2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_error.h"
28 #include "xfs_trace.h"
29 #include "xfs_trans_priv.h"
33 kmem_zone_t
*xfs_ili_zone
; /* inode log item zone */
35 static inline struct xfs_inode_log_item
*INODE_ITEM(struct xfs_log_item
*lip
)
37 return container_of(lip
, struct xfs_inode_log_item
, ili_item
);
41 xfs_inode_item_data_fork_size(
42 struct xfs_inode_log_item
*iip
,
46 struct xfs_inode
*ip
= iip
->ili_inode
;
48 switch (ip
->i_d
.di_format
) {
49 case XFS_DINODE_FMT_EXTENTS
:
50 if ((iip
->ili_fields
& XFS_ILOG_DEXT
) &&
51 ip
->i_d
.di_nextents
> 0 &&
52 ip
->i_df
.if_bytes
> 0) {
53 /* worst case, doesn't subtract delalloc extents */
54 *nbytes
+= XFS_IFORK_DSIZE(ip
);
58 case XFS_DINODE_FMT_BTREE
:
59 if ((iip
->ili_fields
& XFS_ILOG_DBROOT
) &&
60 ip
->i_df
.if_broot_bytes
> 0) {
61 *nbytes
+= ip
->i_df
.if_broot_bytes
;
65 case XFS_DINODE_FMT_LOCAL
:
66 if ((iip
->ili_fields
& XFS_ILOG_DDATA
) &&
67 ip
->i_df
.if_bytes
> 0) {
68 *nbytes
+= roundup(ip
->i_df
.if_bytes
, 4);
73 case XFS_DINODE_FMT_DEV
:
74 case XFS_DINODE_FMT_UUID
:
83 xfs_inode_item_attr_fork_size(
84 struct xfs_inode_log_item
*iip
,
88 struct xfs_inode
*ip
= iip
->ili_inode
;
90 switch (ip
->i_d
.di_aformat
) {
91 case XFS_DINODE_FMT_EXTENTS
:
92 if ((iip
->ili_fields
& XFS_ILOG_AEXT
) &&
93 ip
->i_d
.di_anextents
> 0 &&
94 ip
->i_afp
->if_bytes
> 0) {
95 /* worst case, doesn't subtract unused space */
96 *nbytes
+= XFS_IFORK_ASIZE(ip
);
100 case XFS_DINODE_FMT_BTREE
:
101 if ((iip
->ili_fields
& XFS_ILOG_ABROOT
) &&
102 ip
->i_afp
->if_broot_bytes
> 0) {
103 *nbytes
+= ip
->i_afp
->if_broot_bytes
;
107 case XFS_DINODE_FMT_LOCAL
:
108 if ((iip
->ili_fields
& XFS_ILOG_ADATA
) &&
109 ip
->i_afp
->if_bytes
> 0) {
110 *nbytes
+= roundup(ip
->i_afp
->if_bytes
, 4);
121 * This returns the number of iovecs needed to log the given inode item.
123 * We need one iovec for the inode log format structure, one for the
124 * inode core, and possibly one for the inode data/extents/b-tree root
125 * and one for the inode attribute data/extents/b-tree root.
129 struct xfs_log_item
*lip
,
133 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
134 struct xfs_inode
*ip
= iip
->ili_inode
;
137 *nbytes
+= sizeof(struct xfs_inode_log_format
) +
138 xfs_icdinode_size(ip
->i_d
.di_version
);
140 xfs_inode_item_data_fork_size(iip
, nvecs
, nbytes
);
142 xfs_inode_item_attr_fork_size(iip
, nvecs
, nbytes
);
146 xfs_inode_item_format_data_fork(
147 struct xfs_inode_log_item
*iip
,
148 struct xfs_inode_log_format
*ilf
,
149 struct xfs_log_vec
*lv
,
150 struct xfs_log_iovec
**vecp
)
152 struct xfs_inode
*ip
= iip
->ili_inode
;
155 switch (ip
->i_d
.di_format
) {
156 case XFS_DINODE_FMT_EXTENTS
:
158 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
159 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
161 if ((iip
->ili_fields
& XFS_ILOG_DEXT
) &&
162 ip
->i_d
.di_nextents
> 0 &&
163 ip
->i_df
.if_bytes
> 0) {
164 struct xfs_bmbt_rec
*p
;
166 ASSERT(ip
->i_df
.if_u1
.if_extents
!= NULL
);
167 ASSERT(ip
->i_df
.if_bytes
/ sizeof(xfs_bmbt_rec_t
) > 0);
169 p
= xlog_prepare_iovec(lv
, vecp
, XLOG_REG_TYPE_IEXT
);
170 data_bytes
= xfs_iextents_copy(ip
, p
, XFS_DATA_FORK
);
171 xlog_finish_iovec(lv
, *vecp
, data_bytes
);
173 ASSERT(data_bytes
<= ip
->i_df
.if_bytes
);
175 ilf
->ilf_dsize
= data_bytes
;
178 iip
->ili_fields
&= ~XFS_ILOG_DEXT
;
181 case XFS_DINODE_FMT_BTREE
:
183 ~(XFS_ILOG_DDATA
| XFS_ILOG_DEXT
|
184 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
186 if ((iip
->ili_fields
& XFS_ILOG_DBROOT
) &&
187 ip
->i_df
.if_broot_bytes
> 0) {
188 ASSERT(ip
->i_df
.if_broot
!= NULL
);
189 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_IBROOT
,
191 ip
->i_df
.if_broot_bytes
);
192 ilf
->ilf_dsize
= ip
->i_df
.if_broot_bytes
;
195 ASSERT(!(iip
->ili_fields
&
197 iip
->ili_fields
&= ~XFS_ILOG_DBROOT
;
200 case XFS_DINODE_FMT_LOCAL
:
202 ~(XFS_ILOG_DEXT
| XFS_ILOG_DBROOT
|
203 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
204 if ((iip
->ili_fields
& XFS_ILOG_DDATA
) &&
205 ip
->i_df
.if_bytes
> 0) {
207 * Round i_bytes up to a word boundary.
208 * The underlying memory is guaranteed to
209 * to be there by xfs_idata_realloc().
211 data_bytes
= roundup(ip
->i_df
.if_bytes
, 4);
212 ASSERT(ip
->i_df
.if_real_bytes
== 0 ||
213 ip
->i_df
.if_real_bytes
== data_bytes
);
214 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
215 ASSERT(ip
->i_d
.di_size
> 0);
216 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_ILOCAL
,
217 ip
->i_df
.if_u1
.if_data
, data_bytes
);
218 ilf
->ilf_dsize
= (unsigned)data_bytes
;
221 iip
->ili_fields
&= ~XFS_ILOG_DDATA
;
224 case XFS_DINODE_FMT_DEV
:
226 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
227 XFS_ILOG_DEXT
| XFS_ILOG_UUID
);
228 if (iip
->ili_fields
& XFS_ILOG_DEV
)
229 ilf
->ilf_u
.ilfu_rdev
= ip
->i_df
.if_u2
.if_rdev
;
231 case XFS_DINODE_FMT_UUID
:
233 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
234 XFS_ILOG_DEXT
| XFS_ILOG_DEV
);
235 if (iip
->ili_fields
& XFS_ILOG_UUID
)
236 ilf
->ilf_u
.ilfu_uuid
= ip
->i_df
.if_u2
.if_uuid
;
245 xfs_inode_item_format_attr_fork(
246 struct xfs_inode_log_item
*iip
,
247 struct xfs_inode_log_format
*ilf
,
248 struct xfs_log_vec
*lv
,
249 struct xfs_log_iovec
**vecp
)
251 struct xfs_inode
*ip
= iip
->ili_inode
;
254 switch (ip
->i_d
.di_aformat
) {
255 case XFS_DINODE_FMT_EXTENTS
:
257 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
);
259 if ((iip
->ili_fields
& XFS_ILOG_AEXT
) &&
260 ip
->i_d
.di_anextents
> 0 &&
261 ip
->i_afp
->if_bytes
> 0) {
262 struct xfs_bmbt_rec
*p
;
264 ASSERT(ip
->i_afp
->if_bytes
/ sizeof(xfs_bmbt_rec_t
) ==
265 ip
->i_d
.di_anextents
);
266 ASSERT(ip
->i_afp
->if_u1
.if_extents
!= NULL
);
268 p
= xlog_prepare_iovec(lv
, vecp
, XLOG_REG_TYPE_IATTR_EXT
);
269 data_bytes
= xfs_iextents_copy(ip
, p
, XFS_ATTR_FORK
);
270 xlog_finish_iovec(lv
, *vecp
, data_bytes
);
272 ilf
->ilf_asize
= data_bytes
;
275 iip
->ili_fields
&= ~XFS_ILOG_AEXT
;
278 case XFS_DINODE_FMT_BTREE
:
280 ~(XFS_ILOG_ADATA
| XFS_ILOG_AEXT
);
282 if ((iip
->ili_fields
& XFS_ILOG_ABROOT
) &&
283 ip
->i_afp
->if_broot_bytes
> 0) {
284 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
286 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_IATTR_BROOT
,
288 ip
->i_afp
->if_broot_bytes
);
289 ilf
->ilf_asize
= ip
->i_afp
->if_broot_bytes
;
292 iip
->ili_fields
&= ~XFS_ILOG_ABROOT
;
295 case XFS_DINODE_FMT_LOCAL
:
297 ~(XFS_ILOG_AEXT
| XFS_ILOG_ABROOT
);
299 if ((iip
->ili_fields
& XFS_ILOG_ADATA
) &&
300 ip
->i_afp
->if_bytes
> 0) {
302 * Round i_bytes up to a word boundary.
303 * The underlying memory is guaranteed to
304 * to be there by xfs_idata_realloc().
306 data_bytes
= roundup(ip
->i_afp
->if_bytes
, 4);
307 ASSERT(ip
->i_afp
->if_real_bytes
== 0 ||
308 ip
->i_afp
->if_real_bytes
== data_bytes
);
309 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
310 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_IATTR_LOCAL
,
311 ip
->i_afp
->if_u1
.if_data
,
313 ilf
->ilf_asize
= (unsigned)data_bytes
;
316 iip
->ili_fields
&= ~XFS_ILOG_ADATA
;
326 * This is called to fill in the vector of log iovecs for the given inode
327 * log item. It fills the first item with an inode log format structure,
328 * the second with the on-disk inode structure, and a possible third and/or
329 * fourth with the inode data/extents/b-tree root and inode attributes
330 * data/extents/b-tree root.
333 xfs_inode_item_format(
334 struct xfs_log_item
*lip
,
335 struct xfs_log_vec
*lv
)
337 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
338 struct xfs_inode
*ip
= iip
->ili_inode
;
339 struct xfs_inode_log_format
*ilf
;
340 struct xfs_log_iovec
*vecp
= NULL
;
342 ASSERT(ip
->i_d
.di_version
> 1);
344 ilf
= xlog_prepare_iovec(lv
, &vecp
, XLOG_REG_TYPE_IFORMAT
);
345 ilf
->ilf_type
= XFS_LI_INODE
;
346 ilf
->ilf_ino
= ip
->i_ino
;
347 ilf
->ilf_blkno
= ip
->i_imap
.im_blkno
;
348 ilf
->ilf_len
= ip
->i_imap
.im_len
;
349 ilf
->ilf_boffset
= ip
->i_imap
.im_boffset
;
350 ilf
->ilf_fields
= XFS_ILOG_CORE
;
351 ilf
->ilf_size
= 2; /* format + core */
352 xlog_finish_iovec(lv
, vecp
, sizeof(struct xfs_inode_log_format
));
354 xlog_copy_iovec(lv
, &vecp
, XLOG_REG_TYPE_ICORE
,
356 xfs_icdinode_size(ip
->i_d
.di_version
));
358 xfs_inode_item_format_data_fork(iip
, ilf
, lv
, &vecp
);
359 if (XFS_IFORK_Q(ip
)) {
360 xfs_inode_item_format_attr_fork(iip
, ilf
, lv
, &vecp
);
363 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
);
366 /* update the format with the exact fields we actually logged */
367 ilf
->ilf_fields
|= (iip
->ili_fields
& ~XFS_ILOG_TIMESTAMP
);
371 * This is called to pin the inode associated with the inode log
372 * item in memory so it cannot be written out.
376 struct xfs_log_item
*lip
)
378 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
380 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
382 trace_xfs_inode_pin(ip
, _RET_IP_
);
383 atomic_inc(&ip
->i_pincount
);
388 * This is called to unpin the inode associated with the inode log
389 * item which was previously pinned with a call to xfs_inode_item_pin().
391 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
394 xfs_inode_item_unpin(
395 struct xfs_log_item
*lip
,
398 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
400 trace_xfs_inode_unpin(ip
, _RET_IP_
);
401 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
402 if (atomic_dec_and_test(&ip
->i_pincount
))
403 wake_up_bit(&ip
->i_flags
, __XFS_IPINNED_BIT
);
408 struct xfs_log_item
*lip
,
409 struct list_head
*buffer_list
)
411 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
412 struct xfs_inode
*ip
= iip
->ili_inode
;
413 struct xfs_buf
*bp
= NULL
;
414 uint rval
= XFS_ITEM_SUCCESS
;
417 if (xfs_ipincount(ip
) > 0)
418 return XFS_ITEM_PINNED
;
420 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_SHARED
))
421 return XFS_ITEM_LOCKED
;
424 * Re-check the pincount now that we stabilized the value by
427 if (xfs_ipincount(ip
) > 0) {
428 rval
= XFS_ITEM_PINNED
;
433 * Stale inode items should force out the iclog.
435 if (ip
->i_flags
& XFS_ISTALE
) {
436 rval
= XFS_ITEM_PINNED
;
441 * Someone else is already flushing the inode. Nothing we can do
442 * here but wait for the flush to finish and remove the item from
445 if (!xfs_iflock_nowait(ip
)) {
446 rval
= XFS_ITEM_FLUSHING
;
450 ASSERT(iip
->ili_fields
!= 0 || XFS_FORCED_SHUTDOWN(ip
->i_mount
));
451 ASSERT(iip
->ili_logged
== 0 || XFS_FORCED_SHUTDOWN(ip
->i_mount
));
453 spin_unlock(&lip
->li_ailp
->xa_lock
);
455 error
= xfs_iflush(ip
, &bp
);
457 if (!xfs_buf_delwri_queue(bp
, buffer_list
))
458 rval
= XFS_ITEM_FLUSHING
;
462 spin_lock(&lip
->li_ailp
->xa_lock
);
464 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
469 * Unlock the inode associated with the inode log item.
470 * Clear the fields of the inode and inode log item that
471 * are specific to the current transaction. If the
472 * hold flags is set, do not unlock the inode.
475 xfs_inode_item_unlock(
476 struct xfs_log_item
*lip
)
478 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
479 struct xfs_inode
*ip
= iip
->ili_inode
;
480 unsigned short lock_flags
;
482 ASSERT(ip
->i_itemp
!= NULL
);
483 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
485 lock_flags
= iip
->ili_lock_flags
;
486 iip
->ili_lock_flags
= 0;
488 xfs_iunlock(ip
, lock_flags
);
492 * This is called to find out where the oldest active copy of the inode log
493 * item in the on disk log resides now that the last log write of it completed
494 * at the given lsn. Since we always re-log all dirty data in an inode, the
495 * latest copy in the on disk log is the only one that matters. Therefore,
496 * simply return the given lsn.
498 * If the inode has been marked stale because the cluster is being freed, we
499 * don't want to (re-)insert this inode into the AIL. There is a race condition
500 * where the cluster buffer may be unpinned before the inode is inserted into
501 * the AIL during transaction committed processing. If the buffer is unpinned
502 * before the inode item has been committed and inserted, then it is possible
503 * for the buffer to be written and IO completes before the inode is inserted
504 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
505 * AIL which will never get removed. It will, however, get reclaimed which
506 * triggers an assert in xfs_inode_free() complaining about freein an inode
509 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
510 * transaction committed code knows that it does not need to do any further
511 * processing on the item.
514 xfs_inode_item_committed(
515 struct xfs_log_item
*lip
,
518 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
519 struct xfs_inode
*ip
= iip
->ili_inode
;
521 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
522 xfs_inode_item_unpin(lip
, 0);
529 * XXX rcc - this one really has to do something. Probably needs
530 * to stamp in a new field in the incore inode.
533 xfs_inode_item_committing(
534 struct xfs_log_item
*lip
,
537 INODE_ITEM(lip
)->ili_last_lsn
= lsn
;
541 * This is the ops vector shared by all buf log items.
543 static const struct xfs_item_ops xfs_inode_item_ops
= {
544 .iop_size
= xfs_inode_item_size
,
545 .iop_format
= xfs_inode_item_format
,
546 .iop_pin
= xfs_inode_item_pin
,
547 .iop_unpin
= xfs_inode_item_unpin
,
548 .iop_unlock
= xfs_inode_item_unlock
,
549 .iop_committed
= xfs_inode_item_committed
,
550 .iop_push
= xfs_inode_item_push
,
551 .iop_committing
= xfs_inode_item_committing
556 * Initialize the inode log item for a newly allocated (in-core) inode.
560 struct xfs_inode
*ip
,
561 struct xfs_mount
*mp
)
563 struct xfs_inode_log_item
*iip
;
565 ASSERT(ip
->i_itemp
== NULL
);
566 iip
= ip
->i_itemp
= kmem_zone_zalloc(xfs_ili_zone
, KM_SLEEP
);
569 xfs_log_item_init(mp
, &iip
->ili_item
, XFS_LI_INODE
,
570 &xfs_inode_item_ops
);
574 * Free the inode log item and any memory hanging off of it.
577 xfs_inode_item_destroy(
580 kmem_zone_free(xfs_ili_zone
, ip
->i_itemp
);
585 * This is the inode flushing I/O completion routine. It is called
586 * from interrupt level when the buffer containing the inode is
587 * flushed to disk. It is responsible for removing the inode item
588 * from the AIL if it has not been re-logged, and unlocking the inode's
591 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
592 * list for other inodes that will run this function. We remove them from the
593 * buffer list so we can process all the inode IO completions in one AIL lock
599 struct xfs_log_item
*lip
)
601 struct xfs_inode_log_item
*iip
;
602 struct xfs_log_item
*blip
;
603 struct xfs_log_item
*next
;
604 struct xfs_log_item
*prev
;
605 struct xfs_ail
*ailp
= lip
->li_ailp
;
609 * Scan the buffer IO completions for other inodes being completed and
610 * attach them to the current inode log item.
614 while (blip
!= NULL
) {
615 if (blip
->li_cb
!= xfs_iflush_done
) {
617 blip
= blip
->li_bio_list
;
621 /* remove from list */
622 next
= blip
->li_bio_list
;
626 prev
->li_bio_list
= next
;
629 /* add to current list */
630 blip
->li_bio_list
= lip
->li_bio_list
;
631 lip
->li_bio_list
= blip
;
634 * while we have the item, do the unlocked check for needing
637 iip
= INODE_ITEM(blip
);
638 if (iip
->ili_logged
&& blip
->li_lsn
== iip
->ili_flush_lsn
)
644 /* make sure we capture the state of the initial inode. */
645 iip
= INODE_ITEM(lip
);
646 if (iip
->ili_logged
&& lip
->li_lsn
== iip
->ili_flush_lsn
)
650 * We only want to pull the item from the AIL if it is
651 * actually there and its location in the log has not
652 * changed since we started the flush. Thus, we only bother
653 * if the ili_logged flag is set and the inode's lsn has not
654 * changed. First we check the lsn outside
655 * the lock since it's cheaper, and then we recheck while
656 * holding the lock before removing the inode from the AIL.
659 struct xfs_log_item
*log_items
[need_ail
];
661 spin_lock(&ailp
->xa_lock
);
662 for (blip
= lip
; blip
; blip
= blip
->li_bio_list
) {
663 iip
= INODE_ITEM(blip
);
664 if (iip
->ili_logged
&&
665 blip
->li_lsn
== iip
->ili_flush_lsn
) {
666 log_items
[i
++] = blip
;
668 ASSERT(i
<= need_ail
);
670 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
671 xfs_trans_ail_delete_bulk(ailp
, log_items
, i
,
672 SHUTDOWN_CORRUPT_INCORE
);
677 * clean up and unlock the flush lock now we are done. We can clear the
678 * ili_last_fields bits now that we know that the data corresponding to
679 * them is safely on disk.
681 for (blip
= lip
; blip
; blip
= next
) {
682 next
= blip
->li_bio_list
;
683 blip
->li_bio_list
= NULL
;
685 iip
= INODE_ITEM(blip
);
687 iip
->ili_last_fields
= 0;
688 xfs_ifunlock(iip
->ili_inode
);
693 * This is the inode flushing abort routine. It is called from xfs_iflush when
694 * the filesystem is shutting down to clean up the inode state. It is
695 * responsible for removing the inode item from the AIL if it has not been
696 * re-logged, and unlocking the inode's flush lock.
703 xfs_inode_log_item_t
*iip
= ip
->i_itemp
;
706 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
707 xfs_trans_ail_remove(&iip
->ili_item
,
708 stale
? SHUTDOWN_LOG_IO_ERROR
:
709 SHUTDOWN_CORRUPT_INCORE
);
713 * Clear the ili_last_fields bits now that we know that the
714 * data corresponding to them is safely on disk.
716 iip
->ili_last_fields
= 0;
718 * Clear the inode logging fields so no more flushes are
722 iip
->ili_fsync_fields
= 0;
725 * Release the inode's flush lock since we're done with it.
733 struct xfs_log_item
*lip
)
735 xfs_iflush_abort(INODE_ITEM(lip
)->ili_inode
, true);
739 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
740 * (which can have different field alignments) to the native version
743 xfs_inode_item_format_convert(
744 xfs_log_iovec_t
*buf
,
745 xfs_inode_log_format_t
*in_f
)
747 if (buf
->i_len
== sizeof(xfs_inode_log_format_32_t
)) {
748 xfs_inode_log_format_32_t
*in_f32
= buf
->i_addr
;
750 in_f
->ilf_type
= in_f32
->ilf_type
;
751 in_f
->ilf_size
= in_f32
->ilf_size
;
752 in_f
->ilf_fields
= in_f32
->ilf_fields
;
753 in_f
->ilf_asize
= in_f32
->ilf_asize
;
754 in_f
->ilf_dsize
= in_f32
->ilf_dsize
;
755 in_f
->ilf_ino
= in_f32
->ilf_ino
;
756 /* copy biggest field of ilf_u */
757 memcpy(in_f
->ilf_u
.ilfu_uuid
.__u_bits
,
758 in_f32
->ilf_u
.ilfu_uuid
.__u_bits
,
760 in_f
->ilf_blkno
= in_f32
->ilf_blkno
;
761 in_f
->ilf_len
= in_f32
->ilf_len
;
762 in_f
->ilf_boffset
= in_f32
->ilf_boffset
;
764 } else if (buf
->i_len
== sizeof(xfs_inode_log_format_64_t
)){
765 xfs_inode_log_format_64_t
*in_f64
= buf
->i_addr
;
767 in_f
->ilf_type
= in_f64
->ilf_type
;
768 in_f
->ilf_size
= in_f64
->ilf_size
;
769 in_f
->ilf_fields
= in_f64
->ilf_fields
;
770 in_f
->ilf_asize
= in_f64
->ilf_asize
;
771 in_f
->ilf_dsize
= in_f64
->ilf_dsize
;
772 in_f
->ilf_ino
= in_f64
->ilf_ino
;
773 /* copy biggest field of ilf_u */
774 memcpy(in_f
->ilf_u
.ilfu_uuid
.__u_bits
,
775 in_f64
->ilf_u
.ilfu_uuid
.__u_bits
,
777 in_f
->ilf_blkno
= in_f64
->ilf_blkno
;
778 in_f
->ilf_len
= in_f64
->ilf_len
;
779 in_f
->ilf_boffset
= in_f64
->ilf_boffset
;
782 return -EFSCORRUPTED
;