4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
25 #include <linux/iomap.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/cpu.h>
43 #include <linux/bitops.h>
44 #include <linux/mpage.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/pagevec.h>
47 #include <linux/sched/mm.h>
48 #include <trace/events/block.h>
50 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
51 static int submit_bh_wbc(int op
, int op_flags
, struct buffer_head
*bh
,
52 enum rw_hint hint
, struct writeback_control
*wbc
);
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
56 inline void touch_buffer(struct buffer_head
*bh
)
58 trace_block_touch_buffer(bh
);
59 mark_page_accessed(bh
->b_page
);
61 EXPORT_SYMBOL(touch_buffer
);
63 void __lock_buffer(struct buffer_head
*bh
)
65 wait_on_bit_lock_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
67 EXPORT_SYMBOL(__lock_buffer
);
69 void unlock_buffer(struct buffer_head
*bh
)
71 clear_bit_unlock(BH_Lock
, &bh
->b_state
);
72 smp_mb__after_atomic();
73 wake_up_bit(&bh
->b_state
, BH_Lock
);
75 EXPORT_SYMBOL(unlock_buffer
);
78 * Returns if the page has dirty or writeback buffers. If all the buffers
79 * are unlocked and clean then the PageDirty information is stale. If
80 * any of the pages are locked, it is assumed they are locked for IO.
82 void buffer_check_dirty_writeback(struct page
*page
,
83 bool *dirty
, bool *writeback
)
85 struct buffer_head
*head
, *bh
;
89 BUG_ON(!PageLocked(page
));
91 if (!page_has_buffers(page
))
94 if (PageWriteback(page
))
97 head
= page_buffers(page
);
100 if (buffer_locked(bh
))
103 if (buffer_dirty(bh
))
106 bh
= bh
->b_this_page
;
107 } while (bh
!= head
);
109 EXPORT_SYMBOL(buffer_check_dirty_writeback
);
112 * Block until a buffer comes unlocked. This doesn't stop it
113 * from becoming locked again - you have to lock it yourself
114 * if you want to preserve its state.
116 void __wait_on_buffer(struct buffer_head
* bh
)
118 wait_on_bit_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
120 EXPORT_SYMBOL(__wait_on_buffer
);
123 __clear_page_buffers(struct page
*page
)
125 ClearPagePrivate(page
);
126 set_page_private(page
, 0);
130 static void buffer_io_error(struct buffer_head
*bh
, char *msg
)
132 if (!test_bit(BH_Quiet
, &bh
->b_state
))
133 printk_ratelimited(KERN_ERR
134 "Buffer I/O error on dev %pg, logical block %llu%s\n",
135 bh
->b_bdev
, (unsigned long long)bh
->b_blocknr
, msg
);
139 * End-of-IO handler helper function which does not touch the bh after
141 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
142 * a race there is benign: unlock_buffer() only use the bh's address for
143 * hashing after unlocking the buffer, so it doesn't actually touch the bh
146 static void __end_buffer_read_notouch(struct buffer_head
*bh
, int uptodate
)
149 set_buffer_uptodate(bh
);
151 /* This happens, due to failed read-ahead attempts. */
152 clear_buffer_uptodate(bh
);
158 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
159 * unlock the buffer. This is what ll_rw_block uses too.
161 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
163 __end_buffer_read_notouch(bh
, uptodate
);
166 EXPORT_SYMBOL(end_buffer_read_sync
);
168 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
171 set_buffer_uptodate(bh
);
173 buffer_io_error(bh
, ", lost sync page write");
174 mark_buffer_write_io_error(bh
);
175 clear_buffer_uptodate(bh
);
180 EXPORT_SYMBOL(end_buffer_write_sync
);
183 * Various filesystems appear to want __find_get_block to be non-blocking.
184 * But it's the page lock which protects the buffers. To get around this,
185 * we get exclusion from try_to_free_buffers with the blockdev mapping's
188 * Hack idea: for the blockdev mapping, private_lock contention
189 * may be quite high. This code could TryLock the page, and if that
190 * succeeds, there is no need to take private_lock.
192 static struct buffer_head
*
193 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
195 struct inode
*bd_inode
= bdev
->bd_inode
;
196 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
197 struct buffer_head
*ret
= NULL
;
199 struct buffer_head
*bh
;
200 struct buffer_head
*head
;
204 index
= block
>> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
205 page
= find_get_page_flags(bd_mapping
, index
, FGP_ACCESSED
);
209 spin_lock(&bd_mapping
->private_lock
);
210 if (!page_has_buffers(page
))
212 head
= page_buffers(page
);
215 if (!buffer_mapped(bh
))
217 else if (bh
->b_blocknr
== block
) {
222 bh
= bh
->b_this_page
;
223 } while (bh
!= head
);
225 /* we might be here because some of the buffers on this page are
226 * not mapped. This is due to various races between
227 * file io on the block device and getblk. It gets dealt with
228 * elsewhere, don't buffer_error if we had some unmapped buffers
231 printk("__find_get_block_slow() failed. "
232 "block=%llu, b_blocknr=%llu\n",
233 (unsigned long long)block
,
234 (unsigned long long)bh
->b_blocknr
);
235 printk("b_state=0x%08lx, b_size=%zu\n",
236 bh
->b_state
, bh
->b_size
);
237 printk("device %pg blocksize: %d\n", bdev
,
238 1 << bd_inode
->i_blkbits
);
241 spin_unlock(&bd_mapping
->private_lock
);
248 * I/O completion handler for block_read_full_page() - pages
249 * which come unlocked at the end of I/O.
251 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
254 struct buffer_head
*first
;
255 struct buffer_head
*tmp
;
257 int page_uptodate
= 1;
259 BUG_ON(!buffer_async_read(bh
));
263 set_buffer_uptodate(bh
);
265 clear_buffer_uptodate(bh
);
266 buffer_io_error(bh
, ", async page read");
271 * Be _very_ careful from here on. Bad things can happen if
272 * two buffer heads end IO at almost the same time and both
273 * decide that the page is now completely done.
275 first
= page_buffers(page
);
276 local_irq_save(flags
);
277 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
278 clear_buffer_async_read(bh
);
282 if (!buffer_uptodate(tmp
))
284 if (buffer_async_read(tmp
)) {
285 BUG_ON(!buffer_locked(tmp
));
288 tmp
= tmp
->b_this_page
;
290 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
291 local_irq_restore(flags
);
294 * If none of the buffers had errors and they are all
295 * uptodate then we can set the page uptodate.
297 if (page_uptodate
&& !PageError(page
))
298 SetPageUptodate(page
);
303 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
304 local_irq_restore(flags
);
309 * Completion handler for block_write_full_page() - pages which are unlocked
310 * during I/O, and which have PageWriteback cleared upon I/O completion.
312 void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
315 struct buffer_head
*first
;
316 struct buffer_head
*tmp
;
319 BUG_ON(!buffer_async_write(bh
));
323 set_buffer_uptodate(bh
);
325 buffer_io_error(bh
, ", lost async page write");
326 mark_buffer_write_io_error(bh
);
327 clear_buffer_uptodate(bh
);
331 first
= page_buffers(page
);
332 local_irq_save(flags
);
333 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
335 clear_buffer_async_write(bh
);
337 tmp
= bh
->b_this_page
;
339 if (buffer_async_write(tmp
)) {
340 BUG_ON(!buffer_locked(tmp
));
343 tmp
= tmp
->b_this_page
;
345 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
346 local_irq_restore(flags
);
347 end_page_writeback(page
);
351 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
352 local_irq_restore(flags
);
355 EXPORT_SYMBOL(end_buffer_async_write
);
358 * If a page's buffers are under async readin (end_buffer_async_read
359 * completion) then there is a possibility that another thread of
360 * control could lock one of the buffers after it has completed
361 * but while some of the other buffers have not completed. This
362 * locked buffer would confuse end_buffer_async_read() into not unlocking
363 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
364 * that this buffer is not under async I/O.
366 * The page comes unlocked when it has no locked buffer_async buffers
369 * PageLocked prevents anyone starting new async I/O reads any of
372 * PageWriteback is used to prevent simultaneous writeout of the same
375 * PageLocked prevents anyone from starting writeback of a page which is
376 * under read I/O (PageWriteback is only ever set against a locked page).
378 static void mark_buffer_async_read(struct buffer_head
*bh
)
380 bh
->b_end_io
= end_buffer_async_read
;
381 set_buffer_async_read(bh
);
384 static void mark_buffer_async_write_endio(struct buffer_head
*bh
,
385 bh_end_io_t
*handler
)
387 bh
->b_end_io
= handler
;
388 set_buffer_async_write(bh
);
391 void mark_buffer_async_write(struct buffer_head
*bh
)
393 mark_buffer_async_write_endio(bh
, end_buffer_async_write
);
395 EXPORT_SYMBOL(mark_buffer_async_write
);
399 * fs/buffer.c contains helper functions for buffer-backed address space's
400 * fsync functions. A common requirement for buffer-based filesystems is
401 * that certain data from the backing blockdev needs to be written out for
402 * a successful fsync(). For example, ext2 indirect blocks need to be
403 * written back and waited upon before fsync() returns.
405 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
406 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
407 * management of a list of dependent buffers at ->i_mapping->private_list.
409 * Locking is a little subtle: try_to_free_buffers() will remove buffers
410 * from their controlling inode's queue when they are being freed. But
411 * try_to_free_buffers() will be operating against the *blockdev* mapping
412 * at the time, not against the S_ISREG file which depends on those buffers.
413 * So the locking for private_list is via the private_lock in the address_space
414 * which backs the buffers. Which is different from the address_space
415 * against which the buffers are listed. So for a particular address_space,
416 * mapping->private_lock does *not* protect mapping->private_list! In fact,
417 * mapping->private_list will always be protected by the backing blockdev's
420 * Which introduces a requirement: all buffers on an address_space's
421 * ->private_list must be from the same address_space: the blockdev's.
423 * address_spaces which do not place buffers at ->private_list via these
424 * utility functions are free to use private_lock and private_list for
425 * whatever they want. The only requirement is that list_empty(private_list)
426 * be true at clear_inode() time.
428 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
429 * filesystems should do that. invalidate_inode_buffers() should just go
430 * BUG_ON(!list_empty).
432 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
433 * take an address_space, not an inode. And it should be called
434 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
437 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
438 * list if it is already on a list. Because if the buffer is on a list,
439 * it *must* already be on the right one. If not, the filesystem is being
440 * silly. This will save a ton of locking. But first we have to ensure
441 * that buffers are taken *off* the old inode's list when they are freed
442 * (presumably in truncate). That requires careful auditing of all
443 * filesystems (do it inside bforget()). It could also be done by bringing
448 * The buffer's backing address_space's private_lock must be held
450 static void __remove_assoc_queue(struct buffer_head
*bh
)
452 list_del_init(&bh
->b_assoc_buffers
);
453 WARN_ON(!bh
->b_assoc_map
);
454 bh
->b_assoc_map
= NULL
;
457 int inode_has_buffers(struct inode
*inode
)
459 return !list_empty(&inode
->i_data
.private_list
);
463 * osync is designed to support O_SYNC io. It waits synchronously for
464 * all already-submitted IO to complete, but does not queue any new
465 * writes to the disk.
467 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
468 * you dirty the buffers, and then use osync_inode_buffers to wait for
469 * completion. Any other dirty buffers which are not yet queued for
470 * write will not be flushed to disk by the osync.
472 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
474 struct buffer_head
*bh
;
480 list_for_each_prev(p
, list
) {
482 if (buffer_locked(bh
)) {
486 if (!buffer_uptodate(bh
))
497 void emergency_thaw_bdev(struct super_block
*sb
)
499 while (sb
->s_bdev
&& !thaw_bdev(sb
->s_bdev
, sb
))
500 printk(KERN_WARNING
"Emergency Thaw on %pg\n", sb
->s_bdev
);
504 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
505 * @mapping: the mapping which wants those buffers written
507 * Starts I/O against the buffers at mapping->private_list, and waits upon
510 * Basically, this is a convenience function for fsync().
511 * @mapping is a file or directory which needs those buffers to be written for
512 * a successful fsync().
514 int sync_mapping_buffers(struct address_space
*mapping
)
516 struct address_space
*buffer_mapping
= mapping
->private_data
;
518 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
521 return fsync_buffers_list(&buffer_mapping
->private_lock
,
522 &mapping
->private_list
);
524 EXPORT_SYMBOL(sync_mapping_buffers
);
527 * Called when we've recently written block `bblock', and it is known that
528 * `bblock' was for a buffer_boundary() buffer. This means that the block at
529 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
530 * dirty, schedule it for IO. So that indirects merge nicely with their data.
532 void write_boundary_block(struct block_device
*bdev
,
533 sector_t bblock
, unsigned blocksize
)
535 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
537 if (buffer_dirty(bh
))
538 ll_rw_block(REQ_OP_WRITE
, 0, 1, &bh
);
543 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
545 struct address_space
*mapping
= inode
->i_mapping
;
546 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
548 mark_buffer_dirty(bh
);
549 if (!mapping
->private_data
) {
550 mapping
->private_data
= buffer_mapping
;
552 BUG_ON(mapping
->private_data
!= buffer_mapping
);
554 if (!bh
->b_assoc_map
) {
555 spin_lock(&buffer_mapping
->private_lock
);
556 list_move_tail(&bh
->b_assoc_buffers
,
557 &mapping
->private_list
);
558 bh
->b_assoc_map
= mapping
;
559 spin_unlock(&buffer_mapping
->private_lock
);
562 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
565 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
568 * If warn is true, then emit a warning if the page is not uptodate and has
569 * not been truncated.
571 * The caller must hold lock_page_memcg().
573 void __set_page_dirty(struct page
*page
, struct address_space
*mapping
,
578 xa_lock_irqsave(&mapping
->i_pages
, flags
);
579 if (page
->mapping
) { /* Race with truncate? */
580 WARN_ON_ONCE(warn
&& !PageUptodate(page
));
581 account_page_dirtied(page
, mapping
);
582 __xa_set_mark(&mapping
->i_pages
, page_index(page
),
583 PAGECACHE_TAG_DIRTY
);
585 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
587 EXPORT_SYMBOL_GPL(__set_page_dirty
);
590 * Add a page to the dirty page list.
592 * It is a sad fact of life that this function is called from several places
593 * deeply under spinlocking. It may not sleep.
595 * If the page has buffers, the uptodate buffers are set dirty, to preserve
596 * dirty-state coherency between the page and the buffers. It the page does
597 * not have buffers then when they are later attached they will all be set
600 * The buffers are dirtied before the page is dirtied. There's a small race
601 * window in which a writepage caller may see the page cleanness but not the
602 * buffer dirtiness. That's fine. If this code were to set the page dirty
603 * before the buffers, a concurrent writepage caller could clear the page dirty
604 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
605 * page on the dirty page list.
607 * We use private_lock to lock against try_to_free_buffers while using the
608 * page's buffer list. Also use this to protect against clean buffers being
609 * added to the page after it was set dirty.
611 * FIXME: may need to call ->reservepage here as well. That's rather up to the
612 * address_space though.
614 int __set_page_dirty_buffers(struct page
*page
)
617 struct address_space
*mapping
= page_mapping(page
);
619 if (unlikely(!mapping
))
620 return !TestSetPageDirty(page
);
622 spin_lock(&mapping
->private_lock
);
623 if (page_has_buffers(page
)) {
624 struct buffer_head
*head
= page_buffers(page
);
625 struct buffer_head
*bh
= head
;
628 set_buffer_dirty(bh
);
629 bh
= bh
->b_this_page
;
630 } while (bh
!= head
);
633 * Lock out page->mem_cgroup migration to keep PageDirty
634 * synchronized with per-memcg dirty page counters.
636 lock_page_memcg(page
);
637 newly_dirty
= !TestSetPageDirty(page
);
638 spin_unlock(&mapping
->private_lock
);
641 __set_page_dirty(page
, mapping
, 1);
643 unlock_page_memcg(page
);
646 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
650 EXPORT_SYMBOL(__set_page_dirty_buffers
);
653 * Write out and wait upon a list of buffers.
655 * We have conflicting pressures: we want to make sure that all
656 * initially dirty buffers get waited on, but that any subsequently
657 * dirtied buffers don't. After all, we don't want fsync to last
658 * forever if somebody is actively writing to the file.
660 * Do this in two main stages: first we copy dirty buffers to a
661 * temporary inode list, queueing the writes as we go. Then we clean
662 * up, waiting for those writes to complete.
664 * During this second stage, any subsequent updates to the file may end
665 * up refiling the buffer on the original inode's dirty list again, so
666 * there is a chance we will end up with a buffer queued for write but
667 * not yet completed on that list. So, as a final cleanup we go through
668 * the osync code to catch these locked, dirty buffers without requeuing
669 * any newly dirty buffers for write.
671 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
673 struct buffer_head
*bh
;
674 struct list_head tmp
;
675 struct address_space
*mapping
;
677 struct blk_plug plug
;
679 INIT_LIST_HEAD(&tmp
);
680 blk_start_plug(&plug
);
683 while (!list_empty(list
)) {
684 bh
= BH_ENTRY(list
->next
);
685 mapping
= bh
->b_assoc_map
;
686 __remove_assoc_queue(bh
);
687 /* Avoid race with mark_buffer_dirty_inode() which does
688 * a lockless check and we rely on seeing the dirty bit */
690 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
691 list_add(&bh
->b_assoc_buffers
, &tmp
);
692 bh
->b_assoc_map
= mapping
;
693 if (buffer_dirty(bh
)) {
697 * Ensure any pending I/O completes so that
698 * write_dirty_buffer() actually writes the
699 * current contents - it is a noop if I/O is
700 * still in flight on potentially older
703 write_dirty_buffer(bh
, REQ_SYNC
);
706 * Kick off IO for the previous mapping. Note
707 * that we will not run the very last mapping,
708 * wait_on_buffer() will do that for us
709 * through sync_buffer().
718 blk_finish_plug(&plug
);
721 while (!list_empty(&tmp
)) {
722 bh
= BH_ENTRY(tmp
.prev
);
724 mapping
= bh
->b_assoc_map
;
725 __remove_assoc_queue(bh
);
726 /* Avoid race with mark_buffer_dirty_inode() which does
727 * a lockless check and we rely on seeing the dirty bit */
729 if (buffer_dirty(bh
)) {
730 list_add(&bh
->b_assoc_buffers
,
731 &mapping
->private_list
);
732 bh
->b_assoc_map
= mapping
;
736 if (!buffer_uptodate(bh
))
743 err2
= osync_buffers_list(lock
, list
);
751 * Invalidate any and all dirty buffers on a given inode. We are
752 * probably unmounting the fs, but that doesn't mean we have already
753 * done a sync(). Just drop the buffers from the inode list.
755 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
756 * assumes that all the buffers are against the blockdev. Not true
759 void invalidate_inode_buffers(struct inode
*inode
)
761 if (inode_has_buffers(inode
)) {
762 struct address_space
*mapping
= &inode
->i_data
;
763 struct list_head
*list
= &mapping
->private_list
;
764 struct address_space
*buffer_mapping
= mapping
->private_data
;
766 spin_lock(&buffer_mapping
->private_lock
);
767 while (!list_empty(list
))
768 __remove_assoc_queue(BH_ENTRY(list
->next
));
769 spin_unlock(&buffer_mapping
->private_lock
);
772 EXPORT_SYMBOL(invalidate_inode_buffers
);
775 * Remove any clean buffers from the inode's buffer list. This is called
776 * when we're trying to free the inode itself. Those buffers can pin it.
778 * Returns true if all buffers were removed.
780 int remove_inode_buffers(struct inode
*inode
)
784 if (inode_has_buffers(inode
)) {
785 struct address_space
*mapping
= &inode
->i_data
;
786 struct list_head
*list
= &mapping
->private_list
;
787 struct address_space
*buffer_mapping
= mapping
->private_data
;
789 spin_lock(&buffer_mapping
->private_lock
);
790 while (!list_empty(list
)) {
791 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
792 if (buffer_dirty(bh
)) {
796 __remove_assoc_queue(bh
);
798 spin_unlock(&buffer_mapping
->private_lock
);
804 * Create the appropriate buffers when given a page for data area and
805 * the size of each buffer.. Use the bh->b_this_page linked list to
806 * follow the buffers created. Return NULL if unable to create more
809 * The retry flag is used to differentiate async IO (paging, swapping)
810 * which may not fail from ordinary buffer allocations.
812 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
815 struct buffer_head
*bh
, *head
;
816 gfp_t gfp
= GFP_NOFS
| __GFP_ACCOUNT
;
818 struct mem_cgroup
*memcg
;
823 memcg
= get_mem_cgroup_from_page(page
);
824 memalloc_use_memcg(memcg
);
828 while ((offset
-= size
) >= 0) {
829 bh
= alloc_buffer_head(gfp
);
833 bh
->b_this_page
= head
;
839 /* Link the buffer to its page */
840 set_bh_page(bh
, page
, offset
);
843 memalloc_unuse_memcg();
844 mem_cgroup_put(memcg
);
847 * In case anything failed, we just free everything we got.
853 head
= head
->b_this_page
;
854 free_buffer_head(bh
);
860 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
863 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
865 struct buffer_head
*bh
, *tail
;
870 bh
= bh
->b_this_page
;
872 tail
->b_this_page
= head
;
873 attach_page_buffers(page
, head
);
876 static sector_t
blkdev_max_block(struct block_device
*bdev
, unsigned int size
)
878 sector_t retval
= ~((sector_t
)0);
879 loff_t sz
= i_size_read(bdev
->bd_inode
);
882 unsigned int sizebits
= blksize_bits(size
);
883 retval
= (sz
>> sizebits
);
889 * Initialise the state of a blockdev page's buffers.
892 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
893 sector_t block
, int size
)
895 struct buffer_head
*head
= page_buffers(page
);
896 struct buffer_head
*bh
= head
;
897 int uptodate
= PageUptodate(page
);
898 sector_t end_block
= blkdev_max_block(I_BDEV(bdev
->bd_inode
), size
);
901 if (!buffer_mapped(bh
)) {
903 bh
->b_private
= NULL
;
905 bh
->b_blocknr
= block
;
907 set_buffer_uptodate(bh
);
908 if (block
< end_block
)
909 set_buffer_mapped(bh
);
912 bh
= bh
->b_this_page
;
913 } while (bh
!= head
);
916 * Caller needs to validate requested block against end of device.
922 * Create the page-cache page that contains the requested block.
924 * This is used purely for blockdev mappings.
927 grow_dev_page(struct block_device
*bdev
, sector_t block
,
928 pgoff_t index
, int size
, int sizebits
, gfp_t gfp
)
930 struct inode
*inode
= bdev
->bd_inode
;
932 struct buffer_head
*bh
;
934 int ret
= 0; /* Will call free_more_memory() */
937 gfp_mask
= mapping_gfp_constraint(inode
->i_mapping
, ~__GFP_FS
) | gfp
;
940 * XXX: __getblk_slow() can not really deal with failure and
941 * will endlessly loop on improvised global reclaim. Prefer
942 * looping in the allocator rather than here, at least that
943 * code knows what it's doing.
945 gfp_mask
|= __GFP_NOFAIL
;
947 page
= find_or_create_page(inode
->i_mapping
, index
, gfp_mask
);
949 BUG_ON(!PageLocked(page
));
951 if (page_has_buffers(page
)) {
952 bh
= page_buffers(page
);
953 if (bh
->b_size
== size
) {
954 end_block
= init_page_buffers(page
, bdev
,
955 (sector_t
)index
<< sizebits
,
959 if (!try_to_free_buffers(page
))
964 * Allocate some buffers for this page
966 bh
= alloc_page_buffers(page
, size
, true);
969 * Link the page to the buffers and initialise them. Take the
970 * lock to be atomic wrt __find_get_block(), which does not
971 * run under the page lock.
973 spin_lock(&inode
->i_mapping
->private_lock
);
974 link_dev_buffers(page
, bh
);
975 end_block
= init_page_buffers(page
, bdev
, (sector_t
)index
<< sizebits
,
977 spin_unlock(&inode
->i_mapping
->private_lock
);
979 ret
= (block
< end_block
) ? 1 : -ENXIO
;
987 * Create buffers for the specified block device block's page. If
988 * that page was dirty, the buffers are set dirty also.
991 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
, gfp_t gfp
)
999 } while ((size
<< sizebits
) < PAGE_SIZE
);
1001 index
= block
>> sizebits
;
1004 * Check for a block which wants to lie outside our maximum possible
1005 * pagecache index. (this comparison is done using sector_t types).
1007 if (unlikely(index
!= block
>> sizebits
)) {
1008 printk(KERN_ERR
"%s: requested out-of-range block %llu for "
1010 __func__
, (unsigned long long)block
,
1015 /* Create a page with the proper size buffers.. */
1016 return grow_dev_page(bdev
, block
, index
, size
, sizebits
, gfp
);
1019 static struct buffer_head
*
1020 __getblk_slow(struct block_device
*bdev
, sector_t block
,
1021 unsigned size
, gfp_t gfp
)
1023 /* Size must be multiple of hard sectorsize */
1024 if (unlikely(size
& (bdev_logical_block_size(bdev
)-1) ||
1025 (size
< 512 || size
> PAGE_SIZE
))) {
1026 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1028 printk(KERN_ERR
"logical block size: %d\n",
1029 bdev_logical_block_size(bdev
));
1036 struct buffer_head
*bh
;
1039 bh
= __find_get_block(bdev
, block
, size
);
1043 ret
= grow_buffers(bdev
, block
, size
, gfp
);
1050 * The relationship between dirty buffers and dirty pages:
1052 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1053 * the page is tagged dirty in the page cache.
1055 * At all times, the dirtiness of the buffers represents the dirtiness of
1056 * subsections of the page. If the page has buffers, the page dirty bit is
1057 * merely a hint about the true dirty state.
1059 * When a page is set dirty in its entirety, all its buffers are marked dirty
1060 * (if the page has buffers).
1062 * When a buffer is marked dirty, its page is dirtied, but the page's other
1065 * Also. When blockdev buffers are explicitly read with bread(), they
1066 * individually become uptodate. But their backing page remains not
1067 * uptodate - even if all of its buffers are uptodate. A subsequent
1068 * block_read_full_page() against that page will discover all the uptodate
1069 * buffers, will set the page uptodate and will perform no I/O.
1073 * mark_buffer_dirty - mark a buffer_head as needing writeout
1074 * @bh: the buffer_head to mark dirty
1076 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1077 * its backing page dirty, then tag the page as dirty in the page cache
1078 * and then attach the address_space's inode to its superblock's dirty
1081 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1082 * i_pages lock and mapping->host->i_lock.
1084 void mark_buffer_dirty(struct buffer_head
*bh
)
1086 WARN_ON_ONCE(!buffer_uptodate(bh
));
1088 trace_block_dirty_buffer(bh
);
1091 * Very *carefully* optimize the it-is-already-dirty case.
1093 * Don't let the final "is it dirty" escape to before we
1094 * perhaps modified the buffer.
1096 if (buffer_dirty(bh
)) {
1098 if (buffer_dirty(bh
))
1102 if (!test_set_buffer_dirty(bh
)) {
1103 struct page
*page
= bh
->b_page
;
1104 struct address_space
*mapping
= NULL
;
1106 lock_page_memcg(page
);
1107 if (!TestSetPageDirty(page
)) {
1108 mapping
= page_mapping(page
);
1110 __set_page_dirty(page
, mapping
, 0);
1112 unlock_page_memcg(page
);
1114 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1117 EXPORT_SYMBOL(mark_buffer_dirty
);
1119 void mark_buffer_write_io_error(struct buffer_head
*bh
)
1121 set_buffer_write_io_error(bh
);
1122 /* FIXME: do we need to set this in both places? */
1123 if (bh
->b_page
&& bh
->b_page
->mapping
)
1124 mapping_set_error(bh
->b_page
->mapping
, -EIO
);
1125 if (bh
->b_assoc_map
)
1126 mapping_set_error(bh
->b_assoc_map
, -EIO
);
1128 EXPORT_SYMBOL(mark_buffer_write_io_error
);
1131 * Decrement a buffer_head's reference count. If all buffers against a page
1132 * have zero reference count, are clean and unlocked, and if the page is clean
1133 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1134 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1135 * a page but it ends up not being freed, and buffers may later be reattached).
1137 void __brelse(struct buffer_head
* buf
)
1139 if (atomic_read(&buf
->b_count
)) {
1143 WARN(1, KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1145 EXPORT_SYMBOL(__brelse
);
1148 * bforget() is like brelse(), except it discards any
1149 * potentially dirty data.
1151 void __bforget(struct buffer_head
*bh
)
1153 clear_buffer_dirty(bh
);
1154 if (bh
->b_assoc_map
) {
1155 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1157 spin_lock(&buffer_mapping
->private_lock
);
1158 list_del_init(&bh
->b_assoc_buffers
);
1159 bh
->b_assoc_map
= NULL
;
1160 spin_unlock(&buffer_mapping
->private_lock
);
1164 EXPORT_SYMBOL(__bforget
);
1166 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1169 if (buffer_uptodate(bh
)) {
1174 bh
->b_end_io
= end_buffer_read_sync
;
1175 submit_bh(REQ_OP_READ
, 0, bh
);
1177 if (buffer_uptodate(bh
))
1185 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1186 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1187 * refcount elevated by one when they're in an LRU. A buffer can only appear
1188 * once in a particular CPU's LRU. A single buffer can be present in multiple
1189 * CPU's LRUs at the same time.
1191 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1192 * sb_find_get_block().
1194 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1195 * a local interrupt disable for that.
1198 #define BH_LRU_SIZE 16
1201 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1204 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1207 #define bh_lru_lock() local_irq_disable()
1208 #define bh_lru_unlock() local_irq_enable()
1210 #define bh_lru_lock() preempt_disable()
1211 #define bh_lru_unlock() preempt_enable()
1214 static inline void check_irqs_on(void)
1216 #ifdef irqs_disabled
1217 BUG_ON(irqs_disabled());
1222 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1223 * inserted at the front, and the buffer_head at the back if any is evicted.
1224 * Or, if already in the LRU it is moved to the front.
1226 static void bh_lru_install(struct buffer_head
*bh
)
1228 struct buffer_head
*evictee
= bh
;
1235 b
= this_cpu_ptr(&bh_lrus
);
1236 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1237 swap(evictee
, b
->bhs
[i
]);
1238 if (evictee
== bh
) {
1250 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1252 static struct buffer_head
*
1253 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1255 struct buffer_head
*ret
= NULL
;
1260 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1261 struct buffer_head
*bh
= __this_cpu_read(bh_lrus
.bhs
[i
]);
1263 if (bh
&& bh
->b_blocknr
== block
&& bh
->b_bdev
== bdev
&&
1264 bh
->b_size
== size
) {
1267 __this_cpu_write(bh_lrus
.bhs
[i
],
1268 __this_cpu_read(bh_lrus
.bhs
[i
- 1]));
1271 __this_cpu_write(bh_lrus
.bhs
[0], bh
);
1283 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1284 * it in the LRU and mark it as accessed. If it is not present then return
1287 struct buffer_head
*
1288 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1290 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1293 /* __find_get_block_slow will mark the page accessed */
1294 bh
= __find_get_block_slow(bdev
, block
);
1302 EXPORT_SYMBOL(__find_get_block
);
1305 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1306 * which corresponds to the passed block_device, block and size. The
1307 * returned buffer has its reference count incremented.
1309 * __getblk_gfp() will lock up the machine if grow_dev_page's
1310 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1312 struct buffer_head
*
1313 __getblk_gfp(struct block_device
*bdev
, sector_t block
,
1314 unsigned size
, gfp_t gfp
)
1316 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1320 bh
= __getblk_slow(bdev
, block
, size
, gfp
);
1323 EXPORT_SYMBOL(__getblk_gfp
);
1326 * Do async read-ahead on a buffer..
1328 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1330 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1332 ll_rw_block(REQ_OP_READ
, REQ_RAHEAD
, 1, &bh
);
1336 EXPORT_SYMBOL(__breadahead
);
1339 * __bread_gfp() - reads a specified block and returns the bh
1340 * @bdev: the block_device to read from
1341 * @block: number of block
1342 * @size: size (in bytes) to read
1343 * @gfp: page allocation flag
1345 * Reads a specified block, and returns buffer head that contains it.
1346 * The page cache can be allocated from non-movable area
1347 * not to prevent page migration if you set gfp to zero.
1348 * It returns NULL if the block was unreadable.
1350 struct buffer_head
*
1351 __bread_gfp(struct block_device
*bdev
, sector_t block
,
1352 unsigned size
, gfp_t gfp
)
1354 struct buffer_head
*bh
= __getblk_gfp(bdev
, block
, size
, gfp
);
1356 if (likely(bh
) && !buffer_uptodate(bh
))
1357 bh
= __bread_slow(bh
);
1360 EXPORT_SYMBOL(__bread_gfp
);
1363 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1364 * This doesn't race because it runs in each cpu either in irq
1365 * or with preempt disabled.
1367 static void invalidate_bh_lru(void *arg
)
1369 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1372 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1376 put_cpu_var(bh_lrus
);
1379 static bool has_bh_in_lru(int cpu
, void *dummy
)
1381 struct bh_lru
*b
= per_cpu_ptr(&bh_lrus
, cpu
);
1384 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1392 void invalidate_bh_lrus(void)
1394 on_each_cpu_cond(has_bh_in_lru
, invalidate_bh_lru
, NULL
, 1, GFP_KERNEL
);
1396 EXPORT_SYMBOL_GPL(invalidate_bh_lrus
);
1398 void set_bh_page(struct buffer_head
*bh
,
1399 struct page
*page
, unsigned long offset
)
1402 BUG_ON(offset
>= PAGE_SIZE
);
1403 if (PageHighMem(page
))
1405 * This catches illegal uses and preserves the offset:
1407 bh
->b_data
= (char *)(0 + offset
);
1409 bh
->b_data
= page_address(page
) + offset
;
1411 EXPORT_SYMBOL(set_bh_page
);
1414 * Called when truncating a buffer on a page completely.
1417 /* Bits that are cleared during an invalidate */
1418 #define BUFFER_FLAGS_DISCARD \
1419 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1420 1 << BH_Delay | 1 << BH_Unwritten)
1422 static void discard_buffer(struct buffer_head
* bh
)
1424 unsigned long b_state
, b_state_old
;
1427 clear_buffer_dirty(bh
);
1429 b_state
= bh
->b_state
;
1431 b_state_old
= cmpxchg(&bh
->b_state
, b_state
,
1432 (b_state
& ~BUFFER_FLAGS_DISCARD
));
1433 if (b_state_old
== b_state
)
1435 b_state
= b_state_old
;
1441 * block_invalidatepage - invalidate part or all of a buffer-backed page
1443 * @page: the page which is affected
1444 * @offset: start of the range to invalidate
1445 * @length: length of the range to invalidate
1447 * block_invalidatepage() is called when all or part of the page has become
1448 * invalidated by a truncate operation.
1450 * block_invalidatepage() does not have to release all buffers, but it must
1451 * ensure that no dirty buffer is left outside @offset and that no I/O
1452 * is underway against any of the blocks which are outside the truncation
1453 * point. Because the caller is about to free (and possibly reuse) those
1456 void block_invalidatepage(struct page
*page
, unsigned int offset
,
1457 unsigned int length
)
1459 struct buffer_head
*head
, *bh
, *next
;
1460 unsigned int curr_off
= 0;
1461 unsigned int stop
= length
+ offset
;
1463 BUG_ON(!PageLocked(page
));
1464 if (!page_has_buffers(page
))
1468 * Check for overflow
1470 BUG_ON(stop
> PAGE_SIZE
|| stop
< length
);
1472 head
= page_buffers(page
);
1475 unsigned int next_off
= curr_off
+ bh
->b_size
;
1476 next
= bh
->b_this_page
;
1479 * Are we still fully in range ?
1481 if (next_off
> stop
)
1485 * is this block fully invalidated?
1487 if (offset
<= curr_off
)
1489 curr_off
= next_off
;
1491 } while (bh
!= head
);
1494 * We release buffers only if the entire page is being invalidated.
1495 * The get_block cached value has been unconditionally invalidated,
1496 * so real IO is not possible anymore.
1498 if (length
== PAGE_SIZE
)
1499 try_to_release_page(page
, 0);
1503 EXPORT_SYMBOL(block_invalidatepage
);
1507 * We attach and possibly dirty the buffers atomically wrt
1508 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1509 * is already excluded via the page lock.
1511 void create_empty_buffers(struct page
*page
,
1512 unsigned long blocksize
, unsigned long b_state
)
1514 struct buffer_head
*bh
, *head
, *tail
;
1516 head
= alloc_page_buffers(page
, blocksize
, true);
1519 bh
->b_state
|= b_state
;
1521 bh
= bh
->b_this_page
;
1523 tail
->b_this_page
= head
;
1525 spin_lock(&page
->mapping
->private_lock
);
1526 if (PageUptodate(page
) || PageDirty(page
)) {
1529 if (PageDirty(page
))
1530 set_buffer_dirty(bh
);
1531 if (PageUptodate(page
))
1532 set_buffer_uptodate(bh
);
1533 bh
= bh
->b_this_page
;
1534 } while (bh
!= head
);
1536 attach_page_buffers(page
, head
);
1537 spin_unlock(&page
->mapping
->private_lock
);
1539 EXPORT_SYMBOL(create_empty_buffers
);
1542 * clean_bdev_aliases: clean a range of buffers in block device
1543 * @bdev: Block device to clean buffers in
1544 * @block: Start of a range of blocks to clean
1545 * @len: Number of blocks to clean
1547 * We are taking a range of blocks for data and we don't want writeback of any
1548 * buffer-cache aliases starting from return from this function and until the
1549 * moment when something will explicitly mark the buffer dirty (hopefully that
1550 * will not happen until we will free that block ;-) We don't even need to mark
1551 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1552 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1553 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1554 * would confuse anyone who might pick it with bread() afterwards...
1556 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1557 * writeout I/O going on against recently-freed buffers. We don't wait on that
1558 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1559 * need to. That happens here.
1561 void clean_bdev_aliases(struct block_device
*bdev
, sector_t block
, sector_t len
)
1563 struct inode
*bd_inode
= bdev
->bd_inode
;
1564 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
1565 struct pagevec pvec
;
1566 pgoff_t index
= block
>> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
1569 struct buffer_head
*bh
;
1570 struct buffer_head
*head
;
1572 end
= (block
+ len
- 1) >> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
1573 pagevec_init(&pvec
);
1574 while (pagevec_lookup_range(&pvec
, bd_mapping
, &index
, end
)) {
1575 count
= pagevec_count(&pvec
);
1576 for (i
= 0; i
< count
; i
++) {
1577 struct page
*page
= pvec
.pages
[i
];
1579 if (!page_has_buffers(page
))
1582 * We use page lock instead of bd_mapping->private_lock
1583 * to pin buffers here since we can afford to sleep and
1584 * it scales better than a global spinlock lock.
1587 /* Recheck when the page is locked which pins bhs */
1588 if (!page_has_buffers(page
))
1590 head
= page_buffers(page
);
1593 if (!buffer_mapped(bh
) || (bh
->b_blocknr
< block
))
1595 if (bh
->b_blocknr
>= block
+ len
)
1597 clear_buffer_dirty(bh
);
1599 clear_buffer_req(bh
);
1601 bh
= bh
->b_this_page
;
1602 } while (bh
!= head
);
1606 pagevec_release(&pvec
);
1608 /* End of range already reached? */
1609 if (index
> end
|| !index
)
1613 EXPORT_SYMBOL(clean_bdev_aliases
);
1616 * Size is a power-of-two in the range 512..PAGE_SIZE,
1617 * and the case we care about most is PAGE_SIZE.
1619 * So this *could* possibly be written with those
1620 * constraints in mind (relevant mostly if some
1621 * architecture has a slow bit-scan instruction)
1623 static inline int block_size_bits(unsigned int blocksize
)
1625 return ilog2(blocksize
);
1628 static struct buffer_head
*create_page_buffers(struct page
*page
, struct inode
*inode
, unsigned int b_state
)
1630 BUG_ON(!PageLocked(page
));
1632 if (!page_has_buffers(page
))
1633 create_empty_buffers(page
, 1 << READ_ONCE(inode
->i_blkbits
),
1635 return page_buffers(page
);
1639 * NOTE! All mapped/uptodate combinations are valid:
1641 * Mapped Uptodate Meaning
1643 * No No "unknown" - must do get_block()
1644 * No Yes "hole" - zero-filled
1645 * Yes No "allocated" - allocated on disk, not read in
1646 * Yes Yes "valid" - allocated and up-to-date in memory.
1648 * "Dirty" is valid only with the last case (mapped+uptodate).
1652 * While block_write_full_page is writing back the dirty buffers under
1653 * the page lock, whoever dirtied the buffers may decide to clean them
1654 * again at any time. We handle that by only looking at the buffer
1655 * state inside lock_buffer().
1657 * If block_write_full_page() is called for regular writeback
1658 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1659 * locked buffer. This only can happen if someone has written the buffer
1660 * directly, with submit_bh(). At the address_space level PageWriteback
1661 * prevents this contention from occurring.
1663 * If block_write_full_page() is called with wbc->sync_mode ==
1664 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1665 * causes the writes to be flagged as synchronous writes.
1667 int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1668 get_block_t
*get_block
, struct writeback_control
*wbc
,
1669 bh_end_io_t
*handler
)
1673 sector_t last_block
;
1674 struct buffer_head
*bh
, *head
;
1675 unsigned int blocksize
, bbits
;
1676 int nr_underway
= 0;
1677 int write_flags
= wbc_to_write_flags(wbc
);
1679 head
= create_page_buffers(page
, inode
,
1680 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1683 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1684 * here, and the (potentially unmapped) buffers may become dirty at
1685 * any time. If a buffer becomes dirty here after we've inspected it
1686 * then we just miss that fact, and the page stays dirty.
1688 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1689 * handle that here by just cleaning them.
1693 blocksize
= bh
->b_size
;
1694 bbits
= block_size_bits(blocksize
);
1696 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1697 last_block
= (i_size_read(inode
) - 1) >> bbits
;
1700 * Get all the dirty buffers mapped to disk addresses and
1701 * handle any aliases from the underlying blockdev's mapping.
1704 if (block
> last_block
) {
1706 * mapped buffers outside i_size will occur, because
1707 * this page can be outside i_size when there is a
1708 * truncate in progress.
1711 * The buffer was zeroed by block_write_full_page()
1713 clear_buffer_dirty(bh
);
1714 set_buffer_uptodate(bh
);
1715 } else if ((!buffer_mapped(bh
) || buffer_delay(bh
)) &&
1717 WARN_ON(bh
->b_size
!= blocksize
);
1718 err
= get_block(inode
, block
, bh
, 1);
1721 clear_buffer_delay(bh
);
1722 if (buffer_new(bh
)) {
1723 /* blockdev mappings never come here */
1724 clear_buffer_new(bh
);
1725 clean_bdev_bh_alias(bh
);
1728 bh
= bh
->b_this_page
;
1730 } while (bh
!= head
);
1733 if (!buffer_mapped(bh
))
1736 * If it's a fully non-blocking write attempt and we cannot
1737 * lock the buffer then redirty the page. Note that this can
1738 * potentially cause a busy-wait loop from writeback threads
1739 * and kswapd activity, but those code paths have their own
1740 * higher-level throttling.
1742 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
1744 } else if (!trylock_buffer(bh
)) {
1745 redirty_page_for_writepage(wbc
, page
);
1748 if (test_clear_buffer_dirty(bh
)) {
1749 mark_buffer_async_write_endio(bh
, handler
);
1753 } while ((bh
= bh
->b_this_page
) != head
);
1756 * The page and its buffers are protected by PageWriteback(), so we can
1757 * drop the bh refcounts early.
1759 BUG_ON(PageWriteback(page
));
1760 set_page_writeback(page
);
1763 struct buffer_head
*next
= bh
->b_this_page
;
1764 if (buffer_async_write(bh
)) {
1765 submit_bh_wbc(REQ_OP_WRITE
, write_flags
, bh
,
1766 inode
->i_write_hint
, wbc
);
1770 } while (bh
!= head
);
1775 if (nr_underway
== 0) {
1777 * The page was marked dirty, but the buffers were
1778 * clean. Someone wrote them back by hand with
1779 * ll_rw_block/submit_bh. A rare case.
1781 end_page_writeback(page
);
1784 * The page and buffer_heads can be released at any time from
1792 * ENOSPC, or some other error. We may already have added some
1793 * blocks to the file, so we need to write these out to avoid
1794 * exposing stale data.
1795 * The page is currently locked and not marked for writeback
1798 /* Recovery: lock and submit the mapped buffers */
1800 if (buffer_mapped(bh
) && buffer_dirty(bh
) &&
1801 !buffer_delay(bh
)) {
1803 mark_buffer_async_write_endio(bh
, handler
);
1806 * The buffer may have been set dirty during
1807 * attachment to a dirty page.
1809 clear_buffer_dirty(bh
);
1811 } while ((bh
= bh
->b_this_page
) != head
);
1813 BUG_ON(PageWriteback(page
));
1814 mapping_set_error(page
->mapping
, err
);
1815 set_page_writeback(page
);
1817 struct buffer_head
*next
= bh
->b_this_page
;
1818 if (buffer_async_write(bh
)) {
1819 clear_buffer_dirty(bh
);
1820 submit_bh_wbc(REQ_OP_WRITE
, write_flags
, bh
,
1821 inode
->i_write_hint
, wbc
);
1825 } while (bh
!= head
);
1829 EXPORT_SYMBOL(__block_write_full_page
);
1832 * If a page has any new buffers, zero them out here, and mark them uptodate
1833 * and dirty so they'll be written out (in order to prevent uninitialised
1834 * block data from leaking). And clear the new bit.
1836 void page_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1838 unsigned int block_start
, block_end
;
1839 struct buffer_head
*head
, *bh
;
1841 BUG_ON(!PageLocked(page
));
1842 if (!page_has_buffers(page
))
1845 bh
= head
= page_buffers(page
);
1848 block_end
= block_start
+ bh
->b_size
;
1850 if (buffer_new(bh
)) {
1851 if (block_end
> from
&& block_start
< to
) {
1852 if (!PageUptodate(page
)) {
1853 unsigned start
, size
;
1855 start
= max(from
, block_start
);
1856 size
= min(to
, block_end
) - start
;
1858 zero_user(page
, start
, size
);
1859 set_buffer_uptodate(bh
);
1862 clear_buffer_new(bh
);
1863 mark_buffer_dirty(bh
);
1867 block_start
= block_end
;
1868 bh
= bh
->b_this_page
;
1869 } while (bh
!= head
);
1871 EXPORT_SYMBOL(page_zero_new_buffers
);
1874 iomap_to_bh(struct inode
*inode
, sector_t block
, struct buffer_head
*bh
,
1875 struct iomap
*iomap
)
1877 loff_t offset
= block
<< inode
->i_blkbits
;
1879 bh
->b_bdev
= iomap
->bdev
;
1882 * Block points to offset in file we need to map, iomap contains
1883 * the offset at which the map starts. If the map ends before the
1884 * current block, then do not map the buffer and let the caller
1887 BUG_ON(offset
>= iomap
->offset
+ iomap
->length
);
1889 switch (iomap
->type
) {
1892 * If the buffer is not up to date or beyond the current EOF,
1893 * we need to mark it as new to ensure sub-block zeroing is
1894 * executed if necessary.
1896 if (!buffer_uptodate(bh
) ||
1897 (offset
>= i_size_read(inode
)))
1900 case IOMAP_DELALLOC
:
1901 if (!buffer_uptodate(bh
) ||
1902 (offset
>= i_size_read(inode
)))
1904 set_buffer_uptodate(bh
);
1905 set_buffer_mapped(bh
);
1906 set_buffer_delay(bh
);
1908 case IOMAP_UNWRITTEN
:
1910 * For unwritten regions, we always need to ensure that regions
1911 * in the block we are not writing to are zeroed. Mark the
1912 * buffer as new to ensure this.
1915 set_buffer_unwritten(bh
);
1918 if ((iomap
->flags
& IOMAP_F_NEW
) ||
1919 offset
>= i_size_read(inode
))
1921 bh
->b_blocknr
= (iomap
->addr
+ offset
- iomap
->offset
) >>
1923 set_buffer_mapped(bh
);
1928 int __block_write_begin_int(struct page
*page
, loff_t pos
, unsigned len
,
1929 get_block_t
*get_block
, struct iomap
*iomap
)
1931 unsigned from
= pos
& (PAGE_SIZE
- 1);
1932 unsigned to
= from
+ len
;
1933 struct inode
*inode
= page
->mapping
->host
;
1934 unsigned block_start
, block_end
;
1937 unsigned blocksize
, bbits
;
1938 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
1940 BUG_ON(!PageLocked(page
));
1941 BUG_ON(from
> PAGE_SIZE
);
1942 BUG_ON(to
> PAGE_SIZE
);
1945 head
= create_page_buffers(page
, inode
, 0);
1946 blocksize
= head
->b_size
;
1947 bbits
= block_size_bits(blocksize
);
1949 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1951 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1952 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
1953 block_end
= block_start
+ blocksize
;
1954 if (block_end
<= from
|| block_start
>= to
) {
1955 if (PageUptodate(page
)) {
1956 if (!buffer_uptodate(bh
))
1957 set_buffer_uptodate(bh
);
1962 clear_buffer_new(bh
);
1963 if (!buffer_mapped(bh
)) {
1964 WARN_ON(bh
->b_size
!= blocksize
);
1966 err
= get_block(inode
, block
, bh
, 1);
1970 iomap_to_bh(inode
, block
, bh
, iomap
);
1973 if (buffer_new(bh
)) {
1974 clean_bdev_bh_alias(bh
);
1975 if (PageUptodate(page
)) {
1976 clear_buffer_new(bh
);
1977 set_buffer_uptodate(bh
);
1978 mark_buffer_dirty(bh
);
1981 if (block_end
> to
|| block_start
< from
)
1982 zero_user_segments(page
,
1988 if (PageUptodate(page
)) {
1989 if (!buffer_uptodate(bh
))
1990 set_buffer_uptodate(bh
);
1993 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
1994 !buffer_unwritten(bh
) &&
1995 (block_start
< from
|| block_end
> to
)) {
1996 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
2001 * If we issued read requests - let them complete.
2003 while(wait_bh
> wait
) {
2004 wait_on_buffer(*--wait_bh
);
2005 if (!buffer_uptodate(*wait_bh
))
2009 page_zero_new_buffers(page
, from
, to
);
2013 int __block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
2014 get_block_t
*get_block
)
2016 return __block_write_begin_int(page
, pos
, len
, get_block
, NULL
);
2018 EXPORT_SYMBOL(__block_write_begin
);
2020 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
2021 unsigned from
, unsigned to
)
2023 unsigned block_start
, block_end
;
2026 struct buffer_head
*bh
, *head
;
2028 bh
= head
= page_buffers(page
);
2029 blocksize
= bh
->b_size
;
2033 block_end
= block_start
+ blocksize
;
2034 if (block_end
<= from
|| block_start
>= to
) {
2035 if (!buffer_uptodate(bh
))
2038 set_buffer_uptodate(bh
);
2039 mark_buffer_dirty(bh
);
2041 clear_buffer_new(bh
);
2043 block_start
= block_end
;
2044 bh
= bh
->b_this_page
;
2045 } while (bh
!= head
);
2048 * If this is a partial write which happened to make all buffers
2049 * uptodate then we can optimize away a bogus readpage() for
2050 * the next read(). Here we 'discover' whether the page went
2051 * uptodate as a result of this (potentially partial) write.
2054 SetPageUptodate(page
);
2059 * block_write_begin takes care of the basic task of block allocation and
2060 * bringing partial write blocks uptodate first.
2062 * The filesystem needs to handle block truncation upon failure.
2064 int block_write_begin(struct address_space
*mapping
, loff_t pos
, unsigned len
,
2065 unsigned flags
, struct page
**pagep
, get_block_t
*get_block
)
2067 pgoff_t index
= pos
>> PAGE_SHIFT
;
2071 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2075 status
= __block_write_begin(page
, pos
, len
, get_block
);
2076 if (unlikely(status
)) {
2085 EXPORT_SYMBOL(block_write_begin
);
2087 int __generic_write_end(struct inode
*inode
, loff_t pos
, unsigned copied
,
2090 loff_t old_size
= inode
->i_size
;
2091 bool i_size_changed
= false;
2094 * No need to use i_size_read() here, the i_size cannot change under us
2095 * because we hold i_rwsem.
2097 * But it's important to update i_size while still holding page lock:
2098 * page writeout could otherwise come in and zero beyond i_size.
2100 if (pos
+ copied
> inode
->i_size
) {
2101 i_size_write(inode
, pos
+ copied
);
2102 i_size_changed
= true;
2109 pagecache_isize_extended(inode
, old_size
, pos
);
2111 * Don't mark the inode dirty under page lock. First, it unnecessarily
2112 * makes the holding time of page lock longer. Second, it forces lock
2113 * ordering of page lock and transaction start for journaling
2117 mark_inode_dirty(inode
);
2121 int block_write_end(struct file
*file
, struct address_space
*mapping
,
2122 loff_t pos
, unsigned len
, unsigned copied
,
2123 struct page
*page
, void *fsdata
)
2125 struct inode
*inode
= mapping
->host
;
2128 start
= pos
& (PAGE_SIZE
- 1);
2130 if (unlikely(copied
< len
)) {
2132 * The buffers that were written will now be uptodate, so we
2133 * don't have to worry about a readpage reading them and
2134 * overwriting a partial write. However if we have encountered
2135 * a short write and only partially written into a buffer, it
2136 * will not be marked uptodate, so a readpage might come in and
2137 * destroy our partial write.
2139 * Do the simplest thing, and just treat any short write to a
2140 * non uptodate page as a zero-length write, and force the
2141 * caller to redo the whole thing.
2143 if (!PageUptodate(page
))
2146 page_zero_new_buffers(page
, start
+copied
, start
+len
);
2148 flush_dcache_page(page
);
2150 /* This could be a short (even 0-length) commit */
2151 __block_commit_write(inode
, page
, start
, start
+copied
);
2155 EXPORT_SYMBOL(block_write_end
);
2157 int generic_write_end(struct file
*file
, struct address_space
*mapping
,
2158 loff_t pos
, unsigned len
, unsigned copied
,
2159 struct page
*page
, void *fsdata
)
2161 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2162 return __generic_write_end(mapping
->host
, pos
, copied
, page
);
2164 EXPORT_SYMBOL(generic_write_end
);
2167 * block_is_partially_uptodate checks whether buffers within a page are
2170 * Returns true if all buffers which correspond to a file portion
2171 * we want to read are uptodate.
2173 int block_is_partially_uptodate(struct page
*page
, unsigned long from
,
2174 unsigned long count
)
2176 unsigned block_start
, block_end
, blocksize
;
2178 struct buffer_head
*bh
, *head
;
2181 if (!page_has_buffers(page
))
2184 head
= page_buffers(page
);
2185 blocksize
= head
->b_size
;
2186 to
= min_t(unsigned, PAGE_SIZE
- from
, count
);
2188 if (from
< blocksize
&& to
> PAGE_SIZE
- blocksize
)
2194 block_end
= block_start
+ blocksize
;
2195 if (block_end
> from
&& block_start
< to
) {
2196 if (!buffer_uptodate(bh
)) {
2200 if (block_end
>= to
)
2203 block_start
= block_end
;
2204 bh
= bh
->b_this_page
;
2205 } while (bh
!= head
);
2209 EXPORT_SYMBOL(block_is_partially_uptodate
);
2212 * Generic "read page" function for block devices that have the normal
2213 * get_block functionality. This is most of the block device filesystems.
2214 * Reads the page asynchronously --- the unlock_buffer() and
2215 * set/clear_buffer_uptodate() functions propagate buffer state into the
2216 * page struct once IO has completed.
2218 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
2220 struct inode
*inode
= page
->mapping
->host
;
2221 sector_t iblock
, lblock
;
2222 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
2223 unsigned int blocksize
, bbits
;
2225 int fully_mapped
= 1;
2227 head
= create_page_buffers(page
, inode
, 0);
2228 blocksize
= head
->b_size
;
2229 bbits
= block_size_bits(blocksize
);
2231 iblock
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
2232 lblock
= (i_size_read(inode
)+blocksize
-1) >> bbits
;
2238 if (buffer_uptodate(bh
))
2241 if (!buffer_mapped(bh
)) {
2245 if (iblock
< lblock
) {
2246 WARN_ON(bh
->b_size
!= blocksize
);
2247 err
= get_block(inode
, iblock
, bh
, 0);
2251 if (!buffer_mapped(bh
)) {
2252 zero_user(page
, i
* blocksize
, blocksize
);
2254 set_buffer_uptodate(bh
);
2258 * get_block() might have updated the buffer
2261 if (buffer_uptodate(bh
))
2265 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
2268 SetPageMappedToDisk(page
);
2272 * All buffers are uptodate - we can set the page uptodate
2273 * as well. But not if get_block() returned an error.
2275 if (!PageError(page
))
2276 SetPageUptodate(page
);
2281 /* Stage two: lock the buffers */
2282 for (i
= 0; i
< nr
; i
++) {
2285 mark_buffer_async_read(bh
);
2289 * Stage 3: start the IO. Check for uptodateness
2290 * inside the buffer lock in case another process reading
2291 * the underlying blockdev brought it uptodate (the sct fix).
2293 for (i
= 0; i
< nr
; i
++) {
2295 if (buffer_uptodate(bh
))
2296 end_buffer_async_read(bh
, 1);
2298 submit_bh(REQ_OP_READ
, 0, bh
);
2302 EXPORT_SYMBOL(block_read_full_page
);
2304 /* utility function for filesystems that need to do work on expanding
2305 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2306 * deal with the hole.
2308 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2310 struct address_space
*mapping
= inode
->i_mapping
;
2315 err
= inode_newsize_ok(inode
, size
);
2319 err
= pagecache_write_begin(NULL
, mapping
, size
, 0,
2320 AOP_FLAG_CONT_EXPAND
, &page
, &fsdata
);
2324 err
= pagecache_write_end(NULL
, mapping
, size
, 0, 0, page
, fsdata
);
2330 EXPORT_SYMBOL(generic_cont_expand_simple
);
2332 static int cont_expand_zero(struct file
*file
, struct address_space
*mapping
,
2333 loff_t pos
, loff_t
*bytes
)
2335 struct inode
*inode
= mapping
->host
;
2336 unsigned int blocksize
= i_blocksize(inode
);
2339 pgoff_t index
, curidx
;
2341 unsigned zerofrom
, offset
, len
;
2344 index
= pos
>> PAGE_SHIFT
;
2345 offset
= pos
& ~PAGE_MASK
;
2347 while (index
> (curidx
= (curpos
= *bytes
)>>PAGE_SHIFT
)) {
2348 zerofrom
= curpos
& ~PAGE_MASK
;
2349 if (zerofrom
& (blocksize
-1)) {
2350 *bytes
|= (blocksize
-1);
2353 len
= PAGE_SIZE
- zerofrom
;
2355 err
= pagecache_write_begin(file
, mapping
, curpos
, len
, 0,
2359 zero_user(page
, zerofrom
, len
);
2360 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2367 balance_dirty_pages_ratelimited(mapping
);
2369 if (fatal_signal_pending(current
)) {
2375 /* page covers the boundary, find the boundary offset */
2376 if (index
== curidx
) {
2377 zerofrom
= curpos
& ~PAGE_MASK
;
2378 /* if we will expand the thing last block will be filled */
2379 if (offset
<= zerofrom
) {
2382 if (zerofrom
& (blocksize
-1)) {
2383 *bytes
|= (blocksize
-1);
2386 len
= offset
- zerofrom
;
2388 err
= pagecache_write_begin(file
, mapping
, curpos
, len
, 0,
2392 zero_user(page
, zerofrom
, len
);
2393 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2405 * For moronic filesystems that do not allow holes in file.
2406 * We may have to extend the file.
2408 int cont_write_begin(struct file
*file
, struct address_space
*mapping
,
2409 loff_t pos
, unsigned len
, unsigned flags
,
2410 struct page
**pagep
, void **fsdata
,
2411 get_block_t
*get_block
, loff_t
*bytes
)
2413 struct inode
*inode
= mapping
->host
;
2414 unsigned int blocksize
= i_blocksize(inode
);
2415 unsigned int zerofrom
;
2418 err
= cont_expand_zero(file
, mapping
, pos
, bytes
);
2422 zerofrom
= *bytes
& ~PAGE_MASK
;
2423 if (pos
+len
> *bytes
&& zerofrom
& (blocksize
-1)) {
2424 *bytes
|= (blocksize
-1);
2428 return block_write_begin(mapping
, pos
, len
, flags
, pagep
, get_block
);
2430 EXPORT_SYMBOL(cont_write_begin
);
2432 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2434 struct inode
*inode
= page
->mapping
->host
;
2435 __block_commit_write(inode
,page
,from
,to
);
2438 EXPORT_SYMBOL(block_commit_write
);
2441 * block_page_mkwrite() is not allowed to change the file size as it gets
2442 * called from a page fault handler when a page is first dirtied. Hence we must
2443 * be careful to check for EOF conditions here. We set the page up correctly
2444 * for a written page which means we get ENOSPC checking when writing into
2445 * holes and correct delalloc and unwritten extent mapping on filesystems that
2446 * support these features.
2448 * We are not allowed to take the i_mutex here so we have to play games to
2449 * protect against truncate races as the page could now be beyond EOF. Because
2450 * truncate writes the inode size before removing pages, once we have the
2451 * page lock we can determine safely if the page is beyond EOF. If it is not
2452 * beyond EOF, then the page is guaranteed safe against truncation until we
2455 * Direct callers of this function should protect against filesystem freezing
2456 * using sb_start_pagefault() - sb_end_pagefault() functions.
2458 int block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2459 get_block_t get_block
)
2461 struct page
*page
= vmf
->page
;
2462 struct inode
*inode
= file_inode(vma
->vm_file
);
2468 size
= i_size_read(inode
);
2469 if ((page
->mapping
!= inode
->i_mapping
) ||
2470 (page_offset(page
) > size
)) {
2471 /* We overload EFAULT to mean page got truncated */
2476 /* page is wholly or partially inside EOF */
2477 if (((page
->index
+ 1) << PAGE_SHIFT
) > size
)
2478 end
= size
& ~PAGE_MASK
;
2482 ret
= __block_write_begin(page
, 0, end
, get_block
);
2484 ret
= block_commit_write(page
, 0, end
);
2486 if (unlikely(ret
< 0))
2488 set_page_dirty(page
);
2489 wait_for_stable_page(page
);
2495 EXPORT_SYMBOL(block_page_mkwrite
);
2498 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2499 * immediately, while under the page lock. So it needs a special end_io
2500 * handler which does not touch the bh after unlocking it.
2502 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2504 __end_buffer_read_notouch(bh
, uptodate
);
2508 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2509 * the page (converting it to circular linked list and taking care of page
2512 static void attach_nobh_buffers(struct page
*page
, struct buffer_head
*head
)
2514 struct buffer_head
*bh
;
2516 BUG_ON(!PageLocked(page
));
2518 spin_lock(&page
->mapping
->private_lock
);
2521 if (PageDirty(page
))
2522 set_buffer_dirty(bh
);
2523 if (!bh
->b_this_page
)
2524 bh
->b_this_page
= head
;
2525 bh
= bh
->b_this_page
;
2526 } while (bh
!= head
);
2527 attach_page_buffers(page
, head
);
2528 spin_unlock(&page
->mapping
->private_lock
);
2532 * On entry, the page is fully not uptodate.
2533 * On exit the page is fully uptodate in the areas outside (from,to)
2534 * The filesystem needs to handle block truncation upon failure.
2536 int nobh_write_begin(struct address_space
*mapping
,
2537 loff_t pos
, unsigned len
, unsigned flags
,
2538 struct page
**pagep
, void **fsdata
,
2539 get_block_t
*get_block
)
2541 struct inode
*inode
= mapping
->host
;
2542 const unsigned blkbits
= inode
->i_blkbits
;
2543 const unsigned blocksize
= 1 << blkbits
;
2544 struct buffer_head
*head
, *bh
;
2548 unsigned block_in_page
;
2549 unsigned block_start
, block_end
;
2550 sector_t block_in_file
;
2553 int is_mapped_to_disk
= 1;
2555 index
= pos
>> PAGE_SHIFT
;
2556 from
= pos
& (PAGE_SIZE
- 1);
2559 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2565 if (page_has_buffers(page
)) {
2566 ret
= __block_write_begin(page
, pos
, len
, get_block
);
2572 if (PageMappedToDisk(page
))
2576 * Allocate buffers so that we can keep track of state, and potentially
2577 * attach them to the page if an error occurs. In the common case of
2578 * no error, they will just be freed again without ever being attached
2579 * to the page (which is all OK, because we're under the page lock).
2581 * Be careful: the buffer linked list is a NULL terminated one, rather
2582 * than the circular one we're used to.
2584 head
= alloc_page_buffers(page
, blocksize
, false);
2590 block_in_file
= (sector_t
)page
->index
<< (PAGE_SHIFT
- blkbits
);
2593 * We loop across all blocks in the page, whether or not they are
2594 * part of the affected region. This is so we can discover if the
2595 * page is fully mapped-to-disk.
2597 for (block_start
= 0, block_in_page
= 0, bh
= head
;
2598 block_start
< PAGE_SIZE
;
2599 block_in_page
++, block_start
+= blocksize
, bh
= bh
->b_this_page
) {
2602 block_end
= block_start
+ blocksize
;
2605 if (block_start
>= to
)
2607 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2611 if (!buffer_mapped(bh
))
2612 is_mapped_to_disk
= 0;
2614 clean_bdev_bh_alias(bh
);
2615 if (PageUptodate(page
)) {
2616 set_buffer_uptodate(bh
);
2619 if (buffer_new(bh
) || !buffer_mapped(bh
)) {
2620 zero_user_segments(page
, block_start
, from
,
2624 if (buffer_uptodate(bh
))
2625 continue; /* reiserfs does this */
2626 if (block_start
< from
|| block_end
> to
) {
2628 bh
->b_end_io
= end_buffer_read_nobh
;
2629 submit_bh(REQ_OP_READ
, 0, bh
);
2636 * The page is locked, so these buffers are protected from
2637 * any VM or truncate activity. Hence we don't need to care
2638 * for the buffer_head refcounts.
2640 for (bh
= head
; bh
; bh
= bh
->b_this_page
) {
2642 if (!buffer_uptodate(bh
))
2649 if (is_mapped_to_disk
)
2650 SetPageMappedToDisk(page
);
2652 *fsdata
= head
; /* to be released by nobh_write_end */
2659 * Error recovery is a bit difficult. We need to zero out blocks that
2660 * were newly allocated, and dirty them to ensure they get written out.
2661 * Buffers need to be attached to the page at this point, otherwise
2662 * the handling of potential IO errors during writeout would be hard
2663 * (could try doing synchronous writeout, but what if that fails too?)
2665 attach_nobh_buffers(page
, head
);
2666 page_zero_new_buffers(page
, from
, to
);
2675 EXPORT_SYMBOL(nobh_write_begin
);
2677 int nobh_write_end(struct file
*file
, struct address_space
*mapping
,
2678 loff_t pos
, unsigned len
, unsigned copied
,
2679 struct page
*page
, void *fsdata
)
2681 struct inode
*inode
= page
->mapping
->host
;
2682 struct buffer_head
*head
= fsdata
;
2683 struct buffer_head
*bh
;
2684 BUG_ON(fsdata
!= NULL
&& page_has_buffers(page
));
2686 if (unlikely(copied
< len
) && head
)
2687 attach_nobh_buffers(page
, head
);
2688 if (page_has_buffers(page
))
2689 return generic_write_end(file
, mapping
, pos
, len
,
2690 copied
, page
, fsdata
);
2692 SetPageUptodate(page
);
2693 set_page_dirty(page
);
2694 if (pos
+copied
> inode
->i_size
) {
2695 i_size_write(inode
, pos
+copied
);
2696 mark_inode_dirty(inode
);
2704 head
= head
->b_this_page
;
2705 free_buffer_head(bh
);
2710 EXPORT_SYMBOL(nobh_write_end
);
2713 * nobh_writepage() - based on block_full_write_page() except
2714 * that it tries to operate without attaching bufferheads to
2717 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2718 struct writeback_control
*wbc
)
2720 struct inode
* const inode
= page
->mapping
->host
;
2721 loff_t i_size
= i_size_read(inode
);
2722 const pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2726 /* Is the page fully inside i_size? */
2727 if (page
->index
< end_index
)
2730 /* Is the page fully outside i_size? (truncate in progress) */
2731 offset
= i_size
& (PAGE_SIZE
-1);
2732 if (page
->index
>= end_index
+1 || !offset
) {
2734 * The page may have dirty, unmapped buffers. For example,
2735 * they may have been added in ext3_writepage(). Make them
2736 * freeable here, so the page does not leak.
2739 /* Not really sure about this - do we need this ? */
2740 if (page
->mapping
->a_ops
->invalidatepage
)
2741 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2744 return 0; /* don't care */
2748 * The page straddles i_size. It must be zeroed out on each and every
2749 * writepage invocation because it may be mmapped. "A file is mapped
2750 * in multiples of the page size. For a file that is not a multiple of
2751 * the page size, the remaining memory is zeroed when mapped, and
2752 * writes to that region are not written out to the file."
2754 zero_user_segment(page
, offset
, PAGE_SIZE
);
2756 ret
= mpage_writepage(page
, get_block
, wbc
);
2758 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
,
2759 end_buffer_async_write
);
2762 EXPORT_SYMBOL(nobh_writepage
);
2764 int nobh_truncate_page(struct address_space
*mapping
,
2765 loff_t from
, get_block_t
*get_block
)
2767 pgoff_t index
= from
>> PAGE_SHIFT
;
2768 unsigned offset
= from
& (PAGE_SIZE
-1);
2771 unsigned length
, pos
;
2772 struct inode
*inode
= mapping
->host
;
2774 struct buffer_head map_bh
;
2777 blocksize
= i_blocksize(inode
);
2778 length
= offset
& (blocksize
- 1);
2780 /* Block boundary? Nothing to do */
2784 length
= blocksize
- length
;
2785 iblock
= (sector_t
)index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
2787 page
= grab_cache_page(mapping
, index
);
2792 if (page_has_buffers(page
)) {
2796 return block_truncate_page(mapping
, from
, get_block
);
2799 /* Find the buffer that contains "offset" */
2801 while (offset
>= pos
) {
2806 map_bh
.b_size
= blocksize
;
2808 err
= get_block(inode
, iblock
, &map_bh
, 0);
2811 /* unmapped? It's a hole - nothing to do */
2812 if (!buffer_mapped(&map_bh
))
2815 /* Ok, it's mapped. Make sure it's up-to-date */
2816 if (!PageUptodate(page
)) {
2817 err
= mapping
->a_ops
->readpage(NULL
, page
);
2823 if (!PageUptodate(page
)) {
2827 if (page_has_buffers(page
))
2830 zero_user(page
, offset
, length
);
2831 set_page_dirty(page
);
2840 EXPORT_SYMBOL(nobh_truncate_page
);
2842 int block_truncate_page(struct address_space
*mapping
,
2843 loff_t from
, get_block_t
*get_block
)
2845 pgoff_t index
= from
>> PAGE_SHIFT
;
2846 unsigned offset
= from
& (PAGE_SIZE
-1);
2849 unsigned length
, pos
;
2850 struct inode
*inode
= mapping
->host
;
2852 struct buffer_head
*bh
;
2855 blocksize
= i_blocksize(inode
);
2856 length
= offset
& (blocksize
- 1);
2858 /* Block boundary? Nothing to do */
2862 length
= blocksize
- length
;
2863 iblock
= (sector_t
)index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
2865 page
= grab_cache_page(mapping
, index
);
2870 if (!page_has_buffers(page
))
2871 create_empty_buffers(page
, blocksize
, 0);
2873 /* Find the buffer that contains "offset" */
2874 bh
= page_buffers(page
);
2876 while (offset
>= pos
) {
2877 bh
= bh
->b_this_page
;
2883 if (!buffer_mapped(bh
)) {
2884 WARN_ON(bh
->b_size
!= blocksize
);
2885 err
= get_block(inode
, iblock
, bh
, 0);
2888 /* unmapped? It's a hole - nothing to do */
2889 if (!buffer_mapped(bh
))
2893 /* Ok, it's mapped. Make sure it's up-to-date */
2894 if (PageUptodate(page
))
2895 set_buffer_uptodate(bh
);
2897 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2899 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
2901 /* Uhhuh. Read error. Complain and punt. */
2902 if (!buffer_uptodate(bh
))
2906 zero_user(page
, offset
, length
);
2907 mark_buffer_dirty(bh
);
2916 EXPORT_SYMBOL(block_truncate_page
);
2919 * The generic ->writepage function for buffer-backed address_spaces
2921 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2922 struct writeback_control
*wbc
)
2924 struct inode
* const inode
= page
->mapping
->host
;
2925 loff_t i_size
= i_size_read(inode
);
2926 const pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2929 /* Is the page fully inside i_size? */
2930 if (page
->index
< end_index
)
2931 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2932 end_buffer_async_write
);
2934 /* Is the page fully outside i_size? (truncate in progress) */
2935 offset
= i_size
& (PAGE_SIZE
-1);
2936 if (page
->index
>= end_index
+1 || !offset
) {
2938 * The page may have dirty, unmapped buffers. For example,
2939 * they may have been added in ext3_writepage(). Make them
2940 * freeable here, so the page does not leak.
2942 do_invalidatepage(page
, 0, PAGE_SIZE
);
2944 return 0; /* don't care */
2948 * The page straddles i_size. It must be zeroed out on each and every
2949 * writepage invocation because it may be mmapped. "A file is mapped
2950 * in multiples of the page size. For a file that is not a multiple of
2951 * the page size, the remaining memory is zeroed when mapped, and
2952 * writes to that region are not written out to the file."
2954 zero_user_segment(page
, offset
, PAGE_SIZE
);
2955 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2956 end_buffer_async_write
);
2958 EXPORT_SYMBOL(block_write_full_page
);
2960 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
2961 get_block_t
*get_block
)
2963 struct inode
*inode
= mapping
->host
;
2964 struct buffer_head tmp
= {
2965 .b_size
= i_blocksize(inode
),
2968 get_block(inode
, block
, &tmp
, 0);
2969 return tmp
.b_blocknr
;
2971 EXPORT_SYMBOL(generic_block_bmap
);
2973 static void end_bio_bh_io_sync(struct bio
*bio
)
2975 struct buffer_head
*bh
= bio
->bi_private
;
2977 if (unlikely(bio_flagged(bio
, BIO_QUIET
)))
2978 set_bit(BH_Quiet
, &bh
->b_state
);
2980 bh
->b_end_io(bh
, !bio
->bi_status
);
2985 * This allows us to do IO even on the odd last sectors
2986 * of a device, even if the block size is some multiple
2987 * of the physical sector size.
2989 * We'll just truncate the bio to the size of the device,
2990 * and clear the end of the buffer head manually.
2992 * Truly out-of-range accesses will turn into actual IO
2993 * errors, this only handles the "we need to be able to
2994 * do IO at the final sector" case.
2996 void guard_bio_eod(int op
, struct bio
*bio
)
2999 struct bio_vec
*bvec
= bio_last_bvec_all(bio
);
3000 unsigned truncated_bytes
;
3001 struct hd_struct
*part
;
3004 part
= __disk_get_part(bio
->bi_disk
, bio
->bi_partno
);
3006 maxsector
= part_nr_sects_read(part
);
3008 maxsector
= get_capacity(bio
->bi_disk
);
3015 * If the *whole* IO is past the end of the device,
3016 * let it through, and the IO layer will turn it into
3019 if (unlikely(bio
->bi_iter
.bi_sector
>= maxsector
))
3022 maxsector
-= bio
->bi_iter
.bi_sector
;
3023 if (likely((bio
->bi_iter
.bi_size
>> 9) <= maxsector
))
3026 /* Uhhuh. We've got a bio that straddles the device size! */
3027 truncated_bytes
= bio
->bi_iter
.bi_size
- (maxsector
<< 9);
3029 /* Truncate the bio.. */
3030 bio
->bi_iter
.bi_size
-= truncated_bytes
;
3031 bvec
->bv_len
-= truncated_bytes
;
3033 /* ..and clear the end of the buffer for reads */
3034 if (op
== REQ_OP_READ
) {
3035 zero_user(bvec
->bv_page
, bvec
->bv_offset
+ bvec
->bv_len
,
3040 static int submit_bh_wbc(int op
, int op_flags
, struct buffer_head
*bh
,
3041 enum rw_hint write_hint
, struct writeback_control
*wbc
)
3045 BUG_ON(!buffer_locked(bh
));
3046 BUG_ON(!buffer_mapped(bh
));
3047 BUG_ON(!bh
->b_end_io
);
3048 BUG_ON(buffer_delay(bh
));
3049 BUG_ON(buffer_unwritten(bh
));
3052 * Only clear out a write error when rewriting
3054 if (test_set_buffer_req(bh
) && (op
== REQ_OP_WRITE
))
3055 clear_buffer_write_io_error(bh
);
3058 * from here on down, it's all bio -- do the initial mapping,
3059 * submit_bio -> generic_make_request may further map this bio around
3061 bio
= bio_alloc(GFP_NOIO
, 1);
3063 bio
->bi_iter
.bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
3064 bio_set_dev(bio
, bh
->b_bdev
);
3065 bio
->bi_write_hint
= write_hint
;
3067 bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
3068 BUG_ON(bio
->bi_iter
.bi_size
!= bh
->b_size
);
3070 bio
->bi_end_io
= end_bio_bh_io_sync
;
3071 bio
->bi_private
= bh
;
3073 /* Take care of bh's that straddle the end of the device */
3074 guard_bio_eod(op
, bio
);
3076 if (buffer_meta(bh
))
3077 op_flags
|= REQ_META
;
3078 if (buffer_prio(bh
))
3079 op_flags
|= REQ_PRIO
;
3080 bio_set_op_attrs(bio
, op
, op_flags
);
3083 wbc_init_bio(wbc
, bio
);
3084 wbc_account_io(wbc
, bh
->b_page
, bh
->b_size
);
3091 int submit_bh(int op
, int op_flags
, struct buffer_head
*bh
)
3093 return submit_bh_wbc(op
, op_flags
, bh
, 0, NULL
);
3095 EXPORT_SYMBOL(submit_bh
);
3098 * ll_rw_block: low-level access to block devices (DEPRECATED)
3099 * @op: whether to %READ or %WRITE
3100 * @op_flags: req_flag_bits
3101 * @nr: number of &struct buffer_heads in the array
3102 * @bhs: array of pointers to &struct buffer_head
3104 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3105 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3106 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3109 * This function drops any buffer that it cannot get a lock on (with the
3110 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3111 * request, and any buffer that appears to be up-to-date when doing read
3112 * request. Further it marks as clean buffers that are processed for
3113 * writing (the buffer cache won't assume that they are actually clean
3114 * until the buffer gets unlocked).
3116 * ll_rw_block sets b_end_io to simple completion handler that marks
3117 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3120 * All of the buffers must be for the same device, and must also be a
3121 * multiple of the current approved size for the device.
3123 void ll_rw_block(int op
, int op_flags
, int nr
, struct buffer_head
*bhs
[])
3127 for (i
= 0; i
< nr
; i
++) {
3128 struct buffer_head
*bh
= bhs
[i
];
3130 if (!trylock_buffer(bh
))
3133 if (test_clear_buffer_dirty(bh
)) {
3134 bh
->b_end_io
= end_buffer_write_sync
;
3136 submit_bh(op
, op_flags
, bh
);
3140 if (!buffer_uptodate(bh
)) {
3141 bh
->b_end_io
= end_buffer_read_sync
;
3143 submit_bh(op
, op_flags
, bh
);
3150 EXPORT_SYMBOL(ll_rw_block
);
3152 void write_dirty_buffer(struct buffer_head
*bh
, int op_flags
)
3155 if (!test_clear_buffer_dirty(bh
)) {
3159 bh
->b_end_io
= end_buffer_write_sync
;
3161 submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3163 EXPORT_SYMBOL(write_dirty_buffer
);
3166 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3167 * and then start new I/O and then wait upon it. The caller must have a ref on
3170 int __sync_dirty_buffer(struct buffer_head
*bh
, int op_flags
)
3174 WARN_ON(atomic_read(&bh
->b_count
) < 1);
3176 if (test_clear_buffer_dirty(bh
)) {
3178 bh
->b_end_io
= end_buffer_write_sync
;
3179 ret
= submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3181 if (!ret
&& !buffer_uptodate(bh
))
3188 EXPORT_SYMBOL(__sync_dirty_buffer
);
3190 int sync_dirty_buffer(struct buffer_head
*bh
)
3192 return __sync_dirty_buffer(bh
, REQ_SYNC
);
3194 EXPORT_SYMBOL(sync_dirty_buffer
);
3197 * try_to_free_buffers() checks if all the buffers on this particular page
3198 * are unused, and releases them if so.
3200 * Exclusion against try_to_free_buffers may be obtained by either
3201 * locking the page or by holding its mapping's private_lock.
3203 * If the page is dirty but all the buffers are clean then we need to
3204 * be sure to mark the page clean as well. This is because the page
3205 * may be against a block device, and a later reattachment of buffers
3206 * to a dirty page will set *all* buffers dirty. Which would corrupt
3207 * filesystem data on the same device.
3209 * The same applies to regular filesystem pages: if all the buffers are
3210 * clean then we set the page clean and proceed. To do that, we require
3211 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3214 * try_to_free_buffers() is non-blocking.
3216 static inline int buffer_busy(struct buffer_head
*bh
)
3218 return atomic_read(&bh
->b_count
) |
3219 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
3223 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
3225 struct buffer_head
*head
= page_buffers(page
);
3226 struct buffer_head
*bh
;
3230 if (buffer_busy(bh
))
3232 bh
= bh
->b_this_page
;
3233 } while (bh
!= head
);
3236 struct buffer_head
*next
= bh
->b_this_page
;
3238 if (bh
->b_assoc_map
)
3239 __remove_assoc_queue(bh
);
3241 } while (bh
!= head
);
3242 *buffers_to_free
= head
;
3243 __clear_page_buffers(page
);
3249 int try_to_free_buffers(struct page
*page
)
3251 struct address_space
* const mapping
= page
->mapping
;
3252 struct buffer_head
*buffers_to_free
= NULL
;
3255 BUG_ON(!PageLocked(page
));
3256 if (PageWriteback(page
))
3259 if (mapping
== NULL
) { /* can this still happen? */
3260 ret
= drop_buffers(page
, &buffers_to_free
);
3264 spin_lock(&mapping
->private_lock
);
3265 ret
= drop_buffers(page
, &buffers_to_free
);
3268 * If the filesystem writes its buffers by hand (eg ext3)
3269 * then we can have clean buffers against a dirty page. We
3270 * clean the page here; otherwise the VM will never notice
3271 * that the filesystem did any IO at all.
3273 * Also, during truncate, discard_buffer will have marked all
3274 * the page's buffers clean. We discover that here and clean
3277 * private_lock must be held over this entire operation in order
3278 * to synchronise against __set_page_dirty_buffers and prevent the
3279 * dirty bit from being lost.
3282 cancel_dirty_page(page
);
3283 spin_unlock(&mapping
->private_lock
);
3285 if (buffers_to_free
) {
3286 struct buffer_head
*bh
= buffers_to_free
;
3289 struct buffer_head
*next
= bh
->b_this_page
;
3290 free_buffer_head(bh
);
3292 } while (bh
!= buffers_to_free
);
3296 EXPORT_SYMBOL(try_to_free_buffers
);
3299 * There are no bdflush tunables left. But distributions are
3300 * still running obsolete flush daemons, so we terminate them here.
3302 * Use of bdflush() is deprecated and will be removed in a future kernel.
3303 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3305 SYSCALL_DEFINE2(bdflush
, int, func
, long, data
)
3307 static int msg_count
;
3309 if (!capable(CAP_SYS_ADMIN
))
3312 if (msg_count
< 5) {
3315 "warning: process `%s' used the obsolete bdflush"
3316 " system call\n", current
->comm
);
3317 printk(KERN_INFO
"Fix your initscripts?\n");
3326 * Buffer-head allocation
3328 static struct kmem_cache
*bh_cachep __read_mostly
;
3331 * Once the number of bh's in the machine exceeds this level, we start
3332 * stripping them in writeback.
3334 static unsigned long max_buffer_heads
;
3336 int buffer_heads_over_limit
;
3338 struct bh_accounting
{
3339 int nr
; /* Number of live bh's */
3340 int ratelimit
; /* Limit cacheline bouncing */
3343 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
3345 static void recalc_bh_state(void)
3350 if (__this_cpu_inc_return(bh_accounting
.ratelimit
) - 1 < 4096)
3352 __this_cpu_write(bh_accounting
.ratelimit
, 0);
3353 for_each_online_cpu(i
)
3354 tot
+= per_cpu(bh_accounting
, i
).nr
;
3355 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
3358 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
3360 struct buffer_head
*ret
= kmem_cache_zalloc(bh_cachep
, gfp_flags
);
3362 INIT_LIST_HEAD(&ret
->b_assoc_buffers
);
3364 __this_cpu_inc(bh_accounting
.nr
);
3370 EXPORT_SYMBOL(alloc_buffer_head
);
3372 void free_buffer_head(struct buffer_head
*bh
)
3374 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
3375 kmem_cache_free(bh_cachep
, bh
);
3377 __this_cpu_dec(bh_accounting
.nr
);
3381 EXPORT_SYMBOL(free_buffer_head
);
3383 static int buffer_exit_cpu_dead(unsigned int cpu
)
3386 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
3388 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
3392 this_cpu_add(bh_accounting
.nr
, per_cpu(bh_accounting
, cpu
).nr
);
3393 per_cpu(bh_accounting
, cpu
).nr
= 0;
3398 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3399 * @bh: struct buffer_head
3401 * Return true if the buffer is up-to-date and false,
3402 * with the buffer locked, if not.
3404 int bh_uptodate_or_lock(struct buffer_head
*bh
)
3406 if (!buffer_uptodate(bh
)) {
3408 if (!buffer_uptodate(bh
))
3414 EXPORT_SYMBOL(bh_uptodate_or_lock
);
3417 * bh_submit_read - Submit a locked buffer for reading
3418 * @bh: struct buffer_head
3420 * Returns zero on success and -EIO on error.
3422 int bh_submit_read(struct buffer_head
*bh
)
3424 BUG_ON(!buffer_locked(bh
));
3426 if (buffer_uptodate(bh
)) {
3432 bh
->b_end_io
= end_buffer_read_sync
;
3433 submit_bh(REQ_OP_READ
, 0, bh
);
3435 if (buffer_uptodate(bh
))
3439 EXPORT_SYMBOL(bh_submit_read
);
3441 void __init
buffer_init(void)
3443 unsigned long nrpages
;
3446 bh_cachep
= kmem_cache_create("buffer_head",
3447 sizeof(struct buffer_head
), 0,
3448 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
3453 * Limit the bh occupancy to 10% of ZONE_NORMAL
3455 nrpages
= (nr_free_buffer_pages() * 10) / 100;
3456 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
3457 ret
= cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD
, "fs/buffer:dead",
3458 NULL
, buffer_exit_cpu_dead
);