ACPI: EC: Look for ECDT EC after calling acpi_load_tables()
[linux/fpc-iii.git] / fs / aio.c
blobb906ff70c90f809ba1d7a4e6f38019c0df4da4e8
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
10 * See ../COPYING for licensing terms.
12 #define pr_fmt(fmt) "%s: " fmt, __func__
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_context.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/timer.h>
34 #include <linux/aio.h>
35 #include <linux/highmem.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include <linux/eventfd.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/migrate.h>
42 #include <linux/ramfs.h>
43 #include <linux/percpu-refcount.h>
44 #include <linux/mount.h>
46 #include <asm/kmap_types.h>
47 #include <linux/uaccess.h>
48 #include <linux/nospec.h>
50 #include "internal.h"
52 #define KIOCB_KEY 0
54 #define AIO_RING_MAGIC 0xa10a10a1
55 #define AIO_RING_COMPAT_FEATURES 1
56 #define AIO_RING_INCOMPAT_FEATURES 0
57 struct aio_ring {
58 unsigned id; /* kernel internal index number */
59 unsigned nr; /* number of io_events */
60 unsigned head; /* Written to by userland or under ring_lock
61 * mutex by aio_read_events_ring(). */
62 unsigned tail;
64 unsigned magic;
65 unsigned compat_features;
66 unsigned incompat_features;
67 unsigned header_length; /* size of aio_ring */
70 struct io_event io_events[0];
71 }; /* 128 bytes + ring size */
74 * Plugging is meant to work with larger batches of IOs. If we don't
75 * have more than the below, then don't bother setting up a plug.
77 #define AIO_PLUG_THRESHOLD 2
79 #define AIO_RING_PAGES 8
81 struct kioctx_table {
82 struct rcu_head rcu;
83 unsigned nr;
84 struct kioctx __rcu *table[];
87 struct kioctx_cpu {
88 unsigned reqs_available;
91 struct ctx_rq_wait {
92 struct completion comp;
93 atomic_t count;
96 struct kioctx {
97 struct percpu_ref users;
98 atomic_t dead;
100 struct percpu_ref reqs;
102 unsigned long user_id;
104 struct __percpu kioctx_cpu *cpu;
107 * For percpu reqs_available, number of slots we move to/from global
108 * counter at a time:
110 unsigned req_batch;
112 * This is what userspace passed to io_setup(), it's not used for
113 * anything but counting against the global max_reqs quota.
115 * The real limit is nr_events - 1, which will be larger (see
116 * aio_setup_ring())
118 unsigned max_reqs;
120 /* Size of ringbuffer, in units of struct io_event */
121 unsigned nr_events;
123 unsigned long mmap_base;
124 unsigned long mmap_size;
126 struct page **ring_pages;
127 long nr_pages;
129 struct rcu_work free_rwork; /* see free_ioctx() */
132 * signals when all in-flight requests are done
134 struct ctx_rq_wait *rq_wait;
136 struct {
138 * This counts the number of available slots in the ringbuffer,
139 * so we avoid overflowing it: it's decremented (if positive)
140 * when allocating a kiocb and incremented when the resulting
141 * io_event is pulled off the ringbuffer.
143 * We batch accesses to it with a percpu version.
145 atomic_t reqs_available;
146 } ____cacheline_aligned_in_smp;
148 struct {
149 spinlock_t ctx_lock;
150 struct list_head active_reqs; /* used for cancellation */
151 } ____cacheline_aligned_in_smp;
153 struct {
154 struct mutex ring_lock;
155 wait_queue_head_t wait;
156 } ____cacheline_aligned_in_smp;
158 struct {
159 unsigned tail;
160 unsigned completed_events;
161 spinlock_t completion_lock;
162 } ____cacheline_aligned_in_smp;
164 struct page *internal_pages[AIO_RING_PAGES];
165 struct file *aio_ring_file;
167 unsigned id;
170 struct fsync_iocb {
171 struct work_struct work;
172 struct file *file;
173 bool datasync;
176 struct poll_iocb {
177 struct file *file;
178 struct wait_queue_head *head;
179 __poll_t events;
180 bool woken;
181 bool cancelled;
182 struct wait_queue_entry wait;
183 struct work_struct work;
186 struct aio_kiocb {
187 union {
188 struct kiocb rw;
189 struct fsync_iocb fsync;
190 struct poll_iocb poll;
193 struct kioctx *ki_ctx;
194 kiocb_cancel_fn *ki_cancel;
196 struct iocb __user *ki_user_iocb; /* user's aiocb */
197 __u64 ki_user_data; /* user's data for completion */
199 struct list_head ki_list; /* the aio core uses this
200 * for cancellation */
201 refcount_t ki_refcnt;
204 * If the aio_resfd field of the userspace iocb is not zero,
205 * this is the underlying eventfd context to deliver events to.
207 struct eventfd_ctx *ki_eventfd;
210 /*------ sysctl variables----*/
211 static DEFINE_SPINLOCK(aio_nr_lock);
212 unsigned long aio_nr; /* current system wide number of aio requests */
213 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
214 /*----end sysctl variables---*/
216 static struct kmem_cache *kiocb_cachep;
217 static struct kmem_cache *kioctx_cachep;
219 static struct vfsmount *aio_mnt;
221 static const struct file_operations aio_ring_fops;
222 static const struct address_space_operations aio_ctx_aops;
224 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
226 struct file *file;
227 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
228 if (IS_ERR(inode))
229 return ERR_CAST(inode);
231 inode->i_mapping->a_ops = &aio_ctx_aops;
232 inode->i_mapping->private_data = ctx;
233 inode->i_size = PAGE_SIZE * nr_pages;
235 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
236 O_RDWR, &aio_ring_fops);
237 if (IS_ERR(file))
238 iput(inode);
239 return file;
242 static struct dentry *aio_mount(struct file_system_type *fs_type,
243 int flags, const char *dev_name, void *data)
245 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, NULL,
246 AIO_RING_MAGIC);
248 if (!IS_ERR(root))
249 root->d_sb->s_iflags |= SB_I_NOEXEC;
250 return root;
253 /* aio_setup
254 * Creates the slab caches used by the aio routines, panic on
255 * failure as this is done early during the boot sequence.
257 static int __init aio_setup(void)
259 static struct file_system_type aio_fs = {
260 .name = "aio",
261 .mount = aio_mount,
262 .kill_sb = kill_anon_super,
264 aio_mnt = kern_mount(&aio_fs);
265 if (IS_ERR(aio_mnt))
266 panic("Failed to create aio fs mount.");
268 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
269 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
270 return 0;
272 __initcall(aio_setup);
274 static void put_aio_ring_file(struct kioctx *ctx)
276 struct file *aio_ring_file = ctx->aio_ring_file;
277 struct address_space *i_mapping;
279 if (aio_ring_file) {
280 truncate_setsize(file_inode(aio_ring_file), 0);
282 /* Prevent further access to the kioctx from migratepages */
283 i_mapping = aio_ring_file->f_mapping;
284 spin_lock(&i_mapping->private_lock);
285 i_mapping->private_data = NULL;
286 ctx->aio_ring_file = NULL;
287 spin_unlock(&i_mapping->private_lock);
289 fput(aio_ring_file);
293 static void aio_free_ring(struct kioctx *ctx)
295 int i;
297 /* Disconnect the kiotx from the ring file. This prevents future
298 * accesses to the kioctx from page migration.
300 put_aio_ring_file(ctx);
302 for (i = 0; i < ctx->nr_pages; i++) {
303 struct page *page;
304 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
305 page_count(ctx->ring_pages[i]));
306 page = ctx->ring_pages[i];
307 if (!page)
308 continue;
309 ctx->ring_pages[i] = NULL;
310 put_page(page);
313 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
314 kfree(ctx->ring_pages);
315 ctx->ring_pages = NULL;
319 static int aio_ring_mremap(struct vm_area_struct *vma)
321 struct file *file = vma->vm_file;
322 struct mm_struct *mm = vma->vm_mm;
323 struct kioctx_table *table;
324 int i, res = -EINVAL;
326 spin_lock(&mm->ioctx_lock);
327 rcu_read_lock();
328 table = rcu_dereference(mm->ioctx_table);
329 for (i = 0; i < table->nr; i++) {
330 struct kioctx *ctx;
332 ctx = rcu_dereference(table->table[i]);
333 if (ctx && ctx->aio_ring_file == file) {
334 if (!atomic_read(&ctx->dead)) {
335 ctx->user_id = ctx->mmap_base = vma->vm_start;
336 res = 0;
338 break;
342 rcu_read_unlock();
343 spin_unlock(&mm->ioctx_lock);
344 return res;
347 static const struct vm_operations_struct aio_ring_vm_ops = {
348 .mremap = aio_ring_mremap,
349 #if IS_ENABLED(CONFIG_MMU)
350 .fault = filemap_fault,
351 .map_pages = filemap_map_pages,
352 .page_mkwrite = filemap_page_mkwrite,
353 #endif
356 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
358 vma->vm_flags |= VM_DONTEXPAND;
359 vma->vm_ops = &aio_ring_vm_ops;
360 return 0;
363 static const struct file_operations aio_ring_fops = {
364 .mmap = aio_ring_mmap,
367 #if IS_ENABLED(CONFIG_MIGRATION)
368 static int aio_migratepage(struct address_space *mapping, struct page *new,
369 struct page *old, enum migrate_mode mode)
371 struct kioctx *ctx;
372 unsigned long flags;
373 pgoff_t idx;
374 int rc;
377 * We cannot support the _NO_COPY case here, because copy needs to
378 * happen under the ctx->completion_lock. That does not work with the
379 * migration workflow of MIGRATE_SYNC_NO_COPY.
381 if (mode == MIGRATE_SYNC_NO_COPY)
382 return -EINVAL;
384 rc = 0;
386 /* mapping->private_lock here protects against the kioctx teardown. */
387 spin_lock(&mapping->private_lock);
388 ctx = mapping->private_data;
389 if (!ctx) {
390 rc = -EINVAL;
391 goto out;
394 /* The ring_lock mutex. The prevents aio_read_events() from writing
395 * to the ring's head, and prevents page migration from mucking in
396 * a partially initialized kiotx.
398 if (!mutex_trylock(&ctx->ring_lock)) {
399 rc = -EAGAIN;
400 goto out;
403 idx = old->index;
404 if (idx < (pgoff_t)ctx->nr_pages) {
405 /* Make sure the old page hasn't already been changed */
406 if (ctx->ring_pages[idx] != old)
407 rc = -EAGAIN;
408 } else
409 rc = -EINVAL;
411 if (rc != 0)
412 goto out_unlock;
414 /* Writeback must be complete */
415 BUG_ON(PageWriteback(old));
416 get_page(new);
418 rc = migrate_page_move_mapping(mapping, new, old, mode, 1);
419 if (rc != MIGRATEPAGE_SUCCESS) {
420 put_page(new);
421 goto out_unlock;
424 /* Take completion_lock to prevent other writes to the ring buffer
425 * while the old page is copied to the new. This prevents new
426 * events from being lost.
428 spin_lock_irqsave(&ctx->completion_lock, flags);
429 migrate_page_copy(new, old);
430 BUG_ON(ctx->ring_pages[idx] != old);
431 ctx->ring_pages[idx] = new;
432 spin_unlock_irqrestore(&ctx->completion_lock, flags);
434 /* The old page is no longer accessible. */
435 put_page(old);
437 out_unlock:
438 mutex_unlock(&ctx->ring_lock);
439 out:
440 spin_unlock(&mapping->private_lock);
441 return rc;
443 #endif
445 static const struct address_space_operations aio_ctx_aops = {
446 .set_page_dirty = __set_page_dirty_no_writeback,
447 #if IS_ENABLED(CONFIG_MIGRATION)
448 .migratepage = aio_migratepage,
449 #endif
452 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
454 struct aio_ring *ring;
455 struct mm_struct *mm = current->mm;
456 unsigned long size, unused;
457 int nr_pages;
458 int i;
459 struct file *file;
461 /* Compensate for the ring buffer's head/tail overlap entry */
462 nr_events += 2; /* 1 is required, 2 for good luck */
464 size = sizeof(struct aio_ring);
465 size += sizeof(struct io_event) * nr_events;
467 nr_pages = PFN_UP(size);
468 if (nr_pages < 0)
469 return -EINVAL;
471 file = aio_private_file(ctx, nr_pages);
472 if (IS_ERR(file)) {
473 ctx->aio_ring_file = NULL;
474 return -ENOMEM;
477 ctx->aio_ring_file = file;
478 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
479 / sizeof(struct io_event);
481 ctx->ring_pages = ctx->internal_pages;
482 if (nr_pages > AIO_RING_PAGES) {
483 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
484 GFP_KERNEL);
485 if (!ctx->ring_pages) {
486 put_aio_ring_file(ctx);
487 return -ENOMEM;
491 for (i = 0; i < nr_pages; i++) {
492 struct page *page;
493 page = find_or_create_page(file->f_mapping,
494 i, GFP_HIGHUSER | __GFP_ZERO);
495 if (!page)
496 break;
497 pr_debug("pid(%d) page[%d]->count=%d\n",
498 current->pid, i, page_count(page));
499 SetPageUptodate(page);
500 unlock_page(page);
502 ctx->ring_pages[i] = page;
504 ctx->nr_pages = i;
506 if (unlikely(i != nr_pages)) {
507 aio_free_ring(ctx);
508 return -ENOMEM;
511 ctx->mmap_size = nr_pages * PAGE_SIZE;
512 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
514 if (down_write_killable(&mm->mmap_sem)) {
515 ctx->mmap_size = 0;
516 aio_free_ring(ctx);
517 return -EINTR;
520 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
521 PROT_READ | PROT_WRITE,
522 MAP_SHARED, 0, &unused, NULL);
523 up_write(&mm->mmap_sem);
524 if (IS_ERR((void *)ctx->mmap_base)) {
525 ctx->mmap_size = 0;
526 aio_free_ring(ctx);
527 return -ENOMEM;
530 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
532 ctx->user_id = ctx->mmap_base;
533 ctx->nr_events = nr_events; /* trusted copy */
535 ring = kmap_atomic(ctx->ring_pages[0]);
536 ring->nr = nr_events; /* user copy */
537 ring->id = ~0U;
538 ring->head = ring->tail = 0;
539 ring->magic = AIO_RING_MAGIC;
540 ring->compat_features = AIO_RING_COMPAT_FEATURES;
541 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
542 ring->header_length = sizeof(struct aio_ring);
543 kunmap_atomic(ring);
544 flush_dcache_page(ctx->ring_pages[0]);
546 return 0;
549 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
550 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
551 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
553 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
555 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
556 struct kioctx *ctx = req->ki_ctx;
557 unsigned long flags;
559 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
560 return;
562 spin_lock_irqsave(&ctx->ctx_lock, flags);
563 list_add_tail(&req->ki_list, &ctx->active_reqs);
564 req->ki_cancel = cancel;
565 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
567 EXPORT_SYMBOL(kiocb_set_cancel_fn);
570 * free_ioctx() should be RCU delayed to synchronize against the RCU
571 * protected lookup_ioctx() and also needs process context to call
572 * aio_free_ring(). Use rcu_work.
574 static void free_ioctx(struct work_struct *work)
576 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
577 free_rwork);
578 pr_debug("freeing %p\n", ctx);
580 aio_free_ring(ctx);
581 free_percpu(ctx->cpu);
582 percpu_ref_exit(&ctx->reqs);
583 percpu_ref_exit(&ctx->users);
584 kmem_cache_free(kioctx_cachep, ctx);
587 static void free_ioctx_reqs(struct percpu_ref *ref)
589 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
591 /* At this point we know that there are no any in-flight requests */
592 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
593 complete(&ctx->rq_wait->comp);
595 /* Synchronize against RCU protected table->table[] dereferences */
596 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
597 queue_rcu_work(system_wq, &ctx->free_rwork);
601 * When this function runs, the kioctx has been removed from the "hash table"
602 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
603 * now it's safe to cancel any that need to be.
605 static void free_ioctx_users(struct percpu_ref *ref)
607 struct kioctx *ctx = container_of(ref, struct kioctx, users);
608 struct aio_kiocb *req;
610 spin_lock_irq(&ctx->ctx_lock);
612 while (!list_empty(&ctx->active_reqs)) {
613 req = list_first_entry(&ctx->active_reqs,
614 struct aio_kiocb, ki_list);
615 req->ki_cancel(&req->rw);
616 list_del_init(&req->ki_list);
619 spin_unlock_irq(&ctx->ctx_lock);
621 percpu_ref_kill(&ctx->reqs);
622 percpu_ref_put(&ctx->reqs);
625 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
627 unsigned i, new_nr;
628 struct kioctx_table *table, *old;
629 struct aio_ring *ring;
631 spin_lock(&mm->ioctx_lock);
632 table = rcu_dereference_raw(mm->ioctx_table);
634 while (1) {
635 if (table)
636 for (i = 0; i < table->nr; i++)
637 if (!rcu_access_pointer(table->table[i])) {
638 ctx->id = i;
639 rcu_assign_pointer(table->table[i], ctx);
640 spin_unlock(&mm->ioctx_lock);
642 /* While kioctx setup is in progress,
643 * we are protected from page migration
644 * changes ring_pages by ->ring_lock.
646 ring = kmap_atomic(ctx->ring_pages[0]);
647 ring->id = ctx->id;
648 kunmap_atomic(ring);
649 return 0;
652 new_nr = (table ? table->nr : 1) * 4;
653 spin_unlock(&mm->ioctx_lock);
655 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
656 new_nr, GFP_KERNEL);
657 if (!table)
658 return -ENOMEM;
660 table->nr = new_nr;
662 spin_lock(&mm->ioctx_lock);
663 old = rcu_dereference_raw(mm->ioctx_table);
665 if (!old) {
666 rcu_assign_pointer(mm->ioctx_table, table);
667 } else if (table->nr > old->nr) {
668 memcpy(table->table, old->table,
669 old->nr * sizeof(struct kioctx *));
671 rcu_assign_pointer(mm->ioctx_table, table);
672 kfree_rcu(old, rcu);
673 } else {
674 kfree(table);
675 table = old;
680 static void aio_nr_sub(unsigned nr)
682 spin_lock(&aio_nr_lock);
683 if (WARN_ON(aio_nr - nr > aio_nr))
684 aio_nr = 0;
685 else
686 aio_nr -= nr;
687 spin_unlock(&aio_nr_lock);
690 /* ioctx_alloc
691 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
693 static struct kioctx *ioctx_alloc(unsigned nr_events)
695 struct mm_struct *mm = current->mm;
696 struct kioctx *ctx;
697 int err = -ENOMEM;
700 * Store the original nr_events -- what userspace passed to io_setup(),
701 * for counting against the global limit -- before it changes.
703 unsigned int max_reqs = nr_events;
706 * We keep track of the number of available ringbuffer slots, to prevent
707 * overflow (reqs_available), and we also use percpu counters for this.
709 * So since up to half the slots might be on other cpu's percpu counters
710 * and unavailable, double nr_events so userspace sees what they
711 * expected: additionally, we move req_batch slots to/from percpu
712 * counters at a time, so make sure that isn't 0:
714 nr_events = max(nr_events, num_possible_cpus() * 4);
715 nr_events *= 2;
717 /* Prevent overflows */
718 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
719 pr_debug("ENOMEM: nr_events too high\n");
720 return ERR_PTR(-EINVAL);
723 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
724 return ERR_PTR(-EAGAIN);
726 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
727 if (!ctx)
728 return ERR_PTR(-ENOMEM);
730 ctx->max_reqs = max_reqs;
732 spin_lock_init(&ctx->ctx_lock);
733 spin_lock_init(&ctx->completion_lock);
734 mutex_init(&ctx->ring_lock);
735 /* Protect against page migration throughout kiotx setup by keeping
736 * the ring_lock mutex held until setup is complete. */
737 mutex_lock(&ctx->ring_lock);
738 init_waitqueue_head(&ctx->wait);
740 INIT_LIST_HEAD(&ctx->active_reqs);
742 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
743 goto err;
745 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
746 goto err;
748 ctx->cpu = alloc_percpu(struct kioctx_cpu);
749 if (!ctx->cpu)
750 goto err;
752 err = aio_setup_ring(ctx, nr_events);
753 if (err < 0)
754 goto err;
756 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
757 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
758 if (ctx->req_batch < 1)
759 ctx->req_batch = 1;
761 /* limit the number of system wide aios */
762 spin_lock(&aio_nr_lock);
763 if (aio_nr + ctx->max_reqs > aio_max_nr ||
764 aio_nr + ctx->max_reqs < aio_nr) {
765 spin_unlock(&aio_nr_lock);
766 err = -EAGAIN;
767 goto err_ctx;
769 aio_nr += ctx->max_reqs;
770 spin_unlock(&aio_nr_lock);
772 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
773 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
775 err = ioctx_add_table(ctx, mm);
776 if (err)
777 goto err_cleanup;
779 /* Release the ring_lock mutex now that all setup is complete. */
780 mutex_unlock(&ctx->ring_lock);
782 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
783 ctx, ctx->user_id, mm, ctx->nr_events);
784 return ctx;
786 err_cleanup:
787 aio_nr_sub(ctx->max_reqs);
788 err_ctx:
789 atomic_set(&ctx->dead, 1);
790 if (ctx->mmap_size)
791 vm_munmap(ctx->mmap_base, ctx->mmap_size);
792 aio_free_ring(ctx);
793 err:
794 mutex_unlock(&ctx->ring_lock);
795 free_percpu(ctx->cpu);
796 percpu_ref_exit(&ctx->reqs);
797 percpu_ref_exit(&ctx->users);
798 kmem_cache_free(kioctx_cachep, ctx);
799 pr_debug("error allocating ioctx %d\n", err);
800 return ERR_PTR(err);
803 /* kill_ioctx
804 * Cancels all outstanding aio requests on an aio context. Used
805 * when the processes owning a context have all exited to encourage
806 * the rapid destruction of the kioctx.
808 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
809 struct ctx_rq_wait *wait)
811 struct kioctx_table *table;
813 spin_lock(&mm->ioctx_lock);
814 if (atomic_xchg(&ctx->dead, 1)) {
815 spin_unlock(&mm->ioctx_lock);
816 return -EINVAL;
819 table = rcu_dereference_raw(mm->ioctx_table);
820 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
821 RCU_INIT_POINTER(table->table[ctx->id], NULL);
822 spin_unlock(&mm->ioctx_lock);
824 /* free_ioctx_reqs() will do the necessary RCU synchronization */
825 wake_up_all(&ctx->wait);
828 * It'd be more correct to do this in free_ioctx(), after all
829 * the outstanding kiocbs have finished - but by then io_destroy
830 * has already returned, so io_setup() could potentially return
831 * -EAGAIN with no ioctxs actually in use (as far as userspace
832 * could tell).
834 aio_nr_sub(ctx->max_reqs);
836 if (ctx->mmap_size)
837 vm_munmap(ctx->mmap_base, ctx->mmap_size);
839 ctx->rq_wait = wait;
840 percpu_ref_kill(&ctx->users);
841 return 0;
845 * exit_aio: called when the last user of mm goes away. At this point, there is
846 * no way for any new requests to be submited or any of the io_* syscalls to be
847 * called on the context.
849 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
850 * them.
852 void exit_aio(struct mm_struct *mm)
854 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
855 struct ctx_rq_wait wait;
856 int i, skipped;
858 if (!table)
859 return;
861 atomic_set(&wait.count, table->nr);
862 init_completion(&wait.comp);
864 skipped = 0;
865 for (i = 0; i < table->nr; ++i) {
866 struct kioctx *ctx =
867 rcu_dereference_protected(table->table[i], true);
869 if (!ctx) {
870 skipped++;
871 continue;
875 * We don't need to bother with munmap() here - exit_mmap(mm)
876 * is coming and it'll unmap everything. And we simply can't,
877 * this is not necessarily our ->mm.
878 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
879 * that it needs to unmap the area, just set it to 0.
881 ctx->mmap_size = 0;
882 kill_ioctx(mm, ctx, &wait);
885 if (!atomic_sub_and_test(skipped, &wait.count)) {
886 /* Wait until all IO for the context are done. */
887 wait_for_completion(&wait.comp);
890 RCU_INIT_POINTER(mm->ioctx_table, NULL);
891 kfree(table);
894 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
896 struct kioctx_cpu *kcpu;
897 unsigned long flags;
899 local_irq_save(flags);
900 kcpu = this_cpu_ptr(ctx->cpu);
901 kcpu->reqs_available += nr;
903 while (kcpu->reqs_available >= ctx->req_batch * 2) {
904 kcpu->reqs_available -= ctx->req_batch;
905 atomic_add(ctx->req_batch, &ctx->reqs_available);
908 local_irq_restore(flags);
911 static bool __get_reqs_available(struct kioctx *ctx)
913 struct kioctx_cpu *kcpu;
914 bool ret = false;
915 unsigned long flags;
917 local_irq_save(flags);
918 kcpu = this_cpu_ptr(ctx->cpu);
919 if (!kcpu->reqs_available) {
920 int old, avail = atomic_read(&ctx->reqs_available);
922 do {
923 if (avail < ctx->req_batch)
924 goto out;
926 old = avail;
927 avail = atomic_cmpxchg(&ctx->reqs_available,
928 avail, avail - ctx->req_batch);
929 } while (avail != old);
931 kcpu->reqs_available += ctx->req_batch;
934 ret = true;
935 kcpu->reqs_available--;
936 out:
937 local_irq_restore(flags);
938 return ret;
941 /* refill_reqs_available
942 * Updates the reqs_available reference counts used for tracking the
943 * number of free slots in the completion ring. This can be called
944 * from aio_complete() (to optimistically update reqs_available) or
945 * from aio_get_req() (the we're out of events case). It must be
946 * called holding ctx->completion_lock.
948 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
949 unsigned tail)
951 unsigned events_in_ring, completed;
953 /* Clamp head since userland can write to it. */
954 head %= ctx->nr_events;
955 if (head <= tail)
956 events_in_ring = tail - head;
957 else
958 events_in_ring = ctx->nr_events - (head - tail);
960 completed = ctx->completed_events;
961 if (events_in_ring < completed)
962 completed -= events_in_ring;
963 else
964 completed = 0;
966 if (!completed)
967 return;
969 ctx->completed_events -= completed;
970 put_reqs_available(ctx, completed);
973 /* user_refill_reqs_available
974 * Called to refill reqs_available when aio_get_req() encounters an
975 * out of space in the completion ring.
977 static void user_refill_reqs_available(struct kioctx *ctx)
979 spin_lock_irq(&ctx->completion_lock);
980 if (ctx->completed_events) {
981 struct aio_ring *ring;
982 unsigned head;
984 /* Access of ring->head may race with aio_read_events_ring()
985 * here, but that's okay since whether we read the old version
986 * or the new version, and either will be valid. The important
987 * part is that head cannot pass tail since we prevent
988 * aio_complete() from updating tail by holding
989 * ctx->completion_lock. Even if head is invalid, the check
990 * against ctx->completed_events below will make sure we do the
991 * safe/right thing.
993 ring = kmap_atomic(ctx->ring_pages[0]);
994 head = ring->head;
995 kunmap_atomic(ring);
997 refill_reqs_available(ctx, head, ctx->tail);
1000 spin_unlock_irq(&ctx->completion_lock);
1003 static bool get_reqs_available(struct kioctx *ctx)
1005 if (__get_reqs_available(ctx))
1006 return true;
1007 user_refill_reqs_available(ctx);
1008 return __get_reqs_available(ctx);
1011 /* aio_get_req
1012 * Allocate a slot for an aio request.
1013 * Returns NULL if no requests are free.
1015 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1017 struct aio_kiocb *req;
1019 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1020 if (unlikely(!req))
1021 return NULL;
1023 percpu_ref_get(&ctx->reqs);
1024 req->ki_ctx = ctx;
1025 INIT_LIST_HEAD(&req->ki_list);
1026 refcount_set(&req->ki_refcnt, 0);
1027 req->ki_eventfd = NULL;
1028 return req;
1031 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1033 struct aio_ring __user *ring = (void __user *)ctx_id;
1034 struct mm_struct *mm = current->mm;
1035 struct kioctx *ctx, *ret = NULL;
1036 struct kioctx_table *table;
1037 unsigned id;
1039 if (get_user(id, &ring->id))
1040 return NULL;
1042 rcu_read_lock();
1043 table = rcu_dereference(mm->ioctx_table);
1045 if (!table || id >= table->nr)
1046 goto out;
1048 id = array_index_nospec(id, table->nr);
1049 ctx = rcu_dereference(table->table[id]);
1050 if (ctx && ctx->user_id == ctx_id) {
1051 if (percpu_ref_tryget_live(&ctx->users))
1052 ret = ctx;
1054 out:
1055 rcu_read_unlock();
1056 return ret;
1059 static inline void iocb_put(struct aio_kiocb *iocb)
1061 if (refcount_read(&iocb->ki_refcnt) == 0 ||
1062 refcount_dec_and_test(&iocb->ki_refcnt)) {
1063 percpu_ref_put(&iocb->ki_ctx->reqs);
1064 kmem_cache_free(kiocb_cachep, iocb);
1068 static void aio_fill_event(struct io_event *ev, struct aio_kiocb *iocb,
1069 long res, long res2)
1071 ev->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1072 ev->data = iocb->ki_user_data;
1073 ev->res = res;
1074 ev->res2 = res2;
1077 /* aio_complete
1078 * Called when the io request on the given iocb is complete.
1080 static void aio_complete(struct aio_kiocb *iocb, long res, long res2)
1082 struct kioctx *ctx = iocb->ki_ctx;
1083 struct aio_ring *ring;
1084 struct io_event *ev_page, *event;
1085 unsigned tail, pos, head;
1086 unsigned long flags;
1089 * Add a completion event to the ring buffer. Must be done holding
1090 * ctx->completion_lock to prevent other code from messing with the tail
1091 * pointer since we might be called from irq context.
1093 spin_lock_irqsave(&ctx->completion_lock, flags);
1095 tail = ctx->tail;
1096 pos = tail + AIO_EVENTS_OFFSET;
1098 if (++tail >= ctx->nr_events)
1099 tail = 0;
1101 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1102 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1104 aio_fill_event(event, iocb, res, res2);
1106 kunmap_atomic(ev_page);
1107 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1109 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1110 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1111 res, res2);
1113 /* after flagging the request as done, we
1114 * must never even look at it again
1116 smp_wmb(); /* make event visible before updating tail */
1118 ctx->tail = tail;
1120 ring = kmap_atomic(ctx->ring_pages[0]);
1121 head = ring->head;
1122 ring->tail = tail;
1123 kunmap_atomic(ring);
1124 flush_dcache_page(ctx->ring_pages[0]);
1126 ctx->completed_events++;
1127 if (ctx->completed_events > 1)
1128 refill_reqs_available(ctx, head, tail);
1129 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1131 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1134 * Check if the user asked us to deliver the result through an
1135 * eventfd. The eventfd_signal() function is safe to be called
1136 * from IRQ context.
1138 if (iocb->ki_eventfd) {
1139 eventfd_signal(iocb->ki_eventfd, 1);
1140 eventfd_ctx_put(iocb->ki_eventfd);
1144 * We have to order our ring_info tail store above and test
1145 * of the wait list below outside the wait lock. This is
1146 * like in wake_up_bit() where clearing a bit has to be
1147 * ordered with the unlocked test.
1149 smp_mb();
1151 if (waitqueue_active(&ctx->wait))
1152 wake_up(&ctx->wait);
1153 iocb_put(iocb);
1156 /* aio_read_events_ring
1157 * Pull an event off of the ioctx's event ring. Returns the number of
1158 * events fetched
1160 static long aio_read_events_ring(struct kioctx *ctx,
1161 struct io_event __user *event, long nr)
1163 struct aio_ring *ring;
1164 unsigned head, tail, pos;
1165 long ret = 0;
1166 int copy_ret;
1169 * The mutex can block and wake us up and that will cause
1170 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1171 * and repeat. This should be rare enough that it doesn't cause
1172 * peformance issues. See the comment in read_events() for more detail.
1174 sched_annotate_sleep();
1175 mutex_lock(&ctx->ring_lock);
1177 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1178 ring = kmap_atomic(ctx->ring_pages[0]);
1179 head = ring->head;
1180 tail = ring->tail;
1181 kunmap_atomic(ring);
1184 * Ensure that once we've read the current tail pointer, that
1185 * we also see the events that were stored up to the tail.
1187 smp_rmb();
1189 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1191 if (head == tail)
1192 goto out;
1194 head %= ctx->nr_events;
1195 tail %= ctx->nr_events;
1197 while (ret < nr) {
1198 long avail;
1199 struct io_event *ev;
1200 struct page *page;
1202 avail = (head <= tail ? tail : ctx->nr_events) - head;
1203 if (head == tail)
1204 break;
1206 pos = head + AIO_EVENTS_OFFSET;
1207 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1208 pos %= AIO_EVENTS_PER_PAGE;
1210 avail = min(avail, nr - ret);
1211 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1213 ev = kmap(page);
1214 copy_ret = copy_to_user(event + ret, ev + pos,
1215 sizeof(*ev) * avail);
1216 kunmap(page);
1218 if (unlikely(copy_ret)) {
1219 ret = -EFAULT;
1220 goto out;
1223 ret += avail;
1224 head += avail;
1225 head %= ctx->nr_events;
1228 ring = kmap_atomic(ctx->ring_pages[0]);
1229 ring->head = head;
1230 kunmap_atomic(ring);
1231 flush_dcache_page(ctx->ring_pages[0]);
1233 pr_debug("%li h%u t%u\n", ret, head, tail);
1234 out:
1235 mutex_unlock(&ctx->ring_lock);
1237 return ret;
1240 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1241 struct io_event __user *event, long *i)
1243 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1245 if (ret > 0)
1246 *i += ret;
1248 if (unlikely(atomic_read(&ctx->dead)))
1249 ret = -EINVAL;
1251 if (!*i)
1252 *i = ret;
1254 return ret < 0 || *i >= min_nr;
1257 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1258 struct io_event __user *event,
1259 ktime_t until)
1261 long ret = 0;
1264 * Note that aio_read_events() is being called as the conditional - i.e.
1265 * we're calling it after prepare_to_wait() has set task state to
1266 * TASK_INTERRUPTIBLE.
1268 * But aio_read_events() can block, and if it blocks it's going to flip
1269 * the task state back to TASK_RUNNING.
1271 * This should be ok, provided it doesn't flip the state back to
1272 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1273 * will only happen if the mutex_lock() call blocks, and we then find
1274 * the ringbuffer empty. So in practice we should be ok, but it's
1275 * something to be aware of when touching this code.
1277 if (until == 0)
1278 aio_read_events(ctx, min_nr, nr, event, &ret);
1279 else
1280 wait_event_interruptible_hrtimeout(ctx->wait,
1281 aio_read_events(ctx, min_nr, nr, event, &ret),
1282 until);
1283 return ret;
1286 /* sys_io_setup:
1287 * Create an aio_context capable of receiving at least nr_events.
1288 * ctxp must not point to an aio_context that already exists, and
1289 * must be initialized to 0 prior to the call. On successful
1290 * creation of the aio_context, *ctxp is filled in with the resulting
1291 * handle. May fail with -EINVAL if *ctxp is not initialized,
1292 * if the specified nr_events exceeds internal limits. May fail
1293 * with -EAGAIN if the specified nr_events exceeds the user's limit
1294 * of available events. May fail with -ENOMEM if insufficient kernel
1295 * resources are available. May fail with -EFAULT if an invalid
1296 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1297 * implemented.
1299 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1301 struct kioctx *ioctx = NULL;
1302 unsigned long ctx;
1303 long ret;
1305 ret = get_user(ctx, ctxp);
1306 if (unlikely(ret))
1307 goto out;
1309 ret = -EINVAL;
1310 if (unlikely(ctx || nr_events == 0)) {
1311 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1312 ctx, nr_events);
1313 goto out;
1316 ioctx = ioctx_alloc(nr_events);
1317 ret = PTR_ERR(ioctx);
1318 if (!IS_ERR(ioctx)) {
1319 ret = put_user(ioctx->user_id, ctxp);
1320 if (ret)
1321 kill_ioctx(current->mm, ioctx, NULL);
1322 percpu_ref_put(&ioctx->users);
1325 out:
1326 return ret;
1329 #ifdef CONFIG_COMPAT
1330 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1332 struct kioctx *ioctx = NULL;
1333 unsigned long ctx;
1334 long ret;
1336 ret = get_user(ctx, ctx32p);
1337 if (unlikely(ret))
1338 goto out;
1340 ret = -EINVAL;
1341 if (unlikely(ctx || nr_events == 0)) {
1342 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1343 ctx, nr_events);
1344 goto out;
1347 ioctx = ioctx_alloc(nr_events);
1348 ret = PTR_ERR(ioctx);
1349 if (!IS_ERR(ioctx)) {
1350 /* truncating is ok because it's a user address */
1351 ret = put_user((u32)ioctx->user_id, ctx32p);
1352 if (ret)
1353 kill_ioctx(current->mm, ioctx, NULL);
1354 percpu_ref_put(&ioctx->users);
1357 out:
1358 return ret;
1360 #endif
1362 /* sys_io_destroy:
1363 * Destroy the aio_context specified. May cancel any outstanding
1364 * AIOs and block on completion. Will fail with -ENOSYS if not
1365 * implemented. May fail with -EINVAL if the context pointed to
1366 * is invalid.
1368 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1370 struct kioctx *ioctx = lookup_ioctx(ctx);
1371 if (likely(NULL != ioctx)) {
1372 struct ctx_rq_wait wait;
1373 int ret;
1375 init_completion(&wait.comp);
1376 atomic_set(&wait.count, 1);
1378 /* Pass requests_done to kill_ioctx() where it can be set
1379 * in a thread-safe way. If we try to set it here then we have
1380 * a race condition if two io_destroy() called simultaneously.
1382 ret = kill_ioctx(current->mm, ioctx, &wait);
1383 percpu_ref_put(&ioctx->users);
1385 /* Wait until all IO for the context are done. Otherwise kernel
1386 * keep using user-space buffers even if user thinks the context
1387 * is destroyed.
1389 if (!ret)
1390 wait_for_completion(&wait.comp);
1392 return ret;
1394 pr_debug("EINVAL: invalid context id\n");
1395 return -EINVAL;
1398 static void aio_remove_iocb(struct aio_kiocb *iocb)
1400 struct kioctx *ctx = iocb->ki_ctx;
1401 unsigned long flags;
1403 spin_lock_irqsave(&ctx->ctx_lock, flags);
1404 list_del(&iocb->ki_list);
1405 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1408 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1410 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1412 if (!list_empty_careful(&iocb->ki_list))
1413 aio_remove_iocb(iocb);
1415 if (kiocb->ki_flags & IOCB_WRITE) {
1416 struct inode *inode = file_inode(kiocb->ki_filp);
1419 * Tell lockdep we inherited freeze protection from submission
1420 * thread.
1422 if (S_ISREG(inode->i_mode))
1423 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1424 file_end_write(kiocb->ki_filp);
1427 fput(kiocb->ki_filp);
1428 aio_complete(iocb, res, res2);
1431 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1433 int ret;
1435 req->ki_filp = fget(iocb->aio_fildes);
1436 if (unlikely(!req->ki_filp))
1437 return -EBADF;
1438 req->ki_complete = aio_complete_rw;
1439 req->ki_pos = iocb->aio_offset;
1440 req->ki_flags = iocb_flags(req->ki_filp);
1441 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1442 req->ki_flags |= IOCB_EVENTFD;
1443 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1444 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1446 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1447 * aio_reqprio is interpreted as an I/O scheduling
1448 * class and priority.
1450 ret = ioprio_check_cap(iocb->aio_reqprio);
1451 if (ret) {
1452 pr_debug("aio ioprio check cap error: %d\n", ret);
1453 goto out_fput;
1456 req->ki_ioprio = iocb->aio_reqprio;
1457 } else
1458 req->ki_ioprio = get_current_ioprio();
1460 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1461 if (unlikely(ret))
1462 goto out_fput;
1464 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1465 return 0;
1467 out_fput:
1468 fput(req->ki_filp);
1469 return ret;
1472 static int aio_setup_rw(int rw, const struct iocb *iocb, struct iovec **iovec,
1473 bool vectored, bool compat, struct iov_iter *iter)
1475 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1476 size_t len = iocb->aio_nbytes;
1478 if (!vectored) {
1479 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1480 *iovec = NULL;
1481 return ret;
1483 #ifdef CONFIG_COMPAT
1484 if (compat)
1485 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1486 iter);
1487 #endif
1488 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1491 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1493 switch (ret) {
1494 case -EIOCBQUEUED:
1495 break;
1496 case -ERESTARTSYS:
1497 case -ERESTARTNOINTR:
1498 case -ERESTARTNOHAND:
1499 case -ERESTART_RESTARTBLOCK:
1501 * There's no easy way to restart the syscall since other AIO's
1502 * may be already running. Just fail this IO with EINTR.
1504 ret = -EINTR;
1505 /*FALLTHRU*/
1506 default:
1507 req->ki_complete(req, ret, 0);
1511 static ssize_t aio_read(struct kiocb *req, const struct iocb *iocb,
1512 bool vectored, bool compat)
1514 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1515 struct iov_iter iter;
1516 struct file *file;
1517 ssize_t ret;
1519 ret = aio_prep_rw(req, iocb);
1520 if (ret)
1521 return ret;
1522 file = req->ki_filp;
1524 ret = -EBADF;
1525 if (unlikely(!(file->f_mode & FMODE_READ)))
1526 goto out_fput;
1527 ret = -EINVAL;
1528 if (unlikely(!file->f_op->read_iter))
1529 goto out_fput;
1531 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1532 if (ret)
1533 goto out_fput;
1534 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1535 if (!ret)
1536 aio_rw_done(req, call_read_iter(file, req, &iter));
1537 kfree(iovec);
1538 out_fput:
1539 if (unlikely(ret))
1540 fput(file);
1541 return ret;
1544 static ssize_t aio_write(struct kiocb *req, const struct iocb *iocb,
1545 bool vectored, bool compat)
1547 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1548 struct iov_iter iter;
1549 struct file *file;
1550 ssize_t ret;
1552 ret = aio_prep_rw(req, iocb);
1553 if (ret)
1554 return ret;
1555 file = req->ki_filp;
1557 ret = -EBADF;
1558 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1559 goto out_fput;
1560 ret = -EINVAL;
1561 if (unlikely(!file->f_op->write_iter))
1562 goto out_fput;
1564 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1565 if (ret)
1566 goto out_fput;
1567 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1568 if (!ret) {
1570 * Open-code file_start_write here to grab freeze protection,
1571 * which will be released by another thread in
1572 * aio_complete_rw(). Fool lockdep by telling it the lock got
1573 * released so that it doesn't complain about the held lock when
1574 * we return to userspace.
1576 if (S_ISREG(file_inode(file)->i_mode)) {
1577 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
1578 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1580 req->ki_flags |= IOCB_WRITE;
1581 aio_rw_done(req, call_write_iter(file, req, &iter));
1583 kfree(iovec);
1584 out_fput:
1585 if (unlikely(ret))
1586 fput(file);
1587 return ret;
1590 static void aio_fsync_work(struct work_struct *work)
1592 struct fsync_iocb *req = container_of(work, struct fsync_iocb, work);
1593 int ret;
1595 ret = vfs_fsync(req->file, req->datasync);
1596 fput(req->file);
1597 aio_complete(container_of(req, struct aio_kiocb, fsync), ret, 0);
1600 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1601 bool datasync)
1603 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1604 iocb->aio_rw_flags))
1605 return -EINVAL;
1607 req->file = fget(iocb->aio_fildes);
1608 if (unlikely(!req->file))
1609 return -EBADF;
1610 if (unlikely(!req->file->f_op->fsync)) {
1611 fput(req->file);
1612 return -EINVAL;
1615 req->datasync = datasync;
1616 INIT_WORK(&req->work, aio_fsync_work);
1617 schedule_work(&req->work);
1618 return 0;
1621 static inline void aio_poll_complete(struct aio_kiocb *iocb, __poll_t mask)
1623 struct file *file = iocb->poll.file;
1625 aio_complete(iocb, mangle_poll(mask), 0);
1626 fput(file);
1629 static void aio_poll_complete_work(struct work_struct *work)
1631 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1632 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1633 struct poll_table_struct pt = { ._key = req->events };
1634 struct kioctx *ctx = iocb->ki_ctx;
1635 __poll_t mask = 0;
1637 if (!READ_ONCE(req->cancelled))
1638 mask = vfs_poll(req->file, &pt) & req->events;
1641 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1642 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1643 * synchronize with them. In the cancellation case the list_del_init
1644 * itself is not actually needed, but harmless so we keep it in to
1645 * avoid further branches in the fast path.
1647 spin_lock_irq(&ctx->ctx_lock);
1648 if (!mask && !READ_ONCE(req->cancelled)) {
1649 add_wait_queue(req->head, &req->wait);
1650 spin_unlock_irq(&ctx->ctx_lock);
1651 return;
1653 list_del_init(&iocb->ki_list);
1654 spin_unlock_irq(&ctx->ctx_lock);
1656 aio_poll_complete(iocb, mask);
1659 /* assumes we are called with irqs disabled */
1660 static int aio_poll_cancel(struct kiocb *iocb)
1662 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1663 struct poll_iocb *req = &aiocb->poll;
1665 spin_lock(&req->head->lock);
1666 WRITE_ONCE(req->cancelled, true);
1667 if (!list_empty(&req->wait.entry)) {
1668 list_del_init(&req->wait.entry);
1669 schedule_work(&aiocb->poll.work);
1671 spin_unlock(&req->head->lock);
1673 return 0;
1676 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1677 void *key)
1679 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1680 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1681 __poll_t mask = key_to_poll(key);
1683 req->woken = true;
1685 /* for instances that support it check for an event match first: */
1686 if (mask) {
1687 if (!(mask & req->events))
1688 return 0;
1690 /* try to complete the iocb inline if we can: */
1691 if (spin_trylock(&iocb->ki_ctx->ctx_lock)) {
1692 list_del(&iocb->ki_list);
1693 spin_unlock(&iocb->ki_ctx->ctx_lock);
1695 list_del_init(&req->wait.entry);
1696 aio_poll_complete(iocb, mask);
1697 return 1;
1701 list_del_init(&req->wait.entry);
1702 schedule_work(&req->work);
1703 return 1;
1706 struct aio_poll_table {
1707 struct poll_table_struct pt;
1708 struct aio_kiocb *iocb;
1709 int error;
1712 static void
1713 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1714 struct poll_table_struct *p)
1716 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1718 /* multiple wait queues per file are not supported */
1719 if (unlikely(pt->iocb->poll.head)) {
1720 pt->error = -EINVAL;
1721 return;
1724 pt->error = 0;
1725 pt->iocb->poll.head = head;
1726 add_wait_queue(head, &pt->iocb->poll.wait);
1729 static ssize_t aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1731 struct kioctx *ctx = aiocb->ki_ctx;
1732 struct poll_iocb *req = &aiocb->poll;
1733 struct aio_poll_table apt;
1734 __poll_t mask;
1736 /* reject any unknown events outside the normal event mask. */
1737 if ((u16)iocb->aio_buf != iocb->aio_buf)
1738 return -EINVAL;
1739 /* reject fields that are not defined for poll */
1740 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1741 return -EINVAL;
1743 INIT_WORK(&req->work, aio_poll_complete_work);
1744 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1745 req->file = fget(iocb->aio_fildes);
1746 if (unlikely(!req->file))
1747 return -EBADF;
1749 req->head = NULL;
1750 req->woken = false;
1751 req->cancelled = false;
1753 apt.pt._qproc = aio_poll_queue_proc;
1754 apt.pt._key = req->events;
1755 apt.iocb = aiocb;
1756 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1758 /* initialized the list so that we can do list_empty checks */
1759 INIT_LIST_HEAD(&req->wait.entry);
1760 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1762 /* one for removal from waitqueue, one for this function */
1763 refcount_set(&aiocb->ki_refcnt, 2);
1765 mask = vfs_poll(req->file, &apt.pt) & req->events;
1766 if (unlikely(!req->head)) {
1767 /* we did not manage to set up a waitqueue, done */
1768 goto out;
1771 spin_lock_irq(&ctx->ctx_lock);
1772 spin_lock(&req->head->lock);
1773 if (req->woken) {
1774 /* wake_up context handles the rest */
1775 mask = 0;
1776 apt.error = 0;
1777 } else if (mask || apt.error) {
1778 /* if we get an error or a mask we are done */
1779 WARN_ON_ONCE(list_empty(&req->wait.entry));
1780 list_del_init(&req->wait.entry);
1781 } else {
1782 /* actually waiting for an event */
1783 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1784 aiocb->ki_cancel = aio_poll_cancel;
1786 spin_unlock(&req->head->lock);
1787 spin_unlock_irq(&ctx->ctx_lock);
1789 out:
1790 if (unlikely(apt.error)) {
1791 fput(req->file);
1792 return apt.error;
1795 if (mask)
1796 aio_poll_complete(aiocb, mask);
1797 iocb_put(aiocb);
1798 return 0;
1801 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1802 struct iocb __user *user_iocb, bool compat)
1804 struct aio_kiocb *req;
1805 ssize_t ret;
1807 /* enforce forwards compatibility on users */
1808 if (unlikely(iocb->aio_reserved2)) {
1809 pr_debug("EINVAL: reserve field set\n");
1810 return -EINVAL;
1813 /* prevent overflows */
1814 if (unlikely(
1815 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1816 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1817 ((ssize_t)iocb->aio_nbytes < 0)
1818 )) {
1819 pr_debug("EINVAL: overflow check\n");
1820 return -EINVAL;
1823 if (!get_reqs_available(ctx))
1824 return -EAGAIN;
1826 ret = -EAGAIN;
1827 req = aio_get_req(ctx);
1828 if (unlikely(!req))
1829 goto out_put_reqs_available;
1831 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1833 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1834 * instance of the file* now. The file descriptor must be
1835 * an eventfd() fd, and will be signaled for each completed
1836 * event using the eventfd_signal() function.
1838 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1839 if (IS_ERR(req->ki_eventfd)) {
1840 ret = PTR_ERR(req->ki_eventfd);
1841 req->ki_eventfd = NULL;
1842 goto out_put_req;
1846 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1847 if (unlikely(ret)) {
1848 pr_debug("EFAULT: aio_key\n");
1849 goto out_put_req;
1852 req->ki_user_iocb = user_iocb;
1853 req->ki_user_data = iocb->aio_data;
1855 switch (iocb->aio_lio_opcode) {
1856 case IOCB_CMD_PREAD:
1857 ret = aio_read(&req->rw, iocb, false, compat);
1858 break;
1859 case IOCB_CMD_PWRITE:
1860 ret = aio_write(&req->rw, iocb, false, compat);
1861 break;
1862 case IOCB_CMD_PREADV:
1863 ret = aio_read(&req->rw, iocb, true, compat);
1864 break;
1865 case IOCB_CMD_PWRITEV:
1866 ret = aio_write(&req->rw, iocb, true, compat);
1867 break;
1868 case IOCB_CMD_FSYNC:
1869 ret = aio_fsync(&req->fsync, iocb, false);
1870 break;
1871 case IOCB_CMD_FDSYNC:
1872 ret = aio_fsync(&req->fsync, iocb, true);
1873 break;
1874 case IOCB_CMD_POLL:
1875 ret = aio_poll(req, iocb);
1876 break;
1877 default:
1878 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1879 ret = -EINVAL;
1880 break;
1884 * If ret is 0, we'd either done aio_complete() ourselves or have
1885 * arranged for that to be done asynchronously. Anything non-zero
1886 * means that we need to destroy req ourselves.
1888 if (ret)
1889 goto out_put_req;
1890 return 0;
1891 out_put_req:
1892 if (req->ki_eventfd)
1893 eventfd_ctx_put(req->ki_eventfd);
1894 iocb_put(req);
1895 out_put_reqs_available:
1896 put_reqs_available(ctx, 1);
1897 return ret;
1900 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1901 bool compat)
1903 struct iocb iocb;
1905 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1906 return -EFAULT;
1908 return __io_submit_one(ctx, &iocb, user_iocb, compat);
1911 /* sys_io_submit:
1912 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1913 * the number of iocbs queued. May return -EINVAL if the aio_context
1914 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1915 * *iocbpp[0] is not properly initialized, if the operation specified
1916 * is invalid for the file descriptor in the iocb. May fail with
1917 * -EFAULT if any of the data structures point to invalid data. May
1918 * fail with -EBADF if the file descriptor specified in the first
1919 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1920 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1921 * fail with -ENOSYS if not implemented.
1923 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1924 struct iocb __user * __user *, iocbpp)
1926 struct kioctx *ctx;
1927 long ret = 0;
1928 int i = 0;
1929 struct blk_plug plug;
1931 if (unlikely(nr < 0))
1932 return -EINVAL;
1934 ctx = lookup_ioctx(ctx_id);
1935 if (unlikely(!ctx)) {
1936 pr_debug("EINVAL: invalid context id\n");
1937 return -EINVAL;
1940 if (nr > ctx->nr_events)
1941 nr = ctx->nr_events;
1943 if (nr > AIO_PLUG_THRESHOLD)
1944 blk_start_plug(&plug);
1945 for (i = 0; i < nr; i++) {
1946 struct iocb __user *user_iocb;
1948 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1949 ret = -EFAULT;
1950 break;
1953 ret = io_submit_one(ctx, user_iocb, false);
1954 if (ret)
1955 break;
1957 if (nr > AIO_PLUG_THRESHOLD)
1958 blk_finish_plug(&plug);
1960 percpu_ref_put(&ctx->users);
1961 return i ? i : ret;
1964 #ifdef CONFIG_COMPAT
1965 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1966 int, nr, compat_uptr_t __user *, iocbpp)
1968 struct kioctx *ctx;
1969 long ret = 0;
1970 int i = 0;
1971 struct blk_plug plug;
1973 if (unlikely(nr < 0))
1974 return -EINVAL;
1976 ctx = lookup_ioctx(ctx_id);
1977 if (unlikely(!ctx)) {
1978 pr_debug("EINVAL: invalid context id\n");
1979 return -EINVAL;
1982 if (nr > ctx->nr_events)
1983 nr = ctx->nr_events;
1985 if (nr > AIO_PLUG_THRESHOLD)
1986 blk_start_plug(&plug);
1987 for (i = 0; i < nr; i++) {
1988 compat_uptr_t user_iocb;
1990 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1991 ret = -EFAULT;
1992 break;
1995 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1996 if (ret)
1997 break;
1999 if (nr > AIO_PLUG_THRESHOLD)
2000 blk_finish_plug(&plug);
2002 percpu_ref_put(&ctx->users);
2003 return i ? i : ret;
2005 #endif
2007 /* lookup_kiocb
2008 * Finds a given iocb for cancellation.
2010 static struct aio_kiocb *
2011 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb)
2013 struct aio_kiocb *kiocb;
2015 assert_spin_locked(&ctx->ctx_lock);
2017 /* TODO: use a hash or array, this sucks. */
2018 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2019 if (kiocb->ki_user_iocb == iocb)
2020 return kiocb;
2022 return NULL;
2025 /* sys_io_cancel:
2026 * Attempts to cancel an iocb previously passed to io_submit. If
2027 * the operation is successfully cancelled, the resulting event is
2028 * copied into the memory pointed to by result without being placed
2029 * into the completion queue and 0 is returned. May fail with
2030 * -EFAULT if any of the data structures pointed to are invalid.
2031 * May fail with -EINVAL if aio_context specified by ctx_id is
2032 * invalid. May fail with -EAGAIN if the iocb specified was not
2033 * cancelled. Will fail with -ENOSYS if not implemented.
2035 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2036 struct io_event __user *, result)
2038 struct kioctx *ctx;
2039 struct aio_kiocb *kiocb;
2040 int ret = -EINVAL;
2041 u32 key;
2043 if (unlikely(get_user(key, &iocb->aio_key)))
2044 return -EFAULT;
2045 if (unlikely(key != KIOCB_KEY))
2046 return -EINVAL;
2048 ctx = lookup_ioctx(ctx_id);
2049 if (unlikely(!ctx))
2050 return -EINVAL;
2052 spin_lock_irq(&ctx->ctx_lock);
2053 kiocb = lookup_kiocb(ctx, iocb);
2054 if (kiocb) {
2055 ret = kiocb->ki_cancel(&kiocb->rw);
2056 list_del_init(&kiocb->ki_list);
2058 spin_unlock_irq(&ctx->ctx_lock);
2060 if (!ret) {
2062 * The result argument is no longer used - the io_event is
2063 * always delivered via the ring buffer. -EINPROGRESS indicates
2064 * cancellation is progress:
2066 ret = -EINPROGRESS;
2069 percpu_ref_put(&ctx->users);
2071 return ret;
2074 static long do_io_getevents(aio_context_t ctx_id,
2075 long min_nr,
2076 long nr,
2077 struct io_event __user *events,
2078 struct timespec64 *ts)
2080 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2081 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2082 long ret = -EINVAL;
2084 if (likely(ioctx)) {
2085 if (likely(min_nr <= nr && min_nr >= 0))
2086 ret = read_events(ioctx, min_nr, nr, events, until);
2087 percpu_ref_put(&ioctx->users);
2090 return ret;
2093 /* io_getevents:
2094 * Attempts to read at least min_nr events and up to nr events from
2095 * the completion queue for the aio_context specified by ctx_id. If
2096 * it succeeds, the number of read events is returned. May fail with
2097 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2098 * out of range, if timeout is out of range. May fail with -EFAULT
2099 * if any of the memory specified is invalid. May return 0 or
2100 * < min_nr if the timeout specified by timeout has elapsed
2101 * before sufficient events are available, where timeout == NULL
2102 * specifies an infinite timeout. Note that the timeout pointed to by
2103 * timeout is relative. Will fail with -ENOSYS if not implemented.
2105 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
2107 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2108 long, min_nr,
2109 long, nr,
2110 struct io_event __user *, events,
2111 struct __kernel_timespec __user *, timeout)
2113 struct timespec64 ts;
2114 int ret;
2116 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2117 return -EFAULT;
2119 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2120 if (!ret && signal_pending(current))
2121 ret = -EINTR;
2122 return ret;
2125 #endif
2127 struct __aio_sigset {
2128 const sigset_t __user *sigmask;
2129 size_t sigsetsize;
2132 SYSCALL_DEFINE6(io_pgetevents,
2133 aio_context_t, ctx_id,
2134 long, min_nr,
2135 long, nr,
2136 struct io_event __user *, events,
2137 struct __kernel_timespec __user *, timeout,
2138 const struct __aio_sigset __user *, usig)
2140 struct __aio_sigset ksig = { NULL, };
2141 sigset_t ksigmask, sigsaved;
2142 struct timespec64 ts;
2143 int ret;
2145 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2146 return -EFAULT;
2148 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2149 return -EFAULT;
2151 ret = set_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2152 if (ret)
2153 return ret;
2155 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2156 restore_user_sigmask(ksig.sigmask, &sigsaved);
2157 if (signal_pending(current) && !ret)
2158 ret = -ERESTARTNOHAND;
2160 return ret;
2163 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2165 SYSCALL_DEFINE6(io_pgetevents_time32,
2166 aio_context_t, ctx_id,
2167 long, min_nr,
2168 long, nr,
2169 struct io_event __user *, events,
2170 struct old_timespec32 __user *, timeout,
2171 const struct __aio_sigset __user *, usig)
2173 struct __aio_sigset ksig = { NULL, };
2174 sigset_t ksigmask, sigsaved;
2175 struct timespec64 ts;
2176 int ret;
2178 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2179 return -EFAULT;
2181 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2182 return -EFAULT;
2185 ret = set_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2186 if (ret)
2187 return ret;
2189 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2190 restore_user_sigmask(ksig.sigmask, &sigsaved);
2191 if (signal_pending(current) && !ret)
2192 ret = -ERESTARTNOHAND;
2194 return ret;
2197 #endif
2199 #if defined(CONFIG_COMPAT_32BIT_TIME)
2201 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
2202 compat_long_t, min_nr,
2203 compat_long_t, nr,
2204 struct io_event __user *, events,
2205 struct old_timespec32 __user *, timeout)
2207 struct timespec64 t;
2208 int ret;
2210 if (timeout && get_old_timespec32(&t, timeout))
2211 return -EFAULT;
2213 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2214 if (!ret && signal_pending(current))
2215 ret = -EINTR;
2216 return ret;
2219 #endif
2221 #ifdef CONFIG_COMPAT
2223 struct __compat_aio_sigset {
2224 compat_sigset_t __user *sigmask;
2225 compat_size_t sigsetsize;
2228 #if defined(CONFIG_COMPAT_32BIT_TIME)
2230 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2231 compat_aio_context_t, ctx_id,
2232 compat_long_t, min_nr,
2233 compat_long_t, nr,
2234 struct io_event __user *, events,
2235 struct old_timespec32 __user *, timeout,
2236 const struct __compat_aio_sigset __user *, usig)
2238 struct __compat_aio_sigset ksig = { NULL, };
2239 sigset_t ksigmask, sigsaved;
2240 struct timespec64 t;
2241 int ret;
2243 if (timeout && get_old_timespec32(&t, timeout))
2244 return -EFAULT;
2246 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2247 return -EFAULT;
2249 ret = set_compat_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2250 if (ret)
2251 return ret;
2253 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2254 restore_user_sigmask(ksig.sigmask, &sigsaved);
2255 if (signal_pending(current) && !ret)
2256 ret = -ERESTARTNOHAND;
2258 return ret;
2261 #endif
2263 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2264 compat_aio_context_t, ctx_id,
2265 compat_long_t, min_nr,
2266 compat_long_t, nr,
2267 struct io_event __user *, events,
2268 struct __kernel_timespec __user *, timeout,
2269 const struct __compat_aio_sigset __user *, usig)
2271 struct __compat_aio_sigset ksig = { NULL, };
2272 sigset_t ksigmask, sigsaved;
2273 struct timespec64 t;
2274 int ret;
2276 if (timeout && get_timespec64(&t, timeout))
2277 return -EFAULT;
2279 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2280 return -EFAULT;
2282 ret = set_compat_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2283 if (ret)
2284 return ret;
2286 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2287 restore_user_sigmask(ksig.sigmask, &sigsaved);
2288 if (signal_pending(current) && !ret)
2289 ret = -ERESTARTNOHAND;
2291 return ret;
2293 #endif