2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
25 #include <trace/events/block.h>
27 #include <linux/blk-mq.h>
30 #include "blk-mq-tag.h"
32 static DEFINE_MUTEX(all_q_mutex
);
33 static LIST_HEAD(all_q_list
);
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
);
36 static void blk_mq_run_queues(struct request_queue
*q
);
39 * Check if any of the ctx's have pending work in this hardware queue
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
45 for (i
= 0; i
< hctx
->ctx_map
.map_size
; i
++)
46 if (hctx
->ctx_map
.map
[i
].word
)
52 static inline struct blk_align_bitmap
*get_bm(struct blk_mq_hw_ctx
*hctx
,
53 struct blk_mq_ctx
*ctx
)
55 return &hctx
->ctx_map
.map
[ctx
->index_hw
/ hctx
->ctx_map
.bits_per_word
];
58 #define CTX_TO_BIT(hctx, ctx) \
59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
62 * Mark this ctx as having pending work in this hardware queue
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
65 struct blk_mq_ctx
*ctx
)
67 struct blk_align_bitmap
*bm
= get_bm(hctx
, ctx
);
69 if (!test_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
))
70 set_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
);
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
74 struct blk_mq_ctx
*ctx
)
76 struct blk_align_bitmap
*bm
= get_bm(hctx
, ctx
);
78 clear_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
);
81 static int blk_mq_queue_enter(struct request_queue
*q
)
86 if (percpu_ref_tryget_live(&q
->mq_usage_counter
))
89 ret
= wait_event_interruptible(q
->mq_freeze_wq
,
90 !q
->mq_freeze_depth
|| blk_queue_dying(q
));
91 if (blk_queue_dying(q
))
98 static void blk_mq_queue_exit(struct request_queue
*q
)
100 percpu_ref_put(&q
->mq_usage_counter
);
103 static void blk_mq_usage_counter_release(struct percpu_ref
*ref
)
105 struct request_queue
*q
=
106 container_of(ref
, struct request_queue
, mq_usage_counter
);
108 wake_up_all(&q
->mq_freeze_wq
);
111 void blk_mq_freeze_queue_start(struct request_queue
*q
)
115 spin_lock_irq(q
->queue_lock
);
116 freeze
= !q
->mq_freeze_depth
++;
117 spin_unlock_irq(q
->queue_lock
);
120 percpu_ref_kill(&q
->mq_usage_counter
);
121 blk_mq_run_queues(q
);
124 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start
);
126 static void blk_mq_freeze_queue_wait(struct request_queue
*q
)
128 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->mq_usage_counter
));
132 * Guarantee no request is in use, so we can change any data structure of
133 * the queue afterward.
135 void blk_mq_freeze_queue(struct request_queue
*q
)
137 blk_mq_freeze_queue_start(q
);
138 blk_mq_freeze_queue_wait(q
);
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
142 void blk_mq_unfreeze_queue(struct request_queue
*q
)
146 spin_lock_irq(q
->queue_lock
);
147 wake
= !--q
->mq_freeze_depth
;
148 WARN_ON_ONCE(q
->mq_freeze_depth
< 0);
149 spin_unlock_irq(q
->queue_lock
);
151 percpu_ref_reinit(&q
->mq_usage_counter
);
152 wake_up_all(&q
->mq_freeze_wq
);
155 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
157 void blk_mq_wake_waiters(struct request_queue
*q
)
159 struct blk_mq_hw_ctx
*hctx
;
162 queue_for_each_hw_ctx(q
, hctx
, i
)
163 if (blk_mq_hw_queue_mapped(hctx
))
164 blk_mq_tag_wakeup_all(hctx
->tags
, true);
167 * If we are called because the queue has now been marked as
168 * dying, we need to ensure that processes currently waiting on
169 * the queue are notified as well.
171 wake_up_all(&q
->mq_freeze_wq
);
174 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
176 return blk_mq_has_free_tags(hctx
->tags
);
178 EXPORT_SYMBOL(blk_mq_can_queue
);
180 static void blk_mq_rq_ctx_init(struct request_queue
*q
, struct blk_mq_ctx
*ctx
,
181 struct request
*rq
, unsigned int rw_flags
)
183 if (blk_queue_io_stat(q
))
184 rw_flags
|= REQ_IO_STAT
;
186 INIT_LIST_HEAD(&rq
->queuelist
);
187 /* csd/requeue_work/fifo_time is initialized before use */
190 rq
->cmd_flags
|= rw_flags
;
191 /* do not touch atomic flags, it needs atomic ops against the timer */
193 INIT_HLIST_NODE(&rq
->hash
);
194 RB_CLEAR_NODE(&rq
->rb_node
);
197 rq
->start_time
= jiffies
;
198 #ifdef CONFIG_BLK_CGROUP
200 set_start_time_ns(rq
);
201 rq
->io_start_time_ns
= 0;
203 rq
->nr_phys_segments
= 0;
204 #if defined(CONFIG_BLK_DEV_INTEGRITY)
205 rq
->nr_integrity_segments
= 0;
208 /* tag was already set */
218 INIT_LIST_HEAD(&rq
->timeout_list
);
222 rq
->end_io_data
= NULL
;
225 ctx
->rq_dispatched
[rw_is_sync(rw_flags
)]++;
228 static struct request
*
229 __blk_mq_alloc_request(struct blk_mq_alloc_data
*data
, int rw
)
234 tag
= blk_mq_get_tag(data
);
235 if (tag
!= BLK_MQ_TAG_FAIL
) {
236 rq
= data
->hctx
->tags
->rqs
[tag
];
238 if (blk_mq_tag_busy(data
->hctx
)) {
239 rq
->cmd_flags
= REQ_MQ_INFLIGHT
;
240 atomic_inc(&data
->hctx
->nr_active
);
244 blk_mq_rq_ctx_init(data
->q
, data
->ctx
, rq
, rw
);
251 struct request
*blk_mq_alloc_request(struct request_queue
*q
, int rw
, gfp_t gfp
,
254 struct blk_mq_ctx
*ctx
;
255 struct blk_mq_hw_ctx
*hctx
;
257 struct blk_mq_alloc_data alloc_data
;
260 ret
= blk_mq_queue_enter(q
);
264 ctx
= blk_mq_get_ctx(q
);
265 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
266 blk_mq_set_alloc_data(&alloc_data
, q
, gfp
& ~__GFP_WAIT
,
267 reserved
, ctx
, hctx
);
269 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
270 if (!rq
&& (gfp
& __GFP_WAIT
)) {
271 __blk_mq_run_hw_queue(hctx
);
274 ctx
= blk_mq_get_ctx(q
);
275 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
276 blk_mq_set_alloc_data(&alloc_data
, q
, gfp
, reserved
, ctx
,
278 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
279 ctx
= alloc_data
.ctx
;
283 blk_mq_queue_exit(q
);
284 return ERR_PTR(-EWOULDBLOCK
);
288 EXPORT_SYMBOL(blk_mq_alloc_request
);
290 static void __blk_mq_free_request(struct blk_mq_hw_ctx
*hctx
,
291 struct blk_mq_ctx
*ctx
, struct request
*rq
)
293 const int tag
= rq
->tag
;
294 struct request_queue
*q
= rq
->q
;
296 if (rq
->cmd_flags
& REQ_MQ_INFLIGHT
)
297 atomic_dec(&hctx
->nr_active
);
300 clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
301 blk_mq_put_tag(hctx
, tag
, &ctx
->last_tag
);
302 blk_mq_queue_exit(q
);
305 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
307 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
309 ctx
->rq_completed
[rq_is_sync(rq
)]++;
310 __blk_mq_free_request(hctx
, ctx
, rq
);
313 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request
);
315 void blk_mq_free_request(struct request
*rq
)
317 struct blk_mq_hw_ctx
*hctx
;
318 struct request_queue
*q
= rq
->q
;
320 hctx
= q
->mq_ops
->map_queue(q
, rq
->mq_ctx
->cpu
);
321 blk_mq_free_hctx_request(hctx
, rq
);
323 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
325 inline void __blk_mq_end_request(struct request
*rq
, int error
)
327 blk_account_io_done(rq
);
330 rq
->end_io(rq
, error
);
332 if (unlikely(blk_bidi_rq(rq
)))
333 blk_mq_free_request(rq
->next_rq
);
334 blk_mq_free_request(rq
);
337 EXPORT_SYMBOL(__blk_mq_end_request
);
339 void blk_mq_end_request(struct request
*rq
, int error
)
341 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
343 __blk_mq_end_request(rq
, error
);
345 EXPORT_SYMBOL(blk_mq_end_request
);
347 static void __blk_mq_complete_request_remote(void *data
)
349 struct request
*rq
= data
;
351 rq
->q
->softirq_done_fn(rq
);
354 static void blk_mq_ipi_complete_request(struct request
*rq
)
356 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
360 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
361 rq
->q
->softirq_done_fn(rq
);
366 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
367 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
369 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
370 rq
->csd
.func
= __blk_mq_complete_request_remote
;
373 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
375 rq
->q
->softirq_done_fn(rq
);
380 void __blk_mq_complete_request(struct request
*rq
)
382 struct request_queue
*q
= rq
->q
;
384 if (!q
->softirq_done_fn
)
385 blk_mq_end_request(rq
, rq
->errors
);
387 blk_mq_ipi_complete_request(rq
);
391 * blk_mq_complete_request - end I/O on a request
392 * @rq: the request being processed
395 * Ends all I/O on a request. It does not handle partial completions.
396 * The actual completion happens out-of-order, through a IPI handler.
398 void blk_mq_complete_request(struct request
*rq
)
400 struct request_queue
*q
= rq
->q
;
402 if (unlikely(blk_should_fake_timeout(q
)))
404 if (!blk_mark_rq_complete(rq
))
405 __blk_mq_complete_request(rq
);
407 EXPORT_SYMBOL(blk_mq_complete_request
);
409 int blk_mq_request_started(struct request
*rq
)
411 return test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
413 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
415 void blk_mq_start_request(struct request
*rq
)
417 struct request_queue
*q
= rq
->q
;
419 trace_block_rq_issue(q
, rq
);
421 rq
->resid_len
= blk_rq_bytes(rq
);
422 if (unlikely(blk_bidi_rq(rq
)))
423 rq
->next_rq
->resid_len
= blk_rq_bytes(rq
->next_rq
);
428 * Ensure that ->deadline is visible before set the started
429 * flag and clear the completed flag.
431 smp_mb__before_atomic();
434 * Mark us as started and clear complete. Complete might have been
435 * set if requeue raced with timeout, which then marked it as
436 * complete. So be sure to clear complete again when we start
437 * the request, otherwise we'll ignore the completion event.
439 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
440 set_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
441 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
442 clear_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
);
444 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
446 * Make sure space for the drain appears. We know we can do
447 * this because max_hw_segments has been adjusted to be one
448 * fewer than the device can handle.
450 rq
->nr_phys_segments
++;
453 EXPORT_SYMBOL(blk_mq_start_request
);
455 static void __blk_mq_requeue_request(struct request
*rq
)
457 struct request_queue
*q
= rq
->q
;
459 trace_block_rq_requeue(q
, rq
);
461 if (test_and_clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
462 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
463 rq
->nr_phys_segments
--;
467 void blk_mq_requeue_request(struct request
*rq
)
469 __blk_mq_requeue_request(rq
);
471 BUG_ON(blk_queued_rq(rq
));
472 blk_mq_add_to_requeue_list(rq
, true);
474 EXPORT_SYMBOL(blk_mq_requeue_request
);
476 static void blk_mq_requeue_work(struct work_struct
*work
)
478 struct request_queue
*q
=
479 container_of(work
, struct request_queue
, requeue_work
);
481 struct request
*rq
, *next
;
484 spin_lock_irqsave(&q
->requeue_lock
, flags
);
485 list_splice_init(&q
->requeue_list
, &rq_list
);
486 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
488 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
489 if (!(rq
->cmd_flags
& REQ_SOFTBARRIER
))
492 rq
->cmd_flags
&= ~REQ_SOFTBARRIER
;
493 list_del_init(&rq
->queuelist
);
494 blk_mq_insert_request(rq
, true, false, false);
497 while (!list_empty(&rq_list
)) {
498 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
499 list_del_init(&rq
->queuelist
);
500 blk_mq_insert_request(rq
, false, false, false);
504 * Use the start variant of queue running here, so that running
505 * the requeue work will kick stopped queues.
507 blk_mq_start_hw_queues(q
);
510 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
)
512 struct request_queue
*q
= rq
->q
;
516 * We abuse this flag that is otherwise used by the I/O scheduler to
517 * request head insertation from the workqueue.
519 BUG_ON(rq
->cmd_flags
& REQ_SOFTBARRIER
);
521 spin_lock_irqsave(&q
->requeue_lock
, flags
);
523 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
524 list_add(&rq
->queuelist
, &q
->requeue_list
);
526 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
528 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
530 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
532 void blk_mq_cancel_requeue_work(struct request_queue
*q
)
534 cancel_work_sync(&q
->requeue_work
);
536 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work
);
538 void blk_mq_kick_requeue_list(struct request_queue
*q
)
540 kblockd_schedule_work(&q
->requeue_work
);
542 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
544 void blk_mq_abort_requeue_list(struct request_queue
*q
)
549 spin_lock_irqsave(&q
->requeue_lock
, flags
);
550 list_splice_init(&q
->requeue_list
, &rq_list
);
551 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
553 while (!list_empty(&rq_list
)) {
556 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
557 list_del_init(&rq
->queuelist
);
559 blk_mq_end_request(rq
, rq
->errors
);
562 EXPORT_SYMBOL(blk_mq_abort_requeue_list
);
564 static inline bool is_flush_request(struct request
*rq
,
565 struct blk_flush_queue
*fq
, unsigned int tag
)
567 return ((rq
->cmd_flags
& REQ_FLUSH_SEQ
) &&
568 fq
->flush_rq
->tag
== tag
);
571 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
573 struct request
*rq
= tags
->rqs
[tag
];
574 /* mq_ctx of flush rq is always cloned from the corresponding req */
575 struct blk_flush_queue
*fq
= blk_get_flush_queue(rq
->q
, rq
->mq_ctx
);
577 if (!is_flush_request(rq
, fq
, tag
))
582 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
584 struct blk_mq_timeout_data
{
586 unsigned int next_set
;
589 void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
591 struct blk_mq_ops
*ops
= req
->q
->mq_ops
;
592 enum blk_eh_timer_return ret
= BLK_EH_RESET_TIMER
;
595 * We know that complete is set at this point. If STARTED isn't set
596 * anymore, then the request isn't active and the "timeout" should
597 * just be ignored. This can happen due to the bitflag ordering.
598 * Timeout first checks if STARTED is set, and if it is, assumes
599 * the request is active. But if we race with completion, then
600 * we both flags will get cleared. So check here again, and ignore
601 * a timeout event with a request that isn't active.
603 if (!test_bit(REQ_ATOM_STARTED
, &req
->atomic_flags
))
607 ret
= ops
->timeout(req
, reserved
);
611 __blk_mq_complete_request(req
);
613 case BLK_EH_RESET_TIMER
:
615 blk_clear_rq_complete(req
);
617 case BLK_EH_NOT_HANDLED
:
620 printk(KERN_ERR
"block: bad eh return: %d\n", ret
);
625 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
626 struct request
*rq
, void *priv
, bool reserved
)
628 struct blk_mq_timeout_data
*data
= priv
;
630 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
632 * If a request wasn't started before the queue was
633 * marked dying, kill it here or it'll go unnoticed.
635 if (unlikely(blk_queue_dying(rq
->q
))) {
637 blk_mq_complete_request(rq
);
641 if (rq
->cmd_flags
& REQ_NO_TIMEOUT
)
644 if (time_after_eq(jiffies
, rq
->deadline
)) {
645 if (!blk_mark_rq_complete(rq
))
646 blk_mq_rq_timed_out(rq
, reserved
);
647 } else if (!data
->next_set
|| time_after(data
->next
, rq
->deadline
)) {
648 data
->next
= rq
->deadline
;
653 static void blk_mq_rq_timer(unsigned long priv
)
655 struct request_queue
*q
= (struct request_queue
*)priv
;
656 struct blk_mq_timeout_data data
= {
660 struct blk_mq_hw_ctx
*hctx
;
663 queue_for_each_hw_ctx(q
, hctx
, i
) {
665 * If not software queues are currently mapped to this
666 * hardware queue, there's nothing to check
668 if (!blk_mq_hw_queue_mapped(hctx
))
671 blk_mq_tag_busy_iter(hctx
, blk_mq_check_expired
, &data
);
675 data
.next
= blk_rq_timeout(round_jiffies_up(data
.next
));
676 mod_timer(&q
->timeout
, data
.next
);
678 queue_for_each_hw_ctx(q
, hctx
, i
)
679 blk_mq_tag_idle(hctx
);
684 * Reverse check our software queue for entries that we could potentially
685 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
686 * too much time checking for merges.
688 static bool blk_mq_attempt_merge(struct request_queue
*q
,
689 struct blk_mq_ctx
*ctx
, struct bio
*bio
)
694 list_for_each_entry_reverse(rq
, &ctx
->rq_list
, queuelist
) {
700 if (!blk_rq_merge_ok(rq
, bio
))
703 el_ret
= blk_try_merge(rq
, bio
);
704 if (el_ret
== ELEVATOR_BACK_MERGE
) {
705 if (bio_attempt_back_merge(q
, rq
, bio
)) {
710 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
711 if (bio_attempt_front_merge(q
, rq
, bio
)) {
723 * Process software queues that have been marked busy, splicing them
724 * to the for-dispatch
726 static void flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
728 struct blk_mq_ctx
*ctx
;
731 for (i
= 0; i
< hctx
->ctx_map
.map_size
; i
++) {
732 struct blk_align_bitmap
*bm
= &hctx
->ctx_map
.map
[i
];
733 unsigned int off
, bit
;
739 off
= i
* hctx
->ctx_map
.bits_per_word
;
741 bit
= find_next_bit(&bm
->word
, bm
->depth
, bit
);
742 if (bit
>= bm
->depth
)
745 ctx
= hctx
->ctxs
[bit
+ off
];
746 clear_bit(bit
, &bm
->word
);
747 spin_lock(&ctx
->lock
);
748 list_splice_tail_init(&ctx
->rq_list
, list
);
749 spin_unlock(&ctx
->lock
);
757 * Run this hardware queue, pulling any software queues mapped to it in.
758 * Note that this function currently has various problems around ordering
759 * of IO. In particular, we'd like FIFO behaviour on handling existing
760 * items on the hctx->dispatch list. Ignore that for now.
762 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
764 struct request_queue
*q
= hctx
->queue
;
767 LIST_HEAD(driver_list
);
768 struct list_head
*dptr
;
771 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
));
773 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
)))
779 * Touch any software queue that has pending entries.
781 flush_busy_ctxs(hctx
, &rq_list
);
784 * If we have previous entries on our dispatch list, grab them
785 * and stuff them at the front for more fair dispatch.
787 if (!list_empty_careful(&hctx
->dispatch
)) {
788 spin_lock(&hctx
->lock
);
789 if (!list_empty(&hctx
->dispatch
))
790 list_splice_init(&hctx
->dispatch
, &rq_list
);
791 spin_unlock(&hctx
->lock
);
795 * Start off with dptr being NULL, so we start the first request
796 * immediately, even if we have more pending.
801 * Now process all the entries, sending them to the driver.
804 while (!list_empty(&rq_list
)) {
805 struct blk_mq_queue_data bd
;
808 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
809 list_del_init(&rq
->queuelist
);
813 bd
.last
= list_empty(&rq_list
);
815 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
817 case BLK_MQ_RQ_QUEUE_OK
:
820 case BLK_MQ_RQ_QUEUE_BUSY
:
821 list_add(&rq
->queuelist
, &rq_list
);
822 __blk_mq_requeue_request(rq
);
825 pr_err("blk-mq: bad return on queue: %d\n", ret
);
826 case BLK_MQ_RQ_QUEUE_ERROR
:
828 blk_mq_end_request(rq
, rq
->errors
);
832 if (ret
== BLK_MQ_RQ_QUEUE_BUSY
)
836 * We've done the first request. If we have more than 1
837 * left in the list, set dptr to defer issue.
839 if (!dptr
&& rq_list
.next
!= rq_list
.prev
)
844 hctx
->dispatched
[0]++;
845 else if (queued
< (1 << (BLK_MQ_MAX_DISPATCH_ORDER
- 1)))
846 hctx
->dispatched
[ilog2(queued
) + 1]++;
849 * Any items that need requeuing? Stuff them into hctx->dispatch,
850 * that is where we will continue on next queue run.
852 if (!list_empty(&rq_list
)) {
853 spin_lock(&hctx
->lock
);
854 list_splice(&rq_list
, &hctx
->dispatch
);
855 spin_unlock(&hctx
->lock
);
860 * It'd be great if the workqueue API had a way to pass
861 * in a mask and had some smarts for more clever placement.
862 * For now we just round-robin here, switching for every
863 * BLK_MQ_CPU_WORK_BATCH queued items.
865 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
867 if (hctx
->queue
->nr_hw_queues
== 1)
868 return WORK_CPU_UNBOUND
;
870 if (--hctx
->next_cpu_batch
<= 0) {
871 int cpu
= hctx
->next_cpu
, next_cpu
;
873 next_cpu
= cpumask_next(hctx
->next_cpu
, hctx
->cpumask
);
874 if (next_cpu
>= nr_cpu_ids
)
875 next_cpu
= cpumask_first(hctx
->cpumask
);
877 hctx
->next_cpu
= next_cpu
;
878 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
883 return hctx
->next_cpu
;
886 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
888 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
) ||
889 !blk_mq_hw_queue_mapped(hctx
)))
894 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
895 __blk_mq_run_hw_queue(hctx
);
903 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
907 static void blk_mq_run_queues(struct request_queue
*q
)
909 struct blk_mq_hw_ctx
*hctx
;
912 queue_for_each_hw_ctx(q
, hctx
, i
) {
913 if ((!blk_mq_hctx_has_pending(hctx
) &&
914 list_empty_careful(&hctx
->dispatch
)) ||
915 test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
918 blk_mq_run_hw_queue(hctx
, false);
922 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
924 cancel_delayed_work(&hctx
->run_work
);
925 cancel_delayed_work(&hctx
->delay_work
);
926 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
928 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
930 void blk_mq_stop_hw_queues(struct request_queue
*q
)
932 struct blk_mq_hw_ctx
*hctx
;
935 queue_for_each_hw_ctx(q
, hctx
, i
)
936 blk_mq_stop_hw_queue(hctx
);
938 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
940 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
942 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
944 blk_mq_run_hw_queue(hctx
, false);
946 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
948 void blk_mq_start_hw_queues(struct request_queue
*q
)
950 struct blk_mq_hw_ctx
*hctx
;
953 queue_for_each_hw_ctx(q
, hctx
, i
)
954 blk_mq_start_hw_queue(hctx
);
956 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
958 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
960 struct blk_mq_hw_ctx
*hctx
;
963 queue_for_each_hw_ctx(q
, hctx
, i
) {
964 if (!test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
967 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
968 blk_mq_run_hw_queue(hctx
, async
);
971 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
973 static void blk_mq_run_work_fn(struct work_struct
*work
)
975 struct blk_mq_hw_ctx
*hctx
;
977 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
979 __blk_mq_run_hw_queue(hctx
);
982 static void blk_mq_delay_work_fn(struct work_struct
*work
)
984 struct blk_mq_hw_ctx
*hctx
;
986 hctx
= container_of(work
, struct blk_mq_hw_ctx
, delay_work
.work
);
988 if (test_and_clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
989 __blk_mq_run_hw_queue(hctx
);
992 void blk_mq_delay_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
994 if (unlikely(!blk_mq_hw_queue_mapped(hctx
)))
997 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
998 &hctx
->delay_work
, msecs_to_jiffies(msecs
));
1000 EXPORT_SYMBOL(blk_mq_delay_queue
);
1002 static void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
,
1003 struct request
*rq
, bool at_head
)
1005 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1007 trace_block_rq_insert(hctx
->queue
, rq
);
1010 list_add(&rq
->queuelist
, &ctx
->rq_list
);
1012 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
1014 blk_mq_hctx_mark_pending(hctx
, ctx
);
1017 void blk_mq_insert_request(struct request
*rq
, bool at_head
, bool run_queue
,
1020 struct request_queue
*q
= rq
->q
;
1021 struct blk_mq_hw_ctx
*hctx
;
1022 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
, *current_ctx
;
1024 current_ctx
= blk_mq_get_ctx(q
);
1025 if (!cpu_online(ctx
->cpu
))
1026 rq
->mq_ctx
= ctx
= current_ctx
;
1028 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1030 spin_lock(&ctx
->lock
);
1031 __blk_mq_insert_request(hctx
, rq
, at_head
);
1032 spin_unlock(&ctx
->lock
);
1035 blk_mq_run_hw_queue(hctx
, async
);
1037 blk_mq_put_ctx(current_ctx
);
1040 static void blk_mq_insert_requests(struct request_queue
*q
,
1041 struct blk_mq_ctx
*ctx
,
1042 struct list_head
*list
,
1047 struct blk_mq_hw_ctx
*hctx
;
1048 struct blk_mq_ctx
*current_ctx
;
1050 trace_block_unplug(q
, depth
, !from_schedule
);
1052 current_ctx
= blk_mq_get_ctx(q
);
1054 if (!cpu_online(ctx
->cpu
))
1056 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1059 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1062 spin_lock(&ctx
->lock
);
1063 while (!list_empty(list
)) {
1066 rq
= list_first_entry(list
, struct request
, queuelist
);
1067 list_del_init(&rq
->queuelist
);
1069 __blk_mq_insert_request(hctx
, rq
, false);
1071 spin_unlock(&ctx
->lock
);
1073 blk_mq_run_hw_queue(hctx
, from_schedule
);
1074 blk_mq_put_ctx(current_ctx
);
1077 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1079 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1080 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1082 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1083 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1084 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1087 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1089 struct blk_mq_ctx
*this_ctx
;
1090 struct request_queue
*this_q
;
1093 LIST_HEAD(ctx_list
);
1096 list_splice_init(&plug
->mq_list
, &list
);
1098 list_sort(NULL
, &list
, plug_ctx_cmp
);
1104 while (!list_empty(&list
)) {
1105 rq
= list_entry_rq(list
.next
);
1106 list_del_init(&rq
->queuelist
);
1108 if (rq
->mq_ctx
!= this_ctx
) {
1110 blk_mq_insert_requests(this_q
, this_ctx
,
1115 this_ctx
= rq
->mq_ctx
;
1121 list_add_tail(&rq
->queuelist
, &ctx_list
);
1125 * If 'this_ctx' is set, we know we have entries to complete
1126 * on 'ctx_list'. Do those.
1129 blk_mq_insert_requests(this_q
, this_ctx
, &ctx_list
, depth
,
1134 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1136 init_request_from_bio(rq
, bio
);
1138 if (blk_do_io_stat(rq
))
1139 blk_account_io_start(rq
, 1);
1142 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx
*hctx
)
1144 return (hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) &&
1145 !blk_queue_nomerges(hctx
->queue
);
1148 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx
*hctx
,
1149 struct blk_mq_ctx
*ctx
,
1150 struct request
*rq
, struct bio
*bio
)
1152 if (!hctx_allow_merges(hctx
)) {
1153 blk_mq_bio_to_request(rq
, bio
);
1154 spin_lock(&ctx
->lock
);
1156 __blk_mq_insert_request(hctx
, rq
, false);
1157 spin_unlock(&ctx
->lock
);
1160 struct request_queue
*q
= hctx
->queue
;
1162 spin_lock(&ctx
->lock
);
1163 if (!blk_mq_attempt_merge(q
, ctx
, bio
)) {
1164 blk_mq_bio_to_request(rq
, bio
);
1168 spin_unlock(&ctx
->lock
);
1169 __blk_mq_free_request(hctx
, ctx
, rq
);
1174 struct blk_map_ctx
{
1175 struct blk_mq_hw_ctx
*hctx
;
1176 struct blk_mq_ctx
*ctx
;
1179 static struct request
*blk_mq_map_request(struct request_queue
*q
,
1181 struct blk_map_ctx
*data
)
1183 struct blk_mq_hw_ctx
*hctx
;
1184 struct blk_mq_ctx
*ctx
;
1186 int rw
= bio_data_dir(bio
);
1187 struct blk_mq_alloc_data alloc_data
;
1189 if (unlikely(blk_mq_queue_enter(q
))) {
1190 bio_endio(bio
, -EIO
);
1194 ctx
= blk_mq_get_ctx(q
);
1195 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1197 if (rw_is_sync(bio
->bi_rw
))
1200 trace_block_getrq(q
, bio
, rw
);
1201 blk_mq_set_alloc_data(&alloc_data
, q
, GFP_ATOMIC
, false, ctx
,
1203 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
1204 if (unlikely(!rq
)) {
1205 __blk_mq_run_hw_queue(hctx
);
1206 blk_mq_put_ctx(ctx
);
1207 trace_block_sleeprq(q
, bio
, rw
);
1209 ctx
= blk_mq_get_ctx(q
);
1210 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1211 blk_mq_set_alloc_data(&alloc_data
, q
,
1212 __GFP_WAIT
|GFP_ATOMIC
, false, ctx
, hctx
);
1213 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
1214 ctx
= alloc_data
.ctx
;
1215 hctx
= alloc_data
.hctx
;
1225 * Multiple hardware queue variant. This will not use per-process plugs,
1226 * but will attempt to bypass the hctx queueing if we can go straight to
1227 * hardware for SYNC IO.
1229 static void blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1231 const int is_sync
= rw_is_sync(bio
->bi_rw
);
1232 const int is_flush_fua
= bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
);
1233 struct blk_map_ctx data
;
1236 blk_queue_bounce(q
, &bio
);
1238 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1239 bio_endio(bio
, -EIO
);
1243 rq
= blk_mq_map_request(q
, bio
, &data
);
1247 if (unlikely(is_flush_fua
)) {
1248 blk_mq_bio_to_request(rq
, bio
);
1249 blk_insert_flush(rq
);
1254 * If the driver supports defer issued based on 'last', then
1255 * queue it up like normal since we can potentially save some
1258 if (is_sync
&& !(data
.hctx
->flags
& BLK_MQ_F_DEFER_ISSUE
)) {
1259 struct blk_mq_queue_data bd
= {
1266 blk_mq_bio_to_request(rq
, bio
);
1269 * For OK queue, we are done. For error, kill it. Any other
1270 * error (busy), just add it to our list as we previously
1273 ret
= q
->mq_ops
->queue_rq(data
.hctx
, &bd
);
1274 if (ret
== BLK_MQ_RQ_QUEUE_OK
)
1277 __blk_mq_requeue_request(rq
);
1279 if (ret
== BLK_MQ_RQ_QUEUE_ERROR
) {
1281 blk_mq_end_request(rq
, rq
->errors
);
1287 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1289 * For a SYNC request, send it to the hardware immediately. For
1290 * an ASYNC request, just ensure that we run it later on. The
1291 * latter allows for merging opportunities and more efficient
1295 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1298 blk_mq_put_ctx(data
.ctx
);
1302 * Single hardware queue variant. This will attempt to use any per-process
1303 * plug for merging and IO deferral.
1305 static void blk_sq_make_request(struct request_queue
*q
, struct bio
*bio
)
1307 const int is_sync
= rw_is_sync(bio
->bi_rw
);
1308 const int is_flush_fua
= bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
);
1309 unsigned int use_plug
, request_count
= 0;
1310 struct blk_map_ctx data
;
1314 * If we have multiple hardware queues, just go directly to
1315 * one of those for sync IO.
1317 use_plug
= !is_flush_fua
&& !is_sync
;
1319 blk_queue_bounce(q
, &bio
);
1321 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1322 bio_endio(bio
, -EIO
);
1326 if (use_plug
&& !blk_queue_nomerges(q
) &&
1327 blk_attempt_plug_merge(q
, bio
, &request_count
))
1330 rq
= blk_mq_map_request(q
, bio
, &data
);
1334 if (unlikely(is_flush_fua
)) {
1335 blk_mq_bio_to_request(rq
, bio
);
1336 blk_insert_flush(rq
);
1341 * A task plug currently exists. Since this is completely lockless,
1342 * utilize that to temporarily store requests until the task is
1343 * either done or scheduled away.
1346 struct blk_plug
*plug
= current
->plug
;
1349 blk_mq_bio_to_request(rq
, bio
);
1350 if (list_empty(&plug
->mq_list
))
1351 trace_block_plug(q
);
1352 else if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1353 blk_flush_plug_list(plug
, false);
1354 trace_block_plug(q
);
1356 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1357 blk_mq_put_ctx(data
.ctx
);
1362 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1364 * For a SYNC request, send it to the hardware immediately. For
1365 * an ASYNC request, just ensure that we run it later on. The
1366 * latter allows for merging opportunities and more efficient
1370 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1373 blk_mq_put_ctx(data
.ctx
);
1377 * Default mapping to a software queue, since we use one per CPU.
1379 struct blk_mq_hw_ctx
*blk_mq_map_queue(struct request_queue
*q
, const int cpu
)
1381 return q
->queue_hw_ctx
[q
->mq_map
[cpu
]];
1383 EXPORT_SYMBOL(blk_mq_map_queue
);
1385 static void blk_mq_free_rq_map(struct blk_mq_tag_set
*set
,
1386 struct blk_mq_tags
*tags
, unsigned int hctx_idx
)
1390 if (tags
->rqs
&& set
->ops
->exit_request
) {
1393 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1396 set
->ops
->exit_request(set
->driver_data
, tags
->rqs
[i
],
1398 tags
->rqs
[i
] = NULL
;
1402 while (!list_empty(&tags
->page_list
)) {
1403 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1404 list_del_init(&page
->lru
);
1405 __free_pages(page
, page
->private);
1410 blk_mq_free_tags(tags
);
1413 static size_t order_to_size(unsigned int order
)
1415 return (size_t)PAGE_SIZE
<< order
;
1418 static struct blk_mq_tags
*blk_mq_init_rq_map(struct blk_mq_tag_set
*set
,
1419 unsigned int hctx_idx
)
1421 struct blk_mq_tags
*tags
;
1422 unsigned int i
, j
, entries_per_page
, max_order
= 4;
1423 size_t rq_size
, left
;
1425 tags
= blk_mq_init_tags(set
->queue_depth
, set
->reserved_tags
,
1427 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
1431 INIT_LIST_HEAD(&tags
->page_list
);
1433 tags
->rqs
= kzalloc_node(set
->queue_depth
* sizeof(struct request
*),
1434 GFP_KERNEL
| __GFP_NOWARN
| __GFP_NORETRY
,
1437 blk_mq_free_tags(tags
);
1442 * rq_size is the size of the request plus driver payload, rounded
1443 * to the cacheline size
1445 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
1447 left
= rq_size
* set
->queue_depth
;
1449 for (i
= 0; i
< set
->queue_depth
; ) {
1450 int this_order
= max_order
;
1455 while (left
< order_to_size(this_order
- 1) && this_order
)
1459 page
= alloc_pages_node(set
->numa_node
,
1460 GFP_KERNEL
| __GFP_NOWARN
| __GFP_NORETRY
,
1466 if (order_to_size(this_order
) < rq_size
)
1473 page
->private = this_order
;
1474 list_add_tail(&page
->lru
, &tags
->page_list
);
1476 p
= page_address(page
);
1477 entries_per_page
= order_to_size(this_order
) / rq_size
;
1478 to_do
= min(entries_per_page
, set
->queue_depth
- i
);
1479 left
-= to_do
* rq_size
;
1480 for (j
= 0; j
< to_do
; j
++) {
1482 tags
->rqs
[i
]->atomic_flags
= 0;
1483 tags
->rqs
[i
]->cmd_flags
= 0;
1484 if (set
->ops
->init_request
) {
1485 if (set
->ops
->init_request(set
->driver_data
,
1486 tags
->rqs
[i
], hctx_idx
, i
,
1488 tags
->rqs
[i
] = NULL
;
1501 blk_mq_free_rq_map(set
, tags
, hctx_idx
);
1505 static void blk_mq_free_bitmap(struct blk_mq_ctxmap
*bitmap
)
1510 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap
*bitmap
, int node
)
1512 unsigned int bpw
= 8, total
, num_maps
, i
;
1514 bitmap
->bits_per_word
= bpw
;
1516 num_maps
= ALIGN(nr_cpu_ids
, bpw
) / bpw
;
1517 bitmap
->map
= kzalloc_node(num_maps
* sizeof(struct blk_align_bitmap
),
1522 bitmap
->map_size
= num_maps
;
1525 for (i
= 0; i
< num_maps
; i
++) {
1526 bitmap
->map
[i
].depth
= min(total
, bitmap
->bits_per_word
);
1527 total
-= bitmap
->map
[i
].depth
;
1533 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx
*hctx
, int cpu
)
1535 struct request_queue
*q
= hctx
->queue
;
1536 struct blk_mq_ctx
*ctx
;
1540 * Move ctx entries to new CPU, if this one is going away.
1542 ctx
= __blk_mq_get_ctx(q
, cpu
);
1544 spin_lock(&ctx
->lock
);
1545 if (!list_empty(&ctx
->rq_list
)) {
1546 list_splice_init(&ctx
->rq_list
, &tmp
);
1547 blk_mq_hctx_clear_pending(hctx
, ctx
);
1549 spin_unlock(&ctx
->lock
);
1551 if (list_empty(&tmp
))
1554 ctx
= blk_mq_get_ctx(q
);
1555 spin_lock(&ctx
->lock
);
1557 while (!list_empty(&tmp
)) {
1560 rq
= list_first_entry(&tmp
, struct request
, queuelist
);
1562 list_move_tail(&rq
->queuelist
, &ctx
->rq_list
);
1565 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1566 blk_mq_hctx_mark_pending(hctx
, ctx
);
1568 spin_unlock(&ctx
->lock
);
1570 blk_mq_run_hw_queue(hctx
, true);
1571 blk_mq_put_ctx(ctx
);
1575 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx
*hctx
, int cpu
)
1577 struct request_queue
*q
= hctx
->queue
;
1578 struct blk_mq_tag_set
*set
= q
->tag_set
;
1580 if (set
->tags
[hctx
->queue_num
])
1583 set
->tags
[hctx
->queue_num
] = blk_mq_init_rq_map(set
, hctx
->queue_num
);
1584 if (!set
->tags
[hctx
->queue_num
])
1587 hctx
->tags
= set
->tags
[hctx
->queue_num
];
1591 static int blk_mq_hctx_notify(void *data
, unsigned long action
,
1594 struct blk_mq_hw_ctx
*hctx
= data
;
1596 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
1597 return blk_mq_hctx_cpu_offline(hctx
, cpu
);
1598 else if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
)
1599 return blk_mq_hctx_cpu_online(hctx
, cpu
);
1604 static void blk_mq_exit_hctx(struct request_queue
*q
,
1605 struct blk_mq_tag_set
*set
,
1606 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
1608 unsigned flush_start_tag
= set
->queue_depth
;
1610 blk_mq_tag_idle(hctx
);
1612 if (set
->ops
->exit_request
)
1613 set
->ops
->exit_request(set
->driver_data
,
1614 hctx
->fq
->flush_rq
, hctx_idx
,
1615 flush_start_tag
+ hctx_idx
);
1617 if (set
->ops
->exit_hctx
)
1618 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1620 blk_mq_unregister_cpu_notifier(&hctx
->cpu_notifier
);
1621 blk_free_flush_queue(hctx
->fq
);
1623 blk_mq_free_bitmap(&hctx
->ctx_map
);
1626 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
1627 struct blk_mq_tag_set
*set
, int nr_queue
)
1629 struct blk_mq_hw_ctx
*hctx
;
1632 queue_for_each_hw_ctx(q
, hctx
, i
) {
1635 blk_mq_exit_hctx(q
, set
, hctx
, i
);
1639 static void blk_mq_free_hw_queues(struct request_queue
*q
,
1640 struct blk_mq_tag_set
*set
)
1642 struct blk_mq_hw_ctx
*hctx
;
1645 queue_for_each_hw_ctx(q
, hctx
, i
)
1646 free_cpumask_var(hctx
->cpumask
);
1649 static int blk_mq_init_hctx(struct request_queue
*q
,
1650 struct blk_mq_tag_set
*set
,
1651 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
1654 unsigned flush_start_tag
= set
->queue_depth
;
1656 node
= hctx
->numa_node
;
1657 if (node
== NUMA_NO_NODE
)
1658 node
= hctx
->numa_node
= set
->numa_node
;
1660 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
1661 INIT_DELAYED_WORK(&hctx
->delay_work
, blk_mq_delay_work_fn
);
1662 spin_lock_init(&hctx
->lock
);
1663 INIT_LIST_HEAD(&hctx
->dispatch
);
1665 hctx
->queue_num
= hctx_idx
;
1666 hctx
->flags
= set
->flags
;
1668 blk_mq_init_cpu_notifier(&hctx
->cpu_notifier
,
1669 blk_mq_hctx_notify
, hctx
);
1670 blk_mq_register_cpu_notifier(&hctx
->cpu_notifier
);
1672 hctx
->tags
= set
->tags
[hctx_idx
];
1675 * Allocate space for all possible cpus to avoid allocation at
1678 hctx
->ctxs
= kmalloc_node(nr_cpu_ids
* sizeof(void *),
1681 goto unregister_cpu_notifier
;
1683 if (blk_mq_alloc_bitmap(&hctx
->ctx_map
, node
))
1688 if (set
->ops
->init_hctx
&&
1689 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
1692 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
);
1696 if (set
->ops
->init_request
&&
1697 set
->ops
->init_request(set
->driver_data
,
1698 hctx
->fq
->flush_rq
, hctx_idx
,
1699 flush_start_tag
+ hctx_idx
, node
))
1707 if (set
->ops
->exit_hctx
)
1708 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1710 blk_mq_free_bitmap(&hctx
->ctx_map
);
1713 unregister_cpu_notifier
:
1714 blk_mq_unregister_cpu_notifier(&hctx
->cpu_notifier
);
1719 static int blk_mq_init_hw_queues(struct request_queue
*q
,
1720 struct blk_mq_tag_set
*set
)
1722 struct blk_mq_hw_ctx
*hctx
;
1726 * Initialize hardware queues
1728 queue_for_each_hw_ctx(q
, hctx
, i
) {
1729 if (blk_mq_init_hctx(q
, set
, hctx
, i
))
1733 if (i
== q
->nr_hw_queues
)
1739 blk_mq_exit_hw_queues(q
, set
, i
);
1744 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
1745 unsigned int nr_hw_queues
)
1749 for_each_possible_cpu(i
) {
1750 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
1751 struct blk_mq_hw_ctx
*hctx
;
1753 memset(__ctx
, 0, sizeof(*__ctx
));
1755 spin_lock_init(&__ctx
->lock
);
1756 INIT_LIST_HEAD(&__ctx
->rq_list
);
1759 /* If the cpu isn't online, the cpu is mapped to first hctx */
1763 hctx
= q
->mq_ops
->map_queue(q
, i
);
1764 cpumask_set_cpu(i
, hctx
->cpumask
);
1768 * Set local node, IFF we have more than one hw queue. If
1769 * not, we remain on the home node of the device
1771 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
1772 hctx
->numa_node
= cpu_to_node(i
);
1776 static void blk_mq_map_swqueue(struct request_queue
*q
)
1779 struct blk_mq_hw_ctx
*hctx
;
1780 struct blk_mq_ctx
*ctx
;
1782 queue_for_each_hw_ctx(q
, hctx
, i
) {
1783 cpumask_clear(hctx
->cpumask
);
1788 * Map software to hardware queues
1790 queue_for_each_ctx(q
, ctx
, i
) {
1791 /* If the cpu isn't online, the cpu is mapped to first hctx */
1795 hctx
= q
->mq_ops
->map_queue(q
, i
);
1796 cpumask_set_cpu(i
, hctx
->cpumask
);
1797 ctx
->index_hw
= hctx
->nr_ctx
;
1798 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
1801 queue_for_each_hw_ctx(q
, hctx
, i
) {
1803 * If no software queues are mapped to this hardware queue,
1804 * disable it and free the request entries.
1806 if (!hctx
->nr_ctx
) {
1807 struct blk_mq_tag_set
*set
= q
->tag_set
;
1810 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
1811 set
->tags
[i
] = NULL
;
1818 * Initialize batch roundrobin counts
1820 hctx
->next_cpu
= cpumask_first(hctx
->cpumask
);
1821 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1825 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
)
1827 struct blk_mq_hw_ctx
*hctx
;
1828 struct request_queue
*q
;
1832 if (set
->tag_list
.next
== set
->tag_list
.prev
)
1837 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
1838 blk_mq_freeze_queue(q
);
1840 queue_for_each_hw_ctx(q
, hctx
, i
) {
1842 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
1844 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
1846 blk_mq_unfreeze_queue(q
);
1850 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
1852 struct blk_mq_tag_set
*set
= q
->tag_set
;
1854 mutex_lock(&set
->tag_list_lock
);
1855 list_del_init(&q
->tag_set_list
);
1856 blk_mq_update_tag_set_depth(set
);
1857 mutex_unlock(&set
->tag_list_lock
);
1860 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
1861 struct request_queue
*q
)
1865 mutex_lock(&set
->tag_list_lock
);
1866 list_add_tail(&q
->tag_set_list
, &set
->tag_list
);
1867 blk_mq_update_tag_set_depth(set
);
1868 mutex_unlock(&set
->tag_list_lock
);
1872 * It is the actual release handler for mq, but we do it from
1873 * request queue's release handler for avoiding use-after-free
1874 * and headache because q->mq_kobj shouldn't have been introduced,
1875 * but we can't group ctx/kctx kobj without it.
1877 void blk_mq_release(struct request_queue
*q
)
1879 struct blk_mq_hw_ctx
*hctx
;
1882 /* hctx kobj stays in hctx */
1883 queue_for_each_hw_ctx(q
, hctx
, i
)
1886 kfree(q
->queue_hw_ctx
);
1888 /* ctx kobj stays in queue_ctx */
1889 free_percpu(q
->queue_ctx
);
1892 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
1894 struct blk_mq_hw_ctx
**hctxs
;
1895 struct blk_mq_ctx __percpu
*ctx
;
1896 struct request_queue
*q
;
1900 ctx
= alloc_percpu(struct blk_mq_ctx
);
1902 return ERR_PTR(-ENOMEM
);
1904 hctxs
= kmalloc_node(set
->nr_hw_queues
* sizeof(*hctxs
), GFP_KERNEL
,
1910 map
= blk_mq_make_queue_map(set
);
1914 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
1915 int node
= blk_mq_hw_queue_to_node(map
, i
);
1917 hctxs
[i
] = kzalloc_node(sizeof(struct blk_mq_hw_ctx
),
1922 if (!zalloc_cpumask_var_node(&hctxs
[i
]->cpumask
, GFP_KERNEL
,
1926 atomic_set(&hctxs
[i
]->nr_active
, 0);
1927 hctxs
[i
]->numa_node
= node
;
1928 hctxs
[i
]->queue_num
= i
;
1931 q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
1936 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1937 * See blk_register_queue() for details.
1939 if (percpu_ref_init(&q
->mq_usage_counter
, blk_mq_usage_counter_release
,
1940 PERCPU_REF_INIT_ATOMIC
, GFP_KERNEL
))
1943 setup_timer(&q
->timeout
, blk_mq_rq_timer
, (unsigned long) q
);
1944 blk_queue_rq_timeout(q
, 30000);
1946 q
->nr_queues
= nr_cpu_ids
;
1947 q
->nr_hw_queues
= set
->nr_hw_queues
;
1951 q
->queue_hw_ctx
= hctxs
;
1953 q
->mq_ops
= set
->ops
;
1954 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
1956 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
1957 q
->queue_flags
|= 1 << QUEUE_FLAG_NO_SG_MERGE
;
1959 q
->sg_reserved_size
= INT_MAX
;
1961 INIT_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
1962 INIT_LIST_HEAD(&q
->requeue_list
);
1963 spin_lock_init(&q
->requeue_lock
);
1965 if (q
->nr_hw_queues
> 1)
1966 blk_queue_make_request(q
, blk_mq_make_request
);
1968 blk_queue_make_request(q
, blk_sq_make_request
);
1971 blk_queue_rq_timeout(q
, set
->timeout
);
1974 * Do this after blk_queue_make_request() overrides it...
1976 q
->nr_requests
= set
->queue_depth
;
1978 if (set
->ops
->complete
)
1979 blk_queue_softirq_done(q
, set
->ops
->complete
);
1981 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
1983 if (blk_mq_init_hw_queues(q
, set
))
1986 mutex_lock(&all_q_mutex
);
1987 list_add_tail(&q
->all_q_node
, &all_q_list
);
1988 mutex_unlock(&all_q_mutex
);
1990 blk_mq_add_queue_tag_set(set
, q
);
1992 blk_mq_map_swqueue(q
);
1997 blk_cleanup_queue(q
);
2000 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2003 free_cpumask_var(hctxs
[i
]->cpumask
);
2010 return ERR_PTR(-ENOMEM
);
2012 EXPORT_SYMBOL(blk_mq_init_queue
);
2014 void blk_mq_free_queue(struct request_queue
*q
)
2016 struct blk_mq_tag_set
*set
= q
->tag_set
;
2018 blk_mq_del_queue_tag_set(q
);
2020 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2021 blk_mq_free_hw_queues(q
, set
);
2023 percpu_ref_exit(&q
->mq_usage_counter
);
2029 mutex_lock(&all_q_mutex
);
2030 list_del_init(&q
->all_q_node
);
2031 mutex_unlock(&all_q_mutex
);
2034 /* Basically redo blk_mq_init_queue with queue frozen */
2035 static void blk_mq_queue_reinit(struct request_queue
*q
)
2037 WARN_ON_ONCE(!q
->mq_freeze_depth
);
2039 blk_mq_sysfs_unregister(q
);
2041 blk_mq_update_queue_map(q
->mq_map
, q
->nr_hw_queues
);
2044 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2045 * we should change hctx numa_node according to new topology (this
2046 * involves free and re-allocate memory, worthy doing?)
2049 blk_mq_map_swqueue(q
);
2051 blk_mq_sysfs_register(q
);
2054 static int blk_mq_queue_reinit_notify(struct notifier_block
*nb
,
2055 unsigned long action
, void *hcpu
)
2057 struct request_queue
*q
;
2060 * Before new mappings are established, hotadded cpu might already
2061 * start handling requests. This doesn't break anything as we map
2062 * offline CPUs to first hardware queue. We will re-init the queue
2063 * below to get optimal settings.
2065 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
&&
2066 action
!= CPU_ONLINE
&& action
!= CPU_ONLINE_FROZEN
)
2069 mutex_lock(&all_q_mutex
);
2072 * We need to freeze and reinit all existing queues. Freezing
2073 * involves synchronous wait for an RCU grace period and doing it
2074 * one by one may take a long time. Start freezing all queues in
2075 * one swoop and then wait for the completions so that freezing can
2076 * take place in parallel.
2078 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2079 blk_mq_freeze_queue_start(q
);
2080 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2081 blk_mq_freeze_queue_wait(q
);
2083 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2084 blk_mq_queue_reinit(q
);
2086 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2087 blk_mq_unfreeze_queue(q
);
2089 mutex_unlock(&all_q_mutex
);
2093 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2097 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2098 set
->tags
[i
] = blk_mq_init_rq_map(set
, i
);
2107 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2113 * Allocate the request maps associated with this tag_set. Note that this
2114 * may reduce the depth asked for, if memory is tight. set->queue_depth
2115 * will be updated to reflect the allocated depth.
2117 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2122 depth
= set
->queue_depth
;
2124 err
= __blk_mq_alloc_rq_maps(set
);
2128 set
->queue_depth
>>= 1;
2129 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2133 } while (set
->queue_depth
);
2135 if (!set
->queue_depth
|| err
) {
2136 pr_err("blk-mq: failed to allocate request map\n");
2140 if (depth
!= set
->queue_depth
)
2141 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2142 depth
, set
->queue_depth
);
2148 * Alloc a tag set to be associated with one or more request queues.
2149 * May fail with EINVAL for various error conditions. May adjust the
2150 * requested depth down, if if it too large. In that case, the set
2151 * value will be stored in set->queue_depth.
2153 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2155 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
2157 if (!set
->nr_hw_queues
)
2159 if (!set
->queue_depth
)
2161 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2164 if (!set
->nr_hw_queues
|| !set
->ops
->queue_rq
|| !set
->ops
->map_queue
)
2167 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2168 pr_info("blk-mq: reduced tag depth to %u\n",
2170 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2174 * If a crashdump is active, then we are potentially in a very
2175 * memory constrained environment. Limit us to 1 queue and
2176 * 64 tags to prevent using too much memory.
2178 if (is_kdump_kernel()) {
2179 set
->nr_hw_queues
= 1;
2180 set
->queue_depth
= min(64U, set
->queue_depth
);
2183 set
->tags
= kmalloc_node(set
->nr_hw_queues
*
2184 sizeof(struct blk_mq_tags
*),
2185 GFP_KERNEL
, set
->numa_node
);
2189 if (blk_mq_alloc_rq_maps(set
))
2192 mutex_init(&set
->tag_list_lock
);
2193 INIT_LIST_HEAD(&set
->tag_list
);
2201 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2203 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2207 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2209 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2215 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2217 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2219 struct blk_mq_tag_set
*set
= q
->tag_set
;
2220 struct blk_mq_hw_ctx
*hctx
;
2223 if (!set
|| nr
> set
->queue_depth
)
2227 queue_for_each_hw_ctx(q
, hctx
, i
) {
2228 ret
= blk_mq_tag_update_depth(hctx
->tags
, nr
);
2234 q
->nr_requests
= nr
;
2239 void blk_mq_disable_hotplug(void)
2241 mutex_lock(&all_q_mutex
);
2244 void blk_mq_enable_hotplug(void)
2246 mutex_unlock(&all_q_mutex
);
2249 static int __init
blk_mq_init(void)
2253 hotcpu_notifier(blk_mq_queue_reinit_notify
, 0);
2257 subsys_initcall(blk_mq_init
);