Merge tag 'nios2-v3.20-rc1' of git://git.rocketboards.org/linux-socfpga-next
[linux/fpc-iii.git] / block / blk-mq.c
blob4f4bea21052e41068112ead8cbb4e0a42cb7a9d6
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
25 #include <trace/events/block.h>
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36 static void blk_mq_run_queues(struct request_queue *q);
39 * Check if any of the ctx's have pending work in this hardware queue
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
43 unsigned int i;
45 for (i = 0; i < hctx->ctx_map.map_size; i++)
46 if (hctx->ctx_map.map[i].word)
47 return true;
49 return false;
52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 struct blk_mq_ctx *ctx)
55 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
58 #define CTX_TO_BIT(hctx, ctx) \
59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
62 * Mark this ctx as having pending work in this hardware queue
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 struct blk_mq_ctx *ctx)
67 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
69 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
76 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
78 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
81 static int blk_mq_queue_enter(struct request_queue *q)
83 while (true) {
84 int ret;
86 if (percpu_ref_tryget_live(&q->mq_usage_counter))
87 return 0;
89 ret = wait_event_interruptible(q->mq_freeze_wq,
90 !q->mq_freeze_depth || blk_queue_dying(q));
91 if (blk_queue_dying(q))
92 return -ENODEV;
93 if (ret)
94 return ret;
98 static void blk_mq_queue_exit(struct request_queue *q)
100 percpu_ref_put(&q->mq_usage_counter);
103 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
105 struct request_queue *q =
106 container_of(ref, struct request_queue, mq_usage_counter);
108 wake_up_all(&q->mq_freeze_wq);
111 void blk_mq_freeze_queue_start(struct request_queue *q)
113 bool freeze;
115 spin_lock_irq(q->queue_lock);
116 freeze = !q->mq_freeze_depth++;
117 spin_unlock_irq(q->queue_lock);
119 if (freeze) {
120 percpu_ref_kill(&q->mq_usage_counter);
121 blk_mq_run_queues(q);
124 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
126 static void blk_mq_freeze_queue_wait(struct request_queue *q)
128 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
132 * Guarantee no request is in use, so we can change any data structure of
133 * the queue afterward.
135 void blk_mq_freeze_queue(struct request_queue *q)
137 blk_mq_freeze_queue_start(q);
138 blk_mq_freeze_queue_wait(q);
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
142 void blk_mq_unfreeze_queue(struct request_queue *q)
144 bool wake;
146 spin_lock_irq(q->queue_lock);
147 wake = !--q->mq_freeze_depth;
148 WARN_ON_ONCE(q->mq_freeze_depth < 0);
149 spin_unlock_irq(q->queue_lock);
150 if (wake) {
151 percpu_ref_reinit(&q->mq_usage_counter);
152 wake_up_all(&q->mq_freeze_wq);
155 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
157 void blk_mq_wake_waiters(struct request_queue *q)
159 struct blk_mq_hw_ctx *hctx;
160 unsigned int i;
162 queue_for_each_hw_ctx(q, hctx, i)
163 if (blk_mq_hw_queue_mapped(hctx))
164 blk_mq_tag_wakeup_all(hctx->tags, true);
167 * If we are called because the queue has now been marked as
168 * dying, we need to ensure that processes currently waiting on
169 * the queue are notified as well.
171 wake_up_all(&q->mq_freeze_wq);
174 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
176 return blk_mq_has_free_tags(hctx->tags);
178 EXPORT_SYMBOL(blk_mq_can_queue);
180 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
181 struct request *rq, unsigned int rw_flags)
183 if (blk_queue_io_stat(q))
184 rw_flags |= REQ_IO_STAT;
186 INIT_LIST_HEAD(&rq->queuelist);
187 /* csd/requeue_work/fifo_time is initialized before use */
188 rq->q = q;
189 rq->mq_ctx = ctx;
190 rq->cmd_flags |= rw_flags;
191 /* do not touch atomic flags, it needs atomic ops against the timer */
192 rq->cpu = -1;
193 INIT_HLIST_NODE(&rq->hash);
194 RB_CLEAR_NODE(&rq->rb_node);
195 rq->rq_disk = NULL;
196 rq->part = NULL;
197 rq->start_time = jiffies;
198 #ifdef CONFIG_BLK_CGROUP
199 rq->rl = NULL;
200 set_start_time_ns(rq);
201 rq->io_start_time_ns = 0;
202 #endif
203 rq->nr_phys_segments = 0;
204 #if defined(CONFIG_BLK_DEV_INTEGRITY)
205 rq->nr_integrity_segments = 0;
206 #endif
207 rq->special = NULL;
208 /* tag was already set */
209 rq->errors = 0;
211 rq->cmd = rq->__cmd;
213 rq->extra_len = 0;
214 rq->sense_len = 0;
215 rq->resid_len = 0;
216 rq->sense = NULL;
218 INIT_LIST_HEAD(&rq->timeout_list);
219 rq->timeout = 0;
221 rq->end_io = NULL;
222 rq->end_io_data = NULL;
223 rq->next_rq = NULL;
225 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
228 static struct request *
229 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
231 struct request *rq;
232 unsigned int tag;
234 tag = blk_mq_get_tag(data);
235 if (tag != BLK_MQ_TAG_FAIL) {
236 rq = data->hctx->tags->rqs[tag];
238 if (blk_mq_tag_busy(data->hctx)) {
239 rq->cmd_flags = REQ_MQ_INFLIGHT;
240 atomic_inc(&data->hctx->nr_active);
243 rq->tag = tag;
244 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
245 return rq;
248 return NULL;
251 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
252 bool reserved)
254 struct blk_mq_ctx *ctx;
255 struct blk_mq_hw_ctx *hctx;
256 struct request *rq;
257 struct blk_mq_alloc_data alloc_data;
258 int ret;
260 ret = blk_mq_queue_enter(q);
261 if (ret)
262 return ERR_PTR(ret);
264 ctx = blk_mq_get_ctx(q);
265 hctx = q->mq_ops->map_queue(q, ctx->cpu);
266 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
267 reserved, ctx, hctx);
269 rq = __blk_mq_alloc_request(&alloc_data, rw);
270 if (!rq && (gfp & __GFP_WAIT)) {
271 __blk_mq_run_hw_queue(hctx);
272 blk_mq_put_ctx(ctx);
274 ctx = blk_mq_get_ctx(q);
275 hctx = q->mq_ops->map_queue(q, ctx->cpu);
276 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
277 hctx);
278 rq = __blk_mq_alloc_request(&alloc_data, rw);
279 ctx = alloc_data.ctx;
281 blk_mq_put_ctx(ctx);
282 if (!rq) {
283 blk_mq_queue_exit(q);
284 return ERR_PTR(-EWOULDBLOCK);
286 return rq;
288 EXPORT_SYMBOL(blk_mq_alloc_request);
290 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
291 struct blk_mq_ctx *ctx, struct request *rq)
293 const int tag = rq->tag;
294 struct request_queue *q = rq->q;
296 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
297 atomic_dec(&hctx->nr_active);
298 rq->cmd_flags = 0;
300 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
301 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
302 blk_mq_queue_exit(q);
305 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
307 struct blk_mq_ctx *ctx = rq->mq_ctx;
309 ctx->rq_completed[rq_is_sync(rq)]++;
310 __blk_mq_free_request(hctx, ctx, rq);
313 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
315 void blk_mq_free_request(struct request *rq)
317 struct blk_mq_hw_ctx *hctx;
318 struct request_queue *q = rq->q;
320 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
321 blk_mq_free_hctx_request(hctx, rq);
323 EXPORT_SYMBOL_GPL(blk_mq_free_request);
325 inline void __blk_mq_end_request(struct request *rq, int error)
327 blk_account_io_done(rq);
329 if (rq->end_io) {
330 rq->end_io(rq, error);
331 } else {
332 if (unlikely(blk_bidi_rq(rq)))
333 blk_mq_free_request(rq->next_rq);
334 blk_mq_free_request(rq);
337 EXPORT_SYMBOL(__blk_mq_end_request);
339 void blk_mq_end_request(struct request *rq, int error)
341 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
342 BUG();
343 __blk_mq_end_request(rq, error);
345 EXPORT_SYMBOL(blk_mq_end_request);
347 static void __blk_mq_complete_request_remote(void *data)
349 struct request *rq = data;
351 rq->q->softirq_done_fn(rq);
354 static void blk_mq_ipi_complete_request(struct request *rq)
356 struct blk_mq_ctx *ctx = rq->mq_ctx;
357 bool shared = false;
358 int cpu;
360 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
361 rq->q->softirq_done_fn(rq);
362 return;
365 cpu = get_cpu();
366 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
367 shared = cpus_share_cache(cpu, ctx->cpu);
369 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
370 rq->csd.func = __blk_mq_complete_request_remote;
371 rq->csd.info = rq;
372 rq->csd.flags = 0;
373 smp_call_function_single_async(ctx->cpu, &rq->csd);
374 } else {
375 rq->q->softirq_done_fn(rq);
377 put_cpu();
380 void __blk_mq_complete_request(struct request *rq)
382 struct request_queue *q = rq->q;
384 if (!q->softirq_done_fn)
385 blk_mq_end_request(rq, rq->errors);
386 else
387 blk_mq_ipi_complete_request(rq);
391 * blk_mq_complete_request - end I/O on a request
392 * @rq: the request being processed
394 * Description:
395 * Ends all I/O on a request. It does not handle partial completions.
396 * The actual completion happens out-of-order, through a IPI handler.
398 void blk_mq_complete_request(struct request *rq)
400 struct request_queue *q = rq->q;
402 if (unlikely(blk_should_fake_timeout(q)))
403 return;
404 if (!blk_mark_rq_complete(rq))
405 __blk_mq_complete_request(rq);
407 EXPORT_SYMBOL(blk_mq_complete_request);
409 int blk_mq_request_started(struct request *rq)
411 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
413 EXPORT_SYMBOL_GPL(blk_mq_request_started);
415 void blk_mq_start_request(struct request *rq)
417 struct request_queue *q = rq->q;
419 trace_block_rq_issue(q, rq);
421 rq->resid_len = blk_rq_bytes(rq);
422 if (unlikely(blk_bidi_rq(rq)))
423 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
425 blk_add_timer(rq);
428 * Ensure that ->deadline is visible before set the started
429 * flag and clear the completed flag.
431 smp_mb__before_atomic();
434 * Mark us as started and clear complete. Complete might have been
435 * set if requeue raced with timeout, which then marked it as
436 * complete. So be sure to clear complete again when we start
437 * the request, otherwise we'll ignore the completion event.
439 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
440 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
441 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
442 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
444 if (q->dma_drain_size && blk_rq_bytes(rq)) {
446 * Make sure space for the drain appears. We know we can do
447 * this because max_hw_segments has been adjusted to be one
448 * fewer than the device can handle.
450 rq->nr_phys_segments++;
453 EXPORT_SYMBOL(blk_mq_start_request);
455 static void __blk_mq_requeue_request(struct request *rq)
457 struct request_queue *q = rq->q;
459 trace_block_rq_requeue(q, rq);
461 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
462 if (q->dma_drain_size && blk_rq_bytes(rq))
463 rq->nr_phys_segments--;
467 void blk_mq_requeue_request(struct request *rq)
469 __blk_mq_requeue_request(rq);
471 BUG_ON(blk_queued_rq(rq));
472 blk_mq_add_to_requeue_list(rq, true);
474 EXPORT_SYMBOL(blk_mq_requeue_request);
476 static void blk_mq_requeue_work(struct work_struct *work)
478 struct request_queue *q =
479 container_of(work, struct request_queue, requeue_work);
480 LIST_HEAD(rq_list);
481 struct request *rq, *next;
482 unsigned long flags;
484 spin_lock_irqsave(&q->requeue_lock, flags);
485 list_splice_init(&q->requeue_list, &rq_list);
486 spin_unlock_irqrestore(&q->requeue_lock, flags);
488 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
489 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
490 continue;
492 rq->cmd_flags &= ~REQ_SOFTBARRIER;
493 list_del_init(&rq->queuelist);
494 blk_mq_insert_request(rq, true, false, false);
497 while (!list_empty(&rq_list)) {
498 rq = list_entry(rq_list.next, struct request, queuelist);
499 list_del_init(&rq->queuelist);
500 blk_mq_insert_request(rq, false, false, false);
504 * Use the start variant of queue running here, so that running
505 * the requeue work will kick stopped queues.
507 blk_mq_start_hw_queues(q);
510 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
512 struct request_queue *q = rq->q;
513 unsigned long flags;
516 * We abuse this flag that is otherwise used by the I/O scheduler to
517 * request head insertation from the workqueue.
519 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
521 spin_lock_irqsave(&q->requeue_lock, flags);
522 if (at_head) {
523 rq->cmd_flags |= REQ_SOFTBARRIER;
524 list_add(&rq->queuelist, &q->requeue_list);
525 } else {
526 list_add_tail(&rq->queuelist, &q->requeue_list);
528 spin_unlock_irqrestore(&q->requeue_lock, flags);
530 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
532 void blk_mq_cancel_requeue_work(struct request_queue *q)
534 cancel_work_sync(&q->requeue_work);
536 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
538 void blk_mq_kick_requeue_list(struct request_queue *q)
540 kblockd_schedule_work(&q->requeue_work);
542 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
544 void blk_mq_abort_requeue_list(struct request_queue *q)
546 unsigned long flags;
547 LIST_HEAD(rq_list);
549 spin_lock_irqsave(&q->requeue_lock, flags);
550 list_splice_init(&q->requeue_list, &rq_list);
551 spin_unlock_irqrestore(&q->requeue_lock, flags);
553 while (!list_empty(&rq_list)) {
554 struct request *rq;
556 rq = list_first_entry(&rq_list, struct request, queuelist);
557 list_del_init(&rq->queuelist);
558 rq->errors = -EIO;
559 blk_mq_end_request(rq, rq->errors);
562 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
564 static inline bool is_flush_request(struct request *rq,
565 struct blk_flush_queue *fq, unsigned int tag)
567 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
568 fq->flush_rq->tag == tag);
571 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
573 struct request *rq = tags->rqs[tag];
574 /* mq_ctx of flush rq is always cloned from the corresponding req */
575 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
577 if (!is_flush_request(rq, fq, tag))
578 return rq;
580 return fq->flush_rq;
582 EXPORT_SYMBOL(blk_mq_tag_to_rq);
584 struct blk_mq_timeout_data {
585 unsigned long next;
586 unsigned int next_set;
589 void blk_mq_rq_timed_out(struct request *req, bool reserved)
591 struct blk_mq_ops *ops = req->q->mq_ops;
592 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
595 * We know that complete is set at this point. If STARTED isn't set
596 * anymore, then the request isn't active and the "timeout" should
597 * just be ignored. This can happen due to the bitflag ordering.
598 * Timeout first checks if STARTED is set, and if it is, assumes
599 * the request is active. But if we race with completion, then
600 * we both flags will get cleared. So check here again, and ignore
601 * a timeout event with a request that isn't active.
603 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
604 return;
606 if (ops->timeout)
607 ret = ops->timeout(req, reserved);
609 switch (ret) {
610 case BLK_EH_HANDLED:
611 __blk_mq_complete_request(req);
612 break;
613 case BLK_EH_RESET_TIMER:
614 blk_add_timer(req);
615 blk_clear_rq_complete(req);
616 break;
617 case BLK_EH_NOT_HANDLED:
618 break;
619 default:
620 printk(KERN_ERR "block: bad eh return: %d\n", ret);
621 break;
625 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
626 struct request *rq, void *priv, bool reserved)
628 struct blk_mq_timeout_data *data = priv;
630 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
632 * If a request wasn't started before the queue was
633 * marked dying, kill it here or it'll go unnoticed.
635 if (unlikely(blk_queue_dying(rq->q))) {
636 rq->errors = -EIO;
637 blk_mq_complete_request(rq);
639 return;
641 if (rq->cmd_flags & REQ_NO_TIMEOUT)
642 return;
644 if (time_after_eq(jiffies, rq->deadline)) {
645 if (!blk_mark_rq_complete(rq))
646 blk_mq_rq_timed_out(rq, reserved);
647 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
648 data->next = rq->deadline;
649 data->next_set = 1;
653 static void blk_mq_rq_timer(unsigned long priv)
655 struct request_queue *q = (struct request_queue *)priv;
656 struct blk_mq_timeout_data data = {
657 .next = 0,
658 .next_set = 0,
660 struct blk_mq_hw_ctx *hctx;
661 int i;
663 queue_for_each_hw_ctx(q, hctx, i) {
665 * If not software queues are currently mapped to this
666 * hardware queue, there's nothing to check
668 if (!blk_mq_hw_queue_mapped(hctx))
669 continue;
671 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
674 if (data.next_set) {
675 data.next = blk_rq_timeout(round_jiffies_up(data.next));
676 mod_timer(&q->timeout, data.next);
677 } else {
678 queue_for_each_hw_ctx(q, hctx, i)
679 blk_mq_tag_idle(hctx);
684 * Reverse check our software queue for entries that we could potentially
685 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
686 * too much time checking for merges.
688 static bool blk_mq_attempt_merge(struct request_queue *q,
689 struct blk_mq_ctx *ctx, struct bio *bio)
691 struct request *rq;
692 int checked = 8;
694 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
695 int el_ret;
697 if (!checked--)
698 break;
700 if (!blk_rq_merge_ok(rq, bio))
701 continue;
703 el_ret = blk_try_merge(rq, bio);
704 if (el_ret == ELEVATOR_BACK_MERGE) {
705 if (bio_attempt_back_merge(q, rq, bio)) {
706 ctx->rq_merged++;
707 return true;
709 break;
710 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
711 if (bio_attempt_front_merge(q, rq, bio)) {
712 ctx->rq_merged++;
713 return true;
715 break;
719 return false;
723 * Process software queues that have been marked busy, splicing them
724 * to the for-dispatch
726 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
728 struct blk_mq_ctx *ctx;
729 int i;
731 for (i = 0; i < hctx->ctx_map.map_size; i++) {
732 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
733 unsigned int off, bit;
735 if (!bm->word)
736 continue;
738 bit = 0;
739 off = i * hctx->ctx_map.bits_per_word;
740 do {
741 bit = find_next_bit(&bm->word, bm->depth, bit);
742 if (bit >= bm->depth)
743 break;
745 ctx = hctx->ctxs[bit + off];
746 clear_bit(bit, &bm->word);
747 spin_lock(&ctx->lock);
748 list_splice_tail_init(&ctx->rq_list, list);
749 spin_unlock(&ctx->lock);
751 bit++;
752 } while (1);
757 * Run this hardware queue, pulling any software queues mapped to it in.
758 * Note that this function currently has various problems around ordering
759 * of IO. In particular, we'd like FIFO behaviour on handling existing
760 * items on the hctx->dispatch list. Ignore that for now.
762 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
764 struct request_queue *q = hctx->queue;
765 struct request *rq;
766 LIST_HEAD(rq_list);
767 LIST_HEAD(driver_list);
768 struct list_head *dptr;
769 int queued;
771 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
773 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
774 return;
776 hctx->run++;
779 * Touch any software queue that has pending entries.
781 flush_busy_ctxs(hctx, &rq_list);
784 * If we have previous entries on our dispatch list, grab them
785 * and stuff them at the front for more fair dispatch.
787 if (!list_empty_careful(&hctx->dispatch)) {
788 spin_lock(&hctx->lock);
789 if (!list_empty(&hctx->dispatch))
790 list_splice_init(&hctx->dispatch, &rq_list);
791 spin_unlock(&hctx->lock);
795 * Start off with dptr being NULL, so we start the first request
796 * immediately, even if we have more pending.
798 dptr = NULL;
801 * Now process all the entries, sending them to the driver.
803 queued = 0;
804 while (!list_empty(&rq_list)) {
805 struct blk_mq_queue_data bd;
806 int ret;
808 rq = list_first_entry(&rq_list, struct request, queuelist);
809 list_del_init(&rq->queuelist);
811 bd.rq = rq;
812 bd.list = dptr;
813 bd.last = list_empty(&rq_list);
815 ret = q->mq_ops->queue_rq(hctx, &bd);
816 switch (ret) {
817 case BLK_MQ_RQ_QUEUE_OK:
818 queued++;
819 continue;
820 case BLK_MQ_RQ_QUEUE_BUSY:
821 list_add(&rq->queuelist, &rq_list);
822 __blk_mq_requeue_request(rq);
823 break;
824 default:
825 pr_err("blk-mq: bad return on queue: %d\n", ret);
826 case BLK_MQ_RQ_QUEUE_ERROR:
827 rq->errors = -EIO;
828 blk_mq_end_request(rq, rq->errors);
829 break;
832 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
833 break;
836 * We've done the first request. If we have more than 1
837 * left in the list, set dptr to defer issue.
839 if (!dptr && rq_list.next != rq_list.prev)
840 dptr = &driver_list;
843 if (!queued)
844 hctx->dispatched[0]++;
845 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
846 hctx->dispatched[ilog2(queued) + 1]++;
849 * Any items that need requeuing? Stuff them into hctx->dispatch,
850 * that is where we will continue on next queue run.
852 if (!list_empty(&rq_list)) {
853 spin_lock(&hctx->lock);
854 list_splice(&rq_list, &hctx->dispatch);
855 spin_unlock(&hctx->lock);
860 * It'd be great if the workqueue API had a way to pass
861 * in a mask and had some smarts for more clever placement.
862 * For now we just round-robin here, switching for every
863 * BLK_MQ_CPU_WORK_BATCH queued items.
865 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
867 if (hctx->queue->nr_hw_queues == 1)
868 return WORK_CPU_UNBOUND;
870 if (--hctx->next_cpu_batch <= 0) {
871 int cpu = hctx->next_cpu, next_cpu;
873 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
874 if (next_cpu >= nr_cpu_ids)
875 next_cpu = cpumask_first(hctx->cpumask);
877 hctx->next_cpu = next_cpu;
878 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
880 return cpu;
883 return hctx->next_cpu;
886 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
888 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
889 !blk_mq_hw_queue_mapped(hctx)))
890 return;
892 if (!async) {
893 int cpu = get_cpu();
894 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
895 __blk_mq_run_hw_queue(hctx);
896 put_cpu();
897 return;
900 put_cpu();
903 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
904 &hctx->run_work, 0);
907 static void blk_mq_run_queues(struct request_queue *q)
909 struct blk_mq_hw_ctx *hctx;
910 int i;
912 queue_for_each_hw_ctx(q, hctx, i) {
913 if ((!blk_mq_hctx_has_pending(hctx) &&
914 list_empty_careful(&hctx->dispatch)) ||
915 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
916 continue;
918 blk_mq_run_hw_queue(hctx, false);
922 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
924 cancel_delayed_work(&hctx->run_work);
925 cancel_delayed_work(&hctx->delay_work);
926 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
928 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
930 void blk_mq_stop_hw_queues(struct request_queue *q)
932 struct blk_mq_hw_ctx *hctx;
933 int i;
935 queue_for_each_hw_ctx(q, hctx, i)
936 blk_mq_stop_hw_queue(hctx);
938 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
940 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
942 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
944 blk_mq_run_hw_queue(hctx, false);
946 EXPORT_SYMBOL(blk_mq_start_hw_queue);
948 void blk_mq_start_hw_queues(struct request_queue *q)
950 struct blk_mq_hw_ctx *hctx;
951 int i;
953 queue_for_each_hw_ctx(q, hctx, i)
954 blk_mq_start_hw_queue(hctx);
956 EXPORT_SYMBOL(blk_mq_start_hw_queues);
958 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
960 struct blk_mq_hw_ctx *hctx;
961 int i;
963 queue_for_each_hw_ctx(q, hctx, i) {
964 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
965 continue;
967 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
968 blk_mq_run_hw_queue(hctx, async);
971 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
973 static void blk_mq_run_work_fn(struct work_struct *work)
975 struct blk_mq_hw_ctx *hctx;
977 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
979 __blk_mq_run_hw_queue(hctx);
982 static void blk_mq_delay_work_fn(struct work_struct *work)
984 struct blk_mq_hw_ctx *hctx;
986 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
988 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
989 __blk_mq_run_hw_queue(hctx);
992 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
994 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
995 return;
997 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
998 &hctx->delay_work, msecs_to_jiffies(msecs));
1000 EXPORT_SYMBOL(blk_mq_delay_queue);
1002 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1003 struct request *rq, bool at_head)
1005 struct blk_mq_ctx *ctx = rq->mq_ctx;
1007 trace_block_rq_insert(hctx->queue, rq);
1009 if (at_head)
1010 list_add(&rq->queuelist, &ctx->rq_list);
1011 else
1012 list_add_tail(&rq->queuelist, &ctx->rq_list);
1014 blk_mq_hctx_mark_pending(hctx, ctx);
1017 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1018 bool async)
1020 struct request_queue *q = rq->q;
1021 struct blk_mq_hw_ctx *hctx;
1022 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1024 current_ctx = blk_mq_get_ctx(q);
1025 if (!cpu_online(ctx->cpu))
1026 rq->mq_ctx = ctx = current_ctx;
1028 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1030 spin_lock(&ctx->lock);
1031 __blk_mq_insert_request(hctx, rq, at_head);
1032 spin_unlock(&ctx->lock);
1034 if (run_queue)
1035 blk_mq_run_hw_queue(hctx, async);
1037 blk_mq_put_ctx(current_ctx);
1040 static void blk_mq_insert_requests(struct request_queue *q,
1041 struct blk_mq_ctx *ctx,
1042 struct list_head *list,
1043 int depth,
1044 bool from_schedule)
1047 struct blk_mq_hw_ctx *hctx;
1048 struct blk_mq_ctx *current_ctx;
1050 trace_block_unplug(q, depth, !from_schedule);
1052 current_ctx = blk_mq_get_ctx(q);
1054 if (!cpu_online(ctx->cpu))
1055 ctx = current_ctx;
1056 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1059 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1060 * offline now
1062 spin_lock(&ctx->lock);
1063 while (!list_empty(list)) {
1064 struct request *rq;
1066 rq = list_first_entry(list, struct request, queuelist);
1067 list_del_init(&rq->queuelist);
1068 rq->mq_ctx = ctx;
1069 __blk_mq_insert_request(hctx, rq, false);
1071 spin_unlock(&ctx->lock);
1073 blk_mq_run_hw_queue(hctx, from_schedule);
1074 blk_mq_put_ctx(current_ctx);
1077 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1079 struct request *rqa = container_of(a, struct request, queuelist);
1080 struct request *rqb = container_of(b, struct request, queuelist);
1082 return !(rqa->mq_ctx < rqb->mq_ctx ||
1083 (rqa->mq_ctx == rqb->mq_ctx &&
1084 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1087 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1089 struct blk_mq_ctx *this_ctx;
1090 struct request_queue *this_q;
1091 struct request *rq;
1092 LIST_HEAD(list);
1093 LIST_HEAD(ctx_list);
1094 unsigned int depth;
1096 list_splice_init(&plug->mq_list, &list);
1098 list_sort(NULL, &list, plug_ctx_cmp);
1100 this_q = NULL;
1101 this_ctx = NULL;
1102 depth = 0;
1104 while (!list_empty(&list)) {
1105 rq = list_entry_rq(list.next);
1106 list_del_init(&rq->queuelist);
1107 BUG_ON(!rq->q);
1108 if (rq->mq_ctx != this_ctx) {
1109 if (this_ctx) {
1110 blk_mq_insert_requests(this_q, this_ctx,
1111 &ctx_list, depth,
1112 from_schedule);
1115 this_ctx = rq->mq_ctx;
1116 this_q = rq->q;
1117 depth = 0;
1120 depth++;
1121 list_add_tail(&rq->queuelist, &ctx_list);
1125 * If 'this_ctx' is set, we know we have entries to complete
1126 * on 'ctx_list'. Do those.
1128 if (this_ctx) {
1129 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1130 from_schedule);
1134 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1136 init_request_from_bio(rq, bio);
1138 if (blk_do_io_stat(rq))
1139 blk_account_io_start(rq, 1);
1142 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1144 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1145 !blk_queue_nomerges(hctx->queue);
1148 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1149 struct blk_mq_ctx *ctx,
1150 struct request *rq, struct bio *bio)
1152 if (!hctx_allow_merges(hctx)) {
1153 blk_mq_bio_to_request(rq, bio);
1154 spin_lock(&ctx->lock);
1155 insert_rq:
1156 __blk_mq_insert_request(hctx, rq, false);
1157 spin_unlock(&ctx->lock);
1158 return false;
1159 } else {
1160 struct request_queue *q = hctx->queue;
1162 spin_lock(&ctx->lock);
1163 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1164 blk_mq_bio_to_request(rq, bio);
1165 goto insert_rq;
1168 spin_unlock(&ctx->lock);
1169 __blk_mq_free_request(hctx, ctx, rq);
1170 return true;
1174 struct blk_map_ctx {
1175 struct blk_mq_hw_ctx *hctx;
1176 struct blk_mq_ctx *ctx;
1179 static struct request *blk_mq_map_request(struct request_queue *q,
1180 struct bio *bio,
1181 struct blk_map_ctx *data)
1183 struct blk_mq_hw_ctx *hctx;
1184 struct blk_mq_ctx *ctx;
1185 struct request *rq;
1186 int rw = bio_data_dir(bio);
1187 struct blk_mq_alloc_data alloc_data;
1189 if (unlikely(blk_mq_queue_enter(q))) {
1190 bio_endio(bio, -EIO);
1191 return NULL;
1194 ctx = blk_mq_get_ctx(q);
1195 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1197 if (rw_is_sync(bio->bi_rw))
1198 rw |= REQ_SYNC;
1200 trace_block_getrq(q, bio, rw);
1201 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1202 hctx);
1203 rq = __blk_mq_alloc_request(&alloc_data, rw);
1204 if (unlikely(!rq)) {
1205 __blk_mq_run_hw_queue(hctx);
1206 blk_mq_put_ctx(ctx);
1207 trace_block_sleeprq(q, bio, rw);
1209 ctx = blk_mq_get_ctx(q);
1210 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1211 blk_mq_set_alloc_data(&alloc_data, q,
1212 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1213 rq = __blk_mq_alloc_request(&alloc_data, rw);
1214 ctx = alloc_data.ctx;
1215 hctx = alloc_data.hctx;
1218 hctx->queued++;
1219 data->hctx = hctx;
1220 data->ctx = ctx;
1221 return rq;
1225 * Multiple hardware queue variant. This will not use per-process plugs,
1226 * but will attempt to bypass the hctx queueing if we can go straight to
1227 * hardware for SYNC IO.
1229 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1231 const int is_sync = rw_is_sync(bio->bi_rw);
1232 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1233 struct blk_map_ctx data;
1234 struct request *rq;
1236 blk_queue_bounce(q, &bio);
1238 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1239 bio_endio(bio, -EIO);
1240 return;
1243 rq = blk_mq_map_request(q, bio, &data);
1244 if (unlikely(!rq))
1245 return;
1247 if (unlikely(is_flush_fua)) {
1248 blk_mq_bio_to_request(rq, bio);
1249 blk_insert_flush(rq);
1250 goto run_queue;
1254 * If the driver supports defer issued based on 'last', then
1255 * queue it up like normal since we can potentially save some
1256 * CPU this way.
1258 if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1259 struct blk_mq_queue_data bd = {
1260 .rq = rq,
1261 .list = NULL,
1262 .last = 1
1264 int ret;
1266 blk_mq_bio_to_request(rq, bio);
1269 * For OK queue, we are done. For error, kill it. Any other
1270 * error (busy), just add it to our list as we previously
1271 * would have done
1273 ret = q->mq_ops->queue_rq(data.hctx, &bd);
1274 if (ret == BLK_MQ_RQ_QUEUE_OK)
1275 goto done;
1276 else {
1277 __blk_mq_requeue_request(rq);
1279 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1280 rq->errors = -EIO;
1281 blk_mq_end_request(rq, rq->errors);
1282 goto done;
1287 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1289 * For a SYNC request, send it to the hardware immediately. For
1290 * an ASYNC request, just ensure that we run it later on. The
1291 * latter allows for merging opportunities and more efficient
1292 * dispatching.
1294 run_queue:
1295 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1297 done:
1298 blk_mq_put_ctx(data.ctx);
1302 * Single hardware queue variant. This will attempt to use any per-process
1303 * plug for merging and IO deferral.
1305 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1307 const int is_sync = rw_is_sync(bio->bi_rw);
1308 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1309 unsigned int use_plug, request_count = 0;
1310 struct blk_map_ctx data;
1311 struct request *rq;
1314 * If we have multiple hardware queues, just go directly to
1315 * one of those for sync IO.
1317 use_plug = !is_flush_fua && !is_sync;
1319 blk_queue_bounce(q, &bio);
1321 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1322 bio_endio(bio, -EIO);
1323 return;
1326 if (use_plug && !blk_queue_nomerges(q) &&
1327 blk_attempt_plug_merge(q, bio, &request_count))
1328 return;
1330 rq = blk_mq_map_request(q, bio, &data);
1331 if (unlikely(!rq))
1332 return;
1334 if (unlikely(is_flush_fua)) {
1335 blk_mq_bio_to_request(rq, bio);
1336 blk_insert_flush(rq);
1337 goto run_queue;
1341 * A task plug currently exists. Since this is completely lockless,
1342 * utilize that to temporarily store requests until the task is
1343 * either done or scheduled away.
1345 if (use_plug) {
1346 struct blk_plug *plug = current->plug;
1348 if (plug) {
1349 blk_mq_bio_to_request(rq, bio);
1350 if (list_empty(&plug->mq_list))
1351 trace_block_plug(q);
1352 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1353 blk_flush_plug_list(plug, false);
1354 trace_block_plug(q);
1356 list_add_tail(&rq->queuelist, &plug->mq_list);
1357 blk_mq_put_ctx(data.ctx);
1358 return;
1362 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1364 * For a SYNC request, send it to the hardware immediately. For
1365 * an ASYNC request, just ensure that we run it later on. The
1366 * latter allows for merging opportunities and more efficient
1367 * dispatching.
1369 run_queue:
1370 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1373 blk_mq_put_ctx(data.ctx);
1377 * Default mapping to a software queue, since we use one per CPU.
1379 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1381 return q->queue_hw_ctx[q->mq_map[cpu]];
1383 EXPORT_SYMBOL(blk_mq_map_queue);
1385 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1386 struct blk_mq_tags *tags, unsigned int hctx_idx)
1388 struct page *page;
1390 if (tags->rqs && set->ops->exit_request) {
1391 int i;
1393 for (i = 0; i < tags->nr_tags; i++) {
1394 if (!tags->rqs[i])
1395 continue;
1396 set->ops->exit_request(set->driver_data, tags->rqs[i],
1397 hctx_idx, i);
1398 tags->rqs[i] = NULL;
1402 while (!list_empty(&tags->page_list)) {
1403 page = list_first_entry(&tags->page_list, struct page, lru);
1404 list_del_init(&page->lru);
1405 __free_pages(page, page->private);
1408 kfree(tags->rqs);
1410 blk_mq_free_tags(tags);
1413 static size_t order_to_size(unsigned int order)
1415 return (size_t)PAGE_SIZE << order;
1418 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1419 unsigned int hctx_idx)
1421 struct blk_mq_tags *tags;
1422 unsigned int i, j, entries_per_page, max_order = 4;
1423 size_t rq_size, left;
1425 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1426 set->numa_node,
1427 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1428 if (!tags)
1429 return NULL;
1431 INIT_LIST_HEAD(&tags->page_list);
1433 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1434 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1435 set->numa_node);
1436 if (!tags->rqs) {
1437 blk_mq_free_tags(tags);
1438 return NULL;
1442 * rq_size is the size of the request plus driver payload, rounded
1443 * to the cacheline size
1445 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1446 cache_line_size());
1447 left = rq_size * set->queue_depth;
1449 for (i = 0; i < set->queue_depth; ) {
1450 int this_order = max_order;
1451 struct page *page;
1452 int to_do;
1453 void *p;
1455 while (left < order_to_size(this_order - 1) && this_order)
1456 this_order--;
1458 do {
1459 page = alloc_pages_node(set->numa_node,
1460 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1461 this_order);
1462 if (page)
1463 break;
1464 if (!this_order--)
1465 break;
1466 if (order_to_size(this_order) < rq_size)
1467 break;
1468 } while (1);
1470 if (!page)
1471 goto fail;
1473 page->private = this_order;
1474 list_add_tail(&page->lru, &tags->page_list);
1476 p = page_address(page);
1477 entries_per_page = order_to_size(this_order) / rq_size;
1478 to_do = min(entries_per_page, set->queue_depth - i);
1479 left -= to_do * rq_size;
1480 for (j = 0; j < to_do; j++) {
1481 tags->rqs[i] = p;
1482 tags->rqs[i]->atomic_flags = 0;
1483 tags->rqs[i]->cmd_flags = 0;
1484 if (set->ops->init_request) {
1485 if (set->ops->init_request(set->driver_data,
1486 tags->rqs[i], hctx_idx, i,
1487 set->numa_node)) {
1488 tags->rqs[i] = NULL;
1489 goto fail;
1493 p += rq_size;
1494 i++;
1498 return tags;
1500 fail:
1501 blk_mq_free_rq_map(set, tags, hctx_idx);
1502 return NULL;
1505 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1507 kfree(bitmap->map);
1510 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1512 unsigned int bpw = 8, total, num_maps, i;
1514 bitmap->bits_per_word = bpw;
1516 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1517 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1518 GFP_KERNEL, node);
1519 if (!bitmap->map)
1520 return -ENOMEM;
1522 bitmap->map_size = num_maps;
1524 total = nr_cpu_ids;
1525 for (i = 0; i < num_maps; i++) {
1526 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1527 total -= bitmap->map[i].depth;
1530 return 0;
1533 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1535 struct request_queue *q = hctx->queue;
1536 struct blk_mq_ctx *ctx;
1537 LIST_HEAD(tmp);
1540 * Move ctx entries to new CPU, if this one is going away.
1542 ctx = __blk_mq_get_ctx(q, cpu);
1544 spin_lock(&ctx->lock);
1545 if (!list_empty(&ctx->rq_list)) {
1546 list_splice_init(&ctx->rq_list, &tmp);
1547 blk_mq_hctx_clear_pending(hctx, ctx);
1549 spin_unlock(&ctx->lock);
1551 if (list_empty(&tmp))
1552 return NOTIFY_OK;
1554 ctx = blk_mq_get_ctx(q);
1555 spin_lock(&ctx->lock);
1557 while (!list_empty(&tmp)) {
1558 struct request *rq;
1560 rq = list_first_entry(&tmp, struct request, queuelist);
1561 rq->mq_ctx = ctx;
1562 list_move_tail(&rq->queuelist, &ctx->rq_list);
1565 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1566 blk_mq_hctx_mark_pending(hctx, ctx);
1568 spin_unlock(&ctx->lock);
1570 blk_mq_run_hw_queue(hctx, true);
1571 blk_mq_put_ctx(ctx);
1572 return NOTIFY_OK;
1575 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1577 struct request_queue *q = hctx->queue;
1578 struct blk_mq_tag_set *set = q->tag_set;
1580 if (set->tags[hctx->queue_num])
1581 return NOTIFY_OK;
1583 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1584 if (!set->tags[hctx->queue_num])
1585 return NOTIFY_STOP;
1587 hctx->tags = set->tags[hctx->queue_num];
1588 return NOTIFY_OK;
1591 static int blk_mq_hctx_notify(void *data, unsigned long action,
1592 unsigned int cpu)
1594 struct blk_mq_hw_ctx *hctx = data;
1596 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1597 return blk_mq_hctx_cpu_offline(hctx, cpu);
1598 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1599 return blk_mq_hctx_cpu_online(hctx, cpu);
1601 return NOTIFY_OK;
1604 static void blk_mq_exit_hctx(struct request_queue *q,
1605 struct blk_mq_tag_set *set,
1606 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1608 unsigned flush_start_tag = set->queue_depth;
1610 blk_mq_tag_idle(hctx);
1612 if (set->ops->exit_request)
1613 set->ops->exit_request(set->driver_data,
1614 hctx->fq->flush_rq, hctx_idx,
1615 flush_start_tag + hctx_idx);
1617 if (set->ops->exit_hctx)
1618 set->ops->exit_hctx(hctx, hctx_idx);
1620 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1621 blk_free_flush_queue(hctx->fq);
1622 kfree(hctx->ctxs);
1623 blk_mq_free_bitmap(&hctx->ctx_map);
1626 static void blk_mq_exit_hw_queues(struct request_queue *q,
1627 struct blk_mq_tag_set *set, int nr_queue)
1629 struct blk_mq_hw_ctx *hctx;
1630 unsigned int i;
1632 queue_for_each_hw_ctx(q, hctx, i) {
1633 if (i == nr_queue)
1634 break;
1635 blk_mq_exit_hctx(q, set, hctx, i);
1639 static void blk_mq_free_hw_queues(struct request_queue *q,
1640 struct blk_mq_tag_set *set)
1642 struct blk_mq_hw_ctx *hctx;
1643 unsigned int i;
1645 queue_for_each_hw_ctx(q, hctx, i)
1646 free_cpumask_var(hctx->cpumask);
1649 static int blk_mq_init_hctx(struct request_queue *q,
1650 struct blk_mq_tag_set *set,
1651 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1653 int node;
1654 unsigned flush_start_tag = set->queue_depth;
1656 node = hctx->numa_node;
1657 if (node == NUMA_NO_NODE)
1658 node = hctx->numa_node = set->numa_node;
1660 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1661 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1662 spin_lock_init(&hctx->lock);
1663 INIT_LIST_HEAD(&hctx->dispatch);
1664 hctx->queue = q;
1665 hctx->queue_num = hctx_idx;
1666 hctx->flags = set->flags;
1668 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1669 blk_mq_hctx_notify, hctx);
1670 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1672 hctx->tags = set->tags[hctx_idx];
1675 * Allocate space for all possible cpus to avoid allocation at
1676 * runtime
1678 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1679 GFP_KERNEL, node);
1680 if (!hctx->ctxs)
1681 goto unregister_cpu_notifier;
1683 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1684 goto free_ctxs;
1686 hctx->nr_ctx = 0;
1688 if (set->ops->init_hctx &&
1689 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1690 goto free_bitmap;
1692 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1693 if (!hctx->fq)
1694 goto exit_hctx;
1696 if (set->ops->init_request &&
1697 set->ops->init_request(set->driver_data,
1698 hctx->fq->flush_rq, hctx_idx,
1699 flush_start_tag + hctx_idx, node))
1700 goto free_fq;
1702 return 0;
1704 free_fq:
1705 kfree(hctx->fq);
1706 exit_hctx:
1707 if (set->ops->exit_hctx)
1708 set->ops->exit_hctx(hctx, hctx_idx);
1709 free_bitmap:
1710 blk_mq_free_bitmap(&hctx->ctx_map);
1711 free_ctxs:
1712 kfree(hctx->ctxs);
1713 unregister_cpu_notifier:
1714 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1716 return -1;
1719 static int blk_mq_init_hw_queues(struct request_queue *q,
1720 struct blk_mq_tag_set *set)
1722 struct blk_mq_hw_ctx *hctx;
1723 unsigned int i;
1726 * Initialize hardware queues
1728 queue_for_each_hw_ctx(q, hctx, i) {
1729 if (blk_mq_init_hctx(q, set, hctx, i))
1730 break;
1733 if (i == q->nr_hw_queues)
1734 return 0;
1737 * Init failed
1739 blk_mq_exit_hw_queues(q, set, i);
1741 return 1;
1744 static void blk_mq_init_cpu_queues(struct request_queue *q,
1745 unsigned int nr_hw_queues)
1747 unsigned int i;
1749 for_each_possible_cpu(i) {
1750 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1751 struct blk_mq_hw_ctx *hctx;
1753 memset(__ctx, 0, sizeof(*__ctx));
1754 __ctx->cpu = i;
1755 spin_lock_init(&__ctx->lock);
1756 INIT_LIST_HEAD(&__ctx->rq_list);
1757 __ctx->queue = q;
1759 /* If the cpu isn't online, the cpu is mapped to first hctx */
1760 if (!cpu_online(i))
1761 continue;
1763 hctx = q->mq_ops->map_queue(q, i);
1764 cpumask_set_cpu(i, hctx->cpumask);
1765 hctx->nr_ctx++;
1768 * Set local node, IFF we have more than one hw queue. If
1769 * not, we remain on the home node of the device
1771 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1772 hctx->numa_node = cpu_to_node(i);
1776 static void blk_mq_map_swqueue(struct request_queue *q)
1778 unsigned int i;
1779 struct blk_mq_hw_ctx *hctx;
1780 struct blk_mq_ctx *ctx;
1782 queue_for_each_hw_ctx(q, hctx, i) {
1783 cpumask_clear(hctx->cpumask);
1784 hctx->nr_ctx = 0;
1788 * Map software to hardware queues
1790 queue_for_each_ctx(q, ctx, i) {
1791 /* If the cpu isn't online, the cpu is mapped to first hctx */
1792 if (!cpu_online(i))
1793 continue;
1795 hctx = q->mq_ops->map_queue(q, i);
1796 cpumask_set_cpu(i, hctx->cpumask);
1797 ctx->index_hw = hctx->nr_ctx;
1798 hctx->ctxs[hctx->nr_ctx++] = ctx;
1801 queue_for_each_hw_ctx(q, hctx, i) {
1803 * If no software queues are mapped to this hardware queue,
1804 * disable it and free the request entries.
1806 if (!hctx->nr_ctx) {
1807 struct blk_mq_tag_set *set = q->tag_set;
1809 if (set->tags[i]) {
1810 blk_mq_free_rq_map(set, set->tags[i], i);
1811 set->tags[i] = NULL;
1812 hctx->tags = NULL;
1814 continue;
1818 * Initialize batch roundrobin counts
1820 hctx->next_cpu = cpumask_first(hctx->cpumask);
1821 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1825 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1827 struct blk_mq_hw_ctx *hctx;
1828 struct request_queue *q;
1829 bool shared;
1830 int i;
1832 if (set->tag_list.next == set->tag_list.prev)
1833 shared = false;
1834 else
1835 shared = true;
1837 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1838 blk_mq_freeze_queue(q);
1840 queue_for_each_hw_ctx(q, hctx, i) {
1841 if (shared)
1842 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1843 else
1844 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1846 blk_mq_unfreeze_queue(q);
1850 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1852 struct blk_mq_tag_set *set = q->tag_set;
1854 mutex_lock(&set->tag_list_lock);
1855 list_del_init(&q->tag_set_list);
1856 blk_mq_update_tag_set_depth(set);
1857 mutex_unlock(&set->tag_list_lock);
1860 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1861 struct request_queue *q)
1863 q->tag_set = set;
1865 mutex_lock(&set->tag_list_lock);
1866 list_add_tail(&q->tag_set_list, &set->tag_list);
1867 blk_mq_update_tag_set_depth(set);
1868 mutex_unlock(&set->tag_list_lock);
1872 * It is the actual release handler for mq, but we do it from
1873 * request queue's release handler for avoiding use-after-free
1874 * and headache because q->mq_kobj shouldn't have been introduced,
1875 * but we can't group ctx/kctx kobj without it.
1877 void blk_mq_release(struct request_queue *q)
1879 struct blk_mq_hw_ctx *hctx;
1880 unsigned int i;
1882 /* hctx kobj stays in hctx */
1883 queue_for_each_hw_ctx(q, hctx, i)
1884 kfree(hctx);
1886 kfree(q->queue_hw_ctx);
1888 /* ctx kobj stays in queue_ctx */
1889 free_percpu(q->queue_ctx);
1892 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1894 struct blk_mq_hw_ctx **hctxs;
1895 struct blk_mq_ctx __percpu *ctx;
1896 struct request_queue *q;
1897 unsigned int *map;
1898 int i;
1900 ctx = alloc_percpu(struct blk_mq_ctx);
1901 if (!ctx)
1902 return ERR_PTR(-ENOMEM);
1904 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1905 set->numa_node);
1907 if (!hctxs)
1908 goto err_percpu;
1910 map = blk_mq_make_queue_map(set);
1911 if (!map)
1912 goto err_map;
1914 for (i = 0; i < set->nr_hw_queues; i++) {
1915 int node = blk_mq_hw_queue_to_node(map, i);
1917 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1918 GFP_KERNEL, node);
1919 if (!hctxs[i])
1920 goto err_hctxs;
1922 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1923 node))
1924 goto err_hctxs;
1926 atomic_set(&hctxs[i]->nr_active, 0);
1927 hctxs[i]->numa_node = node;
1928 hctxs[i]->queue_num = i;
1931 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1932 if (!q)
1933 goto err_hctxs;
1936 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1937 * See blk_register_queue() for details.
1939 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1940 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1941 goto err_map;
1943 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1944 blk_queue_rq_timeout(q, 30000);
1946 q->nr_queues = nr_cpu_ids;
1947 q->nr_hw_queues = set->nr_hw_queues;
1948 q->mq_map = map;
1950 q->queue_ctx = ctx;
1951 q->queue_hw_ctx = hctxs;
1953 q->mq_ops = set->ops;
1954 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1956 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1957 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1959 q->sg_reserved_size = INT_MAX;
1961 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1962 INIT_LIST_HEAD(&q->requeue_list);
1963 spin_lock_init(&q->requeue_lock);
1965 if (q->nr_hw_queues > 1)
1966 blk_queue_make_request(q, blk_mq_make_request);
1967 else
1968 blk_queue_make_request(q, blk_sq_make_request);
1970 if (set->timeout)
1971 blk_queue_rq_timeout(q, set->timeout);
1974 * Do this after blk_queue_make_request() overrides it...
1976 q->nr_requests = set->queue_depth;
1978 if (set->ops->complete)
1979 blk_queue_softirq_done(q, set->ops->complete);
1981 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1983 if (blk_mq_init_hw_queues(q, set))
1984 goto err_hw;
1986 mutex_lock(&all_q_mutex);
1987 list_add_tail(&q->all_q_node, &all_q_list);
1988 mutex_unlock(&all_q_mutex);
1990 blk_mq_add_queue_tag_set(set, q);
1992 blk_mq_map_swqueue(q);
1994 return q;
1996 err_hw:
1997 blk_cleanup_queue(q);
1998 err_hctxs:
1999 kfree(map);
2000 for (i = 0; i < set->nr_hw_queues; i++) {
2001 if (!hctxs[i])
2002 break;
2003 free_cpumask_var(hctxs[i]->cpumask);
2004 kfree(hctxs[i]);
2006 err_map:
2007 kfree(hctxs);
2008 err_percpu:
2009 free_percpu(ctx);
2010 return ERR_PTR(-ENOMEM);
2012 EXPORT_SYMBOL(blk_mq_init_queue);
2014 void blk_mq_free_queue(struct request_queue *q)
2016 struct blk_mq_tag_set *set = q->tag_set;
2018 blk_mq_del_queue_tag_set(q);
2020 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2021 blk_mq_free_hw_queues(q, set);
2023 percpu_ref_exit(&q->mq_usage_counter);
2025 kfree(q->mq_map);
2027 q->mq_map = NULL;
2029 mutex_lock(&all_q_mutex);
2030 list_del_init(&q->all_q_node);
2031 mutex_unlock(&all_q_mutex);
2034 /* Basically redo blk_mq_init_queue with queue frozen */
2035 static void blk_mq_queue_reinit(struct request_queue *q)
2037 WARN_ON_ONCE(!q->mq_freeze_depth);
2039 blk_mq_sysfs_unregister(q);
2041 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
2044 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2045 * we should change hctx numa_node according to new topology (this
2046 * involves free and re-allocate memory, worthy doing?)
2049 blk_mq_map_swqueue(q);
2051 blk_mq_sysfs_register(q);
2054 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2055 unsigned long action, void *hcpu)
2057 struct request_queue *q;
2060 * Before new mappings are established, hotadded cpu might already
2061 * start handling requests. This doesn't break anything as we map
2062 * offline CPUs to first hardware queue. We will re-init the queue
2063 * below to get optimal settings.
2065 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2066 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2067 return NOTIFY_OK;
2069 mutex_lock(&all_q_mutex);
2072 * We need to freeze and reinit all existing queues. Freezing
2073 * involves synchronous wait for an RCU grace period and doing it
2074 * one by one may take a long time. Start freezing all queues in
2075 * one swoop and then wait for the completions so that freezing can
2076 * take place in parallel.
2078 list_for_each_entry(q, &all_q_list, all_q_node)
2079 blk_mq_freeze_queue_start(q);
2080 list_for_each_entry(q, &all_q_list, all_q_node)
2081 blk_mq_freeze_queue_wait(q);
2083 list_for_each_entry(q, &all_q_list, all_q_node)
2084 blk_mq_queue_reinit(q);
2086 list_for_each_entry(q, &all_q_list, all_q_node)
2087 blk_mq_unfreeze_queue(q);
2089 mutex_unlock(&all_q_mutex);
2090 return NOTIFY_OK;
2093 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2095 int i;
2097 for (i = 0; i < set->nr_hw_queues; i++) {
2098 set->tags[i] = blk_mq_init_rq_map(set, i);
2099 if (!set->tags[i])
2100 goto out_unwind;
2103 return 0;
2105 out_unwind:
2106 while (--i >= 0)
2107 blk_mq_free_rq_map(set, set->tags[i], i);
2109 return -ENOMEM;
2113 * Allocate the request maps associated with this tag_set. Note that this
2114 * may reduce the depth asked for, if memory is tight. set->queue_depth
2115 * will be updated to reflect the allocated depth.
2117 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2119 unsigned int depth;
2120 int err;
2122 depth = set->queue_depth;
2123 do {
2124 err = __blk_mq_alloc_rq_maps(set);
2125 if (!err)
2126 break;
2128 set->queue_depth >>= 1;
2129 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2130 err = -ENOMEM;
2131 break;
2133 } while (set->queue_depth);
2135 if (!set->queue_depth || err) {
2136 pr_err("blk-mq: failed to allocate request map\n");
2137 return -ENOMEM;
2140 if (depth != set->queue_depth)
2141 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2142 depth, set->queue_depth);
2144 return 0;
2148 * Alloc a tag set to be associated with one or more request queues.
2149 * May fail with EINVAL for various error conditions. May adjust the
2150 * requested depth down, if if it too large. In that case, the set
2151 * value will be stored in set->queue_depth.
2153 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2155 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2157 if (!set->nr_hw_queues)
2158 return -EINVAL;
2159 if (!set->queue_depth)
2160 return -EINVAL;
2161 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2162 return -EINVAL;
2164 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2165 return -EINVAL;
2167 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2168 pr_info("blk-mq: reduced tag depth to %u\n",
2169 BLK_MQ_MAX_DEPTH);
2170 set->queue_depth = BLK_MQ_MAX_DEPTH;
2174 * If a crashdump is active, then we are potentially in a very
2175 * memory constrained environment. Limit us to 1 queue and
2176 * 64 tags to prevent using too much memory.
2178 if (is_kdump_kernel()) {
2179 set->nr_hw_queues = 1;
2180 set->queue_depth = min(64U, set->queue_depth);
2183 set->tags = kmalloc_node(set->nr_hw_queues *
2184 sizeof(struct blk_mq_tags *),
2185 GFP_KERNEL, set->numa_node);
2186 if (!set->tags)
2187 return -ENOMEM;
2189 if (blk_mq_alloc_rq_maps(set))
2190 goto enomem;
2192 mutex_init(&set->tag_list_lock);
2193 INIT_LIST_HEAD(&set->tag_list);
2195 return 0;
2196 enomem:
2197 kfree(set->tags);
2198 set->tags = NULL;
2199 return -ENOMEM;
2201 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2203 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2205 int i;
2207 for (i = 0; i < set->nr_hw_queues; i++) {
2208 if (set->tags[i])
2209 blk_mq_free_rq_map(set, set->tags[i], i);
2212 kfree(set->tags);
2213 set->tags = NULL;
2215 EXPORT_SYMBOL(blk_mq_free_tag_set);
2217 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2219 struct blk_mq_tag_set *set = q->tag_set;
2220 struct blk_mq_hw_ctx *hctx;
2221 int i, ret;
2223 if (!set || nr > set->queue_depth)
2224 return -EINVAL;
2226 ret = 0;
2227 queue_for_each_hw_ctx(q, hctx, i) {
2228 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2229 if (ret)
2230 break;
2233 if (!ret)
2234 q->nr_requests = nr;
2236 return ret;
2239 void blk_mq_disable_hotplug(void)
2241 mutex_lock(&all_q_mutex);
2244 void blk_mq_enable_hotplug(void)
2246 mutex_unlock(&all_q_mutex);
2249 static int __init blk_mq_init(void)
2251 blk_mq_cpu_init();
2253 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2255 return 0;
2257 subsys_initcall(blk_mq_init);