
6225 ioc_status
= le16_to_cpu(mpi_reply
->IOCStatus
) & MPI2_IOCSTATUS_MASK
;
6226 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
)
6227 ioc
->port_enable_failed
= 1;
6229 if (ioc
->is_driver_loading
) {
6230 if (ioc_status
== MPI2_IOCSTATUS_SUCCESS
) {
6231 mpt3sas_port_enable_complete(ioc
);
6234 ioc
->start_scan_failed
= ioc_status
;
6235 ioc
->start_scan
= 0;
6239 complete(&ioc
->port_enable_cmds
.done
);
6244 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
6245 * @ioc: per adapter object
6247 * Return: 0 for success, non-zero for failure.
6250 _base_send_port_enable(struct MPT3SAS_ADAPTER
*ioc
)
6252 Mpi2PortEnableRequest_t
*mpi_request
;
6253 Mpi2PortEnableReply_t
*mpi_reply
;
6258 ioc_info(ioc
, "sending port enable !!\n");
6260 if (ioc
->port_enable_cmds
.status
& MPT3_CMD_PENDING
) {
6261 ioc_err(ioc
, "%s: internal command already in use\n", __func__
);
6265 smid
= mpt3sas_base_get_smid(ioc
, ioc
->port_enable_cb_idx
);
6267 ioc_err(ioc
, "%s: failed obtaining a smid\n", __func__
);
6271 ioc
->port_enable_cmds
.status
= MPT3_CMD_PENDING
;
6272 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
6273 ioc
->port_enable_cmds
.smid
= smid
;
6274 memset(mpi_request
, 0, sizeof(Mpi2PortEnableRequest_t
));
6275 mpi_request
->Function
= MPI2_FUNCTION_PORT_ENABLE
;
6277 init_completion(&ioc
->port_enable_cmds
.done
);
6278 ioc
->put_smid_default(ioc
, smid
);
6279 wait_for_completion_timeout(&ioc
->port_enable_cmds
.done
, 300*HZ
);
6280 if (!(ioc
->port_enable_cmds
.status
& MPT3_CMD_COMPLETE
)) {
6281 ioc_err(ioc
, "%s: timeout\n", __func__
);
6282 _debug_dump_mf(mpi_request
,
6283 sizeof(Mpi2PortEnableRequest_t
)/4);
6284 if (ioc
->port_enable_cmds
.status
& MPT3_CMD_RESET
)
6291 mpi_reply
= ioc
->port_enable_cmds
.reply
;
6292 ioc_status
= le16_to_cpu(mpi_reply
->IOCStatus
) & MPI2_IOCSTATUS_MASK
;
6293 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
) {
6294 ioc_err(ioc
, "%s: failed with (ioc_status=0x%08x)\n",
6295 __func__
, ioc_status
);
6301 ioc
->port_enable_cmds
.status
= MPT3_CMD_NOT_USED
;
6302 ioc_info(ioc
, "port enable: %s\n", r
== 0 ? "SUCCESS" : "FAILED");
6307 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
6308 * @ioc: per adapter object
6310 * Return: 0 for success, non-zero for failure.
6313 mpt3sas_port_enable(struct MPT3SAS_ADAPTER
*ioc
)
6315 Mpi2PortEnableRequest_t
*mpi_request
;
6318 ioc_info(ioc
, "sending port enable !!\n");
6320 if (ioc
->port_enable_cmds
.status
& MPT3_CMD_PENDING
) {
6321 ioc_err(ioc
, "%s: internal command already in use\n", __func__
);
6325 smid
= mpt3sas_base_get_smid(ioc
, ioc
->port_enable_cb_idx
);
6327 ioc_err(ioc
, "%s: failed obtaining a smid\n", __func__
);
6331 ioc
->port_enable_cmds
.status
= MPT3_CMD_PENDING
;
6332 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
6333 ioc
->port_enable_cmds
.smid
= smid
;
6334 memset(mpi_request
, 0, sizeof(Mpi2PortEnableRequest_t
));
6335 mpi_request
->Function
= MPI2_FUNCTION_PORT_ENABLE
;
6337 ioc
->put_smid_default(ioc
, smid
);
6342 * _base_determine_wait_on_discovery - desposition
6343 * @ioc: per adapter object
6345 * Decide whether to wait on discovery to complete. Used to either
6346 * locate boot device, or report volumes ahead of physical devices.
6348 * Return: 1 for wait, 0 for don't wait.
6351 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER
*ioc
)
6353 /* We wait for discovery to complete if IR firmware is loaded.
6354 * The sas topology events arrive before PD events, so we need time to
6355 * turn on the bit in ioc->pd_handles to indicate PD
6356 * Also, it maybe required to report Volumes ahead of physical
6357 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
6359 if (ioc
->ir_firmware
)
6362 /* if no Bios, then we don't need to wait */
6363 if (!ioc
->bios_pg3
.BiosVersion
)
6366 /* Bios is present, then we drop down here.
6368 * If there any entries in the Bios Page 2, then we wait
6369 * for discovery to complete.
6372 /* Current Boot Device */
6373 if ((ioc
->bios_pg2
.CurrentBootDeviceForm
&
6374 MPI2_BIOSPAGE2_FORM_MASK
) ==
6375 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED
&&
6376 /* Request Boot Device */
6377 (ioc
->bios_pg2
.ReqBootDeviceForm
&
6378 MPI2_BIOSPAGE2_FORM_MASK
) ==
6379 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED
&&
6380 /* Alternate Request Boot Device */
6381 (ioc
->bios_pg2
.ReqAltBootDeviceForm
&
6382 MPI2_BIOSPAGE2_FORM_MASK
) ==
6383 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED
)
6390 * _base_unmask_events - turn on notification for this event
6391 * @ioc: per adapter object
6392 * @event: firmware event
6394 * The mask is stored in ioc->event_masks.
6397 _base_unmask_events(struct MPT3SAS_ADAPTER
*ioc
, u16 event
)
6404 desired_event
= (1 << (event
% 32));
6407 ioc
->event_masks
[0] &= ~desired_event
;
6408 else if (event
< 64)
6409 ioc
->event_masks
[1] &= ~desired_event
;
6410 else if (event
< 96)
6411 ioc
->event_masks
[2] &= ~desired_event
;
6412 else if (event
< 128)
6413 ioc
->event_masks
[3] &= ~desired_event
;
6417 * _base_event_notification - send event notification
6418 * @ioc: per adapter object
6420 * Return: 0 for success, non-zero for failure.
6423 _base_event_notification(struct MPT3SAS_ADAPTER
*ioc
)
6425 Mpi2EventNotificationRequest_t
*mpi_request
;
6430 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
6432 if (ioc
->base_cmds
.status
& MPT3_CMD_PENDING
) {
6433 ioc_err(ioc
, "%s: internal command already in use\n", __func__
);
6437 smid
= mpt3sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
6439 ioc_err(ioc
, "%s: failed obtaining a smid\n", __func__
);
6442 ioc
->base_cmds
.status
= MPT3_CMD_PENDING
;
6443 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
6444 ioc
->base_cmds
.smid
= smid
;
6445 memset(mpi_request
, 0, sizeof(Mpi2EventNotificationRequest_t
));
6446 mpi_request
->Function
= MPI2_FUNCTION_EVENT_NOTIFICATION
;
6447 mpi_request
->VF_ID
= 0; /* TODO */
6448 mpi_request
->VP_ID
= 0;
6449 for (i
= 0; i
< MPI2_EVENT_NOTIFY_EVENTMASK_WORDS
; i
++)
6450 mpi_request
->EventMasks
[i
] =
6451 cpu_to_le32(ioc
->event_masks
[i
]);
6452 init_completion(&ioc
->base_cmds
.done
);
6453 ioc
->put_smid_default(ioc
, smid
);
6454 wait_for_completion_timeout(&ioc
->base_cmds
.done
, 30*HZ
);
6455 if (!(ioc
->base_cmds
.status
& MPT3_CMD_COMPLETE
)) {
6456 ioc_err(ioc
, "%s: timeout\n", __func__
);
6457 _debug_dump_mf(mpi_request
,
6458 sizeof(Mpi2EventNotificationRequest_t
)/4);
6459 if (ioc
->base_cmds
.status
& MPT3_CMD_RESET
)
6464 dinitprintk(ioc
, ioc_info(ioc
, "%s: complete\n", __func__
));
6465 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
6470 * mpt3sas_base_validate_event_type - validating event types
6471 * @ioc: per adapter object
6472 * @event_type: firmware event
6474 * This will turn on firmware event notification when application
6475 * ask for that event. We don't mask events that are already enabled.
6478 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER
*ioc
, u32
*event_type
)
6481 u32 event_mask
, desired_event
;
6482 u8 send_update_to_fw
;
6484 for (i
= 0, send_update_to_fw
= 0; i
<
6485 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS
; i
++) {
6486 event_mask
= ~event_type
[i
];
6488 for (j
= 0; j
< 32; j
++) {
6489 if (!(event_mask
& desired_event
) &&
6490 (ioc
->event_masks
[i
] & desired_event
)) {
6491 ioc
->event_masks
[i
] &= ~desired_event
;
6492 send_update_to_fw
= 1;
6494 desired_event
= (desired_event
<< 1);
6498 if (!send_update_to_fw
)
6501 mutex_lock(&ioc
->base_cmds
.mutex
);
6502 _base_event_notification(ioc
);
6503 mutex_unlock(&ioc
->base_cmds
.mutex
);
6507 * _base_diag_reset - the "big hammer" start of day reset
6508 * @ioc: per adapter object
6510 * Return: 0 for success, non-zero for failure.
6513 _base_diag_reset(struct MPT3SAS_ADAPTER
*ioc
)
6515 u32 host_diagnostic
;
6520 ioc_info(ioc
, "sending diag reset !!\n");
6522 drsprintk(ioc
, ioc_info(ioc
, "clear interrupts\n"));
6526 /* Write magic sequence to WriteSequence register
6527 * Loop until in diagnostic mode
6529 drsprintk(ioc
, ioc_info(ioc
, "write magic sequence\n"));
6530 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
6531 writel(MPI2_WRSEQ_1ST_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
6532 writel(MPI2_WRSEQ_2ND_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
6533 writel(MPI2_WRSEQ_3RD_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
6534 writel(MPI2_WRSEQ_4TH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
6535 writel(MPI2_WRSEQ_5TH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
6536 writel(MPI2_WRSEQ_6TH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
6544 host_diagnostic
= ioc
->base_readl(&ioc
->chip
->HostDiagnostic
);
6546 ioc_info(ioc
, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6547 count
, host_diagnostic
));
6549 } while ((host_diagnostic
& MPI2_DIAG_DIAG_WRITE_ENABLE
) == 0);
6551 hcb_size
= ioc
->base_readl(&ioc
->chip
->HCBSize
);
6553 drsprintk(ioc
, ioc_info(ioc
, "diag reset: issued\n"));
6554 writel(host_diagnostic
| MPI2_DIAG_RESET_ADAPTER
,
6555 &ioc
->chip
->HostDiagnostic
);
6557 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
6558 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC
/1000);
6560 /* Approximately 300 second max wait */
6561 for (count
= 0; count
< (300000000 /
6562 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
); count
++) {
6564 host_diagnostic
= ioc
->base_readl(&ioc
->chip
->HostDiagnostic
);
6566 if (host_diagnostic
== 0xFFFFFFFF)
6568 if (!(host_diagnostic
& MPI2_DIAG_RESET_ADAPTER
))
6571 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
/ 1000);
6574 if (host_diagnostic
& MPI2_DIAG_HCB_MODE
) {
6577 ioc_info(ioc
, "restart the adapter assuming the HCB Address points to good F/W\n"));
6578 host_diagnostic
&= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK
;
6579 host_diagnostic
|= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW
;
6580 writel(host_diagnostic
, &ioc
->chip
->HostDiagnostic
);
6582 drsprintk(ioc
, ioc_info(ioc
, "re-enable the HCDW\n"));
6583 writel(hcb_size
| MPI2_HCB_SIZE_HCB_ENABLE
,
6584 &ioc
->chip
->HCBSize
);
6587 drsprintk(ioc
, ioc_info(ioc
, "restart the adapter\n"));
6588 writel(host_diagnostic
& ~MPI2_DIAG_HOLD_IOC_RESET
,
6589 &ioc
->chip
->HostDiagnostic
);
6592 ioc_info(ioc
, "disable writes to the diagnostic register\n"));
6593 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
6595 drsprintk(ioc
, ioc_info(ioc
, "Wait for FW to go to the READY state\n"));
6596 ioc_state
= _base_wait_on_iocstate(ioc
, MPI2_IOC_STATE_READY
, 20);
6598 ioc_err(ioc
, "%s: failed going to ready state (ioc_state=0x%x)\n",
6599 __func__
, ioc_state
);
6603 ioc_info(ioc
, "diag reset: SUCCESS\n");
6607 ioc_err(ioc
, "diag reset: FAILED\n");
6612 * _base_make_ioc_ready - put controller in READY state
6613 * @ioc: per adapter object
6614 * @type: FORCE_BIG_HAMMER or SOFT_RESET
6616 * Return: 0 for success, non-zero for failure.
6619 _base_make_ioc_ready(struct MPT3SAS_ADAPTER
*ioc
, enum reset_type type
)
6625 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
6627 if (ioc
->pci_error_recovery
)
6630 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 0);
6632 ioc_info(ioc
, "%s: ioc_state(0x%08x)\n",
6633 __func__
, ioc_state
));
6635 /* if in RESET state, it should move to READY state shortly */
6637 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_RESET
) {
6638 while ((ioc_state
& MPI2_IOC_STATE_MASK
) !=
6639 MPI2_IOC_STATE_READY
) {
6640 if (count
++ == 10) {
6641 ioc_err(ioc
, "%s: failed going to ready state (ioc_state=0x%x)\n",
6642 __func__
, ioc_state
);
6646 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 0);
6650 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_READY
)
6653 if (ioc_state
& MPI2_DOORBELL_USED
) {
6654 dhsprintk(ioc
, ioc_info(ioc
, "unexpected doorbell active!\n"));
6655 goto issue_diag_reset
;
6658 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
) {
6659 mpt3sas_base_fault_info(ioc
, ioc_state
&
6660 MPI2_DOORBELL_DATA_MASK
);
6661 goto issue_diag_reset
;
6664 if (type
== FORCE_BIG_HAMMER
)
6665 goto issue_diag_reset
;
6667 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_OPERATIONAL
)
6668 if (!(_base_send_ioc_reset(ioc
,
6669 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
, 15))) {
6674 rc
= _base_diag_reset(ioc
);
6679 * _base_make_ioc_operational - put controller in OPERATIONAL state
6680 * @ioc: per adapter object
6682 * Return: 0 for success, non-zero for failure.
6685 _base_make_ioc_operational(struct MPT3SAS_ADAPTER
*ioc
)
6688 unsigned long flags
;
6691 struct _tr_list
*delayed_tr
, *delayed_tr_next
;
6692 struct _sc_list
*delayed_sc
, *delayed_sc_next
;
6693 struct _event_ack_list
*delayed_event_ack
, *delayed_event_ack_next
;
6695 struct adapter_reply_queue
*reply_q
;
6696 Mpi2ReplyDescriptorsUnion_t
*reply_post_free_contig
;
6698 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
6700 /* clean the delayed target reset list */
6701 list_for_each_entry_safe(delayed_tr
, delayed_tr_next
,
6702 &ioc
->delayed_tr_list
, list
) {
6703 list_del(&delayed_tr
->list
);
6708 list_for_each_entry_safe(delayed_tr
, delayed_tr_next
,
6709 &ioc
->delayed_tr_volume_list
, list
) {
6710 list_del(&delayed_tr
->list
);
6714 list_for_each_entry_safe(delayed_sc
, delayed_sc_next
,
6715 &ioc
->delayed_sc_list
, list
) {
6716 list_del(&delayed_sc
->list
);
6720 list_for_each_entry_safe(delayed_event_ack
, delayed_event_ack_next
,
6721 &ioc
->delayed_event_ack_list
, list
) {
6722 list_del(&delayed_event_ack
->list
);
6723 kfree(delayed_event_ack
);
6726 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
6728 /* hi-priority queue */
6729 INIT_LIST_HEAD(&ioc
->hpr_free_list
);
6730 smid
= ioc
->hi_priority_smid
;
6731 for (i
= 0; i
< ioc
->hi_priority_depth
; i
++, smid
++) {
6732 ioc
->hpr_lookup
[i
].cb_idx
= 0xFF;
6733 ioc
->hpr_lookup
[i
].smid
= smid
;
6734 list_add_tail(&ioc
->hpr_lookup
[i
].tracker_list
,
6735 &ioc
->hpr_free_list
);
6738 /* internal queue */
6739 INIT_LIST_HEAD(&ioc
->internal_free_list
);
6740 smid
= ioc
->internal_smid
;
6741 for (i
= 0; i
< ioc
->internal_depth
; i
++, smid
++) {
6742 ioc
->internal_lookup
[i
].cb_idx
= 0xFF;
6743 ioc
->internal_lookup
[i
].smid
= smid
;
6744 list_add_tail(&ioc
->internal_lookup
[i
].tracker_list
,
6745 &ioc
->internal_free_list
);
6748 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
6750 /* initialize Reply Free Queue */
6751 for (i
= 0, reply_address
= (u32
)ioc
->reply_dma
;
6752 i
< ioc
->reply_free_queue_depth
; i
++, reply_address
+=
6754 ioc
->reply_free
[i
] = cpu_to_le32(reply_address
);
6755 if (ioc
->is_mcpu_endpoint
)
6756 _base_clone_reply_to_sys_mem(ioc
,
6760 /* initialize reply queues */
6761 if (ioc
->is_driver_loading
)
6762 _base_assign_reply_queues(ioc
);
6764 /* initialize Reply Post Free Queue */
6766 reply_post_free_contig
= ioc
->reply_post
[0].reply_post_free
;
6767 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
) {
6769 * If RDPQ is enabled, switch to the next allocation.
6770 * Otherwise advance within the contiguous region.
6772 if (ioc
->rdpq_array_enable
) {
6773 reply_q
->reply_post_free
=
6774 ioc
->reply_post
[index
++].reply_post_free
;
6776 reply_q
->reply_post_free
= reply_post_free_contig
;
6777 reply_post_free_contig
+= ioc
->reply_post_queue_depth
;
6780 reply_q
->reply_post_host_index
= 0;
6781 for (i
= 0; i
< ioc
->reply_post_queue_depth
; i
++)
6782 reply_q
->reply_post_free
[i
].Words
=
6783 cpu_to_le64(ULLONG_MAX
);
6784 if (!_base_is_controller_msix_enabled(ioc
))
6785 goto skip_init_reply_post_free_queue
;
6787 skip_init_reply_post_free_queue
:
6789 r
= _base_send_ioc_init(ioc
);
6793 /* initialize reply free host index */
6794 ioc
->reply_free_host_index
= ioc
->reply_free_queue_depth
- 1;
6795 writel(ioc
->reply_free_host_index
, &ioc
->chip
->ReplyFreeHostIndex
);
6797 /* initialize reply post host index */
6798 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
) {
6799 if (ioc
->combined_reply_queue
)
6800 writel((reply_q
->msix_index
& 7)<<
6801 MPI2_RPHI_MSIX_INDEX_SHIFT
,
6802 ioc
->replyPostRegisterIndex
[reply_q
->msix_index
/8]);
6804 writel(reply_q
->msix_index
<<
6805 MPI2_RPHI_MSIX_INDEX_SHIFT
,
6806 &ioc
->chip
->ReplyPostHostIndex
);
6808 if (!_base_is_controller_msix_enabled(ioc
))
6809 goto skip_init_reply_post_host_index
;
6812 skip_init_reply_post_host_index
:
6814 _base_unmask_interrupts(ioc
);
6816 if (ioc
->hba_mpi_version_belonged
!= MPI2_VERSION
) {
6817 r
= _base_display_fwpkg_version(ioc
);
6822 _base_static_config_pages(ioc
);
6823 r
= _base_event_notification(ioc
);
6827 if (ioc
->is_driver_loading
) {
6829 if (ioc
->is_warpdrive
&& ioc
->manu_pg10
.OEMIdentifier
6832 le32_to_cpu(ioc
->manu_pg10
.OEMSpecificFlags0
) &
6833 MFG_PAGE10_HIDE_SSDS_MASK
);
6834 if (hide_flag
!= MFG_PAGE10_HIDE_SSDS_MASK
)
6835 ioc
->mfg_pg10_hide_flag
= hide_flag
;
6838 ioc
->wait_for_discovery_to_complete
=
6839 _base_determine_wait_on_discovery(ioc
);
6841 return r
; /* scan_start and scan_finished support */
6844 r
= _base_send_port_enable(ioc
);
6852 * mpt3sas_base_free_resources - free resources controller resources
6853 * @ioc: per adapter object
6856 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER
*ioc
)
6858 dexitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
6860 /* synchronizing freeing resource with pci_access_mutex lock */
6861 mutex_lock(&ioc
->pci_access_mutex
);
6862 if (ioc
->chip_phys
&& ioc
->chip
) {
6863 _base_mask_interrupts(ioc
);
6864 ioc
->shost_recovery
= 1;
6865 _base_make_ioc_ready(ioc
, SOFT_RESET
);
6866 ioc
->shost_recovery
= 0;
6869 mpt3sas_base_unmap_resources(ioc
);
6870 mutex_unlock(&ioc
->pci_access_mutex
);
6875 * mpt3sas_base_attach - attach controller instance
6876 * @ioc: per adapter object
6878 * Return: 0 for success, non-zero for failure.
6881 mpt3sas_base_attach(struct MPT3SAS_ADAPTER
*ioc
)
6884 int cpu_id
, last_cpu_id
= 0;
6886 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
6888 /* setup cpu_msix_table */
6889 ioc
->cpu_count
= num_online_cpus();
6890 for_each_online_cpu(cpu_id
)
6891 last_cpu_id
= cpu_id
;
6892 ioc
->cpu_msix_table_sz
= last_cpu_id
+ 1;
6893 ioc
->cpu_msix_table
= kzalloc(ioc
->cpu_msix_table_sz
, GFP_KERNEL
);
6894 ioc
->reply_queue_count
= 1;
6895 if (!ioc
->cpu_msix_table
) {
6897 ioc_info(ioc
, "allocation for cpu_msix_table failed!!!\n"));
6899 goto out_free_resources
;
6902 if (ioc
->is_warpdrive
) {
6903 ioc
->reply_post_host_index
= kcalloc(ioc
->cpu_msix_table_sz
,
6904 sizeof(resource_size_t
*), GFP_KERNEL
);
6905 if (!ioc
->reply_post_host_index
) {
6907 ioc_info(ioc
, "allocation for reply_post_host_index failed!!!\n"));
6909 goto out_free_resources
;
6913 ioc
->smp_affinity_enable
= smp_affinity_enable
;
6915 ioc
->rdpq_array_enable_assigned
= 0;
6917 if (ioc
->is_aero_ioc
)
6918 ioc
->base_readl
= &_base_readl_aero
;
6920 ioc
->base_readl
= &_base_readl
;
6921 r
= mpt3sas_base_map_resources(ioc
);
6923 goto out_free_resources
;
6925 pci_set_drvdata(ioc
->pdev
, ioc
->shost
);
6926 r
= _base_get_ioc_facts(ioc
);
6928 goto out_free_resources
;
6930 switch (ioc
->hba_mpi_version_belonged
) {
6932 ioc
->build_sg_scmd
= &_base_build_sg_scmd
;
6933 ioc
->build_sg
= &_base_build_sg
;
6934 ioc
->build_zero_len_sge
= &_base_build_zero_len_sge
;
6935 ioc
->get_msix_index_for_smlio
= &_base_get_msix_index
;
6941 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
6942 * Target Status - all require the IEEE formated scatter gather
6945 ioc
->build_sg_scmd
= &_base_build_sg_scmd_ieee
;
6946 ioc
->build_sg
= &_base_build_sg_ieee
;
6947 ioc
->build_nvme_prp
= &_base_build_nvme_prp
;
6948 ioc
->build_zero_len_sge
= &_base_build_zero_len_sge_ieee
;
6949 ioc
->sge_size_ieee
= sizeof(Mpi2IeeeSgeSimple64_t
);
6950 if (ioc
->high_iops_queues
)
6951 ioc
->get_msix_index_for_smlio
=
6952 &_base_get_high_iops_msix_index
;
6954 ioc
->get_msix_index_for_smlio
= &_base_get_msix_index
;
6957 if (ioc
->atomic_desc_capable
) {
6958 ioc
->put_smid_default
= &_base_put_smid_default_atomic
;
6959 ioc
->put_smid_scsi_io
= &_base_put_smid_scsi_io_atomic
;
6960 ioc
->put_smid_fast_path
=
6961 &_base_put_smid_fast_path_atomic
;
6962 ioc
->put_smid_hi_priority
=
6963 &_base_put_smid_hi_priority_atomic
;
6965 ioc
->put_smid_default
= &_base_put_smid_default
;
6966 ioc
->put_smid_fast_path
= &_base_put_smid_fast_path
;
6967 ioc
->put_smid_hi_priority
= &_base_put_smid_hi_priority
;
6968 if (ioc
->is_mcpu_endpoint
)
6969 ioc
->put_smid_scsi_io
=
6970 &_base_put_smid_mpi_ep_scsi_io
;
6972 ioc
->put_smid_scsi_io
= &_base_put_smid_scsi_io
;
6975 * These function pointers for other requests that don't
6976 * the require IEEE scatter gather elements.
6978 * For example Configuration Pages and SAS IOUNIT Control don't.
6980 ioc
->build_sg_mpi
= &_base_build_sg
;
6981 ioc
->build_zero_len_sge_mpi
= &_base_build_zero_len_sge
;
6983 r
= _base_make_ioc_ready(ioc
, SOFT_RESET
);
6985 goto out_free_resources
;
6987 ioc
->pfacts
= kcalloc(ioc
->facts
.NumberOfPorts
,
6988 sizeof(struct mpt3sas_port_facts
), GFP_KERNEL
);
6991 goto out_free_resources
;
6994 for (i
= 0 ; i
< ioc
->facts
.NumberOfPorts
; i
++) {
6995 r
= _base_get_port_facts(ioc
, i
);
6997 goto out_free_resources
;
7000 r
= _base_allocate_memory_pools(ioc
);
7002 goto out_free_resources
;
7004 if (irqpoll_weight
> 0)
7005 ioc
->thresh_hold
= irqpoll_weight
;
7007 ioc
->thresh_hold
= ioc
->hba_queue_depth
/4;
7009 _base_init_irqpolls(ioc
);
7010 init_waitqueue_head(&ioc
->reset_wq
);
7012 /* allocate memory pd handle bitmask list */
7013 ioc
->pd_handles_sz
= (ioc
->facts
.MaxDevHandle
/ 8);
7014 if (ioc
->facts
.MaxDevHandle
% 8)
7015 ioc
->pd_handles_sz
++;
7016 ioc
->pd_handles
= kzalloc(ioc
->pd_handles_sz
,
7018 if (!ioc
->pd_handles
) {
7020 goto out_free_resources
;
7022 ioc
->blocking_handles
= kzalloc(ioc
->pd_handles_sz
,
7024 if (!ioc
->blocking_handles
) {
7026 goto out_free_resources
;
7029 /* allocate memory for pending OS device add list */
7030 ioc
->pend_os_device_add_sz
= (ioc
->facts
.MaxDevHandle
/ 8);
7031 if (ioc
->facts
.MaxDevHandle
% 8)
7032 ioc
->pend_os_device_add_sz
++;
7033 ioc
->pend_os_device_add
= kzalloc(ioc
->pend_os_device_add_sz
,
7035 if (!ioc
->pend_os_device_add
)
7036 goto out_free_resources
;
7038 ioc
->device_remove_in_progress_sz
= ioc
->pend_os_device_add_sz
;
7039 ioc
->device_remove_in_progress
=
7040 kzalloc(ioc
->device_remove_in_progress_sz
, GFP_KERNEL
);
7041 if (!ioc
->device_remove_in_progress
)
7042 goto out_free_resources
;
7044 ioc
->fwfault_debug
= mpt3sas_fwfault_debug
;
7046 /* base internal command bits */
7047 mutex_init(&ioc
->base_cmds
.mutex
);
7048 ioc
->base_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
7049 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
7051 /* port_enable command bits */
7052 ioc
->port_enable_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
7053 ioc
->port_enable_cmds
.status
= MPT3_CMD_NOT_USED
;
7055 /* transport internal command bits */
7056 ioc
->transport_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
7057 ioc
->transport_cmds
.status
= MPT3_CMD_NOT_USED
;
7058 mutex_init(&ioc
->transport_cmds
.mutex
);
7060 /* scsih internal command bits */
7061 ioc
->scsih_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
7062 ioc
->scsih_cmds
.status
= MPT3_CMD_NOT_USED
;
7063 mutex_init(&ioc
->scsih_cmds
.mutex
);
7065 /* task management internal command bits */
7066 ioc
->tm_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
7067 ioc
->tm_cmds
.status
= MPT3_CMD_NOT_USED
;
7068 mutex_init(&ioc
->tm_cmds
.mutex
);
7070 /* config page internal command bits */
7071 ioc
->config_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
7072 ioc
->config_cmds
.status
= MPT3_CMD_NOT_USED
;
7073 mutex_init(&ioc
->config_cmds
.mutex
);
7075 /* ctl module internal command bits */
7076 ioc
->ctl_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
7077 ioc
->ctl_cmds
.sense
= kzalloc(SCSI_SENSE_BUFFERSIZE
, GFP_KERNEL
);
7078 ioc
->ctl_cmds
.status
= MPT3_CMD_NOT_USED
;
7079 mutex_init(&ioc
->ctl_cmds
.mutex
);
7081 if (!ioc
->base_cmds
.reply
|| !ioc
->port_enable_cmds
.reply
||
7082 !ioc
->transport_cmds
.reply
|| !ioc
->scsih_cmds
.reply
||
7083 !ioc
->tm_cmds
.reply
|| !ioc
->config_cmds
.reply
||
7084 !ioc
->ctl_cmds
.reply
|| !ioc
->ctl_cmds
.sense
) {
7086 goto out_free_resources
;
7089 for (i
= 0; i
< MPI2_EVENT_NOTIFY_EVENTMASK_WORDS
; i
++)
7090 ioc
->event_masks
[i
] = -1;
7092 /* here we enable the events we care about */
7093 _base_unmask_events(ioc
, MPI2_EVENT_SAS_DISCOVERY
);
7094 _base_unmask_events(ioc
, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE
);
7095 _base_unmask_events(ioc
, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST
);
7096 _base_unmask_events(ioc
, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE
);
7097 _base_unmask_events(ioc
, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE
);
7098 _base_unmask_events(ioc
, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST
);
7099 _base_unmask_events(ioc
, MPI2_EVENT_IR_VOLUME
);
7100 _base_unmask_events(ioc
, MPI2_EVENT_IR_PHYSICAL_DISK
);
7101 _base_unmask_events(ioc
, MPI2_EVENT_IR_OPERATION_STATUS
);
7102 _base_unmask_events(ioc
, MPI2_EVENT_LOG_ENTRY_ADDED
);
7103 _base_unmask_events(ioc
, MPI2_EVENT_TEMP_THRESHOLD
);
7104 _base_unmask_events(ioc
, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION
);
7105 _base_unmask_events(ioc
, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR
);
7106 if (ioc
->hba_mpi_version_belonged
== MPI26_VERSION
) {
7107 if (ioc
->is_gen35_ioc
) {
7108 _base_unmask_events(ioc
,
7109 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE
);
7110 _base_unmask_events(ioc
, MPI2_EVENT_PCIE_ENUMERATION
);
7111 _base_unmask_events(ioc
,
7112 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST
);
7115 r
= _base_make_ioc_operational(ioc
);
7117 goto out_free_resources
;
7119 ioc
->non_operational_loop
= 0;
7120 ioc
->got_task_abort_from_ioctl
= 0;
7125 ioc
->remove_host
= 1;
7127 mpt3sas_base_free_resources(ioc
);
7128 _base_release_memory_pools(ioc
);
7129 pci_set_drvdata(ioc
->pdev
, NULL
);
7130 kfree(ioc
->cpu_msix_table
);
7131 if (ioc
->is_warpdrive
)
7132 kfree(ioc
->reply_post_host_index
);
7133 kfree(ioc
->pd_handles
);
7134 kfree(ioc
->blocking_handles
);
7135 kfree(ioc
->device_remove_in_progress
);
7136 kfree(ioc
->pend_os_device_add
);
7137 kfree(ioc
->tm_cmds
.reply
);
7138 kfree(ioc
->transport_cmds
.reply
);
7139 kfree(ioc
->scsih_cmds
.reply
);
7140 kfree(ioc
->config_cmds
.reply
);
7141 kfree(ioc
->base_cmds
.reply
);
7142 kfree(ioc
->port_enable_cmds
.reply
);
7143 kfree(ioc
->ctl_cmds
.reply
);
7144 kfree(ioc
->ctl_cmds
.sense
);
7146 ioc
->ctl_cmds
.reply
= NULL
;
7147 ioc
->base_cmds
.reply
= NULL
;
7148 ioc
->tm_cmds
.reply
= NULL
;
7149 ioc
->scsih_cmds
.reply
= NULL
;
7150 ioc
->transport_cmds
.reply
= NULL
;
7151 ioc
->config_cmds
.reply
= NULL
;
7158 * mpt3sas_base_detach - remove controller instance
7159 * @ioc: per adapter object
7162 mpt3sas_base_detach(struct MPT3SAS_ADAPTER
*ioc
)
7164 dexitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
7166 mpt3sas_base_stop_watchdog(ioc
);
7167 mpt3sas_base_free_resources(ioc
);
7168 _base_release_memory_pools(ioc
);
7169 mpt3sas_free_enclosure_list(ioc
);
7170 pci_set_drvdata(ioc
->pdev
, NULL
);
7171 kfree(ioc
->cpu_msix_table
);
7172 if (ioc
->is_warpdrive
)
7173 kfree(ioc
->reply_post_host_index
);
7174 kfree(ioc
->pd_handles
);
7175 kfree(ioc
->blocking_handles
);
7176 kfree(ioc
->device_remove_in_progress
);
7177 kfree(ioc
->pend_os_device_add
);
7179 kfree(ioc
->ctl_cmds
.reply
);
7180 kfree(ioc
->ctl_cmds
.sense
);
7181 kfree(ioc
->base_cmds
.reply
);
7182 kfree(ioc
->port_enable_cmds
.reply
);
7183 kfree(ioc
->tm_cmds
.reply
);
7184 kfree(ioc
->transport_cmds
.reply
);
7185 kfree(ioc
->scsih_cmds
.reply
);
7186 kfree(ioc
->config_cmds
.reply
);
7190 * _base_pre_reset_handler - pre reset handler
7191 * @ioc: per adapter object
7193 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER
*ioc
)
7195 mpt3sas_scsih_pre_reset_handler(ioc
);
7196 mpt3sas_ctl_pre_reset_handler(ioc
);
7197 dtmprintk(ioc
, ioc_info(ioc
, "%s: MPT3_IOC_PRE_RESET\n", __func__
));
7201 * _base_after_reset_handler - after reset handler
7202 * @ioc: per adapter object
7204 static void _base_after_reset_handler(struct MPT3SAS_ADAPTER
*ioc
)
7206 mpt3sas_scsih_after_reset_handler(ioc
);
7207 mpt3sas_ctl_after_reset_handler(ioc
);
7208 dtmprintk(ioc
, ioc_info(ioc
, "%s: MPT3_IOC_AFTER_RESET\n", __func__
));
7209 if (ioc
->transport_cmds
.status
& MPT3_CMD_PENDING
) {
7210 ioc
->transport_cmds
.status
|= MPT3_CMD_RESET
;
7211 mpt3sas_base_free_smid(ioc
, ioc
->transport_cmds
.smid
);
7212 complete(&ioc
->transport_cmds
.done
);
7214 if (ioc
->base_cmds
.status
& MPT3_CMD_PENDING
) {
7215 ioc
->base_cmds
.status
|= MPT3_CMD_RESET
;
7216 mpt3sas_base_free_smid(ioc
, ioc
->base_cmds
.smid
);
7217 complete(&ioc
->base_cmds
.done
);
7219 if (ioc
->port_enable_cmds
.status
& MPT3_CMD_PENDING
) {
7220 ioc
->port_enable_failed
= 1;
7221 ioc
->port_enable_cmds
.status
|= MPT3_CMD_RESET
;
7222 mpt3sas_base_free_smid(ioc
, ioc
->port_enable_cmds
.smid
);
7223 if (ioc
->is_driver_loading
) {
7224 ioc
->start_scan_failed
=
7225 MPI2_IOCSTATUS_INTERNAL_ERROR
;
7226 ioc
->start_scan
= 0;
7227 ioc
->port_enable_cmds
.status
=
7230 complete(&ioc
->port_enable_cmds
.done
);
7233 if (ioc
->config_cmds
.status
& MPT3_CMD_PENDING
) {
7234 ioc
->config_cmds
.status
|= MPT3_CMD_RESET
;
7235 mpt3sas_base_free_smid(ioc
, ioc
->config_cmds
.smid
);
7236 ioc
->config_cmds
.smid
= USHRT_MAX
;
7237 complete(&ioc
->config_cmds
.done
);
7242 * _base_reset_done_handler - reset done handler
7243 * @ioc: per adapter object
7245 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER
*ioc
)
7247 mpt3sas_scsih_reset_done_handler(ioc
);
7248 mpt3sas_ctl_reset_done_handler(ioc
);
7249 dtmprintk(ioc
, ioc_info(ioc
, "%s: MPT3_IOC_DONE_RESET\n", __func__
));
7253 * mpt3sas_wait_for_commands_to_complete - reset controller
7254 * @ioc: Pointer to MPT_ADAPTER structure
7256 * This function is waiting 10s for all pending commands to complete
7257 * prior to putting controller in reset.
7260 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER
*ioc
)
7264 ioc
->pending_io_count
= 0;
7266 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 0);
7267 if ((ioc_state
& MPI2_IOC_STATE_MASK
) != MPI2_IOC_STATE_OPERATIONAL
)
7270 /* pending command count */
7271 ioc
->pending_io_count
= scsi_host_busy(ioc
->shost
);
7273 if (!ioc
->pending_io_count
)
7276 /* wait for pending commands to complete */
7277 wait_event_timeout(ioc
->reset_wq
, ioc
->pending_io_count
== 0, 10 * HZ
);
7281 * mpt3sas_base_hard_reset_handler - reset controller
7282 * @ioc: Pointer to MPT_ADAPTER structure
7283 * @type: FORCE_BIG_HAMMER or SOFT_RESET
7285 * Return: 0 for success, non-zero for failure.
7288 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER
*ioc
,
7289 enum reset_type type
)
7292 unsigned long flags
;
7294 u8 is_fault
= 0, is_trigger
= 0;
7296 dtmprintk(ioc
, ioc_info(ioc
, "%s: enter\n", __func__
));
7298 if (ioc
->pci_error_recovery
) {
7299 ioc_err(ioc
, "%s: pci error recovery reset\n", __func__
);
7304 if (mpt3sas_fwfault_debug
)
7305 mpt3sas_halt_firmware(ioc
);
7307 /* wait for an active reset in progress to complete */
7308 mutex_lock(&ioc
->reset_in_progress_mutex
);
7310 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
7311 ioc
->shost_recovery
= 1;
7312 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
7314 if ((ioc
->diag_buffer_status
[MPI2_DIAG_BUF_TYPE_TRACE
] &
7315 MPT3_DIAG_BUFFER_IS_REGISTERED
) &&
7316 (!(ioc
->diag_buffer_status
[MPI2_DIAG_BUF_TYPE_TRACE
] &
7317 MPT3_DIAG_BUFFER_IS_RELEASED
))) {
7319 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 0);
7320 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
)
7323 _base_pre_reset_handler(ioc
);
7324 mpt3sas_wait_for_commands_to_complete(ioc
);
7325 _base_mask_interrupts(ioc
);
7326 r
= _base_make_ioc_ready(ioc
, type
);
7329 _base_after_reset_handler(ioc
);
7331 /* If this hard reset is called while port enable is active, then
7332 * there is no reason to call make_ioc_operational
7334 if (ioc
->is_driver_loading
&& ioc
->port_enable_failed
) {
7335 ioc
->remove_host
= 1;
7339 r
= _base_get_ioc_facts(ioc
);
7343 if (ioc
->rdpq_array_enable
&& !ioc
->rdpq_array_capable
)
7344 panic("%s: Issue occurred with flashing controller firmware."
7345 "Please reboot the system and ensure that the correct"
7346 " firmware version is running\n", ioc
->name
);
7348 r
= _base_make_ioc_operational(ioc
);
7350 _base_reset_done_handler(ioc
);
7354 ioc_info(ioc
, "%s: %s\n",
7355 __func__
, r
== 0 ? "SUCCESS" : "FAILED"));
7357 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
7358 ioc
->shost_recovery
= 0;
7359 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
7360 ioc
->ioc_reset_count
++;
7361 mutex_unlock(&ioc
->reset_in_progress_mutex
);
7364 if ((r
== 0) && is_trigger
) {
7366 mpt3sas_trigger_master(ioc
, MASTER_TRIGGER_FW_FAULT
);
7368 mpt3sas_trigger_master(ioc
,
7369 MASTER_TRIGGER_ADAPTER_RESET
);
7371 dtmprintk(ioc
, ioc_info(ioc
, "%s: exit\n", __func__
));