iio: adis_lib: Initialize trigger before requesting interrupt
[linux/fpc-iii.git] / drivers / block / loop.c
blob1c36de9719e596ffc23c7dfc7df220b9a1de6b72
1 /*
2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
81 #include <asm/uaccess.h>
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
86 static int max_part;
87 static int part_shift;
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 struct page *raw_page, unsigned raw_off,
91 struct page *loop_page, unsigned loop_off,
92 int size, sector_t real_block)
94 char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 char *in, *out, *key;
97 int i, keysize;
99 if (cmd == READ) {
100 in = raw_buf;
101 out = loop_buf;
102 } else {
103 in = loop_buf;
104 out = raw_buf;
107 key = lo->lo_encrypt_key;
108 keysize = lo->lo_encrypt_key_size;
109 for (i = 0; i < size; i++)
110 *out++ = *in++ ^ key[(i & 511) % keysize];
112 kunmap_atomic(loop_buf);
113 kunmap_atomic(raw_buf);
114 cond_resched();
115 return 0;
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
120 if (unlikely(info->lo_encrypt_key_size <= 0))
121 return -EINVAL;
122 return 0;
125 static struct loop_func_table none_funcs = {
126 .number = LO_CRYPT_NONE,
129 static struct loop_func_table xor_funcs = {
130 .number = LO_CRYPT_XOR,
131 .transfer = transfer_xor,
132 .init = xor_init
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 &none_funcs,
138 &xor_funcs
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
143 loff_t loopsize;
145 /* Compute loopsize in bytes */
146 loopsize = i_size_read(file->f_mapping->host);
147 if (offset > 0)
148 loopsize -= offset;
149 /* offset is beyond i_size, weird but possible */
150 if (loopsize < 0)
151 return 0;
153 if (sizelimit > 0 && sizelimit < loopsize)
154 loopsize = sizelimit;
156 * Unfortunately, if we want to do I/O on the device,
157 * the number of 512-byte sectors has to fit into a sector_t.
159 return loopsize >> 9;
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
164 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
167 static void __loop_update_dio(struct loop_device *lo, bool dio)
169 struct file *file = lo->lo_backing_file;
170 struct address_space *mapping = file->f_mapping;
171 struct inode *inode = mapping->host;
172 unsigned short sb_bsize = 0;
173 unsigned dio_align = 0;
174 bool use_dio;
176 if (inode->i_sb->s_bdev) {
177 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 dio_align = sb_bsize - 1;
182 * We support direct I/O only if lo_offset is aligned with the
183 * logical I/O size of backing device, and the logical block
184 * size of loop is bigger than the backing device's and the loop
185 * needn't transform transfer.
187 * TODO: the above condition may be loosed in the future, and
188 * direct I/O may be switched runtime at that time because most
189 * of requests in sane appplications should be PAGE_SIZE algined
191 if (dio) {
192 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 !(lo->lo_offset & dio_align) &&
194 mapping->a_ops->direct_IO &&
195 !lo->transfer)
196 use_dio = true;
197 else
198 use_dio = false;
199 } else {
200 use_dio = false;
203 if (lo->use_dio == use_dio)
204 return;
206 /* flush dirty pages before changing direct IO */
207 vfs_fsync(file, 0);
210 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 * will get updated by ioctl(LOOP_GET_STATUS)
214 blk_mq_freeze_queue(lo->lo_queue);
215 lo->use_dio = use_dio;
216 if (use_dio)
217 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
218 else
219 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
220 blk_mq_unfreeze_queue(lo->lo_queue);
223 static int
224 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
226 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
227 sector_t x = (sector_t)size;
228 struct block_device *bdev = lo->lo_device;
230 if (unlikely((loff_t)x != size))
231 return -EFBIG;
232 if (lo->lo_offset != offset)
233 lo->lo_offset = offset;
234 if (lo->lo_sizelimit != sizelimit)
235 lo->lo_sizelimit = sizelimit;
236 set_capacity(lo->lo_disk, x);
237 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
238 /* let user-space know about the new size */
239 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
240 return 0;
243 static inline int
244 lo_do_transfer(struct loop_device *lo, int cmd,
245 struct page *rpage, unsigned roffs,
246 struct page *lpage, unsigned loffs,
247 int size, sector_t rblock)
249 int ret;
251 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
252 if (likely(!ret))
253 return 0;
255 printk_ratelimited(KERN_ERR
256 "loop: Transfer error at byte offset %llu, length %i.\n",
257 (unsigned long long)rblock << 9, size);
258 return ret;
261 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
263 struct iov_iter i;
264 ssize_t bw;
266 iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
268 file_start_write(file);
269 bw = vfs_iter_write(file, &i, ppos);
270 file_end_write(file);
272 if (likely(bw == bvec->bv_len))
273 return 0;
275 printk_ratelimited(KERN_ERR
276 "loop: Write error at byte offset %llu, length %i.\n",
277 (unsigned long long)*ppos, bvec->bv_len);
278 if (bw >= 0)
279 bw = -EIO;
280 return bw;
283 static int lo_write_simple(struct loop_device *lo, struct request *rq,
284 loff_t pos)
286 struct bio_vec bvec;
287 struct req_iterator iter;
288 int ret = 0;
290 rq_for_each_segment(bvec, rq, iter) {
291 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
292 if (ret < 0)
293 break;
294 cond_resched();
297 return ret;
301 * This is the slow, transforming version that needs to double buffer the
302 * data as it cannot do the transformations in place without having direct
303 * access to the destination pages of the backing file.
305 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
306 loff_t pos)
308 struct bio_vec bvec, b;
309 struct req_iterator iter;
310 struct page *page;
311 int ret = 0;
313 page = alloc_page(GFP_NOIO);
314 if (unlikely(!page))
315 return -ENOMEM;
317 rq_for_each_segment(bvec, rq, iter) {
318 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
319 bvec.bv_offset, bvec.bv_len, pos >> 9);
320 if (unlikely(ret))
321 break;
323 b.bv_page = page;
324 b.bv_offset = 0;
325 b.bv_len = bvec.bv_len;
326 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
327 if (ret < 0)
328 break;
331 __free_page(page);
332 return ret;
335 static int lo_read_simple(struct loop_device *lo, struct request *rq,
336 loff_t pos)
338 struct bio_vec bvec;
339 struct req_iterator iter;
340 struct iov_iter i;
341 ssize_t len;
343 rq_for_each_segment(bvec, rq, iter) {
344 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
345 len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
346 if (len < 0)
347 return len;
349 flush_dcache_page(bvec.bv_page);
351 if (len != bvec.bv_len) {
352 struct bio *bio;
354 __rq_for_each_bio(bio, rq)
355 zero_fill_bio(bio);
356 break;
358 cond_resched();
361 return 0;
364 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
365 loff_t pos)
367 struct bio_vec bvec, b;
368 struct req_iterator iter;
369 struct iov_iter i;
370 struct page *page;
371 ssize_t len;
372 int ret = 0;
374 page = alloc_page(GFP_NOIO);
375 if (unlikely(!page))
376 return -ENOMEM;
378 rq_for_each_segment(bvec, rq, iter) {
379 loff_t offset = pos;
381 b.bv_page = page;
382 b.bv_offset = 0;
383 b.bv_len = bvec.bv_len;
385 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
386 len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
387 if (len < 0) {
388 ret = len;
389 goto out_free_page;
392 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
393 bvec.bv_offset, len, offset >> 9);
394 if (ret)
395 goto out_free_page;
397 flush_dcache_page(bvec.bv_page);
399 if (len != bvec.bv_len) {
400 struct bio *bio;
402 __rq_for_each_bio(bio, rq)
403 zero_fill_bio(bio);
404 break;
408 ret = 0;
409 out_free_page:
410 __free_page(page);
411 return ret;
414 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
417 * We use punch hole to reclaim the free space used by the
418 * image a.k.a. discard. However we do not support discard if
419 * encryption is enabled, because it may give an attacker
420 * useful information.
422 struct file *file = lo->lo_backing_file;
423 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
424 int ret;
426 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
427 ret = -EOPNOTSUPP;
428 goto out;
431 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
432 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
433 ret = -EIO;
434 out:
435 return ret;
438 static int lo_req_flush(struct loop_device *lo, struct request *rq)
440 struct file *file = lo->lo_backing_file;
441 int ret = vfs_fsync(file, 0);
442 if (unlikely(ret && ret != -EINVAL))
443 ret = -EIO;
445 return ret;
448 static inline void handle_partial_read(struct loop_cmd *cmd, long bytes)
450 if (bytes < 0 || (cmd->rq->cmd_flags & REQ_WRITE))
451 return;
453 if (unlikely(bytes < blk_rq_bytes(cmd->rq))) {
454 struct bio *bio = cmd->rq->bio;
456 bio_advance(bio, bytes);
457 zero_fill_bio(bio);
461 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
463 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
464 struct request *rq = cmd->rq;
466 handle_partial_read(cmd, ret);
468 if (ret > 0)
469 ret = 0;
470 else if (ret < 0)
471 ret = -EIO;
473 blk_mq_complete_request(rq, ret);
476 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
477 loff_t pos, bool rw)
479 struct iov_iter iter;
480 struct bio_vec *bvec;
481 struct bio *bio = cmd->rq->bio;
482 struct file *file = lo->lo_backing_file;
483 int ret;
485 /* nomerge for loop request queue */
486 WARN_ON(cmd->rq->bio != cmd->rq->biotail);
488 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
489 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
490 bio_segments(bio), blk_rq_bytes(cmd->rq));
492 * This bio may be started from the middle of the 'bvec'
493 * because of bio splitting, so offset from the bvec must
494 * be passed to iov iterator
496 iter.iov_offset = bio->bi_iter.bi_bvec_done;
498 cmd->iocb.ki_pos = pos;
499 cmd->iocb.ki_filp = file;
500 cmd->iocb.ki_complete = lo_rw_aio_complete;
501 cmd->iocb.ki_flags = IOCB_DIRECT;
503 if (rw == WRITE)
504 ret = file->f_op->write_iter(&cmd->iocb, &iter);
505 else
506 ret = file->f_op->read_iter(&cmd->iocb, &iter);
508 if (ret != -EIOCBQUEUED)
509 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
510 return 0;
514 static inline int lo_rw_simple(struct loop_device *lo,
515 struct request *rq, loff_t pos, bool rw)
517 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
519 if (cmd->use_aio)
520 return lo_rw_aio(lo, cmd, pos, rw);
523 * lo_write_simple and lo_read_simple should have been covered
524 * by io submit style function like lo_rw_aio(), one blocker
525 * is that lo_read_simple() need to call flush_dcache_page after
526 * the page is written from kernel, and it isn't easy to handle
527 * this in io submit style function which submits all segments
528 * of the req at one time. And direct read IO doesn't need to
529 * run flush_dcache_page().
531 if (rw == WRITE)
532 return lo_write_simple(lo, rq, pos);
533 else
534 return lo_read_simple(lo, rq, pos);
537 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
539 loff_t pos;
540 int ret;
542 pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
544 if (rq->cmd_flags & REQ_WRITE) {
545 if (rq->cmd_flags & REQ_FLUSH)
546 ret = lo_req_flush(lo, rq);
547 else if (rq->cmd_flags & REQ_DISCARD)
548 ret = lo_discard(lo, rq, pos);
549 else if (lo->transfer)
550 ret = lo_write_transfer(lo, rq, pos);
551 else
552 ret = lo_rw_simple(lo, rq, pos, WRITE);
554 } else {
555 if (lo->transfer)
556 ret = lo_read_transfer(lo, rq, pos);
557 else
558 ret = lo_rw_simple(lo, rq, pos, READ);
561 return ret;
564 struct switch_request {
565 struct file *file;
566 struct completion wait;
569 static inline void loop_update_dio(struct loop_device *lo)
571 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
572 lo->use_dio);
576 * Do the actual switch; called from the BIO completion routine
578 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
580 struct file *file = p->file;
581 struct file *old_file = lo->lo_backing_file;
582 struct address_space *mapping;
584 /* if no new file, only flush of queued bios requested */
585 if (!file)
586 return;
588 mapping = file->f_mapping;
589 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
590 lo->lo_backing_file = file;
591 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
592 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
593 lo->old_gfp_mask = mapping_gfp_mask(mapping);
594 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
595 loop_update_dio(lo);
599 * loop_switch performs the hard work of switching a backing store.
600 * First it needs to flush existing IO, it does this by sending a magic
601 * BIO down the pipe. The completion of this BIO does the actual switch.
603 static int loop_switch(struct loop_device *lo, struct file *file)
605 struct switch_request w;
607 w.file = file;
609 /* freeze queue and wait for completion of scheduled requests */
610 blk_mq_freeze_queue(lo->lo_queue);
612 /* do the switch action */
613 do_loop_switch(lo, &w);
615 /* unfreeze */
616 blk_mq_unfreeze_queue(lo->lo_queue);
618 return 0;
622 * Helper to flush the IOs in loop, but keeping loop thread running
624 static int loop_flush(struct loop_device *lo)
626 return loop_switch(lo, NULL);
629 static void loop_reread_partitions(struct loop_device *lo,
630 struct block_device *bdev)
632 int rc;
635 * bd_mutex has been held already in release path, so don't
636 * acquire it if this function is called in such case.
638 * If the reread partition isn't from release path, lo_refcnt
639 * must be at least one and it can only become zero when the
640 * current holder is released.
642 if (!atomic_read(&lo->lo_refcnt))
643 rc = __blkdev_reread_part(bdev);
644 else
645 rc = blkdev_reread_part(bdev);
646 if (rc)
647 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
648 __func__, lo->lo_number, lo->lo_file_name, rc);
652 * loop_change_fd switched the backing store of a loopback device to
653 * a new file. This is useful for operating system installers to free up
654 * the original file and in High Availability environments to switch to
655 * an alternative location for the content in case of server meltdown.
656 * This can only work if the loop device is used read-only, and if the
657 * new backing store is the same size and type as the old backing store.
659 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
660 unsigned int arg)
662 struct file *file, *old_file;
663 struct inode *inode;
664 int error;
666 error = -ENXIO;
667 if (lo->lo_state != Lo_bound)
668 goto out;
670 /* the loop device has to be read-only */
671 error = -EINVAL;
672 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
673 goto out;
675 error = -EBADF;
676 file = fget(arg);
677 if (!file)
678 goto out;
680 inode = file->f_mapping->host;
681 old_file = lo->lo_backing_file;
683 error = -EINVAL;
685 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
686 goto out_putf;
688 /* size of the new backing store needs to be the same */
689 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
690 goto out_putf;
692 /* and ... switch */
693 error = loop_switch(lo, file);
694 if (error)
695 goto out_putf;
697 fput(old_file);
698 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
699 loop_reread_partitions(lo, bdev);
700 return 0;
702 out_putf:
703 fput(file);
704 out:
705 return error;
708 static inline int is_loop_device(struct file *file)
710 struct inode *i = file->f_mapping->host;
712 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
715 /* loop sysfs attributes */
717 static ssize_t loop_attr_show(struct device *dev, char *page,
718 ssize_t (*callback)(struct loop_device *, char *))
720 struct gendisk *disk = dev_to_disk(dev);
721 struct loop_device *lo = disk->private_data;
723 return callback(lo, page);
726 #define LOOP_ATTR_RO(_name) \
727 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
728 static ssize_t loop_attr_do_show_##_name(struct device *d, \
729 struct device_attribute *attr, char *b) \
731 return loop_attr_show(d, b, loop_attr_##_name##_show); \
733 static struct device_attribute loop_attr_##_name = \
734 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
736 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
738 ssize_t ret;
739 char *p = NULL;
741 spin_lock_irq(&lo->lo_lock);
742 if (lo->lo_backing_file)
743 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
744 spin_unlock_irq(&lo->lo_lock);
746 if (IS_ERR_OR_NULL(p))
747 ret = PTR_ERR(p);
748 else {
749 ret = strlen(p);
750 memmove(buf, p, ret);
751 buf[ret++] = '\n';
752 buf[ret] = 0;
755 return ret;
758 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
760 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
763 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
765 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
768 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
770 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
772 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
775 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
777 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
779 return sprintf(buf, "%s\n", partscan ? "1" : "0");
782 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
784 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
786 return sprintf(buf, "%s\n", dio ? "1" : "0");
789 LOOP_ATTR_RO(backing_file);
790 LOOP_ATTR_RO(offset);
791 LOOP_ATTR_RO(sizelimit);
792 LOOP_ATTR_RO(autoclear);
793 LOOP_ATTR_RO(partscan);
794 LOOP_ATTR_RO(dio);
796 static struct attribute *loop_attrs[] = {
797 &loop_attr_backing_file.attr,
798 &loop_attr_offset.attr,
799 &loop_attr_sizelimit.attr,
800 &loop_attr_autoclear.attr,
801 &loop_attr_partscan.attr,
802 &loop_attr_dio.attr,
803 NULL,
806 static struct attribute_group loop_attribute_group = {
807 .name = "loop",
808 .attrs= loop_attrs,
811 static int loop_sysfs_init(struct loop_device *lo)
813 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
814 &loop_attribute_group);
817 static void loop_sysfs_exit(struct loop_device *lo)
819 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
820 &loop_attribute_group);
823 static void loop_config_discard(struct loop_device *lo)
825 struct file *file = lo->lo_backing_file;
826 struct inode *inode = file->f_mapping->host;
827 struct request_queue *q = lo->lo_queue;
830 * We use punch hole to reclaim the free space used by the
831 * image a.k.a. discard. However we do not support discard if
832 * encryption is enabled, because it may give an attacker
833 * useful information.
835 if ((!file->f_op->fallocate) ||
836 lo->lo_encrypt_key_size) {
837 q->limits.discard_granularity = 0;
838 q->limits.discard_alignment = 0;
839 blk_queue_max_discard_sectors(q, 0);
840 q->limits.discard_zeroes_data = 0;
841 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
842 return;
845 q->limits.discard_granularity = inode->i_sb->s_blocksize;
846 q->limits.discard_alignment = 0;
847 blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
848 q->limits.discard_zeroes_data = 1;
849 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
852 static void loop_unprepare_queue(struct loop_device *lo)
854 flush_kthread_worker(&lo->worker);
855 kthread_stop(lo->worker_task);
858 static int loop_prepare_queue(struct loop_device *lo)
860 init_kthread_worker(&lo->worker);
861 lo->worker_task = kthread_run(kthread_worker_fn,
862 &lo->worker, "loop%d", lo->lo_number);
863 if (IS_ERR(lo->worker_task))
864 return -ENOMEM;
865 set_user_nice(lo->worker_task, MIN_NICE);
866 return 0;
869 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
870 struct block_device *bdev, unsigned int arg)
872 struct file *file, *f;
873 struct inode *inode;
874 struct address_space *mapping;
875 unsigned lo_blocksize;
876 int lo_flags = 0;
877 int error;
878 loff_t size;
880 /* This is safe, since we have a reference from open(). */
881 __module_get(THIS_MODULE);
883 error = -EBADF;
884 file = fget(arg);
885 if (!file)
886 goto out;
888 error = -EBUSY;
889 if (lo->lo_state != Lo_unbound)
890 goto out_putf;
892 /* Avoid recursion */
893 f = file;
894 while (is_loop_device(f)) {
895 struct loop_device *l;
897 if (f->f_mapping->host->i_bdev == bdev)
898 goto out_putf;
900 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
901 if (l->lo_state == Lo_unbound) {
902 error = -EINVAL;
903 goto out_putf;
905 f = l->lo_backing_file;
908 mapping = file->f_mapping;
909 inode = mapping->host;
911 error = -EINVAL;
912 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
913 goto out_putf;
915 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
916 !file->f_op->write_iter)
917 lo_flags |= LO_FLAGS_READ_ONLY;
919 lo_blocksize = S_ISBLK(inode->i_mode) ?
920 inode->i_bdev->bd_block_size : PAGE_SIZE;
922 error = -EFBIG;
923 size = get_loop_size(lo, file);
924 if ((loff_t)(sector_t)size != size)
925 goto out_putf;
926 error = loop_prepare_queue(lo);
927 if (error)
928 goto out_putf;
930 error = 0;
932 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
934 lo->use_dio = false;
935 lo->lo_blocksize = lo_blocksize;
936 lo->lo_device = bdev;
937 lo->lo_flags = lo_flags;
938 lo->lo_backing_file = file;
939 lo->transfer = NULL;
940 lo->ioctl = NULL;
941 lo->lo_sizelimit = 0;
942 lo->old_gfp_mask = mapping_gfp_mask(mapping);
943 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
945 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
946 blk_queue_flush(lo->lo_queue, REQ_FLUSH);
948 loop_update_dio(lo);
949 set_capacity(lo->lo_disk, size);
950 bd_set_size(bdev, size << 9);
951 loop_sysfs_init(lo);
952 /* let user-space know about the new size */
953 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
955 set_blocksize(bdev, lo_blocksize);
957 lo->lo_state = Lo_bound;
958 if (part_shift)
959 lo->lo_flags |= LO_FLAGS_PARTSCAN;
960 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
961 loop_reread_partitions(lo, bdev);
963 /* Grab the block_device to prevent its destruction after we
964 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
966 bdgrab(bdev);
967 return 0;
969 out_putf:
970 fput(file);
971 out:
972 /* This is safe: open() is still holding a reference. */
973 module_put(THIS_MODULE);
974 return error;
977 static int
978 loop_release_xfer(struct loop_device *lo)
980 int err = 0;
981 struct loop_func_table *xfer = lo->lo_encryption;
983 if (xfer) {
984 if (xfer->release)
985 err = xfer->release(lo);
986 lo->transfer = NULL;
987 lo->lo_encryption = NULL;
988 module_put(xfer->owner);
990 return err;
993 static int
994 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
995 const struct loop_info64 *i)
997 int err = 0;
999 if (xfer) {
1000 struct module *owner = xfer->owner;
1002 if (!try_module_get(owner))
1003 return -EINVAL;
1004 if (xfer->init)
1005 err = xfer->init(lo, i);
1006 if (err)
1007 module_put(owner);
1008 else
1009 lo->lo_encryption = xfer;
1011 return err;
1014 static int loop_clr_fd(struct loop_device *lo)
1016 struct file *filp = lo->lo_backing_file;
1017 gfp_t gfp = lo->old_gfp_mask;
1018 struct block_device *bdev = lo->lo_device;
1020 if (lo->lo_state != Lo_bound)
1021 return -ENXIO;
1024 * If we've explicitly asked to tear down the loop device,
1025 * and it has an elevated reference count, set it for auto-teardown when
1026 * the last reference goes away. This stops $!~#$@ udev from
1027 * preventing teardown because it decided that it needs to run blkid on
1028 * the loopback device whenever they appear. xfstests is notorious for
1029 * failing tests because blkid via udev races with a losetup
1030 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1031 * command to fail with EBUSY.
1033 if (atomic_read(&lo->lo_refcnt) > 1) {
1034 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1035 mutex_unlock(&lo->lo_ctl_mutex);
1036 return 0;
1039 if (filp == NULL)
1040 return -EINVAL;
1042 /* freeze request queue during the transition */
1043 blk_mq_freeze_queue(lo->lo_queue);
1045 spin_lock_irq(&lo->lo_lock);
1046 lo->lo_state = Lo_rundown;
1047 lo->lo_backing_file = NULL;
1048 spin_unlock_irq(&lo->lo_lock);
1050 loop_release_xfer(lo);
1051 lo->transfer = NULL;
1052 lo->ioctl = NULL;
1053 lo->lo_device = NULL;
1054 lo->lo_encryption = NULL;
1055 lo->lo_offset = 0;
1056 lo->lo_sizelimit = 0;
1057 lo->lo_encrypt_key_size = 0;
1058 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1059 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1060 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1061 if (bdev) {
1062 bdput(bdev);
1063 invalidate_bdev(bdev);
1065 set_capacity(lo->lo_disk, 0);
1066 loop_sysfs_exit(lo);
1067 if (bdev) {
1068 bd_set_size(bdev, 0);
1069 /* let user-space know about this change */
1070 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1072 mapping_set_gfp_mask(filp->f_mapping, gfp);
1073 lo->lo_state = Lo_unbound;
1074 /* This is safe: open() is still holding a reference. */
1075 module_put(THIS_MODULE);
1076 blk_mq_unfreeze_queue(lo->lo_queue);
1078 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1079 loop_reread_partitions(lo, bdev);
1080 lo->lo_flags = 0;
1081 if (!part_shift)
1082 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1083 loop_unprepare_queue(lo);
1084 mutex_unlock(&lo->lo_ctl_mutex);
1086 * Need not hold lo_ctl_mutex to fput backing file.
1087 * Calling fput holding lo_ctl_mutex triggers a circular
1088 * lock dependency possibility warning as fput can take
1089 * bd_mutex which is usually taken before lo_ctl_mutex.
1091 fput(filp);
1092 return 0;
1095 static int
1096 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1098 int err;
1099 struct loop_func_table *xfer;
1100 kuid_t uid = current_uid();
1102 if (lo->lo_encrypt_key_size &&
1103 !uid_eq(lo->lo_key_owner, uid) &&
1104 !capable(CAP_SYS_ADMIN))
1105 return -EPERM;
1106 if (lo->lo_state != Lo_bound)
1107 return -ENXIO;
1108 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1109 return -EINVAL;
1111 /* I/O need to be drained during transfer transition */
1112 blk_mq_freeze_queue(lo->lo_queue);
1114 err = loop_release_xfer(lo);
1115 if (err)
1116 goto exit;
1118 if (info->lo_encrypt_type) {
1119 unsigned int type = info->lo_encrypt_type;
1121 if (type >= MAX_LO_CRYPT)
1122 return -EINVAL;
1123 xfer = xfer_funcs[type];
1124 if (xfer == NULL)
1125 return -EINVAL;
1126 } else
1127 xfer = NULL;
1129 err = loop_init_xfer(lo, xfer, info);
1130 if (err)
1131 goto exit;
1133 if (lo->lo_offset != info->lo_offset ||
1134 lo->lo_sizelimit != info->lo_sizelimit)
1135 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1136 err = -EFBIG;
1137 goto exit;
1140 loop_config_discard(lo);
1142 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1143 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1144 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1145 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1147 if (!xfer)
1148 xfer = &none_funcs;
1149 lo->transfer = xfer->transfer;
1150 lo->ioctl = xfer->ioctl;
1152 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1153 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1154 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1156 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1157 lo->lo_init[0] = info->lo_init[0];
1158 lo->lo_init[1] = info->lo_init[1];
1159 if (info->lo_encrypt_key_size) {
1160 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1161 info->lo_encrypt_key_size);
1162 lo->lo_key_owner = uid;
1165 /* update dio if lo_offset or transfer is changed */
1166 __loop_update_dio(lo, lo->use_dio);
1168 exit:
1169 blk_mq_unfreeze_queue(lo->lo_queue);
1171 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1172 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1173 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1174 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1175 loop_reread_partitions(lo, lo->lo_device);
1178 return err;
1181 static int
1182 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1184 struct file *file = lo->lo_backing_file;
1185 struct kstat stat;
1186 int error;
1188 if (lo->lo_state != Lo_bound)
1189 return -ENXIO;
1190 error = vfs_getattr(&file->f_path, &stat);
1191 if (error)
1192 return error;
1193 memset(info, 0, sizeof(*info));
1194 info->lo_number = lo->lo_number;
1195 info->lo_device = huge_encode_dev(stat.dev);
1196 info->lo_inode = stat.ino;
1197 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1198 info->lo_offset = lo->lo_offset;
1199 info->lo_sizelimit = lo->lo_sizelimit;
1200 info->lo_flags = lo->lo_flags;
1201 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1202 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1203 info->lo_encrypt_type =
1204 lo->lo_encryption ? lo->lo_encryption->number : 0;
1205 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1206 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1207 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1208 lo->lo_encrypt_key_size);
1210 return 0;
1213 static void
1214 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1216 memset(info64, 0, sizeof(*info64));
1217 info64->lo_number = info->lo_number;
1218 info64->lo_device = info->lo_device;
1219 info64->lo_inode = info->lo_inode;
1220 info64->lo_rdevice = info->lo_rdevice;
1221 info64->lo_offset = info->lo_offset;
1222 info64->lo_sizelimit = 0;
1223 info64->lo_encrypt_type = info->lo_encrypt_type;
1224 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1225 info64->lo_flags = info->lo_flags;
1226 info64->lo_init[0] = info->lo_init[0];
1227 info64->lo_init[1] = info->lo_init[1];
1228 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1229 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1230 else
1231 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1232 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1235 static int
1236 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1238 memset(info, 0, sizeof(*info));
1239 info->lo_number = info64->lo_number;
1240 info->lo_device = info64->lo_device;
1241 info->lo_inode = info64->lo_inode;
1242 info->lo_rdevice = info64->lo_rdevice;
1243 info->lo_offset = info64->lo_offset;
1244 info->lo_encrypt_type = info64->lo_encrypt_type;
1245 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1246 info->lo_flags = info64->lo_flags;
1247 info->lo_init[0] = info64->lo_init[0];
1248 info->lo_init[1] = info64->lo_init[1];
1249 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1250 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1251 else
1252 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1253 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1255 /* error in case values were truncated */
1256 if (info->lo_device != info64->lo_device ||
1257 info->lo_rdevice != info64->lo_rdevice ||
1258 info->lo_inode != info64->lo_inode ||
1259 info->lo_offset != info64->lo_offset)
1260 return -EOVERFLOW;
1262 return 0;
1265 static int
1266 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1268 struct loop_info info;
1269 struct loop_info64 info64;
1271 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1272 return -EFAULT;
1273 loop_info64_from_old(&info, &info64);
1274 return loop_set_status(lo, &info64);
1277 static int
1278 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1280 struct loop_info64 info64;
1282 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1283 return -EFAULT;
1284 return loop_set_status(lo, &info64);
1287 static int
1288 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1289 struct loop_info info;
1290 struct loop_info64 info64;
1291 int err = 0;
1293 if (!arg)
1294 err = -EINVAL;
1295 if (!err)
1296 err = loop_get_status(lo, &info64);
1297 if (!err)
1298 err = loop_info64_to_old(&info64, &info);
1299 if (!err && copy_to_user(arg, &info, sizeof(info)))
1300 err = -EFAULT;
1302 return err;
1305 static int
1306 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1307 struct loop_info64 info64;
1308 int err = 0;
1310 if (!arg)
1311 err = -EINVAL;
1312 if (!err)
1313 err = loop_get_status(lo, &info64);
1314 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1315 err = -EFAULT;
1317 return err;
1320 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1322 if (unlikely(lo->lo_state != Lo_bound))
1323 return -ENXIO;
1325 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1328 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1330 int error = -ENXIO;
1331 if (lo->lo_state != Lo_bound)
1332 goto out;
1334 __loop_update_dio(lo, !!arg);
1335 if (lo->use_dio == !!arg)
1336 return 0;
1337 error = -EINVAL;
1338 out:
1339 return error;
1342 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1343 unsigned int cmd, unsigned long arg)
1345 struct loop_device *lo = bdev->bd_disk->private_data;
1346 int err;
1348 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1349 switch (cmd) {
1350 case LOOP_SET_FD:
1351 err = loop_set_fd(lo, mode, bdev, arg);
1352 break;
1353 case LOOP_CHANGE_FD:
1354 err = loop_change_fd(lo, bdev, arg);
1355 break;
1356 case LOOP_CLR_FD:
1357 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1358 err = loop_clr_fd(lo);
1359 if (!err)
1360 goto out_unlocked;
1361 break;
1362 case LOOP_SET_STATUS:
1363 err = -EPERM;
1364 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1365 err = loop_set_status_old(lo,
1366 (struct loop_info __user *)arg);
1367 break;
1368 case LOOP_GET_STATUS:
1369 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1370 break;
1371 case LOOP_SET_STATUS64:
1372 err = -EPERM;
1373 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1374 err = loop_set_status64(lo,
1375 (struct loop_info64 __user *) arg);
1376 break;
1377 case LOOP_GET_STATUS64:
1378 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1379 break;
1380 case LOOP_SET_CAPACITY:
1381 err = -EPERM;
1382 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1383 err = loop_set_capacity(lo, bdev);
1384 break;
1385 case LOOP_SET_DIRECT_IO:
1386 err = -EPERM;
1387 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1388 err = loop_set_dio(lo, arg);
1389 break;
1390 default:
1391 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1393 mutex_unlock(&lo->lo_ctl_mutex);
1395 out_unlocked:
1396 return err;
1399 #ifdef CONFIG_COMPAT
1400 struct compat_loop_info {
1401 compat_int_t lo_number; /* ioctl r/o */
1402 compat_dev_t lo_device; /* ioctl r/o */
1403 compat_ulong_t lo_inode; /* ioctl r/o */
1404 compat_dev_t lo_rdevice; /* ioctl r/o */
1405 compat_int_t lo_offset;
1406 compat_int_t lo_encrypt_type;
1407 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1408 compat_int_t lo_flags; /* ioctl r/o */
1409 char lo_name[LO_NAME_SIZE];
1410 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1411 compat_ulong_t lo_init[2];
1412 char reserved[4];
1416 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1417 * - noinlined to reduce stack space usage in main part of driver
1419 static noinline int
1420 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1421 struct loop_info64 *info64)
1423 struct compat_loop_info info;
1425 if (copy_from_user(&info, arg, sizeof(info)))
1426 return -EFAULT;
1428 memset(info64, 0, sizeof(*info64));
1429 info64->lo_number = info.lo_number;
1430 info64->lo_device = info.lo_device;
1431 info64->lo_inode = info.lo_inode;
1432 info64->lo_rdevice = info.lo_rdevice;
1433 info64->lo_offset = info.lo_offset;
1434 info64->lo_sizelimit = 0;
1435 info64->lo_encrypt_type = info.lo_encrypt_type;
1436 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1437 info64->lo_flags = info.lo_flags;
1438 info64->lo_init[0] = info.lo_init[0];
1439 info64->lo_init[1] = info.lo_init[1];
1440 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1441 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1442 else
1443 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1444 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1445 return 0;
1449 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1450 * - noinlined to reduce stack space usage in main part of driver
1452 static noinline int
1453 loop_info64_to_compat(const struct loop_info64 *info64,
1454 struct compat_loop_info __user *arg)
1456 struct compat_loop_info info;
1458 memset(&info, 0, sizeof(info));
1459 info.lo_number = info64->lo_number;
1460 info.lo_device = info64->lo_device;
1461 info.lo_inode = info64->lo_inode;
1462 info.lo_rdevice = info64->lo_rdevice;
1463 info.lo_offset = info64->lo_offset;
1464 info.lo_encrypt_type = info64->lo_encrypt_type;
1465 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1466 info.lo_flags = info64->lo_flags;
1467 info.lo_init[0] = info64->lo_init[0];
1468 info.lo_init[1] = info64->lo_init[1];
1469 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1470 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1471 else
1472 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1473 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1475 /* error in case values were truncated */
1476 if (info.lo_device != info64->lo_device ||
1477 info.lo_rdevice != info64->lo_rdevice ||
1478 info.lo_inode != info64->lo_inode ||
1479 info.lo_offset != info64->lo_offset ||
1480 info.lo_init[0] != info64->lo_init[0] ||
1481 info.lo_init[1] != info64->lo_init[1])
1482 return -EOVERFLOW;
1484 if (copy_to_user(arg, &info, sizeof(info)))
1485 return -EFAULT;
1486 return 0;
1489 static int
1490 loop_set_status_compat(struct loop_device *lo,
1491 const struct compat_loop_info __user *arg)
1493 struct loop_info64 info64;
1494 int ret;
1496 ret = loop_info64_from_compat(arg, &info64);
1497 if (ret < 0)
1498 return ret;
1499 return loop_set_status(lo, &info64);
1502 static int
1503 loop_get_status_compat(struct loop_device *lo,
1504 struct compat_loop_info __user *arg)
1506 struct loop_info64 info64;
1507 int err = 0;
1509 if (!arg)
1510 err = -EINVAL;
1511 if (!err)
1512 err = loop_get_status(lo, &info64);
1513 if (!err)
1514 err = loop_info64_to_compat(&info64, arg);
1515 return err;
1518 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1519 unsigned int cmd, unsigned long arg)
1521 struct loop_device *lo = bdev->bd_disk->private_data;
1522 int err;
1524 switch(cmd) {
1525 case LOOP_SET_STATUS:
1526 mutex_lock(&lo->lo_ctl_mutex);
1527 err = loop_set_status_compat(
1528 lo, (const struct compat_loop_info __user *) arg);
1529 mutex_unlock(&lo->lo_ctl_mutex);
1530 break;
1531 case LOOP_GET_STATUS:
1532 mutex_lock(&lo->lo_ctl_mutex);
1533 err = loop_get_status_compat(
1534 lo, (struct compat_loop_info __user *) arg);
1535 mutex_unlock(&lo->lo_ctl_mutex);
1536 break;
1537 case LOOP_SET_CAPACITY:
1538 case LOOP_CLR_FD:
1539 case LOOP_GET_STATUS64:
1540 case LOOP_SET_STATUS64:
1541 arg = (unsigned long) compat_ptr(arg);
1542 case LOOP_SET_FD:
1543 case LOOP_CHANGE_FD:
1544 err = lo_ioctl(bdev, mode, cmd, arg);
1545 break;
1546 default:
1547 err = -ENOIOCTLCMD;
1548 break;
1550 return err;
1552 #endif
1554 static int lo_open(struct block_device *bdev, fmode_t mode)
1556 struct loop_device *lo;
1557 int err = 0;
1559 mutex_lock(&loop_index_mutex);
1560 lo = bdev->bd_disk->private_data;
1561 if (!lo) {
1562 err = -ENXIO;
1563 goto out;
1566 atomic_inc(&lo->lo_refcnt);
1567 out:
1568 mutex_unlock(&loop_index_mutex);
1569 return err;
1572 static void __lo_release(struct loop_device *lo)
1574 int err;
1576 if (atomic_dec_return(&lo->lo_refcnt))
1577 return;
1579 mutex_lock(&lo->lo_ctl_mutex);
1580 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1582 * In autoclear mode, stop the loop thread
1583 * and remove configuration after last close.
1585 err = loop_clr_fd(lo);
1586 if (!err)
1587 return;
1588 } else {
1590 * Otherwise keep thread (if running) and config,
1591 * but flush possible ongoing bios in thread.
1593 loop_flush(lo);
1596 mutex_unlock(&lo->lo_ctl_mutex);
1599 static void lo_release(struct gendisk *disk, fmode_t mode)
1601 mutex_lock(&loop_index_mutex);
1602 __lo_release(disk->private_data);
1603 mutex_unlock(&loop_index_mutex);
1606 static const struct block_device_operations lo_fops = {
1607 .owner = THIS_MODULE,
1608 .open = lo_open,
1609 .release = lo_release,
1610 .ioctl = lo_ioctl,
1611 #ifdef CONFIG_COMPAT
1612 .compat_ioctl = lo_compat_ioctl,
1613 #endif
1617 * And now the modules code and kernel interface.
1619 static int max_loop;
1620 module_param(max_loop, int, S_IRUGO);
1621 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1622 module_param(max_part, int, S_IRUGO);
1623 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1624 MODULE_LICENSE("GPL");
1625 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1627 int loop_register_transfer(struct loop_func_table *funcs)
1629 unsigned int n = funcs->number;
1631 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1632 return -EINVAL;
1633 xfer_funcs[n] = funcs;
1634 return 0;
1637 static int unregister_transfer_cb(int id, void *ptr, void *data)
1639 struct loop_device *lo = ptr;
1640 struct loop_func_table *xfer = data;
1642 mutex_lock(&lo->lo_ctl_mutex);
1643 if (lo->lo_encryption == xfer)
1644 loop_release_xfer(lo);
1645 mutex_unlock(&lo->lo_ctl_mutex);
1646 return 0;
1649 int loop_unregister_transfer(int number)
1651 unsigned int n = number;
1652 struct loop_func_table *xfer;
1654 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1655 return -EINVAL;
1657 xfer_funcs[n] = NULL;
1658 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1659 return 0;
1662 EXPORT_SYMBOL(loop_register_transfer);
1663 EXPORT_SYMBOL(loop_unregister_transfer);
1665 static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1666 const struct blk_mq_queue_data *bd)
1668 struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1669 struct loop_device *lo = cmd->rq->q->queuedata;
1671 blk_mq_start_request(bd->rq);
1673 if (lo->lo_state != Lo_bound)
1674 return BLK_MQ_RQ_QUEUE_ERROR;
1676 if (lo->use_dio && !(cmd->rq->cmd_flags & (REQ_FLUSH |
1677 REQ_DISCARD)))
1678 cmd->use_aio = true;
1679 else
1680 cmd->use_aio = false;
1682 queue_kthread_work(&lo->worker, &cmd->work);
1684 return BLK_MQ_RQ_QUEUE_OK;
1687 static void loop_handle_cmd(struct loop_cmd *cmd)
1689 const bool write = cmd->rq->cmd_flags & REQ_WRITE;
1690 struct loop_device *lo = cmd->rq->q->queuedata;
1691 int ret = 0;
1693 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1694 ret = -EIO;
1695 goto failed;
1698 ret = do_req_filebacked(lo, cmd->rq);
1699 failed:
1700 /* complete non-aio request */
1701 if (!cmd->use_aio || ret)
1702 blk_mq_complete_request(cmd->rq, ret ? -EIO : 0);
1705 static void loop_queue_work(struct kthread_work *work)
1707 struct loop_cmd *cmd =
1708 container_of(work, struct loop_cmd, work);
1710 loop_handle_cmd(cmd);
1713 static int loop_init_request(void *data, struct request *rq,
1714 unsigned int hctx_idx, unsigned int request_idx,
1715 unsigned int numa_node)
1717 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1719 cmd->rq = rq;
1720 init_kthread_work(&cmd->work, loop_queue_work);
1722 return 0;
1725 static struct blk_mq_ops loop_mq_ops = {
1726 .queue_rq = loop_queue_rq,
1727 .map_queue = blk_mq_map_queue,
1728 .init_request = loop_init_request,
1731 static int loop_add(struct loop_device **l, int i)
1733 struct loop_device *lo;
1734 struct gendisk *disk;
1735 int err;
1737 err = -ENOMEM;
1738 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1739 if (!lo)
1740 goto out;
1742 lo->lo_state = Lo_unbound;
1744 /* allocate id, if @id >= 0, we're requesting that specific id */
1745 if (i >= 0) {
1746 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1747 if (err == -ENOSPC)
1748 err = -EEXIST;
1749 } else {
1750 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1752 if (err < 0)
1753 goto out_free_dev;
1754 i = err;
1756 err = -ENOMEM;
1757 lo->tag_set.ops = &loop_mq_ops;
1758 lo->tag_set.nr_hw_queues = 1;
1759 lo->tag_set.queue_depth = 128;
1760 lo->tag_set.numa_node = NUMA_NO_NODE;
1761 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1762 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1763 lo->tag_set.driver_data = lo;
1765 err = blk_mq_alloc_tag_set(&lo->tag_set);
1766 if (err)
1767 goto out_free_idr;
1769 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1770 if (IS_ERR_OR_NULL(lo->lo_queue)) {
1771 err = PTR_ERR(lo->lo_queue);
1772 goto out_cleanup_tags;
1774 lo->lo_queue->queuedata = lo;
1777 * It doesn't make sense to enable merge because the I/O
1778 * submitted to backing file is handled page by page.
1780 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1782 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1783 if (!disk)
1784 goto out_free_queue;
1787 * Disable partition scanning by default. The in-kernel partition
1788 * scanning can be requested individually per-device during its
1789 * setup. Userspace can always add and remove partitions from all
1790 * devices. The needed partition minors are allocated from the
1791 * extended minor space, the main loop device numbers will continue
1792 * to match the loop minors, regardless of the number of partitions
1793 * used.
1795 * If max_part is given, partition scanning is globally enabled for
1796 * all loop devices. The minors for the main loop devices will be
1797 * multiples of max_part.
1799 * Note: Global-for-all-devices, set-only-at-init, read-only module
1800 * parameteters like 'max_loop' and 'max_part' make things needlessly
1801 * complicated, are too static, inflexible and may surprise
1802 * userspace tools. Parameters like this in general should be avoided.
1804 if (!part_shift)
1805 disk->flags |= GENHD_FL_NO_PART_SCAN;
1806 disk->flags |= GENHD_FL_EXT_DEVT;
1807 mutex_init(&lo->lo_ctl_mutex);
1808 atomic_set(&lo->lo_refcnt, 0);
1809 lo->lo_number = i;
1810 spin_lock_init(&lo->lo_lock);
1811 disk->major = LOOP_MAJOR;
1812 disk->first_minor = i << part_shift;
1813 disk->fops = &lo_fops;
1814 disk->private_data = lo;
1815 disk->queue = lo->lo_queue;
1816 sprintf(disk->disk_name, "loop%d", i);
1817 add_disk(disk);
1818 *l = lo;
1819 return lo->lo_number;
1821 out_free_queue:
1822 blk_cleanup_queue(lo->lo_queue);
1823 out_cleanup_tags:
1824 blk_mq_free_tag_set(&lo->tag_set);
1825 out_free_idr:
1826 idr_remove(&loop_index_idr, i);
1827 out_free_dev:
1828 kfree(lo);
1829 out:
1830 return err;
1833 static void loop_remove(struct loop_device *lo)
1835 blk_cleanup_queue(lo->lo_queue);
1836 del_gendisk(lo->lo_disk);
1837 blk_mq_free_tag_set(&lo->tag_set);
1838 put_disk(lo->lo_disk);
1839 kfree(lo);
1842 static int find_free_cb(int id, void *ptr, void *data)
1844 struct loop_device *lo = ptr;
1845 struct loop_device **l = data;
1847 if (lo->lo_state == Lo_unbound) {
1848 *l = lo;
1849 return 1;
1851 return 0;
1854 static int loop_lookup(struct loop_device **l, int i)
1856 struct loop_device *lo;
1857 int ret = -ENODEV;
1859 if (i < 0) {
1860 int err;
1862 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1863 if (err == 1) {
1864 *l = lo;
1865 ret = lo->lo_number;
1867 goto out;
1870 /* lookup and return a specific i */
1871 lo = idr_find(&loop_index_idr, i);
1872 if (lo) {
1873 *l = lo;
1874 ret = lo->lo_number;
1876 out:
1877 return ret;
1880 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1882 struct loop_device *lo;
1883 struct kobject *kobj;
1884 int err;
1886 mutex_lock(&loop_index_mutex);
1887 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1888 if (err < 0)
1889 err = loop_add(&lo, MINOR(dev) >> part_shift);
1890 if (err < 0)
1891 kobj = NULL;
1892 else
1893 kobj = get_disk(lo->lo_disk);
1894 mutex_unlock(&loop_index_mutex);
1896 *part = 0;
1897 return kobj;
1900 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1901 unsigned long parm)
1903 struct loop_device *lo;
1904 int ret = -ENOSYS;
1906 mutex_lock(&loop_index_mutex);
1907 switch (cmd) {
1908 case LOOP_CTL_ADD:
1909 ret = loop_lookup(&lo, parm);
1910 if (ret >= 0) {
1911 ret = -EEXIST;
1912 break;
1914 ret = loop_add(&lo, parm);
1915 break;
1916 case LOOP_CTL_REMOVE:
1917 ret = loop_lookup(&lo, parm);
1918 if (ret < 0)
1919 break;
1920 mutex_lock(&lo->lo_ctl_mutex);
1921 if (lo->lo_state != Lo_unbound) {
1922 ret = -EBUSY;
1923 mutex_unlock(&lo->lo_ctl_mutex);
1924 break;
1926 if (atomic_read(&lo->lo_refcnt) > 0) {
1927 ret = -EBUSY;
1928 mutex_unlock(&lo->lo_ctl_mutex);
1929 break;
1931 lo->lo_disk->private_data = NULL;
1932 mutex_unlock(&lo->lo_ctl_mutex);
1933 idr_remove(&loop_index_idr, lo->lo_number);
1934 loop_remove(lo);
1935 break;
1936 case LOOP_CTL_GET_FREE:
1937 ret = loop_lookup(&lo, -1);
1938 if (ret >= 0)
1939 break;
1940 ret = loop_add(&lo, -1);
1942 mutex_unlock(&loop_index_mutex);
1944 return ret;
1947 static const struct file_operations loop_ctl_fops = {
1948 .open = nonseekable_open,
1949 .unlocked_ioctl = loop_control_ioctl,
1950 .compat_ioctl = loop_control_ioctl,
1951 .owner = THIS_MODULE,
1952 .llseek = noop_llseek,
1955 static struct miscdevice loop_misc = {
1956 .minor = LOOP_CTRL_MINOR,
1957 .name = "loop-control",
1958 .fops = &loop_ctl_fops,
1961 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1962 MODULE_ALIAS("devname:loop-control");
1964 static int __init loop_init(void)
1966 int i, nr;
1967 unsigned long range;
1968 struct loop_device *lo;
1969 int err;
1971 err = misc_register(&loop_misc);
1972 if (err < 0)
1973 return err;
1975 part_shift = 0;
1976 if (max_part > 0) {
1977 part_shift = fls(max_part);
1980 * Adjust max_part according to part_shift as it is exported
1981 * to user space so that user can decide correct minor number
1982 * if [s]he want to create more devices.
1984 * Note that -1 is required because partition 0 is reserved
1985 * for the whole disk.
1987 max_part = (1UL << part_shift) - 1;
1990 if ((1UL << part_shift) > DISK_MAX_PARTS) {
1991 err = -EINVAL;
1992 goto misc_out;
1995 if (max_loop > 1UL << (MINORBITS - part_shift)) {
1996 err = -EINVAL;
1997 goto misc_out;
2001 * If max_loop is specified, create that many devices upfront.
2002 * This also becomes a hard limit. If max_loop is not specified,
2003 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2004 * init time. Loop devices can be requested on-demand with the
2005 * /dev/loop-control interface, or be instantiated by accessing
2006 * a 'dead' device node.
2008 if (max_loop) {
2009 nr = max_loop;
2010 range = max_loop << part_shift;
2011 } else {
2012 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2013 range = 1UL << MINORBITS;
2016 if (register_blkdev(LOOP_MAJOR, "loop")) {
2017 err = -EIO;
2018 goto misc_out;
2021 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2022 THIS_MODULE, loop_probe, NULL, NULL);
2024 /* pre-create number of devices given by config or max_loop */
2025 mutex_lock(&loop_index_mutex);
2026 for (i = 0; i < nr; i++)
2027 loop_add(&lo, i);
2028 mutex_unlock(&loop_index_mutex);
2030 printk(KERN_INFO "loop: module loaded\n");
2031 return 0;
2033 misc_out:
2034 misc_deregister(&loop_misc);
2035 return err;
2038 static int loop_exit_cb(int id, void *ptr, void *data)
2040 struct loop_device *lo = ptr;
2042 loop_remove(lo);
2043 return 0;
2046 static void __exit loop_exit(void)
2048 unsigned long range;
2050 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2052 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2053 idr_destroy(&loop_index_idr);
2055 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2056 unregister_blkdev(LOOP_MAJOR, "loop");
2058 misc_deregister(&loop_misc);
2061 module_init(loop_init);
2062 module_exit(loop_exit);
2064 #ifndef MODULE
2065 static int __init max_loop_setup(char *str)
2067 max_loop = simple_strtol(str, NULL, 0);
2068 return 1;
2071 __setup("max_loop=", max_loop_setup);
2072 #endif