2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/highmem.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/jiffies.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/vmstat.h>
43 #include <linux/mempolicy.h>
44 #include <linux/memremap.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_ext.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <trace/events/oom.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 #include <linux/sched/mm.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/lockdep.h>
68 #include <linux/nmi.h>
69 #include <linux/psi.h>
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock
);
78 #define MIN_PERCPU_PAGELIST_FRACTION (8)
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node
);
82 EXPORT_PER_CPU_SYMBOL(numa_node
);
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key
);
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
94 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
96 int _node_numa_mem_
[MAX_NUMNODES
];
99 /* work_structs for global per-cpu drains */
102 struct work_struct work
;
104 DEFINE_MUTEX(pcpu_drain_mutex
);
105 DEFINE_PER_CPU(struct pcpu_drain
, pcpu_drain
);
107 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
108 volatile unsigned long latent_entropy __latent_entropy
;
109 EXPORT_SYMBOL(latent_entropy
);
113 * Array of node states.
115 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
116 [N_POSSIBLE
] = NODE_MASK_ALL
,
117 [N_ONLINE
] = { { [0] = 1UL } },
119 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
120 #ifdef CONFIG_HIGHMEM
121 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
123 [N_MEMORY
] = { { [0] = 1UL } },
124 [N_CPU
] = { { [0] = 1UL } },
127 EXPORT_SYMBOL(node_states
);
129 atomic_long_t _totalram_pages __read_mostly
;
130 EXPORT_SYMBOL(_totalram_pages
);
131 unsigned long totalreserve_pages __read_mostly
;
132 unsigned long totalcma_pages __read_mostly
;
134 int percpu_pagelist_fraction
;
135 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
138 * A cached value of the page's pageblock's migratetype, used when the page is
139 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
140 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
141 * Also the migratetype set in the page does not necessarily match the pcplist
142 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
143 * other index - this ensures that it will be put on the correct CMA freelist.
145 static inline int get_pcppage_migratetype(struct page
*page
)
150 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
152 page
->index
= migratetype
;
155 #ifdef CONFIG_PM_SLEEP
157 * The following functions are used by the suspend/hibernate code to temporarily
158 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
159 * while devices are suspended. To avoid races with the suspend/hibernate code,
160 * they should always be called with system_transition_mutex held
161 * (gfp_allowed_mask also should only be modified with system_transition_mutex
162 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
163 * with that modification).
166 static gfp_t saved_gfp_mask
;
168 void pm_restore_gfp_mask(void)
170 WARN_ON(!mutex_is_locked(&system_transition_mutex
));
171 if (saved_gfp_mask
) {
172 gfp_allowed_mask
= saved_gfp_mask
;
177 void pm_restrict_gfp_mask(void)
179 WARN_ON(!mutex_is_locked(&system_transition_mutex
));
180 WARN_ON(saved_gfp_mask
);
181 saved_gfp_mask
= gfp_allowed_mask
;
182 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
185 bool pm_suspended_storage(void)
187 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
191 #endif /* CONFIG_PM_SLEEP */
193 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
194 unsigned int pageblock_order __read_mostly
;
197 static void __free_pages_ok(struct page
*page
, unsigned int order
);
200 * results with 256, 32 in the lowmem_reserve sysctl:
201 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
202 * 1G machine -> (16M dma, 784M normal, 224M high)
203 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
204 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
205 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
207 * TBD: should special case ZONE_DMA32 machines here - in those we normally
208 * don't need any ZONE_NORMAL reservation
210 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
] = {
211 #ifdef CONFIG_ZONE_DMA
214 #ifdef CONFIG_ZONE_DMA32
218 #ifdef CONFIG_HIGHMEM
224 EXPORT_SYMBOL(totalram_pages
);
226 static char * const zone_names
[MAX_NR_ZONES
] = {
227 #ifdef CONFIG_ZONE_DMA
230 #ifdef CONFIG_ZONE_DMA32
234 #ifdef CONFIG_HIGHMEM
238 #ifdef CONFIG_ZONE_DEVICE
243 const char * const migratetype_names
[MIGRATE_TYPES
] = {
251 #ifdef CONFIG_MEMORY_ISOLATION
256 compound_page_dtor
* const compound_page_dtors
[] = {
259 #ifdef CONFIG_HUGETLB_PAGE
262 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
267 int min_free_kbytes
= 1024;
268 int user_min_free_kbytes
= -1;
269 int watermark_boost_factor __read_mostly
= 15000;
270 int watermark_scale_factor
= 10;
272 static unsigned long nr_kernel_pages __initdata
;
273 static unsigned long nr_all_pages __initdata
;
274 static unsigned long dma_reserve __initdata
;
276 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
277 static unsigned long arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
] __initdata
;
278 static unsigned long arch_zone_highest_possible_pfn
[MAX_NR_ZONES
] __initdata
;
279 static unsigned long required_kernelcore __initdata
;
280 static unsigned long required_kernelcore_percent __initdata
;
281 static unsigned long required_movablecore __initdata
;
282 static unsigned long required_movablecore_percent __initdata
;
283 static unsigned long zone_movable_pfn
[MAX_NUMNODES
] __initdata
;
284 static bool mirrored_kernelcore __meminitdata
;
286 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
288 EXPORT_SYMBOL(movable_zone
);
289 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
292 unsigned int nr_node_ids __read_mostly
= MAX_NUMNODES
;
293 unsigned int nr_online_nodes __read_mostly
= 1;
294 EXPORT_SYMBOL(nr_node_ids
);
295 EXPORT_SYMBOL(nr_online_nodes
);
298 int page_group_by_mobility_disabled __read_mostly
;
300 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
302 * During boot we initialize deferred pages on-demand, as needed, but once
303 * page_alloc_init_late() has finished, the deferred pages are all initialized,
304 * and we can permanently disable that path.
306 static DEFINE_STATIC_KEY_TRUE(deferred_pages
);
309 * Calling kasan_free_pages() only after deferred memory initialization
310 * has completed. Poisoning pages during deferred memory init will greatly
311 * lengthen the process and cause problem in large memory systems as the
312 * deferred pages initialization is done with interrupt disabled.
314 * Assuming that there will be no reference to those newly initialized
315 * pages before they are ever allocated, this should have no effect on
316 * KASAN memory tracking as the poison will be properly inserted at page
317 * allocation time. The only corner case is when pages are allocated by
318 * on-demand allocation and then freed again before the deferred pages
319 * initialization is done, but this is not likely to happen.
321 static inline void kasan_free_nondeferred_pages(struct page
*page
, int order
)
323 if (!static_branch_unlikely(&deferred_pages
))
324 kasan_free_pages(page
, order
);
327 /* Returns true if the struct page for the pfn is uninitialised */
328 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
330 int nid
= early_pfn_to_nid(pfn
);
332 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
339 * Returns true when the remaining initialisation should be deferred until
340 * later in the boot cycle when it can be parallelised.
342 static bool __meminit
343 defer_init(int nid
, unsigned long pfn
, unsigned long end_pfn
)
345 static unsigned long prev_end_pfn
, nr_initialised
;
348 * prev_end_pfn static that contains the end of previous zone
349 * No need to protect because called very early in boot before smp_init.
351 if (prev_end_pfn
!= end_pfn
) {
352 prev_end_pfn
= end_pfn
;
356 /* Always populate low zones for address-constrained allocations */
357 if (end_pfn
< pgdat_end_pfn(NODE_DATA(nid
)))
361 * We start only with one section of pages, more pages are added as
362 * needed until the rest of deferred pages are initialized.
365 if ((nr_initialised
> PAGES_PER_SECTION
) &&
366 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
367 NODE_DATA(nid
)->first_deferred_pfn
= pfn
;
373 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
375 static inline bool early_page_uninitialised(unsigned long pfn
)
380 static inline bool defer_init(int nid
, unsigned long pfn
, unsigned long end_pfn
)
386 /* Return a pointer to the bitmap storing bits affecting a block of pages */
387 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
390 #ifdef CONFIG_SPARSEMEM
391 return __pfn_to_section(pfn
)->pageblock_flags
;
393 return page_zone(page
)->pageblock_flags
;
394 #endif /* CONFIG_SPARSEMEM */
397 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
399 #ifdef CONFIG_SPARSEMEM
400 pfn
&= (PAGES_PER_SECTION
-1);
401 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
403 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
404 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
405 #endif /* CONFIG_SPARSEMEM */
409 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
410 * @page: The page within the block of interest
411 * @pfn: The target page frame number
412 * @end_bitidx: The last bit of interest to retrieve
413 * @mask: mask of bits that the caller is interested in
415 * Return: pageblock_bits flags
417 static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page
*page
,
419 unsigned long end_bitidx
,
422 unsigned long *bitmap
;
423 unsigned long bitidx
, word_bitidx
;
426 bitmap
= get_pageblock_bitmap(page
, pfn
);
427 bitidx
= pfn_to_bitidx(page
, pfn
);
428 word_bitidx
= bitidx
/ BITS_PER_LONG
;
429 bitidx
&= (BITS_PER_LONG
-1);
431 word
= bitmap
[word_bitidx
];
432 bitidx
+= end_bitidx
;
433 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
436 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
437 unsigned long end_bitidx
,
440 return __get_pfnblock_flags_mask(page
, pfn
, end_bitidx
, mask
);
443 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
445 return __get_pfnblock_flags_mask(page
, pfn
, PB_migrate_end
, MIGRATETYPE_MASK
);
449 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
450 * @page: The page within the block of interest
451 * @flags: The flags to set
452 * @pfn: The target page frame number
453 * @end_bitidx: The last bit of interest
454 * @mask: mask of bits that the caller is interested in
456 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
458 unsigned long end_bitidx
,
461 unsigned long *bitmap
;
462 unsigned long bitidx
, word_bitidx
;
463 unsigned long old_word
, word
;
465 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
466 BUILD_BUG_ON(MIGRATE_TYPES
> (1 << PB_migratetype_bits
));
468 bitmap
= get_pageblock_bitmap(page
, pfn
);
469 bitidx
= pfn_to_bitidx(page
, pfn
);
470 word_bitidx
= bitidx
/ BITS_PER_LONG
;
471 bitidx
&= (BITS_PER_LONG
-1);
473 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
475 bitidx
+= end_bitidx
;
476 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
477 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
479 word
= READ_ONCE(bitmap
[word_bitidx
]);
481 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
482 if (word
== old_word
)
488 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
490 if (unlikely(page_group_by_mobility_disabled
&&
491 migratetype
< MIGRATE_PCPTYPES
))
492 migratetype
= MIGRATE_UNMOVABLE
;
494 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
495 PB_migrate
, PB_migrate_end
);
498 #ifdef CONFIG_DEBUG_VM
499 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
503 unsigned long pfn
= page_to_pfn(page
);
504 unsigned long sp
, start_pfn
;
507 seq
= zone_span_seqbegin(zone
);
508 start_pfn
= zone
->zone_start_pfn
;
509 sp
= zone
->spanned_pages
;
510 if (!zone_spans_pfn(zone
, pfn
))
512 } while (zone_span_seqretry(zone
, seq
));
515 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
516 pfn
, zone_to_nid(zone
), zone
->name
,
517 start_pfn
, start_pfn
+ sp
);
522 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
524 if (!pfn_valid_within(page_to_pfn(page
)))
526 if (zone
!= page_zone(page
))
532 * Temporary debugging check for pages not lying within a given zone.
534 static int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
536 if (page_outside_zone_boundaries(zone
, page
))
538 if (!page_is_consistent(zone
, page
))
544 static inline int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
550 static void bad_page(struct page
*page
, const char *reason
,
551 unsigned long bad_flags
)
553 static unsigned long resume
;
554 static unsigned long nr_shown
;
555 static unsigned long nr_unshown
;
558 * Allow a burst of 60 reports, then keep quiet for that minute;
559 * or allow a steady drip of one report per second.
561 if (nr_shown
== 60) {
562 if (time_before(jiffies
, resume
)) {
568 "BUG: Bad page state: %lu messages suppressed\n",
575 resume
= jiffies
+ 60 * HZ
;
577 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
578 current
->comm
, page_to_pfn(page
));
579 __dump_page(page
, reason
);
580 bad_flags
&= page
->flags
;
582 pr_alert("bad because of flags: %#lx(%pGp)\n",
583 bad_flags
, &bad_flags
);
584 dump_page_owner(page
);
589 /* Leave bad fields for debug, except PageBuddy could make trouble */
590 page_mapcount_reset(page
); /* remove PageBuddy */
591 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
595 * Higher-order pages are called "compound pages". They are structured thusly:
597 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
599 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
600 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
602 * The first tail page's ->compound_dtor holds the offset in array of compound
603 * page destructors. See compound_page_dtors.
605 * The first tail page's ->compound_order holds the order of allocation.
606 * This usage means that zero-order pages may not be compound.
609 void free_compound_page(struct page
*page
)
611 __free_pages_ok(page
, compound_order(page
));
614 void prep_compound_page(struct page
*page
, unsigned int order
)
617 int nr_pages
= 1 << order
;
619 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
620 set_compound_order(page
, order
);
622 for (i
= 1; i
< nr_pages
; i
++) {
623 struct page
*p
= page
+ i
;
624 set_page_count(p
, 0);
625 p
->mapping
= TAIL_MAPPING
;
626 set_compound_head(p
, page
);
628 atomic_set(compound_mapcount_ptr(page
), -1);
631 #ifdef CONFIG_DEBUG_PAGEALLOC
632 unsigned int _debug_guardpage_minorder
;
633 bool _debug_pagealloc_enabled __read_mostly
634 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
635 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
636 bool _debug_guardpage_enabled __read_mostly
;
638 static int __init
early_debug_pagealloc(char *buf
)
642 return kstrtobool(buf
, &_debug_pagealloc_enabled
);
644 early_param("debug_pagealloc", early_debug_pagealloc
);
646 static bool need_debug_guardpage(void)
648 /* If we don't use debug_pagealloc, we don't need guard page */
649 if (!debug_pagealloc_enabled())
652 if (!debug_guardpage_minorder())
658 static void init_debug_guardpage(void)
660 if (!debug_pagealloc_enabled())
663 if (!debug_guardpage_minorder())
666 _debug_guardpage_enabled
= true;
669 struct page_ext_operations debug_guardpage_ops
= {
670 .need
= need_debug_guardpage
,
671 .init
= init_debug_guardpage
,
674 static int __init
debug_guardpage_minorder_setup(char *buf
)
678 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
679 pr_err("Bad debug_guardpage_minorder value\n");
682 _debug_guardpage_minorder
= res
;
683 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
686 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup
);
688 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
689 unsigned int order
, int migratetype
)
691 struct page_ext
*page_ext
;
693 if (!debug_guardpage_enabled())
696 if (order
>= debug_guardpage_minorder())
699 page_ext
= lookup_page_ext(page
);
700 if (unlikely(!page_ext
))
703 __set_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
705 INIT_LIST_HEAD(&page
->lru
);
706 set_page_private(page
, order
);
707 /* Guard pages are not available for any usage */
708 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
713 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
714 unsigned int order
, int migratetype
)
716 struct page_ext
*page_ext
;
718 if (!debug_guardpage_enabled())
721 page_ext
= lookup_page_ext(page
);
722 if (unlikely(!page_ext
))
725 __clear_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
727 set_page_private(page
, 0);
728 if (!is_migrate_isolate(migratetype
))
729 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
732 struct page_ext_operations debug_guardpage_ops
;
733 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
734 unsigned int order
, int migratetype
) { return false; }
735 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
736 unsigned int order
, int migratetype
) {}
739 static inline void set_page_order(struct page
*page
, unsigned int order
)
741 set_page_private(page
, order
);
742 __SetPageBuddy(page
);
745 static inline void rmv_page_order(struct page
*page
)
747 __ClearPageBuddy(page
);
748 set_page_private(page
, 0);
752 * This function checks whether a page is free && is the buddy
753 * we can coalesce a page and its buddy if
754 * (a) the buddy is not in a hole (check before calling!) &&
755 * (b) the buddy is in the buddy system &&
756 * (c) a page and its buddy have the same order &&
757 * (d) a page and its buddy are in the same zone.
759 * For recording whether a page is in the buddy system, we set PageBuddy.
760 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
762 * For recording page's order, we use page_private(page).
764 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
767 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
768 if (page_zone_id(page
) != page_zone_id(buddy
))
771 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
776 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
778 * zone check is done late to avoid uselessly
779 * calculating zone/node ids for pages that could
782 if (page_zone_id(page
) != page_zone_id(buddy
))
785 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
792 #ifdef CONFIG_COMPACTION
793 static inline struct capture_control
*task_capc(struct zone
*zone
)
795 struct capture_control
*capc
= current
->capture_control
;
798 !(current
->flags
& PF_KTHREAD
) &&
800 capc
->cc
->zone
== zone
&&
801 capc
->cc
->direct_compaction
? capc
: NULL
;
805 compaction_capture(struct capture_control
*capc
, struct page
*page
,
806 int order
, int migratetype
)
808 if (!capc
|| order
!= capc
->cc
->order
)
811 /* Do not accidentally pollute CMA or isolated regions*/
812 if (is_migrate_cma(migratetype
) ||
813 is_migrate_isolate(migratetype
))
817 * Do not let lower order allocations polluate a movable pageblock.
818 * This might let an unmovable request use a reclaimable pageblock
819 * and vice-versa but no more than normal fallback logic which can
820 * have trouble finding a high-order free page.
822 if (order
< pageblock_order
&& migratetype
== MIGRATE_MOVABLE
)
830 static inline struct capture_control
*task_capc(struct zone
*zone
)
836 compaction_capture(struct capture_control
*capc
, struct page
*page
,
837 int order
, int migratetype
)
841 #endif /* CONFIG_COMPACTION */
844 * Freeing function for a buddy system allocator.
846 * The concept of a buddy system is to maintain direct-mapped table
847 * (containing bit values) for memory blocks of various "orders".
848 * The bottom level table contains the map for the smallest allocatable
849 * units of memory (here, pages), and each level above it describes
850 * pairs of units from the levels below, hence, "buddies".
851 * At a high level, all that happens here is marking the table entry
852 * at the bottom level available, and propagating the changes upward
853 * as necessary, plus some accounting needed to play nicely with other
854 * parts of the VM system.
855 * At each level, we keep a list of pages, which are heads of continuous
856 * free pages of length of (1 << order) and marked with PageBuddy.
857 * Page's order is recorded in page_private(page) field.
858 * So when we are allocating or freeing one, we can derive the state of the
859 * other. That is, if we allocate a small block, and both were
860 * free, the remainder of the region must be split into blocks.
861 * If a block is freed, and its buddy is also free, then this
862 * triggers coalescing into a block of larger size.
867 static inline void __free_one_page(struct page
*page
,
869 struct zone
*zone
, unsigned int order
,
872 unsigned long combined_pfn
;
873 unsigned long uninitialized_var(buddy_pfn
);
875 unsigned int max_order
;
876 struct capture_control
*capc
= task_capc(zone
);
878 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
880 VM_BUG_ON(!zone_is_initialized(zone
));
881 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
883 VM_BUG_ON(migratetype
== -1);
884 if (likely(!is_migrate_isolate(migratetype
)))
885 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
887 VM_BUG_ON_PAGE(pfn
& ((1 << order
) - 1), page
);
888 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
891 while (order
< max_order
- 1) {
892 if (compaction_capture(capc
, page
, order
, migratetype
)) {
893 __mod_zone_freepage_state(zone
, -(1 << order
),
897 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
898 buddy
= page
+ (buddy_pfn
- pfn
);
900 if (!pfn_valid_within(buddy_pfn
))
902 if (!page_is_buddy(page
, buddy
, order
))
905 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
906 * merge with it and move up one order.
908 if (page_is_guard(buddy
)) {
909 clear_page_guard(zone
, buddy
, order
, migratetype
);
911 list_del(&buddy
->lru
);
912 zone
->free_area
[order
].nr_free
--;
913 rmv_page_order(buddy
);
915 combined_pfn
= buddy_pfn
& pfn
;
916 page
= page
+ (combined_pfn
- pfn
);
920 if (max_order
< MAX_ORDER
) {
921 /* If we are here, it means order is >= pageblock_order.
922 * We want to prevent merge between freepages on isolate
923 * pageblock and normal pageblock. Without this, pageblock
924 * isolation could cause incorrect freepage or CMA accounting.
926 * We don't want to hit this code for the more frequent
929 if (unlikely(has_isolate_pageblock(zone
))) {
932 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
933 buddy
= page
+ (buddy_pfn
- pfn
);
934 buddy_mt
= get_pageblock_migratetype(buddy
);
936 if (migratetype
!= buddy_mt
937 && (is_migrate_isolate(migratetype
) ||
938 is_migrate_isolate(buddy_mt
)))
942 goto continue_merging
;
946 set_page_order(page
, order
);
949 * If this is not the largest possible page, check if the buddy
950 * of the next-highest order is free. If it is, it's possible
951 * that pages are being freed that will coalesce soon. In case,
952 * that is happening, add the free page to the tail of the list
953 * so it's less likely to be used soon and more likely to be merged
954 * as a higher order page
956 if ((order
< MAX_ORDER
-2) && pfn_valid_within(buddy_pfn
)) {
957 struct page
*higher_page
, *higher_buddy
;
958 combined_pfn
= buddy_pfn
& pfn
;
959 higher_page
= page
+ (combined_pfn
- pfn
);
960 buddy_pfn
= __find_buddy_pfn(combined_pfn
, order
+ 1);
961 higher_buddy
= higher_page
+ (buddy_pfn
- combined_pfn
);
962 if (pfn_valid_within(buddy_pfn
) &&
963 page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
964 list_add_tail(&page
->lru
,
965 &zone
->free_area
[order
].free_list
[migratetype
]);
970 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
972 zone
->free_area
[order
].nr_free
++;
976 * A bad page could be due to a number of fields. Instead of multiple branches,
977 * try and check multiple fields with one check. The caller must do a detailed
978 * check if necessary.
980 static inline bool page_expected_state(struct page
*page
,
981 unsigned long check_flags
)
983 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
986 if (unlikely((unsigned long)page
->mapping
|
987 page_ref_count(page
) |
989 (unsigned long)page
->mem_cgroup
|
991 (page
->flags
& check_flags
)))
997 static void free_pages_check_bad(struct page
*page
)
999 const char *bad_reason
;
1000 unsigned long bad_flags
;
1005 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1006 bad_reason
= "nonzero mapcount";
1007 if (unlikely(page
->mapping
!= NULL
))
1008 bad_reason
= "non-NULL mapping";
1009 if (unlikely(page_ref_count(page
) != 0))
1010 bad_reason
= "nonzero _refcount";
1011 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
1012 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1013 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
1016 if (unlikely(page
->mem_cgroup
))
1017 bad_reason
= "page still charged to cgroup";
1019 bad_page(page
, bad_reason
, bad_flags
);
1022 static inline int free_pages_check(struct page
*page
)
1024 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
1027 /* Something has gone sideways, find it */
1028 free_pages_check_bad(page
);
1032 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
1037 * We rely page->lru.next never has bit 0 set, unless the page
1038 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1040 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
1042 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
1046 switch (page
- head_page
) {
1048 /* the first tail page: ->mapping may be compound_mapcount() */
1049 if (unlikely(compound_mapcount(page
))) {
1050 bad_page(page
, "nonzero compound_mapcount", 0);
1056 * the second tail page: ->mapping is
1057 * deferred_list.next -- ignore value.
1061 if (page
->mapping
!= TAIL_MAPPING
) {
1062 bad_page(page
, "corrupted mapping in tail page", 0);
1067 if (unlikely(!PageTail(page
))) {
1068 bad_page(page
, "PageTail not set", 0);
1071 if (unlikely(compound_head(page
) != head_page
)) {
1072 bad_page(page
, "compound_head not consistent", 0);
1077 page
->mapping
= NULL
;
1078 clear_compound_head(page
);
1082 static __always_inline
bool free_pages_prepare(struct page
*page
,
1083 unsigned int order
, bool check_free
)
1087 VM_BUG_ON_PAGE(PageTail(page
), page
);
1089 trace_mm_page_free(page
, order
);
1092 * Check tail pages before head page information is cleared to
1093 * avoid checking PageCompound for order-0 pages.
1095 if (unlikely(order
)) {
1096 bool compound
= PageCompound(page
);
1099 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1102 ClearPageDoubleMap(page
);
1103 for (i
= 1; i
< (1 << order
); i
++) {
1105 bad
+= free_tail_pages_check(page
, page
+ i
);
1106 if (unlikely(free_pages_check(page
+ i
))) {
1110 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1113 if (PageMappingFlags(page
))
1114 page
->mapping
= NULL
;
1115 if (memcg_kmem_enabled() && PageKmemcg(page
))
1116 __memcg_kmem_uncharge(page
, order
);
1118 bad
+= free_pages_check(page
);
1122 page_cpupid_reset_last(page
);
1123 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1124 reset_page_owner(page
, order
);
1126 if (!PageHighMem(page
)) {
1127 debug_check_no_locks_freed(page_address(page
),
1128 PAGE_SIZE
<< order
);
1129 debug_check_no_obj_freed(page_address(page
),
1130 PAGE_SIZE
<< order
);
1132 arch_free_page(page
, order
);
1133 kernel_poison_pages(page
, 1 << order
, 0);
1134 kernel_map_pages(page
, 1 << order
, 0);
1135 kasan_free_nondeferred_pages(page
, order
);
1140 #ifdef CONFIG_DEBUG_VM
1141 static inline bool free_pcp_prepare(struct page
*page
)
1143 return free_pages_prepare(page
, 0, true);
1146 static inline bool bulkfree_pcp_prepare(struct page
*page
)
1151 static bool free_pcp_prepare(struct page
*page
)
1153 return free_pages_prepare(page
, 0, false);
1156 static bool bulkfree_pcp_prepare(struct page
*page
)
1158 return free_pages_check(page
);
1160 #endif /* CONFIG_DEBUG_VM */
1162 static inline void prefetch_buddy(struct page
*page
)
1164 unsigned long pfn
= page_to_pfn(page
);
1165 unsigned long buddy_pfn
= __find_buddy_pfn(pfn
, 0);
1166 struct page
*buddy
= page
+ (buddy_pfn
- pfn
);
1172 * Frees a number of pages from the PCP lists
1173 * Assumes all pages on list are in same zone, and of same order.
1174 * count is the number of pages to free.
1176 * If the zone was previously in an "all pages pinned" state then look to
1177 * see if this freeing clears that state.
1179 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1180 * pinned" detection logic.
1182 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1183 struct per_cpu_pages
*pcp
)
1185 int migratetype
= 0;
1187 int prefetch_nr
= 0;
1188 bool isolated_pageblocks
;
1189 struct page
*page
, *tmp
;
1193 struct list_head
*list
;
1196 * Remove pages from lists in a round-robin fashion. A
1197 * batch_free count is maintained that is incremented when an
1198 * empty list is encountered. This is so more pages are freed
1199 * off fuller lists instead of spinning excessively around empty
1204 if (++migratetype
== MIGRATE_PCPTYPES
)
1206 list
= &pcp
->lists
[migratetype
];
1207 } while (list_empty(list
));
1209 /* This is the only non-empty list. Free them all. */
1210 if (batch_free
== MIGRATE_PCPTYPES
)
1214 page
= list_last_entry(list
, struct page
, lru
);
1215 /* must delete to avoid corrupting pcp list */
1216 list_del(&page
->lru
);
1219 if (bulkfree_pcp_prepare(page
))
1222 list_add_tail(&page
->lru
, &head
);
1225 * We are going to put the page back to the global
1226 * pool, prefetch its buddy to speed up later access
1227 * under zone->lock. It is believed the overhead of
1228 * an additional test and calculating buddy_pfn here
1229 * can be offset by reduced memory latency later. To
1230 * avoid excessive prefetching due to large count, only
1231 * prefetch buddy for the first pcp->batch nr of pages.
1233 if (prefetch_nr
++ < pcp
->batch
)
1234 prefetch_buddy(page
);
1235 } while (--count
&& --batch_free
&& !list_empty(list
));
1238 spin_lock(&zone
->lock
);
1239 isolated_pageblocks
= has_isolate_pageblock(zone
);
1242 * Use safe version since after __free_one_page(),
1243 * page->lru.next will not point to original list.
1245 list_for_each_entry_safe(page
, tmp
, &head
, lru
) {
1246 int mt
= get_pcppage_migratetype(page
);
1247 /* MIGRATE_ISOLATE page should not go to pcplists */
1248 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1249 /* Pageblock could have been isolated meanwhile */
1250 if (unlikely(isolated_pageblocks
))
1251 mt
= get_pageblock_migratetype(page
);
1253 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
1254 trace_mm_page_pcpu_drain(page
, 0, mt
);
1256 spin_unlock(&zone
->lock
);
1259 static void free_one_page(struct zone
*zone
,
1260 struct page
*page
, unsigned long pfn
,
1264 spin_lock(&zone
->lock
);
1265 if (unlikely(has_isolate_pageblock(zone
) ||
1266 is_migrate_isolate(migratetype
))) {
1267 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1269 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
1270 spin_unlock(&zone
->lock
);
1273 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1274 unsigned long zone
, int nid
)
1276 mm_zero_struct_page(page
);
1277 set_page_links(page
, zone
, nid
, pfn
);
1278 init_page_count(page
);
1279 page_mapcount_reset(page
);
1280 page_cpupid_reset_last(page
);
1281 page_kasan_tag_reset(page
);
1283 INIT_LIST_HEAD(&page
->lru
);
1284 #ifdef WANT_PAGE_VIRTUAL
1285 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1286 if (!is_highmem_idx(zone
))
1287 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1291 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1292 static void __meminit
init_reserved_page(unsigned long pfn
)
1297 if (!early_page_uninitialised(pfn
))
1300 nid
= early_pfn_to_nid(pfn
);
1301 pgdat
= NODE_DATA(nid
);
1303 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1304 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1306 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1309 __init_single_page(pfn_to_page(pfn
), pfn
, zid
, nid
);
1312 static inline void init_reserved_page(unsigned long pfn
)
1315 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1318 * Initialised pages do not have PageReserved set. This function is
1319 * called for each range allocated by the bootmem allocator and
1320 * marks the pages PageReserved. The remaining valid pages are later
1321 * sent to the buddy page allocator.
1323 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1325 unsigned long start_pfn
= PFN_DOWN(start
);
1326 unsigned long end_pfn
= PFN_UP(end
);
1328 for (; start_pfn
< end_pfn
; start_pfn
++) {
1329 if (pfn_valid(start_pfn
)) {
1330 struct page
*page
= pfn_to_page(start_pfn
);
1332 init_reserved_page(start_pfn
);
1334 /* Avoid false-positive PageTail() */
1335 INIT_LIST_HEAD(&page
->lru
);
1338 * no need for atomic set_bit because the struct
1339 * page is not visible yet so nobody should
1342 __SetPageReserved(page
);
1347 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1349 unsigned long flags
;
1351 unsigned long pfn
= page_to_pfn(page
);
1353 if (!free_pages_prepare(page
, order
, true))
1356 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1357 local_irq_save(flags
);
1358 __count_vm_events(PGFREE
, 1 << order
);
1359 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1360 local_irq_restore(flags
);
1363 void __free_pages_core(struct page
*page
, unsigned int order
)
1365 unsigned int nr_pages
= 1 << order
;
1366 struct page
*p
= page
;
1370 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1372 __ClearPageReserved(p
);
1373 set_page_count(p
, 0);
1375 __ClearPageReserved(p
);
1376 set_page_count(p
, 0);
1378 atomic_long_add(nr_pages
, &page_zone(page
)->managed_pages
);
1379 set_page_refcounted(page
);
1380 __free_pages(page
, order
);
1383 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1384 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1386 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1388 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1390 static DEFINE_SPINLOCK(early_pfn_lock
);
1393 spin_lock(&early_pfn_lock
);
1394 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1396 nid
= first_online_node
;
1397 spin_unlock(&early_pfn_lock
);
1403 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1404 static inline bool __meminit __maybe_unused
1405 meminit_pfn_in_nid(unsigned long pfn
, int node
,
1406 struct mminit_pfnnid_cache
*state
)
1410 nid
= __early_pfn_to_nid(pfn
, state
);
1411 if (nid
>= 0 && nid
!= node
)
1416 /* Only safe to use early in boot when initialisation is single-threaded */
1417 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1419 return meminit_pfn_in_nid(pfn
, node
, &early_pfnnid_cache
);
1424 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1428 static inline bool __meminit __maybe_unused
1429 meminit_pfn_in_nid(unsigned long pfn
, int node
,
1430 struct mminit_pfnnid_cache
*state
)
1437 void __init
memblock_free_pages(struct page
*page
, unsigned long pfn
,
1440 if (early_page_uninitialised(pfn
))
1442 __free_pages_core(page
, order
);
1446 * Check that the whole (or subset of) a pageblock given by the interval of
1447 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1448 * with the migration of free compaction scanner. The scanners then need to
1449 * use only pfn_valid_within() check for arches that allow holes within
1452 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1454 * It's possible on some configurations to have a setup like node0 node1 node0
1455 * i.e. it's possible that all pages within a zones range of pages do not
1456 * belong to a single zone. We assume that a border between node0 and node1
1457 * can occur within a single pageblock, but not a node0 node1 node0
1458 * interleaving within a single pageblock. It is therefore sufficient to check
1459 * the first and last page of a pageblock and avoid checking each individual
1460 * page in a pageblock.
1462 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1463 unsigned long end_pfn
, struct zone
*zone
)
1465 struct page
*start_page
;
1466 struct page
*end_page
;
1468 /* end_pfn is one past the range we are checking */
1471 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1474 start_page
= pfn_to_online_page(start_pfn
);
1478 if (page_zone(start_page
) != zone
)
1481 end_page
= pfn_to_page(end_pfn
);
1483 /* This gives a shorter code than deriving page_zone(end_page) */
1484 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1490 void set_zone_contiguous(struct zone
*zone
)
1492 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1493 unsigned long block_end_pfn
;
1495 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1496 for (; block_start_pfn
< zone_end_pfn(zone
);
1497 block_start_pfn
= block_end_pfn
,
1498 block_end_pfn
+= pageblock_nr_pages
) {
1500 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1502 if (!__pageblock_pfn_to_page(block_start_pfn
,
1503 block_end_pfn
, zone
))
1507 /* We confirm that there is no hole */
1508 zone
->contiguous
= true;
1511 void clear_zone_contiguous(struct zone
*zone
)
1513 zone
->contiguous
= false;
1516 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1517 static void __init
deferred_free_range(unsigned long pfn
,
1518 unsigned long nr_pages
)
1526 page
= pfn_to_page(pfn
);
1528 /* Free a large naturally-aligned chunk if possible */
1529 if (nr_pages
== pageblock_nr_pages
&&
1530 (pfn
& (pageblock_nr_pages
- 1)) == 0) {
1531 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1532 __free_pages_core(page
, pageblock_order
);
1536 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++) {
1537 if ((pfn
& (pageblock_nr_pages
- 1)) == 0)
1538 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1539 __free_pages_core(page
, 0);
1543 /* Completion tracking for deferred_init_memmap() threads */
1544 static atomic_t pgdat_init_n_undone __initdata
;
1545 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1547 static inline void __init
pgdat_init_report_one_done(void)
1549 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1550 complete(&pgdat_init_all_done_comp
);
1554 * Returns true if page needs to be initialized or freed to buddy allocator.
1556 * First we check if pfn is valid on architectures where it is possible to have
1557 * holes within pageblock_nr_pages. On systems where it is not possible, this
1558 * function is optimized out.
1560 * Then, we check if a current large page is valid by only checking the validity
1563 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1564 * within a node: a pfn is between start and end of a node, but does not belong
1565 * to this memory node.
1567 static inline bool __init
1568 deferred_pfn_valid(int nid
, unsigned long pfn
,
1569 struct mminit_pfnnid_cache
*nid_init_state
)
1571 if (!pfn_valid_within(pfn
))
1573 if (!(pfn
& (pageblock_nr_pages
- 1)) && !pfn_valid(pfn
))
1575 if (!meminit_pfn_in_nid(pfn
, nid
, nid_init_state
))
1581 * Free pages to buddy allocator. Try to free aligned pages in
1582 * pageblock_nr_pages sizes.
1584 static void __init
deferred_free_pages(int nid
, int zid
, unsigned long pfn
,
1585 unsigned long end_pfn
)
1587 struct mminit_pfnnid_cache nid_init_state
= { };
1588 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1589 unsigned long nr_free
= 0;
1591 for (; pfn
< end_pfn
; pfn
++) {
1592 if (!deferred_pfn_valid(nid
, pfn
, &nid_init_state
)) {
1593 deferred_free_range(pfn
- nr_free
, nr_free
);
1595 } else if (!(pfn
& nr_pgmask
)) {
1596 deferred_free_range(pfn
- nr_free
, nr_free
);
1598 touch_nmi_watchdog();
1603 /* Free the last block of pages to allocator */
1604 deferred_free_range(pfn
- nr_free
, nr_free
);
1608 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1609 * by performing it only once every pageblock_nr_pages.
1610 * Return number of pages initialized.
1612 static unsigned long __init
deferred_init_pages(int nid
, int zid
,
1614 unsigned long end_pfn
)
1616 struct mminit_pfnnid_cache nid_init_state
= { };
1617 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1618 unsigned long nr_pages
= 0;
1619 struct page
*page
= NULL
;
1621 for (; pfn
< end_pfn
; pfn
++) {
1622 if (!deferred_pfn_valid(nid
, pfn
, &nid_init_state
)) {
1625 } else if (!page
|| !(pfn
& nr_pgmask
)) {
1626 page
= pfn_to_page(pfn
);
1627 touch_nmi_watchdog();
1631 __init_single_page(page
, pfn
, zid
, nid
);
1637 /* Initialise remaining memory on a node */
1638 static int __init
deferred_init_memmap(void *data
)
1640 pg_data_t
*pgdat
= data
;
1641 int nid
= pgdat
->node_id
;
1642 unsigned long start
= jiffies
;
1643 unsigned long nr_pages
= 0;
1644 unsigned long spfn
, epfn
, first_init_pfn
, flags
;
1645 phys_addr_t spa
, epa
;
1648 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1651 /* Bind memory initialisation thread to a local node if possible */
1652 if (!cpumask_empty(cpumask
))
1653 set_cpus_allowed_ptr(current
, cpumask
);
1655 pgdat_resize_lock(pgdat
, &flags
);
1656 first_init_pfn
= pgdat
->first_deferred_pfn
;
1657 if (first_init_pfn
== ULONG_MAX
) {
1658 pgdat_resize_unlock(pgdat
, &flags
);
1659 pgdat_init_report_one_done();
1663 /* Sanity check boundaries */
1664 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1665 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1666 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1668 /* Only the highest zone is deferred so find it */
1669 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1670 zone
= pgdat
->node_zones
+ zid
;
1671 if (first_init_pfn
< zone_end_pfn(zone
))
1674 first_init_pfn
= max(zone
->zone_start_pfn
, first_init_pfn
);
1677 * Initialize and free pages. We do it in two loops: first we initialize
1678 * struct page, than free to buddy allocator, because while we are
1679 * freeing pages we can access pages that are ahead (computing buddy
1680 * page in __free_one_page()).
1682 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1683 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1684 epfn
= min_t(unsigned long, zone_end_pfn(zone
), PFN_DOWN(epa
));
1685 nr_pages
+= deferred_init_pages(nid
, zid
, spfn
, epfn
);
1687 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1688 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1689 epfn
= min_t(unsigned long, zone_end_pfn(zone
), PFN_DOWN(epa
));
1690 deferred_free_pages(nid
, zid
, spfn
, epfn
);
1692 pgdat_resize_unlock(pgdat
, &flags
);
1694 /* Sanity check that the next zone really is unpopulated */
1695 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1697 pr_info("node %d initialised, %lu pages in %ums\n", nid
, nr_pages
,
1698 jiffies_to_msecs(jiffies
- start
));
1700 pgdat_init_report_one_done();
1705 * If this zone has deferred pages, try to grow it by initializing enough
1706 * deferred pages to satisfy the allocation specified by order, rounded up to
1707 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1708 * of SECTION_SIZE bytes by initializing struct pages in increments of
1709 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1711 * Return true when zone was grown, otherwise return false. We return true even
1712 * when we grow less than requested, to let the caller decide if there are
1713 * enough pages to satisfy the allocation.
1715 * Note: We use noinline because this function is needed only during boot, and
1716 * it is called from a __ref function _deferred_grow_zone. This way we are
1717 * making sure that it is not inlined into permanent text section.
1719 static noinline
bool __init
1720 deferred_grow_zone(struct zone
*zone
, unsigned int order
)
1722 int zid
= zone_idx(zone
);
1723 int nid
= zone_to_nid(zone
);
1724 pg_data_t
*pgdat
= NODE_DATA(nid
);
1725 unsigned long nr_pages_needed
= ALIGN(1 << order
, PAGES_PER_SECTION
);
1726 unsigned long nr_pages
= 0;
1727 unsigned long first_init_pfn
, spfn
, epfn
, t
, flags
;
1728 unsigned long first_deferred_pfn
= pgdat
->first_deferred_pfn
;
1729 phys_addr_t spa
, epa
;
1732 /* Only the last zone may have deferred pages */
1733 if (zone_end_pfn(zone
) != pgdat_end_pfn(pgdat
))
1736 pgdat_resize_lock(pgdat
, &flags
);
1739 * If deferred pages have been initialized while we were waiting for
1740 * the lock, return true, as the zone was grown. The caller will retry
1741 * this zone. We won't return to this function since the caller also
1742 * has this static branch.
1744 if (!static_branch_unlikely(&deferred_pages
)) {
1745 pgdat_resize_unlock(pgdat
, &flags
);
1750 * If someone grew this zone while we were waiting for spinlock, return
1751 * true, as there might be enough pages already.
1753 if (first_deferred_pfn
!= pgdat
->first_deferred_pfn
) {
1754 pgdat_resize_unlock(pgdat
, &flags
);
1758 first_init_pfn
= max(zone
->zone_start_pfn
, first_deferred_pfn
);
1760 if (first_init_pfn
>= pgdat_end_pfn(pgdat
)) {
1761 pgdat_resize_unlock(pgdat
, &flags
);
1765 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1766 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1767 epfn
= min_t(unsigned long, zone_end_pfn(zone
), PFN_DOWN(epa
));
1769 while (spfn
< epfn
&& nr_pages
< nr_pages_needed
) {
1770 t
= ALIGN(spfn
+ PAGES_PER_SECTION
, PAGES_PER_SECTION
);
1771 first_deferred_pfn
= min(t
, epfn
);
1772 nr_pages
+= deferred_init_pages(nid
, zid
, spfn
,
1773 first_deferred_pfn
);
1774 spfn
= first_deferred_pfn
;
1777 if (nr_pages
>= nr_pages_needed
)
1781 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1782 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1783 epfn
= min_t(unsigned long, first_deferred_pfn
, PFN_DOWN(epa
));
1784 deferred_free_pages(nid
, zid
, spfn
, epfn
);
1786 if (first_deferred_pfn
== epfn
)
1789 pgdat
->first_deferred_pfn
= first_deferred_pfn
;
1790 pgdat_resize_unlock(pgdat
, &flags
);
1792 return nr_pages
> 0;
1796 * deferred_grow_zone() is __init, but it is called from
1797 * get_page_from_freelist() during early boot until deferred_pages permanently
1798 * disables this call. This is why we have refdata wrapper to avoid warning,
1799 * and to ensure that the function body gets unloaded.
1802 _deferred_grow_zone(struct zone
*zone
, unsigned int order
)
1804 return deferred_grow_zone(zone
, order
);
1807 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1809 void __init
page_alloc_init_late(void)
1813 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1816 /* There will be num_node_state(N_MEMORY) threads */
1817 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1818 for_each_node_state(nid
, N_MEMORY
) {
1819 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1822 /* Block until all are initialised */
1823 wait_for_completion(&pgdat_init_all_done_comp
);
1826 * We initialized the rest of the deferred pages. Permanently disable
1827 * on-demand struct page initialization.
1829 static_branch_disable(&deferred_pages
);
1831 /* Reinit limits that are based on free pages after the kernel is up */
1832 files_maxfiles_init();
1834 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1835 /* Discard memblock private memory */
1839 for_each_populated_zone(zone
)
1840 set_zone_contiguous(zone
);
1844 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1845 void __init
init_cma_reserved_pageblock(struct page
*page
)
1847 unsigned i
= pageblock_nr_pages
;
1848 struct page
*p
= page
;
1851 __ClearPageReserved(p
);
1852 set_page_count(p
, 0);
1855 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1857 if (pageblock_order
>= MAX_ORDER
) {
1858 i
= pageblock_nr_pages
;
1861 set_page_refcounted(p
);
1862 __free_pages(p
, MAX_ORDER
- 1);
1863 p
+= MAX_ORDER_NR_PAGES
;
1864 } while (i
-= MAX_ORDER_NR_PAGES
);
1866 set_page_refcounted(page
);
1867 __free_pages(page
, pageblock_order
);
1870 adjust_managed_page_count(page
, pageblock_nr_pages
);
1875 * The order of subdivision here is critical for the IO subsystem.
1876 * Please do not alter this order without good reasons and regression
1877 * testing. Specifically, as large blocks of memory are subdivided,
1878 * the order in which smaller blocks are delivered depends on the order
1879 * they're subdivided in this function. This is the primary factor
1880 * influencing the order in which pages are delivered to the IO
1881 * subsystem according to empirical testing, and this is also justified
1882 * by considering the behavior of a buddy system containing a single
1883 * large block of memory acted on by a series of small allocations.
1884 * This behavior is a critical factor in sglist merging's success.
1888 static inline void expand(struct zone
*zone
, struct page
*page
,
1889 int low
, int high
, struct free_area
*area
,
1892 unsigned long size
= 1 << high
;
1894 while (high
> low
) {
1898 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1901 * Mark as guard pages (or page), that will allow to
1902 * merge back to allocator when buddy will be freed.
1903 * Corresponding page table entries will not be touched,
1904 * pages will stay not present in virtual address space
1906 if (set_page_guard(zone
, &page
[size
], high
, migratetype
))
1909 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
1911 set_page_order(&page
[size
], high
);
1915 static void check_new_page_bad(struct page
*page
)
1917 const char *bad_reason
= NULL
;
1918 unsigned long bad_flags
= 0;
1920 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1921 bad_reason
= "nonzero mapcount";
1922 if (unlikely(page
->mapping
!= NULL
))
1923 bad_reason
= "non-NULL mapping";
1924 if (unlikely(page_ref_count(page
) != 0))
1925 bad_reason
= "nonzero _count";
1926 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1927 bad_reason
= "HWPoisoned (hardware-corrupted)";
1928 bad_flags
= __PG_HWPOISON
;
1929 /* Don't complain about hwpoisoned pages */
1930 page_mapcount_reset(page
); /* remove PageBuddy */
1933 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
1934 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
1935 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
1938 if (unlikely(page
->mem_cgroup
))
1939 bad_reason
= "page still charged to cgroup";
1941 bad_page(page
, bad_reason
, bad_flags
);
1945 * This page is about to be returned from the page allocator
1947 static inline int check_new_page(struct page
*page
)
1949 if (likely(page_expected_state(page
,
1950 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
1953 check_new_page_bad(page
);
1957 static inline bool free_pages_prezeroed(void)
1959 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO
) &&
1960 page_poisoning_enabled();
1963 #ifdef CONFIG_DEBUG_VM
1964 static bool check_pcp_refill(struct page
*page
)
1969 static bool check_new_pcp(struct page
*page
)
1971 return check_new_page(page
);
1974 static bool check_pcp_refill(struct page
*page
)
1976 return check_new_page(page
);
1978 static bool check_new_pcp(struct page
*page
)
1982 #endif /* CONFIG_DEBUG_VM */
1984 static bool check_new_pages(struct page
*page
, unsigned int order
)
1987 for (i
= 0; i
< (1 << order
); i
++) {
1988 struct page
*p
= page
+ i
;
1990 if (unlikely(check_new_page(p
)))
1997 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
2000 set_page_private(page
, 0);
2001 set_page_refcounted(page
);
2003 arch_alloc_page(page
, order
);
2004 kernel_map_pages(page
, 1 << order
, 1);
2005 kasan_alloc_pages(page
, order
);
2006 kernel_poison_pages(page
, 1 << order
, 1);
2007 set_page_owner(page
, order
, gfp_flags
);
2010 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
2011 unsigned int alloc_flags
)
2015 post_alloc_hook(page
, order
, gfp_flags
);
2017 if (!free_pages_prezeroed() && (gfp_flags
& __GFP_ZERO
))
2018 for (i
= 0; i
< (1 << order
); i
++)
2019 clear_highpage(page
+ i
);
2021 if (order
&& (gfp_flags
& __GFP_COMP
))
2022 prep_compound_page(page
, order
);
2025 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2026 * allocate the page. The expectation is that the caller is taking
2027 * steps that will free more memory. The caller should avoid the page
2028 * being used for !PFMEMALLOC purposes.
2030 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
2031 set_page_pfmemalloc(page
);
2033 clear_page_pfmemalloc(page
);
2037 * Go through the free lists for the given migratetype and remove
2038 * the smallest available page from the freelists
2040 static __always_inline
2041 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
2044 unsigned int current_order
;
2045 struct free_area
*area
;
2048 /* Find a page of the appropriate size in the preferred list */
2049 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
2050 area
= &(zone
->free_area
[current_order
]);
2051 page
= list_first_entry_or_null(&area
->free_list
[migratetype
],
2055 list_del(&page
->lru
);
2056 rmv_page_order(page
);
2058 expand(zone
, page
, order
, current_order
, area
, migratetype
);
2059 set_pcppage_migratetype(page
, migratetype
);
2068 * This array describes the order lists are fallen back to when
2069 * the free lists for the desirable migrate type are depleted
2071 static int fallbacks
[MIGRATE_TYPES
][4] = {
2072 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
2073 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
2074 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
2076 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
2078 #ifdef CONFIG_MEMORY_ISOLATION
2079 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
2084 static __always_inline
struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
2087 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
2090 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
2091 unsigned int order
) { return NULL
; }
2095 * Move the free pages in a range to the free lists of the requested type.
2096 * Note that start_page and end_pages are not aligned on a pageblock
2097 * boundary. If alignment is required, use move_freepages_block()
2099 static int move_freepages(struct zone
*zone
,
2100 struct page
*start_page
, struct page
*end_page
,
2101 int migratetype
, int *num_movable
)
2105 int pages_moved
= 0;
2107 #ifndef CONFIG_HOLES_IN_ZONE
2109 * page_zone is not safe to call in this context when
2110 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2111 * anyway as we check zone boundaries in move_freepages_block().
2112 * Remove at a later date when no bug reports exist related to
2113 * grouping pages by mobility
2115 VM_BUG_ON(pfn_valid(page_to_pfn(start_page
)) &&
2116 pfn_valid(page_to_pfn(end_page
)) &&
2117 page_zone(start_page
) != page_zone(end_page
));
2119 for (page
= start_page
; page
<= end_page
;) {
2120 if (!pfn_valid_within(page_to_pfn(page
))) {
2125 /* Make sure we are not inadvertently changing nodes */
2126 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
2128 if (!PageBuddy(page
)) {
2130 * We assume that pages that could be isolated for
2131 * migration are movable. But we don't actually try
2132 * isolating, as that would be expensive.
2135 (PageLRU(page
) || __PageMovable(page
)))
2142 order
= page_order(page
);
2143 list_move(&page
->lru
,
2144 &zone
->free_area
[order
].free_list
[migratetype
]);
2146 pages_moved
+= 1 << order
;
2152 int move_freepages_block(struct zone
*zone
, struct page
*page
,
2153 int migratetype
, int *num_movable
)
2155 unsigned long start_pfn
, end_pfn
;
2156 struct page
*start_page
, *end_page
;
2161 start_pfn
= page_to_pfn(page
);
2162 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
2163 start_page
= pfn_to_page(start_pfn
);
2164 end_page
= start_page
+ pageblock_nr_pages
- 1;
2165 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
2167 /* Do not cross zone boundaries */
2168 if (!zone_spans_pfn(zone
, start_pfn
))
2170 if (!zone_spans_pfn(zone
, end_pfn
))
2173 return move_freepages(zone
, start_page
, end_page
, migratetype
,
2177 static void change_pageblock_range(struct page
*pageblock_page
,
2178 int start_order
, int migratetype
)
2180 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
2182 while (nr_pageblocks
--) {
2183 set_pageblock_migratetype(pageblock_page
, migratetype
);
2184 pageblock_page
+= pageblock_nr_pages
;
2189 * When we are falling back to another migratetype during allocation, try to
2190 * steal extra free pages from the same pageblocks to satisfy further
2191 * allocations, instead of polluting multiple pageblocks.
2193 * If we are stealing a relatively large buddy page, it is likely there will
2194 * be more free pages in the pageblock, so try to steal them all. For
2195 * reclaimable and unmovable allocations, we steal regardless of page size,
2196 * as fragmentation caused by those allocations polluting movable pageblocks
2197 * is worse than movable allocations stealing from unmovable and reclaimable
2200 static bool can_steal_fallback(unsigned int order
, int start_mt
)
2203 * Leaving this order check is intended, although there is
2204 * relaxed order check in next check. The reason is that
2205 * we can actually steal whole pageblock if this condition met,
2206 * but, below check doesn't guarantee it and that is just heuristic
2207 * so could be changed anytime.
2209 if (order
>= pageblock_order
)
2212 if (order
>= pageblock_order
/ 2 ||
2213 start_mt
== MIGRATE_RECLAIMABLE
||
2214 start_mt
== MIGRATE_UNMOVABLE
||
2215 page_group_by_mobility_disabled
)
2221 static inline void boost_watermark(struct zone
*zone
)
2223 unsigned long max_boost
;
2225 if (!watermark_boost_factor
)
2228 max_boost
= mult_frac(zone
->_watermark
[WMARK_HIGH
],
2229 watermark_boost_factor
, 10000);
2232 * high watermark may be uninitialised if fragmentation occurs
2233 * very early in boot so do not boost. We do not fall
2234 * through and boost by pageblock_nr_pages as failing
2235 * allocations that early means that reclaim is not going
2236 * to help and it may even be impossible to reclaim the
2237 * boosted watermark resulting in a hang.
2242 max_boost
= max(pageblock_nr_pages
, max_boost
);
2244 zone
->watermark_boost
= min(zone
->watermark_boost
+ pageblock_nr_pages
,
2249 * This function implements actual steal behaviour. If order is large enough,
2250 * we can steal whole pageblock. If not, we first move freepages in this
2251 * pageblock to our migratetype and determine how many already-allocated pages
2252 * are there in the pageblock with a compatible migratetype. If at least half
2253 * of pages are free or compatible, we can change migratetype of the pageblock
2254 * itself, so pages freed in the future will be put on the correct free list.
2256 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
2257 unsigned int alloc_flags
, int start_type
, bool whole_block
)
2259 unsigned int current_order
= page_order(page
);
2260 struct free_area
*area
;
2261 int free_pages
, movable_pages
, alike_pages
;
2264 old_block_type
= get_pageblock_migratetype(page
);
2267 * This can happen due to races and we want to prevent broken
2268 * highatomic accounting.
2270 if (is_migrate_highatomic(old_block_type
))
2273 /* Take ownership for orders >= pageblock_order */
2274 if (current_order
>= pageblock_order
) {
2275 change_pageblock_range(page
, current_order
, start_type
);
2280 * Boost watermarks to increase reclaim pressure to reduce the
2281 * likelihood of future fallbacks. Wake kswapd now as the node
2282 * may be balanced overall and kswapd will not wake naturally.
2284 boost_watermark(zone
);
2285 if (alloc_flags
& ALLOC_KSWAPD
)
2286 set_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
);
2288 /* We are not allowed to try stealing from the whole block */
2292 free_pages
= move_freepages_block(zone
, page
, start_type
,
2295 * Determine how many pages are compatible with our allocation.
2296 * For movable allocation, it's the number of movable pages which
2297 * we just obtained. For other types it's a bit more tricky.
2299 if (start_type
== MIGRATE_MOVABLE
) {
2300 alike_pages
= movable_pages
;
2303 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2304 * to MOVABLE pageblock, consider all non-movable pages as
2305 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2306 * vice versa, be conservative since we can't distinguish the
2307 * exact migratetype of non-movable pages.
2309 if (old_block_type
== MIGRATE_MOVABLE
)
2310 alike_pages
= pageblock_nr_pages
2311 - (free_pages
+ movable_pages
);
2316 /* moving whole block can fail due to zone boundary conditions */
2321 * If a sufficient number of pages in the block are either free or of
2322 * comparable migratability as our allocation, claim the whole block.
2324 if (free_pages
+ alike_pages
>= (1 << (pageblock_order
-1)) ||
2325 page_group_by_mobility_disabled
)
2326 set_pageblock_migratetype(page
, start_type
);
2331 area
= &zone
->free_area
[current_order
];
2332 list_move(&page
->lru
, &area
->free_list
[start_type
]);
2336 * Check whether there is a suitable fallback freepage with requested order.
2337 * If only_stealable is true, this function returns fallback_mt only if
2338 * we can steal other freepages all together. This would help to reduce
2339 * fragmentation due to mixed migratetype pages in one pageblock.
2341 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
2342 int migratetype
, bool only_stealable
, bool *can_steal
)
2347 if (area
->nr_free
== 0)
2352 fallback_mt
= fallbacks
[migratetype
][i
];
2353 if (fallback_mt
== MIGRATE_TYPES
)
2356 if (list_empty(&area
->free_list
[fallback_mt
]))
2359 if (can_steal_fallback(order
, migratetype
))
2362 if (!only_stealable
)
2373 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2374 * there are no empty page blocks that contain a page with a suitable order
2376 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2377 unsigned int alloc_order
)
2380 unsigned long max_managed
, flags
;
2383 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2384 * Check is race-prone but harmless.
2386 max_managed
= (zone_managed_pages(zone
) / 100) + pageblock_nr_pages
;
2387 if (zone
->nr_reserved_highatomic
>= max_managed
)
2390 spin_lock_irqsave(&zone
->lock
, flags
);
2392 /* Recheck the nr_reserved_highatomic limit under the lock */
2393 if (zone
->nr_reserved_highatomic
>= max_managed
)
2397 mt
= get_pageblock_migratetype(page
);
2398 if (!is_migrate_highatomic(mt
) && !is_migrate_isolate(mt
)
2399 && !is_migrate_cma(mt
)) {
2400 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2401 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2402 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
, NULL
);
2406 spin_unlock_irqrestore(&zone
->lock
, flags
);
2410 * Used when an allocation is about to fail under memory pressure. This
2411 * potentially hurts the reliability of high-order allocations when under
2412 * intense memory pressure but failed atomic allocations should be easier
2413 * to recover from than an OOM.
2415 * If @force is true, try to unreserve a pageblock even though highatomic
2416 * pageblock is exhausted.
2418 static bool unreserve_highatomic_pageblock(const struct alloc_context
*ac
,
2421 struct zonelist
*zonelist
= ac
->zonelist
;
2422 unsigned long flags
;
2429 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2432 * Preserve at least one pageblock unless memory pressure
2435 if (!force
&& zone
->nr_reserved_highatomic
<=
2439 spin_lock_irqsave(&zone
->lock
, flags
);
2440 for (order
= 0; order
< MAX_ORDER
; order
++) {
2441 struct free_area
*area
= &(zone
->free_area
[order
]);
2443 page
= list_first_entry_or_null(
2444 &area
->free_list
[MIGRATE_HIGHATOMIC
],
2450 * In page freeing path, migratetype change is racy so
2451 * we can counter several free pages in a pageblock
2452 * in this loop althoug we changed the pageblock type
2453 * from highatomic to ac->migratetype. So we should
2454 * adjust the count once.
2456 if (is_migrate_highatomic_page(page
)) {
2458 * It should never happen but changes to
2459 * locking could inadvertently allow a per-cpu
2460 * drain to add pages to MIGRATE_HIGHATOMIC
2461 * while unreserving so be safe and watch for
2464 zone
->nr_reserved_highatomic
-= min(
2466 zone
->nr_reserved_highatomic
);
2470 * Convert to ac->migratetype and avoid the normal
2471 * pageblock stealing heuristics. Minimally, the caller
2472 * is doing the work and needs the pages. More
2473 * importantly, if the block was always converted to
2474 * MIGRATE_UNMOVABLE or another type then the number
2475 * of pageblocks that cannot be completely freed
2478 set_pageblock_migratetype(page
, ac
->migratetype
);
2479 ret
= move_freepages_block(zone
, page
, ac
->migratetype
,
2482 spin_unlock_irqrestore(&zone
->lock
, flags
);
2486 spin_unlock_irqrestore(&zone
->lock
, flags
);
2493 * Try finding a free buddy page on the fallback list and put it on the free
2494 * list of requested migratetype, possibly along with other pages from the same
2495 * block, depending on fragmentation avoidance heuristics. Returns true if
2496 * fallback was found so that __rmqueue_smallest() can grab it.
2498 * The use of signed ints for order and current_order is a deliberate
2499 * deviation from the rest of this file, to make the for loop
2500 * condition simpler.
2502 static __always_inline
bool
2503 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
,
2504 unsigned int alloc_flags
)
2506 struct free_area
*area
;
2508 int min_order
= order
;
2514 * Do not steal pages from freelists belonging to other pageblocks
2515 * i.e. orders < pageblock_order. If there are no local zones free,
2516 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2518 if (alloc_flags
& ALLOC_NOFRAGMENT
)
2519 min_order
= pageblock_order
;
2522 * Find the largest available free page in the other list. This roughly
2523 * approximates finding the pageblock with the most free pages, which
2524 * would be too costly to do exactly.
2526 for (current_order
= MAX_ORDER
- 1; current_order
>= min_order
;
2528 area
= &(zone
->free_area
[current_order
]);
2529 fallback_mt
= find_suitable_fallback(area
, current_order
,
2530 start_migratetype
, false, &can_steal
);
2531 if (fallback_mt
== -1)
2535 * We cannot steal all free pages from the pageblock and the
2536 * requested migratetype is movable. In that case it's better to
2537 * steal and split the smallest available page instead of the
2538 * largest available page, because even if the next movable
2539 * allocation falls back into a different pageblock than this
2540 * one, it won't cause permanent fragmentation.
2542 if (!can_steal
&& start_migratetype
== MIGRATE_MOVABLE
2543 && current_order
> order
)
2552 for (current_order
= order
; current_order
< MAX_ORDER
;
2554 area
= &(zone
->free_area
[current_order
]);
2555 fallback_mt
= find_suitable_fallback(area
, current_order
,
2556 start_migratetype
, false, &can_steal
);
2557 if (fallback_mt
!= -1)
2562 * This should not happen - we already found a suitable fallback
2563 * when looking for the largest page.
2565 VM_BUG_ON(current_order
== MAX_ORDER
);
2568 page
= list_first_entry(&area
->free_list
[fallback_mt
],
2571 steal_suitable_fallback(zone
, page
, alloc_flags
, start_migratetype
,
2574 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2575 start_migratetype
, fallback_mt
);
2582 * Do the hard work of removing an element from the buddy allocator.
2583 * Call me with the zone->lock already held.
2585 static __always_inline
struct page
*
2586 __rmqueue(struct zone
*zone
, unsigned int order
, int migratetype
,
2587 unsigned int alloc_flags
)
2592 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2593 if (unlikely(!page
)) {
2594 if (migratetype
== MIGRATE_MOVABLE
)
2595 page
= __rmqueue_cma_fallback(zone
, order
);
2597 if (!page
&& __rmqueue_fallback(zone
, order
, migratetype
,
2602 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2607 * Obtain a specified number of elements from the buddy allocator, all under
2608 * a single hold of the lock, for efficiency. Add them to the supplied list.
2609 * Returns the number of new pages which were placed at *list.
2611 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2612 unsigned long count
, struct list_head
*list
,
2613 int migratetype
, unsigned int alloc_flags
)
2617 spin_lock(&zone
->lock
);
2618 for (i
= 0; i
< count
; ++i
) {
2619 struct page
*page
= __rmqueue(zone
, order
, migratetype
,
2621 if (unlikely(page
== NULL
))
2624 if (unlikely(check_pcp_refill(page
)))
2628 * Split buddy pages returned by expand() are received here in
2629 * physical page order. The page is added to the tail of
2630 * caller's list. From the callers perspective, the linked list
2631 * is ordered by page number under some conditions. This is
2632 * useful for IO devices that can forward direction from the
2633 * head, thus also in the physical page order. This is useful
2634 * for IO devices that can merge IO requests if the physical
2635 * pages are ordered properly.
2637 list_add_tail(&page
->lru
, list
);
2639 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2640 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2645 * i pages were removed from the buddy list even if some leak due
2646 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2647 * on i. Do not confuse with 'alloced' which is the number of
2648 * pages added to the pcp list.
2650 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2651 spin_unlock(&zone
->lock
);
2657 * Called from the vmstat counter updater to drain pagesets of this
2658 * currently executing processor on remote nodes after they have
2661 * Note that this function must be called with the thread pinned to
2662 * a single processor.
2664 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2666 unsigned long flags
;
2667 int to_drain
, batch
;
2669 local_irq_save(flags
);
2670 batch
= READ_ONCE(pcp
->batch
);
2671 to_drain
= min(pcp
->count
, batch
);
2673 free_pcppages_bulk(zone
, to_drain
, pcp
);
2674 local_irq_restore(flags
);
2679 * Drain pcplists of the indicated processor and zone.
2681 * The processor must either be the current processor and the
2682 * thread pinned to the current processor or a processor that
2685 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2687 unsigned long flags
;
2688 struct per_cpu_pageset
*pset
;
2689 struct per_cpu_pages
*pcp
;
2691 local_irq_save(flags
);
2692 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2696 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2697 local_irq_restore(flags
);
2701 * Drain pcplists of all zones on the indicated processor.
2703 * The processor must either be the current processor and the
2704 * thread pinned to the current processor or a processor that
2707 static void drain_pages(unsigned int cpu
)
2711 for_each_populated_zone(zone
) {
2712 drain_pages_zone(cpu
, zone
);
2717 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2719 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2720 * the single zone's pages.
2722 void drain_local_pages(struct zone
*zone
)
2724 int cpu
= smp_processor_id();
2727 drain_pages_zone(cpu
, zone
);
2732 static void drain_local_pages_wq(struct work_struct
*work
)
2734 struct pcpu_drain
*drain
;
2736 drain
= container_of(work
, struct pcpu_drain
, work
);
2739 * drain_all_pages doesn't use proper cpu hotplug protection so
2740 * we can race with cpu offline when the WQ can move this from
2741 * a cpu pinned worker to an unbound one. We can operate on a different
2742 * cpu which is allright but we also have to make sure to not move to
2746 drain_local_pages(drain
->zone
);
2751 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2753 * When zone parameter is non-NULL, spill just the single zone's pages.
2755 * Note that this can be extremely slow as the draining happens in a workqueue.
2757 void drain_all_pages(struct zone
*zone
)
2762 * Allocate in the BSS so we wont require allocation in
2763 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2765 static cpumask_t cpus_with_pcps
;
2768 * Make sure nobody triggers this path before mm_percpu_wq is fully
2771 if (WARN_ON_ONCE(!mm_percpu_wq
))
2775 * Do not drain if one is already in progress unless it's specific to
2776 * a zone. Such callers are primarily CMA and memory hotplug and need
2777 * the drain to be complete when the call returns.
2779 if (unlikely(!mutex_trylock(&pcpu_drain_mutex
))) {
2782 mutex_lock(&pcpu_drain_mutex
);
2786 * We don't care about racing with CPU hotplug event
2787 * as offline notification will cause the notified
2788 * cpu to drain that CPU pcps and on_each_cpu_mask
2789 * disables preemption as part of its processing
2791 for_each_online_cpu(cpu
) {
2792 struct per_cpu_pageset
*pcp
;
2794 bool has_pcps
= false;
2797 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2801 for_each_populated_zone(z
) {
2802 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2803 if (pcp
->pcp
.count
) {
2811 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2813 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2816 for_each_cpu(cpu
, &cpus_with_pcps
) {
2817 struct pcpu_drain
*drain
= per_cpu_ptr(&pcpu_drain
, cpu
);
2820 INIT_WORK(&drain
->work
, drain_local_pages_wq
);
2821 queue_work_on(cpu
, mm_percpu_wq
, &drain
->work
);
2823 for_each_cpu(cpu
, &cpus_with_pcps
)
2824 flush_work(&per_cpu_ptr(&pcpu_drain
, cpu
)->work
);
2826 mutex_unlock(&pcpu_drain_mutex
);
2829 #ifdef CONFIG_HIBERNATION
2832 * Touch the watchdog for every WD_PAGE_COUNT pages.
2834 #define WD_PAGE_COUNT (128*1024)
2836 void mark_free_pages(struct zone
*zone
)
2838 unsigned long pfn
, max_zone_pfn
, page_count
= WD_PAGE_COUNT
;
2839 unsigned long flags
;
2840 unsigned int order
, t
;
2843 if (zone_is_empty(zone
))
2846 spin_lock_irqsave(&zone
->lock
, flags
);
2848 max_zone_pfn
= zone_end_pfn(zone
);
2849 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2850 if (pfn_valid(pfn
)) {
2851 page
= pfn_to_page(pfn
);
2853 if (!--page_count
) {
2854 touch_nmi_watchdog();
2855 page_count
= WD_PAGE_COUNT
;
2858 if (page_zone(page
) != zone
)
2861 if (!swsusp_page_is_forbidden(page
))
2862 swsusp_unset_page_free(page
);
2865 for_each_migratetype_order(order
, t
) {
2866 list_for_each_entry(page
,
2867 &zone
->free_area
[order
].free_list
[t
], lru
) {
2870 pfn
= page_to_pfn(page
);
2871 for (i
= 0; i
< (1UL << order
); i
++) {
2872 if (!--page_count
) {
2873 touch_nmi_watchdog();
2874 page_count
= WD_PAGE_COUNT
;
2876 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
2880 spin_unlock_irqrestore(&zone
->lock
, flags
);
2882 #endif /* CONFIG_PM */
2884 static bool free_unref_page_prepare(struct page
*page
, unsigned long pfn
)
2888 if (!free_pcp_prepare(page
))
2891 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2892 set_pcppage_migratetype(page
, migratetype
);
2896 static void free_unref_page_commit(struct page
*page
, unsigned long pfn
)
2898 struct zone
*zone
= page_zone(page
);
2899 struct per_cpu_pages
*pcp
;
2902 migratetype
= get_pcppage_migratetype(page
);
2903 __count_vm_event(PGFREE
);
2906 * We only track unmovable, reclaimable and movable on pcp lists.
2907 * Free ISOLATE pages back to the allocator because they are being
2908 * offlined but treat HIGHATOMIC as movable pages so we can get those
2909 * areas back if necessary. Otherwise, we may have to free
2910 * excessively into the page allocator
2912 if (migratetype
>= MIGRATE_PCPTYPES
) {
2913 if (unlikely(is_migrate_isolate(migratetype
))) {
2914 free_one_page(zone
, page
, pfn
, 0, migratetype
);
2917 migratetype
= MIGRATE_MOVABLE
;
2920 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2921 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
2923 if (pcp
->count
>= pcp
->high
) {
2924 unsigned long batch
= READ_ONCE(pcp
->batch
);
2925 free_pcppages_bulk(zone
, batch
, pcp
);
2930 * Free a 0-order page
2932 void free_unref_page(struct page
*page
)
2934 unsigned long flags
;
2935 unsigned long pfn
= page_to_pfn(page
);
2937 if (!free_unref_page_prepare(page
, pfn
))
2940 local_irq_save(flags
);
2941 free_unref_page_commit(page
, pfn
);
2942 local_irq_restore(flags
);
2946 * Free a list of 0-order pages
2948 void free_unref_page_list(struct list_head
*list
)
2950 struct page
*page
, *next
;
2951 unsigned long flags
, pfn
;
2952 int batch_count
= 0;
2954 /* Prepare pages for freeing */
2955 list_for_each_entry_safe(page
, next
, list
, lru
) {
2956 pfn
= page_to_pfn(page
);
2957 if (!free_unref_page_prepare(page
, pfn
))
2958 list_del(&page
->lru
);
2959 set_page_private(page
, pfn
);
2962 local_irq_save(flags
);
2963 list_for_each_entry_safe(page
, next
, list
, lru
) {
2964 unsigned long pfn
= page_private(page
);
2966 set_page_private(page
, 0);
2967 trace_mm_page_free_batched(page
);
2968 free_unref_page_commit(page
, pfn
);
2971 * Guard against excessive IRQ disabled times when we get
2972 * a large list of pages to free.
2974 if (++batch_count
== SWAP_CLUSTER_MAX
) {
2975 local_irq_restore(flags
);
2977 local_irq_save(flags
);
2980 local_irq_restore(flags
);
2984 * split_page takes a non-compound higher-order page, and splits it into
2985 * n (1<<order) sub-pages: page[0..n]
2986 * Each sub-page must be freed individually.
2988 * Note: this is probably too low level an operation for use in drivers.
2989 * Please consult with lkml before using this in your driver.
2991 void split_page(struct page
*page
, unsigned int order
)
2995 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2996 VM_BUG_ON_PAGE(!page_count(page
), page
);
2998 for (i
= 1; i
< (1 << order
); i
++)
2999 set_page_refcounted(page
+ i
);
3000 split_page_owner(page
, order
);
3002 EXPORT_SYMBOL_GPL(split_page
);
3004 int __isolate_free_page(struct page
*page
, unsigned int order
)
3006 unsigned long watermark
;
3010 BUG_ON(!PageBuddy(page
));
3012 zone
= page_zone(page
);
3013 mt
= get_pageblock_migratetype(page
);
3015 if (!is_migrate_isolate(mt
)) {
3017 * Obey watermarks as if the page was being allocated. We can
3018 * emulate a high-order watermark check with a raised order-0
3019 * watermark, because we already know our high-order page
3022 watermark
= zone
->_watermark
[WMARK_MIN
] + (1UL << order
);
3023 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
3026 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
3029 /* Remove page from free list */
3030 list_del(&page
->lru
);
3031 zone
->free_area
[order
].nr_free
--;
3032 rmv_page_order(page
);
3035 * Set the pageblock if the isolated page is at least half of a
3038 if (order
>= pageblock_order
- 1) {
3039 struct page
*endpage
= page
+ (1 << order
) - 1;
3040 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
3041 int mt
= get_pageblock_migratetype(page
);
3042 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
)
3043 && !is_migrate_highatomic(mt
))
3044 set_pageblock_migratetype(page
,
3050 return 1UL << order
;
3054 * Update NUMA hit/miss statistics
3056 * Must be called with interrupts disabled.
3058 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
)
3061 enum numa_stat_item local_stat
= NUMA_LOCAL
;
3063 /* skip numa counters update if numa stats is disabled */
3064 if (!static_branch_likely(&vm_numa_stat_key
))
3067 if (zone_to_nid(z
) != numa_node_id())
3068 local_stat
= NUMA_OTHER
;
3070 if (zone_to_nid(z
) == zone_to_nid(preferred_zone
))
3071 __inc_numa_state(z
, NUMA_HIT
);
3073 __inc_numa_state(z
, NUMA_MISS
);
3074 __inc_numa_state(preferred_zone
, NUMA_FOREIGN
);
3076 __inc_numa_state(z
, local_stat
);
3080 /* Remove page from the per-cpu list, caller must protect the list */
3081 static struct page
*__rmqueue_pcplist(struct zone
*zone
, int migratetype
,
3082 unsigned int alloc_flags
,
3083 struct per_cpu_pages
*pcp
,
3084 struct list_head
*list
)
3089 if (list_empty(list
)) {
3090 pcp
->count
+= rmqueue_bulk(zone
, 0,
3092 migratetype
, alloc_flags
);
3093 if (unlikely(list_empty(list
)))
3097 page
= list_first_entry(list
, struct page
, lru
);
3098 list_del(&page
->lru
);
3100 } while (check_new_pcp(page
));
3105 /* Lock and remove page from the per-cpu list */
3106 static struct page
*rmqueue_pcplist(struct zone
*preferred_zone
,
3107 struct zone
*zone
, unsigned int order
,
3108 gfp_t gfp_flags
, int migratetype
,
3109 unsigned int alloc_flags
)
3111 struct per_cpu_pages
*pcp
;
3112 struct list_head
*list
;
3114 unsigned long flags
;
3116 local_irq_save(flags
);
3117 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
3118 list
= &pcp
->lists
[migratetype
];
3119 page
= __rmqueue_pcplist(zone
, migratetype
, alloc_flags
, pcp
, list
);
3121 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
3122 zone_statistics(preferred_zone
, zone
);
3124 local_irq_restore(flags
);
3129 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3132 struct page
*rmqueue(struct zone
*preferred_zone
,
3133 struct zone
*zone
, unsigned int order
,
3134 gfp_t gfp_flags
, unsigned int alloc_flags
,
3137 unsigned long flags
;
3140 if (likely(order
== 0)) {
3141 page
= rmqueue_pcplist(preferred_zone
, zone
, order
,
3142 gfp_flags
, migratetype
, alloc_flags
);
3147 * We most definitely don't want callers attempting to
3148 * allocate greater than order-1 page units with __GFP_NOFAIL.
3150 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
3151 spin_lock_irqsave(&zone
->lock
, flags
);
3155 if (alloc_flags
& ALLOC_HARDER
) {
3156 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
3158 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
3161 page
= __rmqueue(zone
, order
, migratetype
, alloc_flags
);
3162 } while (page
&& check_new_pages(page
, order
));
3163 spin_unlock(&zone
->lock
);
3166 __mod_zone_freepage_state(zone
, -(1 << order
),
3167 get_pcppage_migratetype(page
));
3169 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
3170 zone_statistics(preferred_zone
, zone
);
3171 local_irq_restore(flags
);
3174 /* Separate test+clear to avoid unnecessary atomics */
3175 if (test_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
)) {
3176 clear_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
);
3177 wakeup_kswapd(zone
, 0, 0, zone_idx(zone
));
3180 VM_BUG_ON_PAGE(page
&& bad_range(zone
, page
), page
);
3184 local_irq_restore(flags
);
3188 #ifdef CONFIG_FAIL_PAGE_ALLOC
3191 struct fault_attr attr
;
3193 bool ignore_gfp_highmem
;
3194 bool ignore_gfp_reclaim
;
3196 } fail_page_alloc
= {
3197 .attr
= FAULT_ATTR_INITIALIZER
,
3198 .ignore_gfp_reclaim
= true,
3199 .ignore_gfp_highmem
= true,
3203 static int __init
setup_fail_page_alloc(char *str
)
3205 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
3207 __setup("fail_page_alloc=", setup_fail_page_alloc
);
3209 static bool __should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3211 if (order
< fail_page_alloc
.min_order
)
3213 if (gfp_mask
& __GFP_NOFAIL
)
3215 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
3217 if (fail_page_alloc
.ignore_gfp_reclaim
&&
3218 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
3221 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
3224 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3226 static int __init
fail_page_alloc_debugfs(void)
3228 umode_t mode
= S_IFREG
| 0600;
3231 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
3232 &fail_page_alloc
.attr
);
3234 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
3235 &fail_page_alloc
.ignore_gfp_reclaim
);
3236 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
3237 &fail_page_alloc
.ignore_gfp_highmem
);
3238 debugfs_create_u32("min-order", mode
, dir
, &fail_page_alloc
.min_order
);
3243 late_initcall(fail_page_alloc_debugfs
);
3245 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3247 #else /* CONFIG_FAIL_PAGE_ALLOC */
3249 static inline bool __should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3254 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3256 static noinline
bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3258 return __should_fail_alloc_page(gfp_mask
, order
);
3260 ALLOW_ERROR_INJECTION(should_fail_alloc_page
, TRUE
);
3263 * Return true if free base pages are above 'mark'. For high-order checks it
3264 * will return true of the order-0 watermark is reached and there is at least
3265 * one free page of a suitable size. Checking now avoids taking the zone lock
3266 * to check in the allocation paths if no pages are free.
3268 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3269 int classzone_idx
, unsigned int alloc_flags
,
3274 const bool alloc_harder
= (alloc_flags
& (ALLOC_HARDER
|ALLOC_OOM
));
3276 /* free_pages may go negative - that's OK */
3277 free_pages
-= (1 << order
) - 1;
3279 if (alloc_flags
& ALLOC_HIGH
)
3283 * If the caller does not have rights to ALLOC_HARDER then subtract
3284 * the high-atomic reserves. This will over-estimate the size of the
3285 * atomic reserve but it avoids a search.
3287 if (likely(!alloc_harder
)) {
3288 free_pages
-= z
->nr_reserved_highatomic
;
3291 * OOM victims can try even harder than normal ALLOC_HARDER
3292 * users on the grounds that it's definitely going to be in
3293 * the exit path shortly and free memory. Any allocation it
3294 * makes during the free path will be small and short-lived.
3296 if (alloc_flags
& ALLOC_OOM
)
3304 /* If allocation can't use CMA areas don't use free CMA pages */
3305 if (!(alloc_flags
& ALLOC_CMA
))
3306 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3310 * Check watermarks for an order-0 allocation request. If these
3311 * are not met, then a high-order request also cannot go ahead
3312 * even if a suitable page happened to be free.
3314 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
3317 /* If this is an order-0 request then the watermark is fine */
3321 /* For a high-order request, check at least one suitable page is free */
3322 for (o
= order
; o
< MAX_ORDER
; o
++) {
3323 struct free_area
*area
= &z
->free_area
[o
];
3329 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
3330 if (!list_empty(&area
->free_list
[mt
]))
3335 if ((alloc_flags
& ALLOC_CMA
) &&
3336 !list_empty(&area
->free_list
[MIGRATE_CMA
])) {
3341 !list_empty(&area
->free_list
[MIGRATE_HIGHATOMIC
]))
3347 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3348 int classzone_idx
, unsigned int alloc_flags
)
3350 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3351 zone_page_state(z
, NR_FREE_PAGES
));
3354 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
3355 unsigned long mark
, int classzone_idx
, unsigned int alloc_flags
)
3357 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3361 /* If allocation can't use CMA areas don't use free CMA pages */
3362 if (!(alloc_flags
& ALLOC_CMA
))
3363 cma_pages
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3367 * Fast check for order-0 only. If this fails then the reserves
3368 * need to be calculated. There is a corner case where the check
3369 * passes but only the high-order atomic reserve are free. If
3370 * the caller is !atomic then it'll uselessly search the free
3371 * list. That corner case is then slower but it is harmless.
3373 if (!order
&& (free_pages
- cma_pages
) > mark
+ z
->lowmem_reserve
[classzone_idx
])
3376 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3380 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
3381 unsigned long mark
, int classzone_idx
)
3383 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3385 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
3386 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
3388 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
3393 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3395 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
3398 #else /* CONFIG_NUMA */
3399 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3403 #endif /* CONFIG_NUMA */
3406 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3407 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3408 * premature use of a lower zone may cause lowmem pressure problems that
3409 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3410 * probably too small. It only makes sense to spread allocations to avoid
3411 * fragmentation between the Normal and DMA32 zones.
3413 static inline unsigned int
3414 alloc_flags_nofragment(struct zone
*zone
, gfp_t gfp_mask
)
3416 unsigned int alloc_flags
= 0;
3418 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3419 alloc_flags
|= ALLOC_KSWAPD
;
3421 #ifdef CONFIG_ZONE_DMA32
3422 if (zone_idx(zone
) != ZONE_NORMAL
)
3426 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3427 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3428 * on UMA that if Normal is populated then so is DMA32.
3430 BUILD_BUG_ON(ZONE_NORMAL
- ZONE_DMA32
!= 1);
3431 if (nr_online_nodes
> 1 && !populated_zone(--zone
))
3435 #endif /* CONFIG_ZONE_DMA32 */
3440 * get_page_from_freelist goes through the zonelist trying to allocate
3443 static struct page
*
3444 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
3445 const struct alloc_context
*ac
)
3449 struct pglist_data
*last_pgdat_dirty_limit
= NULL
;
3454 * Scan zonelist, looking for a zone with enough free.
3455 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3457 no_fallback
= alloc_flags
& ALLOC_NOFRAGMENT
;
3458 z
= ac
->preferred_zoneref
;
3459 for_next_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3464 if (cpusets_enabled() &&
3465 (alloc_flags
& ALLOC_CPUSET
) &&
3466 !__cpuset_zone_allowed(zone
, gfp_mask
))
3469 * When allocating a page cache page for writing, we
3470 * want to get it from a node that is within its dirty
3471 * limit, such that no single node holds more than its
3472 * proportional share of globally allowed dirty pages.
3473 * The dirty limits take into account the node's
3474 * lowmem reserves and high watermark so that kswapd
3475 * should be able to balance it without having to
3476 * write pages from its LRU list.
3478 * XXX: For now, allow allocations to potentially
3479 * exceed the per-node dirty limit in the slowpath
3480 * (spread_dirty_pages unset) before going into reclaim,
3481 * which is important when on a NUMA setup the allowed
3482 * nodes are together not big enough to reach the
3483 * global limit. The proper fix for these situations
3484 * will require awareness of nodes in the
3485 * dirty-throttling and the flusher threads.
3487 if (ac
->spread_dirty_pages
) {
3488 if (last_pgdat_dirty_limit
== zone
->zone_pgdat
)
3491 if (!node_dirty_ok(zone
->zone_pgdat
)) {
3492 last_pgdat_dirty_limit
= zone
->zone_pgdat
;
3497 if (no_fallback
&& nr_online_nodes
> 1 &&
3498 zone
!= ac
->preferred_zoneref
->zone
) {
3502 * If moving to a remote node, retry but allow
3503 * fragmenting fallbacks. Locality is more important
3504 * than fragmentation avoidance.
3506 local_nid
= zone_to_nid(ac
->preferred_zoneref
->zone
);
3507 if (zone_to_nid(zone
) != local_nid
) {
3508 alloc_flags
&= ~ALLOC_NOFRAGMENT
;
3513 mark
= wmark_pages(zone
, alloc_flags
& ALLOC_WMARK_MASK
);
3514 if (!zone_watermark_fast(zone
, order
, mark
,
3515 ac_classzone_idx(ac
), alloc_flags
)) {
3518 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3520 * Watermark failed for this zone, but see if we can
3521 * grow this zone if it contains deferred pages.
3523 if (static_branch_unlikely(&deferred_pages
)) {
3524 if (_deferred_grow_zone(zone
, order
))
3528 /* Checked here to keep the fast path fast */
3529 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
3530 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
3533 if (node_reclaim_mode
== 0 ||
3534 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
3537 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
3539 case NODE_RECLAIM_NOSCAN
:
3542 case NODE_RECLAIM_FULL
:
3543 /* scanned but unreclaimable */
3546 /* did we reclaim enough */
3547 if (zone_watermark_ok(zone
, order
, mark
,
3548 ac_classzone_idx(ac
), alloc_flags
))
3556 page
= rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
3557 gfp_mask
, alloc_flags
, ac
->migratetype
);
3559 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3562 * If this is a high-order atomic allocation then check
3563 * if the pageblock should be reserved for the future
3565 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
3566 reserve_highatomic_pageblock(page
, zone
, order
);
3570 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3571 /* Try again if zone has deferred pages */
3572 if (static_branch_unlikely(&deferred_pages
)) {
3573 if (_deferred_grow_zone(zone
, order
))
3581 * It's possible on a UMA machine to get through all zones that are
3582 * fragmented. If avoiding fragmentation, reset and try again.
3585 alloc_flags
&= ~ALLOC_NOFRAGMENT
;
3592 static void warn_alloc_show_mem(gfp_t gfp_mask
, nodemask_t
*nodemask
)
3594 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3595 static DEFINE_RATELIMIT_STATE(show_mem_rs
, HZ
, 1);
3597 if (!__ratelimit(&show_mem_rs
))
3601 * This documents exceptions given to allocations in certain
3602 * contexts that are allowed to allocate outside current's set
3605 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3606 if (tsk_is_oom_victim(current
) ||
3607 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3608 filter
&= ~SHOW_MEM_FILTER_NODES
;
3609 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3610 filter
&= ~SHOW_MEM_FILTER_NODES
;
3612 show_mem(filter
, nodemask
);
3615 void warn_alloc(gfp_t gfp_mask
, nodemask_t
*nodemask
, const char *fmt
, ...)
3617 struct va_format vaf
;
3619 static DEFINE_RATELIMIT_STATE(nopage_rs
, DEFAULT_RATELIMIT_INTERVAL
,
3620 DEFAULT_RATELIMIT_BURST
);
3622 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
3625 va_start(args
, fmt
);
3628 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3629 current
->comm
, &vaf
, gfp_mask
, &gfp_mask
,
3630 nodemask_pr_args(nodemask
));
3633 cpuset_print_current_mems_allowed();
3636 warn_alloc_show_mem(gfp_mask
, nodemask
);
3639 static inline struct page
*
3640 __alloc_pages_cpuset_fallback(gfp_t gfp_mask
, unsigned int order
,
3641 unsigned int alloc_flags
,
3642 const struct alloc_context
*ac
)
3646 page
= get_page_from_freelist(gfp_mask
, order
,
3647 alloc_flags
|ALLOC_CPUSET
, ac
);
3649 * fallback to ignore cpuset restriction if our nodes
3653 page
= get_page_from_freelist(gfp_mask
, order
,
3659 static inline struct page
*
3660 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3661 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3663 struct oom_control oc
= {
3664 .zonelist
= ac
->zonelist
,
3665 .nodemask
= ac
->nodemask
,
3667 .gfp_mask
= gfp_mask
,
3672 *did_some_progress
= 0;
3675 * Acquire the oom lock. If that fails, somebody else is
3676 * making progress for us.
3678 if (!mutex_trylock(&oom_lock
)) {
3679 *did_some_progress
= 1;
3680 schedule_timeout_uninterruptible(1);
3685 * Go through the zonelist yet one more time, keep very high watermark
3686 * here, this is only to catch a parallel oom killing, we must fail if
3687 * we're still under heavy pressure. But make sure that this reclaim
3688 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3689 * allocation which will never fail due to oom_lock already held.
3691 page
= get_page_from_freelist((gfp_mask
| __GFP_HARDWALL
) &
3692 ~__GFP_DIRECT_RECLAIM
, order
,
3693 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3697 /* Coredumps can quickly deplete all memory reserves */
3698 if (current
->flags
& PF_DUMPCORE
)
3700 /* The OOM killer will not help higher order allocs */
3701 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3704 * We have already exhausted all our reclaim opportunities without any
3705 * success so it is time to admit defeat. We will skip the OOM killer
3706 * because it is very likely that the caller has a more reasonable
3707 * fallback than shooting a random task.
3709 if (gfp_mask
& __GFP_RETRY_MAYFAIL
)
3711 /* The OOM killer does not needlessly kill tasks for lowmem */
3712 if (ac
->high_zoneidx
< ZONE_NORMAL
)
3714 if (pm_suspended_storage())
3717 * XXX: GFP_NOFS allocations should rather fail than rely on
3718 * other request to make a forward progress.
3719 * We are in an unfortunate situation where out_of_memory cannot
3720 * do much for this context but let's try it to at least get
3721 * access to memory reserved if the current task is killed (see
3722 * out_of_memory). Once filesystems are ready to handle allocation
3723 * failures more gracefully we should just bail out here.
3726 /* The OOM killer may not free memory on a specific node */
3727 if (gfp_mask
& __GFP_THISNODE
)
3730 /* Exhausted what can be done so it's blame time */
3731 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3732 *did_some_progress
= 1;
3735 * Help non-failing allocations by giving them access to memory
3738 if (gfp_mask
& __GFP_NOFAIL
)
3739 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
,
3740 ALLOC_NO_WATERMARKS
, ac
);
3743 mutex_unlock(&oom_lock
);
3748 * Maximum number of compaction retries wit a progress before OOM
3749 * killer is consider as the only way to move forward.
3751 #define MAX_COMPACT_RETRIES 16
3753 #ifdef CONFIG_COMPACTION
3754 /* Try memory compaction for high-order allocations before reclaim */
3755 static struct page
*
3756 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3757 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3758 enum compact_priority prio
, enum compact_result
*compact_result
)
3760 struct page
*page
= NULL
;
3761 unsigned long pflags
;
3762 unsigned int noreclaim_flag
;
3767 psi_memstall_enter(&pflags
);
3768 noreclaim_flag
= memalloc_noreclaim_save();
3770 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3773 memalloc_noreclaim_restore(noreclaim_flag
);
3774 psi_memstall_leave(&pflags
);
3776 if (*compact_result
<= COMPACT_INACTIVE
) {
3782 * At least in one zone compaction wasn't deferred or skipped, so let's
3783 * count a compaction stall
3785 count_vm_event(COMPACTSTALL
);
3787 /* Prep a captured page if available */
3789 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3791 /* Try get a page from the freelist if available */
3793 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3796 struct zone
*zone
= page_zone(page
);
3798 zone
->compact_blockskip_flush
= false;
3799 compaction_defer_reset(zone
, order
, true);
3800 count_vm_event(COMPACTSUCCESS
);
3805 * It's bad if compaction run occurs and fails. The most likely reason
3806 * is that pages exist, but not enough to satisfy watermarks.
3808 count_vm_event(COMPACTFAIL
);
3816 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
3817 enum compact_result compact_result
,
3818 enum compact_priority
*compact_priority
,
3819 int *compaction_retries
)
3821 int max_retries
= MAX_COMPACT_RETRIES
;
3824 int retries
= *compaction_retries
;
3825 enum compact_priority priority
= *compact_priority
;
3830 if (compaction_made_progress(compact_result
))
3831 (*compaction_retries
)++;
3834 * compaction considers all the zone as desperately out of memory
3835 * so it doesn't really make much sense to retry except when the
3836 * failure could be caused by insufficient priority
3838 if (compaction_failed(compact_result
))
3839 goto check_priority
;
3842 * make sure the compaction wasn't deferred or didn't bail out early
3843 * due to locks contention before we declare that we should give up.
3844 * But do not retry if the given zonelist is not suitable for
3847 if (compaction_withdrawn(compact_result
)) {
3848 ret
= compaction_zonelist_suitable(ac
, order
, alloc_flags
);
3853 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3854 * costly ones because they are de facto nofail and invoke OOM
3855 * killer to move on while costly can fail and users are ready
3856 * to cope with that. 1/4 retries is rather arbitrary but we
3857 * would need much more detailed feedback from compaction to
3858 * make a better decision.
3860 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3862 if (*compaction_retries
<= max_retries
) {
3868 * Make sure there are attempts at the highest priority if we exhausted
3869 * all retries or failed at the lower priorities.
3872 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
3873 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
3875 if (*compact_priority
> min_priority
) {
3876 (*compact_priority
)--;
3877 *compaction_retries
= 0;
3881 trace_compact_retry(order
, priority
, compact_result
, retries
, max_retries
, ret
);
3885 static inline struct page
*
3886 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3887 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3888 enum compact_priority prio
, enum compact_result
*compact_result
)
3890 *compact_result
= COMPACT_SKIPPED
;
3895 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
3896 enum compact_result compact_result
,
3897 enum compact_priority
*compact_priority
,
3898 int *compaction_retries
)
3903 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
3907 * There are setups with compaction disabled which would prefer to loop
3908 * inside the allocator rather than hit the oom killer prematurely.
3909 * Let's give them a good hope and keep retrying while the order-0
3910 * watermarks are OK.
3912 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3914 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
3915 ac_classzone_idx(ac
), alloc_flags
))
3920 #endif /* CONFIG_COMPACTION */
3922 #ifdef CONFIG_LOCKDEP
3923 static struct lockdep_map __fs_reclaim_map
=
3924 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map
);
3926 static bool __need_fs_reclaim(gfp_t gfp_mask
)
3928 gfp_mask
= current_gfp_context(gfp_mask
);
3930 /* no reclaim without waiting on it */
3931 if (!(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3934 /* this guy won't enter reclaim */
3935 if (current
->flags
& PF_MEMALLOC
)
3938 /* We're only interested __GFP_FS allocations for now */
3939 if (!(gfp_mask
& __GFP_FS
))
3942 if (gfp_mask
& __GFP_NOLOCKDEP
)
3948 void __fs_reclaim_acquire(void)
3950 lock_map_acquire(&__fs_reclaim_map
);
3953 void __fs_reclaim_release(void)
3955 lock_map_release(&__fs_reclaim_map
);
3958 void fs_reclaim_acquire(gfp_t gfp_mask
)
3960 if (__need_fs_reclaim(gfp_mask
))
3961 __fs_reclaim_acquire();
3963 EXPORT_SYMBOL_GPL(fs_reclaim_acquire
);
3965 void fs_reclaim_release(gfp_t gfp_mask
)
3967 if (__need_fs_reclaim(gfp_mask
))
3968 __fs_reclaim_release();
3970 EXPORT_SYMBOL_GPL(fs_reclaim_release
);
3973 /* Perform direct synchronous page reclaim */
3975 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
3976 const struct alloc_context
*ac
)
3978 struct reclaim_state reclaim_state
;
3980 unsigned int noreclaim_flag
;
3981 unsigned long pflags
;
3985 /* We now go into synchronous reclaim */
3986 cpuset_memory_pressure_bump();
3987 psi_memstall_enter(&pflags
);
3988 fs_reclaim_acquire(gfp_mask
);
3989 noreclaim_flag
= memalloc_noreclaim_save();
3990 reclaim_state
.reclaimed_slab
= 0;
3991 current
->reclaim_state
= &reclaim_state
;
3993 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
3996 current
->reclaim_state
= NULL
;
3997 memalloc_noreclaim_restore(noreclaim_flag
);
3998 fs_reclaim_release(gfp_mask
);
3999 psi_memstall_leave(&pflags
);
4006 /* The really slow allocator path where we enter direct reclaim */
4007 static inline struct page
*
4008 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
4009 unsigned int alloc_flags
, const struct alloc_context
*ac
,
4010 unsigned long *did_some_progress
)
4012 struct page
*page
= NULL
;
4013 bool drained
= false;
4015 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
4016 if (unlikely(!(*did_some_progress
)))
4020 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4023 * If an allocation failed after direct reclaim, it could be because
4024 * pages are pinned on the per-cpu lists or in high alloc reserves.
4025 * Shrink them them and try again
4027 if (!page
&& !drained
) {
4028 unreserve_highatomic_pageblock(ac
, false);
4029 drain_all_pages(NULL
);
4037 static void wake_all_kswapds(unsigned int order
, gfp_t gfp_mask
,
4038 const struct alloc_context
*ac
)
4042 pg_data_t
*last_pgdat
= NULL
;
4043 enum zone_type high_zoneidx
= ac
->high_zoneidx
;
4045 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, high_zoneidx
,
4047 if (last_pgdat
!= zone
->zone_pgdat
)
4048 wakeup_kswapd(zone
, gfp_mask
, order
, high_zoneidx
);
4049 last_pgdat
= zone
->zone_pgdat
;
4053 static inline unsigned int
4054 gfp_to_alloc_flags(gfp_t gfp_mask
)
4056 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
4058 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4059 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
4062 * The caller may dip into page reserves a bit more if the caller
4063 * cannot run direct reclaim, or if the caller has realtime scheduling
4064 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4065 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4067 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
4069 if (gfp_mask
& __GFP_ATOMIC
) {
4071 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4072 * if it can't schedule.
4074 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
4075 alloc_flags
|= ALLOC_HARDER
;
4077 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4078 * comment for __cpuset_node_allowed().
4080 alloc_flags
&= ~ALLOC_CPUSET
;
4081 } else if (unlikely(rt_task(current
)) && !in_interrupt())
4082 alloc_flags
|= ALLOC_HARDER
;
4084 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
4085 alloc_flags
|= ALLOC_KSWAPD
;
4088 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
4089 alloc_flags
|= ALLOC_CMA
;
4094 static bool oom_reserves_allowed(struct task_struct
*tsk
)
4096 if (!tsk_is_oom_victim(tsk
))
4100 * !MMU doesn't have oom reaper so give access to memory reserves
4101 * only to the thread with TIF_MEMDIE set
4103 if (!IS_ENABLED(CONFIG_MMU
) && !test_thread_flag(TIF_MEMDIE
))
4110 * Distinguish requests which really need access to full memory
4111 * reserves from oom victims which can live with a portion of it
4113 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask
)
4115 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
4117 if (gfp_mask
& __GFP_MEMALLOC
)
4118 return ALLOC_NO_WATERMARKS
;
4119 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
4120 return ALLOC_NO_WATERMARKS
;
4121 if (!in_interrupt()) {
4122 if (current
->flags
& PF_MEMALLOC
)
4123 return ALLOC_NO_WATERMARKS
;
4124 else if (oom_reserves_allowed(current
))
4131 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
4133 return !!__gfp_pfmemalloc_flags(gfp_mask
);
4137 * Checks whether it makes sense to retry the reclaim to make a forward progress
4138 * for the given allocation request.
4140 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4141 * without success, or when we couldn't even meet the watermark if we
4142 * reclaimed all remaining pages on the LRU lists.
4144 * Returns true if a retry is viable or false to enter the oom path.
4147 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
4148 struct alloc_context
*ac
, int alloc_flags
,
4149 bool did_some_progress
, int *no_progress_loops
)
4156 * Costly allocations might have made a progress but this doesn't mean
4157 * their order will become available due to high fragmentation so
4158 * always increment the no progress counter for them
4160 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
4161 *no_progress_loops
= 0;
4163 (*no_progress_loops
)++;
4166 * Make sure we converge to OOM if we cannot make any progress
4167 * several times in the row.
4169 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
) {
4170 /* Before OOM, exhaust highatomic_reserve */
4171 return unreserve_highatomic_pageblock(ac
, true);
4175 * Keep reclaiming pages while there is a chance this will lead
4176 * somewhere. If none of the target zones can satisfy our allocation
4177 * request even if all reclaimable pages are considered then we are
4178 * screwed and have to go OOM.
4180 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
4182 unsigned long available
;
4183 unsigned long reclaimable
;
4184 unsigned long min_wmark
= min_wmark_pages(zone
);
4187 available
= reclaimable
= zone_reclaimable_pages(zone
);
4188 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
4191 * Would the allocation succeed if we reclaimed all
4192 * reclaimable pages?
4194 wmark
= __zone_watermark_ok(zone
, order
, min_wmark
,
4195 ac_classzone_idx(ac
), alloc_flags
, available
);
4196 trace_reclaim_retry_zone(z
, order
, reclaimable
,
4197 available
, min_wmark
, *no_progress_loops
, wmark
);
4200 * If we didn't make any progress and have a lot of
4201 * dirty + writeback pages then we should wait for
4202 * an IO to complete to slow down the reclaim and
4203 * prevent from pre mature OOM
4205 if (!did_some_progress
) {
4206 unsigned long write_pending
;
4208 write_pending
= zone_page_state_snapshot(zone
,
4209 NR_ZONE_WRITE_PENDING
);
4211 if (2 * write_pending
> reclaimable
) {
4212 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
4224 * Memory allocation/reclaim might be called from a WQ context and the
4225 * current implementation of the WQ concurrency control doesn't
4226 * recognize that a particular WQ is congested if the worker thread is
4227 * looping without ever sleeping. Therefore we have to do a short sleep
4228 * here rather than calling cond_resched().
4230 if (current
->flags
& PF_WQ_WORKER
)
4231 schedule_timeout_uninterruptible(1);
4238 check_retry_cpuset(int cpuset_mems_cookie
, struct alloc_context
*ac
)
4241 * It's possible that cpuset's mems_allowed and the nodemask from
4242 * mempolicy don't intersect. This should be normally dealt with by
4243 * policy_nodemask(), but it's possible to race with cpuset update in
4244 * such a way the check therein was true, and then it became false
4245 * before we got our cpuset_mems_cookie here.
4246 * This assumes that for all allocations, ac->nodemask can come only
4247 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4248 * when it does not intersect with the cpuset restrictions) or the
4249 * caller can deal with a violated nodemask.
4251 if (cpusets_enabled() && ac
->nodemask
&&
4252 !cpuset_nodemask_valid_mems_allowed(ac
->nodemask
)) {
4253 ac
->nodemask
= NULL
;
4258 * When updating a task's mems_allowed or mempolicy nodemask, it is
4259 * possible to race with parallel threads in such a way that our
4260 * allocation can fail while the mask is being updated. If we are about
4261 * to fail, check if the cpuset changed during allocation and if so,
4264 if (read_mems_allowed_retry(cpuset_mems_cookie
))
4270 static inline struct page
*
4271 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
4272 struct alloc_context
*ac
)
4274 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
4275 const bool costly_order
= order
> PAGE_ALLOC_COSTLY_ORDER
;
4276 struct page
*page
= NULL
;
4277 unsigned int alloc_flags
;
4278 unsigned long did_some_progress
;
4279 enum compact_priority compact_priority
;
4280 enum compact_result compact_result
;
4281 int compaction_retries
;
4282 int no_progress_loops
;
4283 unsigned int cpuset_mems_cookie
;
4287 * We also sanity check to catch abuse of atomic reserves being used by
4288 * callers that are not in atomic context.
4290 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
4291 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
4292 gfp_mask
&= ~__GFP_ATOMIC
;
4295 compaction_retries
= 0;
4296 no_progress_loops
= 0;
4297 compact_priority
= DEF_COMPACT_PRIORITY
;
4298 cpuset_mems_cookie
= read_mems_allowed_begin();
4301 * The fast path uses conservative alloc_flags to succeed only until
4302 * kswapd needs to be woken up, and to avoid the cost of setting up
4303 * alloc_flags precisely. So we do that now.
4305 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
4308 * We need to recalculate the starting point for the zonelist iterator
4309 * because we might have used different nodemask in the fast path, or
4310 * there was a cpuset modification and we are retrying - otherwise we
4311 * could end up iterating over non-eligible zones endlessly.
4313 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4314 ac
->high_zoneidx
, ac
->nodemask
);
4315 if (!ac
->preferred_zoneref
->zone
)
4318 if (alloc_flags
& ALLOC_KSWAPD
)
4319 wake_all_kswapds(order
, gfp_mask
, ac
);
4322 * The adjusted alloc_flags might result in immediate success, so try
4325 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4330 * For costly allocations, try direct compaction first, as it's likely
4331 * that we have enough base pages and don't need to reclaim. For non-
4332 * movable high-order allocations, do that as well, as compaction will
4333 * try prevent permanent fragmentation by migrating from blocks of the
4335 * Don't try this for allocations that are allowed to ignore
4336 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4338 if (can_direct_reclaim
&&
4340 (order
> 0 && ac
->migratetype
!= MIGRATE_MOVABLE
))
4341 && !gfp_pfmemalloc_allowed(gfp_mask
)) {
4342 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
4344 INIT_COMPACT_PRIORITY
,
4350 * Checks for costly allocations with __GFP_NORETRY, which
4351 * includes THP page fault allocations
4353 if (costly_order
&& (gfp_mask
& __GFP_NORETRY
)) {
4355 * If compaction is deferred for high-order allocations,
4356 * it is because sync compaction recently failed. If
4357 * this is the case and the caller requested a THP
4358 * allocation, we do not want to heavily disrupt the
4359 * system, so we fail the allocation instead of entering
4362 if (compact_result
== COMPACT_DEFERRED
)
4366 * Looks like reclaim/compaction is worth trying, but
4367 * sync compaction could be very expensive, so keep
4368 * using async compaction.
4370 compact_priority
= INIT_COMPACT_PRIORITY
;
4375 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4376 if (alloc_flags
& ALLOC_KSWAPD
)
4377 wake_all_kswapds(order
, gfp_mask
, ac
);
4379 reserve_flags
= __gfp_pfmemalloc_flags(gfp_mask
);
4381 alloc_flags
= reserve_flags
;
4384 * Reset the nodemask and zonelist iterators if memory policies can be
4385 * ignored. These allocations are high priority and system rather than
4388 if (!(alloc_flags
& ALLOC_CPUSET
) || reserve_flags
) {
4389 ac
->nodemask
= NULL
;
4390 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4391 ac
->high_zoneidx
, ac
->nodemask
);
4394 /* Attempt with potentially adjusted zonelist and alloc_flags */
4395 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4399 /* Caller is not willing to reclaim, we can't balance anything */
4400 if (!can_direct_reclaim
)
4403 /* Avoid recursion of direct reclaim */
4404 if (current
->flags
& PF_MEMALLOC
)
4407 /* Try direct reclaim and then allocating */
4408 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
4409 &did_some_progress
);
4413 /* Try direct compaction and then allocating */
4414 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
4415 compact_priority
, &compact_result
);
4419 /* Do not loop if specifically requested */
4420 if (gfp_mask
& __GFP_NORETRY
)
4424 * Do not retry costly high order allocations unless they are
4425 * __GFP_RETRY_MAYFAIL
4427 if (costly_order
&& !(gfp_mask
& __GFP_RETRY_MAYFAIL
))
4430 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
4431 did_some_progress
> 0, &no_progress_loops
))
4435 * It doesn't make any sense to retry for the compaction if the order-0
4436 * reclaim is not able to make any progress because the current
4437 * implementation of the compaction depends on the sufficient amount
4438 * of free memory (see __compaction_suitable)
4440 if (did_some_progress
> 0 &&
4441 should_compact_retry(ac
, order
, alloc_flags
,
4442 compact_result
, &compact_priority
,
4443 &compaction_retries
))
4447 /* Deal with possible cpuset update races before we start OOM killing */
4448 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4451 /* Reclaim has failed us, start killing things */
4452 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
4456 /* Avoid allocations with no watermarks from looping endlessly */
4457 if (tsk_is_oom_victim(current
) &&
4458 (alloc_flags
== ALLOC_OOM
||
4459 (gfp_mask
& __GFP_NOMEMALLOC
)))
4462 /* Retry as long as the OOM killer is making progress */
4463 if (did_some_progress
) {
4464 no_progress_loops
= 0;
4469 /* Deal with possible cpuset update races before we fail */
4470 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4474 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4477 if (gfp_mask
& __GFP_NOFAIL
) {
4479 * All existing users of the __GFP_NOFAIL are blockable, so warn
4480 * of any new users that actually require GFP_NOWAIT
4482 if (WARN_ON_ONCE(!can_direct_reclaim
))
4486 * PF_MEMALLOC request from this context is rather bizarre
4487 * because we cannot reclaim anything and only can loop waiting
4488 * for somebody to do a work for us
4490 WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
);
4493 * non failing costly orders are a hard requirement which we
4494 * are not prepared for much so let's warn about these users
4495 * so that we can identify them and convert them to something
4498 WARN_ON_ONCE(order
> PAGE_ALLOC_COSTLY_ORDER
);
4501 * Help non-failing allocations by giving them access to memory
4502 * reserves but do not use ALLOC_NO_WATERMARKS because this
4503 * could deplete whole memory reserves which would just make
4504 * the situation worse
4506 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
, ALLOC_HARDER
, ac
);
4514 warn_alloc(gfp_mask
, ac
->nodemask
,
4515 "page allocation failure: order:%u", order
);
4520 static inline bool prepare_alloc_pages(gfp_t gfp_mask
, unsigned int order
,
4521 int preferred_nid
, nodemask_t
*nodemask
,
4522 struct alloc_context
*ac
, gfp_t
*alloc_mask
,
4523 unsigned int *alloc_flags
)
4525 ac
->high_zoneidx
= gfp_zone(gfp_mask
);
4526 ac
->zonelist
= node_zonelist(preferred_nid
, gfp_mask
);
4527 ac
->nodemask
= nodemask
;
4528 ac
->migratetype
= gfpflags_to_migratetype(gfp_mask
);
4530 if (cpusets_enabled()) {
4531 *alloc_mask
|= __GFP_HARDWALL
;
4533 ac
->nodemask
= &cpuset_current_mems_allowed
;
4535 *alloc_flags
|= ALLOC_CPUSET
;
4538 fs_reclaim_acquire(gfp_mask
);
4539 fs_reclaim_release(gfp_mask
);
4541 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
4543 if (should_fail_alloc_page(gfp_mask
, order
))
4546 if (IS_ENABLED(CONFIG_CMA
) && ac
->migratetype
== MIGRATE_MOVABLE
)
4547 *alloc_flags
|= ALLOC_CMA
;
4552 /* Determine whether to spread dirty pages and what the first usable zone */
4553 static inline void finalise_ac(gfp_t gfp_mask
, struct alloc_context
*ac
)
4555 /* Dirty zone balancing only done in the fast path */
4556 ac
->spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
4559 * The preferred zone is used for statistics but crucially it is
4560 * also used as the starting point for the zonelist iterator. It
4561 * may get reset for allocations that ignore memory policies.
4563 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4564 ac
->high_zoneidx
, ac
->nodemask
);
4568 * This is the 'heart' of the zoned buddy allocator.
4571 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
, int preferred_nid
,
4572 nodemask_t
*nodemask
)
4575 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4576 gfp_t alloc_mask
; /* The gfp_t that was actually used for allocation */
4577 struct alloc_context ac
= { };
4580 * There are several places where we assume that the order value is sane
4581 * so bail out early if the request is out of bound.
4583 if (unlikely(order
>= MAX_ORDER
)) {
4584 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
4588 gfp_mask
&= gfp_allowed_mask
;
4589 alloc_mask
= gfp_mask
;
4590 if (!prepare_alloc_pages(gfp_mask
, order
, preferred_nid
, nodemask
, &ac
, &alloc_mask
, &alloc_flags
))
4593 finalise_ac(gfp_mask
, &ac
);
4596 * Forbid the first pass from falling back to types that fragment
4597 * memory until all local zones are considered.
4599 alloc_flags
|= alloc_flags_nofragment(ac
.preferred_zoneref
->zone
, gfp_mask
);
4601 /* First allocation attempt */
4602 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
4607 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4608 * resp. GFP_NOIO which has to be inherited for all allocation requests
4609 * from a particular context which has been marked by
4610 * memalloc_no{fs,io}_{save,restore}.
4612 alloc_mask
= current_gfp_context(gfp_mask
);
4613 ac
.spread_dirty_pages
= false;
4616 * Restore the original nodemask if it was potentially replaced with
4617 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4619 if (unlikely(ac
.nodemask
!= nodemask
))
4620 ac
.nodemask
= nodemask
;
4622 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
4625 if (memcg_kmem_enabled() && (gfp_mask
& __GFP_ACCOUNT
) && page
&&
4626 unlikely(__memcg_kmem_charge(page
, gfp_mask
, order
) != 0)) {
4627 __free_pages(page
, order
);
4631 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
4635 EXPORT_SYMBOL(__alloc_pages_nodemask
);
4638 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4639 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4640 * you need to access high mem.
4642 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
4646 page
= alloc_pages(gfp_mask
& ~__GFP_HIGHMEM
, order
);
4649 return (unsigned long) page_address(page
);
4651 EXPORT_SYMBOL(__get_free_pages
);
4653 unsigned long get_zeroed_page(gfp_t gfp_mask
)
4655 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
4657 EXPORT_SYMBOL(get_zeroed_page
);
4659 static inline void free_the_page(struct page
*page
, unsigned int order
)
4661 if (order
== 0) /* Via pcp? */
4662 free_unref_page(page
);
4664 __free_pages_ok(page
, order
);
4667 void __free_pages(struct page
*page
, unsigned int order
)
4669 if (put_page_testzero(page
))
4670 free_the_page(page
, order
);
4672 EXPORT_SYMBOL(__free_pages
);
4674 void free_pages(unsigned long addr
, unsigned int order
)
4677 VM_BUG_ON(!virt_addr_valid((void *)addr
));
4678 __free_pages(virt_to_page((void *)addr
), order
);
4682 EXPORT_SYMBOL(free_pages
);
4686 * An arbitrary-length arbitrary-offset area of memory which resides
4687 * within a 0 or higher order page. Multiple fragments within that page
4688 * are individually refcounted, in the page's reference counter.
4690 * The page_frag functions below provide a simple allocation framework for
4691 * page fragments. This is used by the network stack and network device
4692 * drivers to provide a backing region of memory for use as either an
4693 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4695 static struct page
*__page_frag_cache_refill(struct page_frag_cache
*nc
,
4698 struct page
*page
= NULL
;
4699 gfp_t gfp
= gfp_mask
;
4701 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4702 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
4704 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
4705 PAGE_FRAG_CACHE_MAX_ORDER
);
4706 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
4708 if (unlikely(!page
))
4709 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
4711 nc
->va
= page
? page_address(page
) : NULL
;
4716 void __page_frag_cache_drain(struct page
*page
, unsigned int count
)
4718 VM_BUG_ON_PAGE(page_ref_count(page
) == 0, page
);
4720 if (page_ref_sub_and_test(page
, count
))
4721 free_the_page(page
, compound_order(page
));
4723 EXPORT_SYMBOL(__page_frag_cache_drain
);
4725 void *page_frag_alloc(struct page_frag_cache
*nc
,
4726 unsigned int fragsz
, gfp_t gfp_mask
)
4728 unsigned int size
= PAGE_SIZE
;
4732 if (unlikely(!nc
->va
)) {
4734 page
= __page_frag_cache_refill(nc
, gfp_mask
);
4738 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4739 /* if size can vary use size else just use PAGE_SIZE */
4742 /* Even if we own the page, we do not use atomic_set().
4743 * This would break get_page_unless_zero() users.
4745 page_ref_add(page
, PAGE_FRAG_CACHE_MAX_SIZE
);
4747 /* reset page count bias and offset to start of new frag */
4748 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
4749 nc
->pagecnt_bias
= PAGE_FRAG_CACHE_MAX_SIZE
+ 1;
4753 offset
= nc
->offset
- fragsz
;
4754 if (unlikely(offset
< 0)) {
4755 page
= virt_to_page(nc
->va
);
4757 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
4760 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4761 /* if size can vary use size else just use PAGE_SIZE */
4764 /* OK, page count is 0, we can safely set it */
4765 set_page_count(page
, PAGE_FRAG_CACHE_MAX_SIZE
+ 1);
4767 /* reset page count bias and offset to start of new frag */
4768 nc
->pagecnt_bias
= PAGE_FRAG_CACHE_MAX_SIZE
+ 1;
4769 offset
= size
- fragsz
;
4773 nc
->offset
= offset
;
4775 return nc
->va
+ offset
;
4777 EXPORT_SYMBOL(page_frag_alloc
);
4780 * Frees a page fragment allocated out of either a compound or order 0 page.
4782 void page_frag_free(void *addr
)
4784 struct page
*page
= virt_to_head_page(addr
);
4786 if (unlikely(put_page_testzero(page
)))
4787 free_the_page(page
, compound_order(page
));
4789 EXPORT_SYMBOL(page_frag_free
);
4791 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4795 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
4796 unsigned long used
= addr
+ PAGE_ALIGN(size
);
4798 split_page(virt_to_page((void *)addr
), order
);
4799 while (used
< alloc_end
) {
4804 return (void *)addr
;
4808 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4809 * @size: the number of bytes to allocate
4810 * @gfp_mask: GFP flags for the allocation
4812 * This function is similar to alloc_pages(), except that it allocates the
4813 * minimum number of pages to satisfy the request. alloc_pages() can only
4814 * allocate memory in power-of-two pages.
4816 * This function is also limited by MAX_ORDER.
4818 * Memory allocated by this function must be released by free_pages_exact().
4820 * Return: pointer to the allocated area or %NULL in case of error.
4822 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
4824 unsigned int order
= get_order(size
);
4827 addr
= __get_free_pages(gfp_mask
, order
);
4828 return make_alloc_exact(addr
, order
, size
);
4830 EXPORT_SYMBOL(alloc_pages_exact
);
4833 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4835 * @nid: the preferred node ID where memory should be allocated
4836 * @size: the number of bytes to allocate
4837 * @gfp_mask: GFP flags for the allocation
4839 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4842 * Return: pointer to the allocated area or %NULL in case of error.
4844 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
4846 unsigned int order
= get_order(size
);
4847 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
4850 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
4854 * free_pages_exact - release memory allocated via alloc_pages_exact()
4855 * @virt: the value returned by alloc_pages_exact.
4856 * @size: size of allocation, same value as passed to alloc_pages_exact().
4858 * Release the memory allocated by a previous call to alloc_pages_exact.
4860 void free_pages_exact(void *virt
, size_t size
)
4862 unsigned long addr
= (unsigned long)virt
;
4863 unsigned long end
= addr
+ PAGE_ALIGN(size
);
4865 while (addr
< end
) {
4870 EXPORT_SYMBOL(free_pages_exact
);
4873 * nr_free_zone_pages - count number of pages beyond high watermark
4874 * @offset: The zone index of the highest zone
4876 * nr_free_zone_pages() counts the number of pages which are beyond the
4877 * high watermark within all zones at or below a given zone index. For each
4878 * zone, the number of pages is calculated as:
4880 * nr_free_zone_pages = managed_pages - high_pages
4882 * Return: number of pages beyond high watermark.
4884 static unsigned long nr_free_zone_pages(int offset
)
4889 /* Just pick one node, since fallback list is circular */
4890 unsigned long sum
= 0;
4892 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
4894 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
4895 unsigned long size
= zone_managed_pages(zone
);
4896 unsigned long high
= high_wmark_pages(zone
);
4905 * nr_free_buffer_pages - count number of pages beyond high watermark
4907 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4908 * watermark within ZONE_DMA and ZONE_NORMAL.
4910 * Return: number of pages beyond high watermark within ZONE_DMA and
4913 unsigned long nr_free_buffer_pages(void)
4915 return nr_free_zone_pages(gfp_zone(GFP_USER
));
4917 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
4920 * nr_free_pagecache_pages - count number of pages beyond high watermark
4922 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4923 * high watermark within all zones.
4925 * Return: number of pages beyond high watermark within all zones.
4927 unsigned long nr_free_pagecache_pages(void)
4929 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
4932 static inline void show_node(struct zone
*zone
)
4934 if (IS_ENABLED(CONFIG_NUMA
))
4935 printk("Node %d ", zone_to_nid(zone
));
4938 long si_mem_available(void)
4941 unsigned long pagecache
;
4942 unsigned long wmark_low
= 0;
4943 unsigned long pages
[NR_LRU_LISTS
];
4944 unsigned long reclaimable
;
4948 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
4949 pages
[lru
] = global_node_page_state(NR_LRU_BASE
+ lru
);
4952 wmark_low
+= low_wmark_pages(zone
);
4955 * Estimate the amount of memory available for userspace allocations,
4956 * without causing swapping.
4958 available
= global_zone_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
4961 * Not all the page cache can be freed, otherwise the system will
4962 * start swapping. Assume at least half of the page cache, or the
4963 * low watermark worth of cache, needs to stay.
4965 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
4966 pagecache
-= min(pagecache
/ 2, wmark_low
);
4967 available
+= pagecache
;
4970 * Part of the reclaimable slab and other kernel memory consists of
4971 * items that are in use, and cannot be freed. Cap this estimate at the
4974 reclaimable
= global_node_page_state(NR_SLAB_RECLAIMABLE
) +
4975 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE
);
4976 available
+= reclaimable
- min(reclaimable
/ 2, wmark_low
);
4982 EXPORT_SYMBOL_GPL(si_mem_available
);
4984 void si_meminfo(struct sysinfo
*val
)
4986 val
->totalram
= totalram_pages();
4987 val
->sharedram
= global_node_page_state(NR_SHMEM
);
4988 val
->freeram
= global_zone_page_state(NR_FREE_PAGES
);
4989 val
->bufferram
= nr_blockdev_pages();
4990 val
->totalhigh
= totalhigh_pages();
4991 val
->freehigh
= nr_free_highpages();
4992 val
->mem_unit
= PAGE_SIZE
;
4995 EXPORT_SYMBOL(si_meminfo
);
4998 void si_meminfo_node(struct sysinfo
*val
, int nid
)
5000 int zone_type
; /* needs to be signed */
5001 unsigned long managed_pages
= 0;
5002 unsigned long managed_highpages
= 0;
5003 unsigned long free_highpages
= 0;
5004 pg_data_t
*pgdat
= NODE_DATA(nid
);
5006 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
5007 managed_pages
+= zone_managed_pages(&pgdat
->node_zones
[zone_type
]);
5008 val
->totalram
= managed_pages
;
5009 val
->sharedram
= node_page_state(pgdat
, NR_SHMEM
);
5010 val
->freeram
= sum_zone_node_page_state(nid
, NR_FREE_PAGES
);
5011 #ifdef CONFIG_HIGHMEM
5012 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
5013 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5015 if (is_highmem(zone
)) {
5016 managed_highpages
+= zone_managed_pages(zone
);
5017 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
5020 val
->totalhigh
= managed_highpages
;
5021 val
->freehigh
= free_highpages
;
5023 val
->totalhigh
= managed_highpages
;
5024 val
->freehigh
= free_highpages
;
5026 val
->mem_unit
= PAGE_SIZE
;
5031 * Determine whether the node should be displayed or not, depending on whether
5032 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5034 static bool show_mem_node_skip(unsigned int flags
, int nid
, nodemask_t
*nodemask
)
5036 if (!(flags
& SHOW_MEM_FILTER_NODES
))
5040 * no node mask - aka implicit memory numa policy. Do not bother with
5041 * the synchronization - read_mems_allowed_begin - because we do not
5042 * have to be precise here.
5045 nodemask
= &cpuset_current_mems_allowed
;
5047 return !node_isset(nid
, *nodemask
);
5050 #define K(x) ((x) << (PAGE_SHIFT-10))
5052 static void show_migration_types(unsigned char type
)
5054 static const char types
[MIGRATE_TYPES
] = {
5055 [MIGRATE_UNMOVABLE
] = 'U',
5056 [MIGRATE_MOVABLE
] = 'M',
5057 [MIGRATE_RECLAIMABLE
] = 'E',
5058 [MIGRATE_HIGHATOMIC
] = 'H',
5060 [MIGRATE_CMA
] = 'C',
5062 #ifdef CONFIG_MEMORY_ISOLATION
5063 [MIGRATE_ISOLATE
] = 'I',
5066 char tmp
[MIGRATE_TYPES
+ 1];
5070 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
5071 if (type
& (1 << i
))
5076 printk(KERN_CONT
"(%s) ", tmp
);
5080 * Show free area list (used inside shift_scroll-lock stuff)
5081 * We also calculate the percentage fragmentation. We do this by counting the
5082 * memory on each free list with the exception of the first item on the list.
5085 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5088 void show_free_areas(unsigned int filter
, nodemask_t
*nodemask
)
5090 unsigned long free_pcp
= 0;
5095 for_each_populated_zone(zone
) {
5096 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5099 for_each_online_cpu(cpu
)
5100 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
5103 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5104 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5105 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5106 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5107 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5108 " free:%lu free_pcp:%lu free_cma:%lu\n",
5109 global_node_page_state(NR_ACTIVE_ANON
),
5110 global_node_page_state(NR_INACTIVE_ANON
),
5111 global_node_page_state(NR_ISOLATED_ANON
),
5112 global_node_page_state(NR_ACTIVE_FILE
),
5113 global_node_page_state(NR_INACTIVE_FILE
),
5114 global_node_page_state(NR_ISOLATED_FILE
),
5115 global_node_page_state(NR_UNEVICTABLE
),
5116 global_node_page_state(NR_FILE_DIRTY
),
5117 global_node_page_state(NR_WRITEBACK
),
5118 global_node_page_state(NR_UNSTABLE_NFS
),
5119 global_node_page_state(NR_SLAB_RECLAIMABLE
),
5120 global_node_page_state(NR_SLAB_UNRECLAIMABLE
),
5121 global_node_page_state(NR_FILE_MAPPED
),
5122 global_node_page_state(NR_SHMEM
),
5123 global_zone_page_state(NR_PAGETABLE
),
5124 global_zone_page_state(NR_BOUNCE
),
5125 global_zone_page_state(NR_FREE_PAGES
),
5127 global_zone_page_state(NR_FREE_CMA_PAGES
));
5129 for_each_online_pgdat(pgdat
) {
5130 if (show_mem_node_skip(filter
, pgdat
->node_id
, nodemask
))
5134 " active_anon:%lukB"
5135 " inactive_anon:%lukB"
5136 " active_file:%lukB"
5137 " inactive_file:%lukB"
5138 " unevictable:%lukB"
5139 " isolated(anon):%lukB"
5140 " isolated(file):%lukB"
5145 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5147 " shmem_pmdmapped: %lukB"
5150 " writeback_tmp:%lukB"
5152 " all_unreclaimable? %s"
5155 K(node_page_state(pgdat
, NR_ACTIVE_ANON
)),
5156 K(node_page_state(pgdat
, NR_INACTIVE_ANON
)),
5157 K(node_page_state(pgdat
, NR_ACTIVE_FILE
)),
5158 K(node_page_state(pgdat
, NR_INACTIVE_FILE
)),
5159 K(node_page_state(pgdat
, NR_UNEVICTABLE
)),
5160 K(node_page_state(pgdat
, NR_ISOLATED_ANON
)),
5161 K(node_page_state(pgdat
, NR_ISOLATED_FILE
)),
5162 K(node_page_state(pgdat
, NR_FILE_MAPPED
)),
5163 K(node_page_state(pgdat
, NR_FILE_DIRTY
)),
5164 K(node_page_state(pgdat
, NR_WRITEBACK
)),
5165 K(node_page_state(pgdat
, NR_SHMEM
)),
5166 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5167 K(node_page_state(pgdat
, NR_SHMEM_THPS
) * HPAGE_PMD_NR
),
5168 K(node_page_state(pgdat
, NR_SHMEM_PMDMAPPED
)
5170 K(node_page_state(pgdat
, NR_ANON_THPS
) * HPAGE_PMD_NR
),
5172 K(node_page_state(pgdat
, NR_WRITEBACK_TEMP
)),
5173 K(node_page_state(pgdat
, NR_UNSTABLE_NFS
)),
5174 pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
?
5178 for_each_populated_zone(zone
) {
5181 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5185 for_each_online_cpu(cpu
)
5186 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
5195 " active_anon:%lukB"
5196 " inactive_anon:%lukB"
5197 " active_file:%lukB"
5198 " inactive_file:%lukB"
5199 " unevictable:%lukB"
5200 " writepending:%lukB"
5204 " kernel_stack:%lukB"
5212 K(zone_page_state(zone
, NR_FREE_PAGES
)),
5213 K(min_wmark_pages(zone
)),
5214 K(low_wmark_pages(zone
)),
5215 K(high_wmark_pages(zone
)),
5216 K(zone_page_state(zone
, NR_ZONE_ACTIVE_ANON
)),
5217 K(zone_page_state(zone
, NR_ZONE_INACTIVE_ANON
)),
5218 K(zone_page_state(zone
, NR_ZONE_ACTIVE_FILE
)),
5219 K(zone_page_state(zone
, NR_ZONE_INACTIVE_FILE
)),
5220 K(zone_page_state(zone
, NR_ZONE_UNEVICTABLE
)),
5221 K(zone_page_state(zone
, NR_ZONE_WRITE_PENDING
)),
5222 K(zone
->present_pages
),
5223 K(zone_managed_pages(zone
)),
5224 K(zone_page_state(zone
, NR_MLOCK
)),
5225 zone_page_state(zone
, NR_KERNEL_STACK_KB
),
5226 K(zone_page_state(zone
, NR_PAGETABLE
)),
5227 K(zone_page_state(zone
, NR_BOUNCE
)),
5229 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
5230 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)));
5231 printk("lowmem_reserve[]:");
5232 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
5233 printk(KERN_CONT
" %ld", zone
->lowmem_reserve
[i
]);
5234 printk(KERN_CONT
"\n");
5237 for_each_populated_zone(zone
) {
5239 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
5240 unsigned char types
[MAX_ORDER
];
5242 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5245 printk(KERN_CONT
"%s: ", zone
->name
);
5247 spin_lock_irqsave(&zone
->lock
, flags
);
5248 for (order
= 0; order
< MAX_ORDER
; order
++) {
5249 struct free_area
*area
= &zone
->free_area
[order
];
5252 nr
[order
] = area
->nr_free
;
5253 total
+= nr
[order
] << order
;
5256 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
5257 if (!list_empty(&area
->free_list
[type
]))
5258 types
[order
] |= 1 << type
;
5261 spin_unlock_irqrestore(&zone
->lock
, flags
);
5262 for (order
= 0; order
< MAX_ORDER
; order
++) {
5263 printk(KERN_CONT
"%lu*%lukB ",
5264 nr
[order
], K(1UL) << order
);
5266 show_migration_types(types
[order
]);
5268 printk(KERN_CONT
"= %lukB\n", K(total
));
5271 hugetlb_show_meminfo();
5273 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES
));
5275 show_swap_cache_info();
5278 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
5280 zoneref
->zone
= zone
;
5281 zoneref
->zone_idx
= zone_idx(zone
);
5285 * Builds allocation fallback zone lists.
5287 * Add all populated zones of a node to the zonelist.
5289 static int build_zonerefs_node(pg_data_t
*pgdat
, struct zoneref
*zonerefs
)
5292 enum zone_type zone_type
= MAX_NR_ZONES
;
5297 zone
= pgdat
->node_zones
+ zone_type
;
5298 if (managed_zone(zone
)) {
5299 zoneref_set_zone(zone
, &zonerefs
[nr_zones
++]);
5300 check_highest_zone(zone_type
);
5302 } while (zone_type
);
5309 static int __parse_numa_zonelist_order(char *s
)
5312 * We used to support different zonlists modes but they turned
5313 * out to be just not useful. Let's keep the warning in place
5314 * if somebody still use the cmd line parameter so that we do
5315 * not fail it silently
5317 if (!(*s
== 'd' || *s
== 'D' || *s
== 'n' || *s
== 'N')) {
5318 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s
);
5324 static __init
int setup_numa_zonelist_order(char *s
)
5329 return __parse_numa_zonelist_order(s
);
5331 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
5333 char numa_zonelist_order
[] = "Node";
5336 * sysctl handler for numa_zonelist_order
5338 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
5339 void __user
*buffer
, size_t *length
,
5346 return proc_dostring(table
, write
, buffer
, length
, ppos
);
5347 str
= memdup_user_nul(buffer
, 16);
5349 return PTR_ERR(str
);
5351 ret
= __parse_numa_zonelist_order(str
);
5357 #define MAX_NODE_LOAD (nr_online_nodes)
5358 static int node_load
[MAX_NUMNODES
];
5361 * find_next_best_node - find the next node that should appear in a given node's fallback list
5362 * @node: node whose fallback list we're appending
5363 * @used_node_mask: nodemask_t of already used nodes
5365 * We use a number of factors to determine which is the next node that should
5366 * appear on a given node's fallback list. The node should not have appeared
5367 * already in @node's fallback list, and it should be the next closest node
5368 * according to the distance array (which contains arbitrary distance values
5369 * from each node to each node in the system), and should also prefer nodes
5370 * with no CPUs, since presumably they'll have very little allocation pressure
5371 * on them otherwise.
5373 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5375 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
5378 int min_val
= INT_MAX
;
5379 int best_node
= NUMA_NO_NODE
;
5380 const struct cpumask
*tmp
= cpumask_of_node(0);
5382 /* Use the local node if we haven't already */
5383 if (!node_isset(node
, *used_node_mask
)) {
5384 node_set(node
, *used_node_mask
);
5388 for_each_node_state(n
, N_MEMORY
) {
5390 /* Don't want a node to appear more than once */
5391 if (node_isset(n
, *used_node_mask
))
5394 /* Use the distance array to find the distance */
5395 val
= node_distance(node
, n
);
5397 /* Penalize nodes under us ("prefer the next node") */
5400 /* Give preference to headless and unused nodes */
5401 tmp
= cpumask_of_node(n
);
5402 if (!cpumask_empty(tmp
))
5403 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
5405 /* Slight preference for less loaded node */
5406 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
5407 val
+= node_load
[n
];
5409 if (val
< min_val
) {
5416 node_set(best_node
, *used_node_mask
);
5423 * Build zonelists ordered by node and zones within node.
5424 * This results in maximum locality--normal zone overflows into local
5425 * DMA zone, if any--but risks exhausting DMA zone.
5427 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int *node_order
,
5430 struct zoneref
*zonerefs
;
5433 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5435 for (i
= 0; i
< nr_nodes
; i
++) {
5438 pg_data_t
*node
= NODE_DATA(node_order
[i
]);
5440 nr_zones
= build_zonerefs_node(node
, zonerefs
);
5441 zonerefs
+= nr_zones
;
5443 zonerefs
->zone
= NULL
;
5444 zonerefs
->zone_idx
= 0;
5448 * Build gfp_thisnode zonelists
5450 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
5452 struct zoneref
*zonerefs
;
5455 zonerefs
= pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
]._zonerefs
;
5456 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5457 zonerefs
+= nr_zones
;
5458 zonerefs
->zone
= NULL
;
5459 zonerefs
->zone_idx
= 0;
5463 * Build zonelists ordered by zone and nodes within zones.
5464 * This results in conserving DMA zone[s] until all Normal memory is
5465 * exhausted, but results in overflowing to remote node while memory
5466 * may still exist in local DMA zone.
5469 static void build_zonelists(pg_data_t
*pgdat
)
5471 static int node_order
[MAX_NUMNODES
];
5472 int node
, load
, nr_nodes
= 0;
5473 nodemask_t used_mask
;
5474 int local_node
, prev_node
;
5476 /* NUMA-aware ordering of nodes */
5477 local_node
= pgdat
->node_id
;
5478 load
= nr_online_nodes
;
5479 prev_node
= local_node
;
5480 nodes_clear(used_mask
);
5482 memset(node_order
, 0, sizeof(node_order
));
5483 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
5485 * We don't want to pressure a particular node.
5486 * So adding penalty to the first node in same
5487 * distance group to make it round-robin.
5489 if (node_distance(local_node
, node
) !=
5490 node_distance(local_node
, prev_node
))
5491 node_load
[node
] = load
;
5493 node_order
[nr_nodes
++] = node
;
5498 build_zonelists_in_node_order(pgdat
, node_order
, nr_nodes
);
5499 build_thisnode_zonelists(pgdat
);
5502 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5504 * Return node id of node used for "local" allocations.
5505 * I.e., first node id of first zone in arg node's generic zonelist.
5506 * Used for initializing percpu 'numa_mem', which is used primarily
5507 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5509 int local_memory_node(int node
)
5513 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
5514 gfp_zone(GFP_KERNEL
),
5516 return zone_to_nid(z
->zone
);
5520 static void setup_min_unmapped_ratio(void);
5521 static void setup_min_slab_ratio(void);
5522 #else /* CONFIG_NUMA */
5524 static void build_zonelists(pg_data_t
*pgdat
)
5526 int node
, local_node
;
5527 struct zoneref
*zonerefs
;
5530 local_node
= pgdat
->node_id
;
5532 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5533 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5534 zonerefs
+= nr_zones
;
5537 * Now we build the zonelist so that it contains the zones
5538 * of all the other nodes.
5539 * We don't want to pressure a particular node, so when
5540 * building the zones for node N, we make sure that the
5541 * zones coming right after the local ones are those from
5542 * node N+1 (modulo N)
5544 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
5545 if (!node_online(node
))
5547 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5548 zonerefs
+= nr_zones
;
5550 for (node
= 0; node
< local_node
; node
++) {
5551 if (!node_online(node
))
5553 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5554 zonerefs
+= nr_zones
;
5557 zonerefs
->zone
= NULL
;
5558 zonerefs
->zone_idx
= 0;
5561 #endif /* CONFIG_NUMA */
5564 * Boot pageset table. One per cpu which is going to be used for all
5565 * zones and all nodes. The parameters will be set in such a way
5566 * that an item put on a list will immediately be handed over to
5567 * the buddy list. This is safe since pageset manipulation is done
5568 * with interrupts disabled.
5570 * The boot_pagesets must be kept even after bootup is complete for
5571 * unused processors and/or zones. They do play a role for bootstrapping
5572 * hotplugged processors.
5574 * zoneinfo_show() and maybe other functions do
5575 * not check if the processor is online before following the pageset pointer.
5576 * Other parts of the kernel may not check if the zone is available.
5578 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
5579 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
5580 static DEFINE_PER_CPU(struct per_cpu_nodestat
, boot_nodestats
);
5582 static void __build_all_zonelists(void *data
)
5585 int __maybe_unused cpu
;
5586 pg_data_t
*self
= data
;
5587 static DEFINE_SPINLOCK(lock
);
5592 memset(node_load
, 0, sizeof(node_load
));
5596 * This node is hotadded and no memory is yet present. So just
5597 * building zonelists is fine - no need to touch other nodes.
5599 if (self
&& !node_online(self
->node_id
)) {
5600 build_zonelists(self
);
5602 for_each_online_node(nid
) {
5603 pg_data_t
*pgdat
= NODE_DATA(nid
);
5605 build_zonelists(pgdat
);
5608 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5610 * We now know the "local memory node" for each node--
5611 * i.e., the node of the first zone in the generic zonelist.
5612 * Set up numa_mem percpu variable for on-line cpus. During
5613 * boot, only the boot cpu should be on-line; we'll init the
5614 * secondary cpus' numa_mem as they come on-line. During
5615 * node/memory hotplug, we'll fixup all on-line cpus.
5617 for_each_online_cpu(cpu
)
5618 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
5625 static noinline
void __init
5626 build_all_zonelists_init(void)
5630 __build_all_zonelists(NULL
);
5633 * Initialize the boot_pagesets that are going to be used
5634 * for bootstrapping processors. The real pagesets for
5635 * each zone will be allocated later when the per cpu
5636 * allocator is available.
5638 * boot_pagesets are used also for bootstrapping offline
5639 * cpus if the system is already booted because the pagesets
5640 * are needed to initialize allocators on a specific cpu too.
5641 * F.e. the percpu allocator needs the page allocator which
5642 * needs the percpu allocator in order to allocate its pagesets
5643 * (a chicken-egg dilemma).
5645 for_each_possible_cpu(cpu
)
5646 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
5648 mminit_verify_zonelist();
5649 cpuset_init_current_mems_allowed();
5653 * unless system_state == SYSTEM_BOOTING.
5655 * __ref due to call of __init annotated helper build_all_zonelists_init
5656 * [protected by SYSTEM_BOOTING].
5658 void __ref
build_all_zonelists(pg_data_t
*pgdat
)
5660 if (system_state
== SYSTEM_BOOTING
) {
5661 build_all_zonelists_init();
5663 __build_all_zonelists(pgdat
);
5664 /* cpuset refresh routine should be here */
5666 vm_total_pages
= nr_free_pagecache_pages();
5668 * Disable grouping by mobility if the number of pages in the
5669 * system is too low to allow the mechanism to work. It would be
5670 * more accurate, but expensive to check per-zone. This check is
5671 * made on memory-hotadd so a system can start with mobility
5672 * disabled and enable it later
5674 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5675 page_group_by_mobility_disabled
= 1;
5677 page_group_by_mobility_disabled
= 0;
5679 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5681 page_group_by_mobility_disabled
? "off" : "on",
5684 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5688 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5689 static bool __meminit
5690 overlap_memmap_init(unsigned long zone
, unsigned long *pfn
)
5692 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5693 static struct memblock_region
*r
;
5695 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
5696 if (!r
|| *pfn
>= memblock_region_memory_end_pfn(r
)) {
5697 for_each_memblock(memory
, r
) {
5698 if (*pfn
< memblock_region_memory_end_pfn(r
))
5702 if (*pfn
>= memblock_region_memory_base_pfn(r
) &&
5703 memblock_is_mirror(r
)) {
5704 *pfn
= memblock_region_memory_end_pfn(r
);
5713 * Initially all pages are reserved - free ones are freed
5714 * up by memblock_free_all() once the early boot process is
5715 * done. Non-atomic initialization, single-pass.
5717 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
5718 unsigned long start_pfn
, enum memmap_context context
,
5719 struct vmem_altmap
*altmap
)
5721 unsigned long pfn
, end_pfn
= start_pfn
+ size
;
5724 if (highest_memmap_pfn
< end_pfn
- 1)
5725 highest_memmap_pfn
= end_pfn
- 1;
5727 #ifdef CONFIG_ZONE_DEVICE
5729 * Honor reservation requested by the driver for this ZONE_DEVICE
5730 * memory. We limit the total number of pages to initialize to just
5731 * those that might contain the memory mapping. We will defer the
5732 * ZONE_DEVICE page initialization until after we have released
5735 if (zone
== ZONE_DEVICE
) {
5739 if (start_pfn
== altmap
->base_pfn
)
5740 start_pfn
+= altmap
->reserve
;
5741 end_pfn
= altmap
->base_pfn
+ vmem_altmap_offset(altmap
);
5745 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
5747 * There can be holes in boot-time mem_map[]s handed to this
5748 * function. They do not exist on hotplugged memory.
5750 if (context
== MEMMAP_EARLY
) {
5751 if (!early_pfn_valid(pfn
))
5753 if (!early_pfn_in_nid(pfn
, nid
))
5755 if (overlap_memmap_init(zone
, &pfn
))
5757 if (defer_init(nid
, pfn
, end_pfn
))
5761 page
= pfn_to_page(pfn
);
5762 __init_single_page(page
, pfn
, zone
, nid
);
5763 if (context
== MEMMAP_HOTPLUG
)
5764 __SetPageReserved(page
);
5767 * Mark the block movable so that blocks are reserved for
5768 * movable at startup. This will force kernel allocations
5769 * to reserve their blocks rather than leaking throughout
5770 * the address space during boot when many long-lived
5771 * kernel allocations are made.
5773 * bitmap is created for zone's valid pfn range. but memmap
5774 * can be created for invalid pages (for alignment)
5775 * check here not to call set_pageblock_migratetype() against
5778 if (!(pfn
& (pageblock_nr_pages
- 1))) {
5779 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5785 #ifdef CONFIG_ZONE_DEVICE
5786 void __ref
memmap_init_zone_device(struct zone
*zone
,
5787 unsigned long start_pfn
,
5789 struct dev_pagemap
*pgmap
)
5791 unsigned long pfn
, end_pfn
= start_pfn
+ size
;
5792 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
5793 unsigned long zone_idx
= zone_idx(zone
);
5794 unsigned long start
= jiffies
;
5795 int nid
= pgdat
->node_id
;
5797 if (WARN_ON_ONCE(!pgmap
|| !is_dev_zone(zone
)))
5801 * The call to memmap_init_zone should have already taken care
5802 * of the pages reserved for the memmap, so we can just jump to
5803 * the end of that region and start processing the device pages.
5805 if (pgmap
->altmap_valid
) {
5806 struct vmem_altmap
*altmap
= &pgmap
->altmap
;
5808 start_pfn
= altmap
->base_pfn
+ vmem_altmap_offset(altmap
);
5809 size
= end_pfn
- start_pfn
;
5812 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
5813 struct page
*page
= pfn_to_page(pfn
);
5815 __init_single_page(page
, pfn
, zone_idx
, nid
);
5818 * Mark page reserved as it will need to wait for onlining
5819 * phase for it to be fully associated with a zone.
5821 * We can use the non-atomic __set_bit operation for setting
5822 * the flag as we are still initializing the pages.
5824 __SetPageReserved(page
);
5827 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5828 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5829 * page is ever freed or placed on a driver-private list.
5831 page
->pgmap
= pgmap
;
5835 * Mark the block movable so that blocks are reserved for
5836 * movable at startup. This will force kernel allocations
5837 * to reserve their blocks rather than leaking throughout
5838 * the address space during boot when many long-lived
5839 * kernel allocations are made.
5841 * bitmap is created for zone's valid pfn range. but memmap
5842 * can be created for invalid pages (for alignment)
5843 * check here not to call set_pageblock_migratetype() against
5846 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5847 * because this is done early in sparse_add_one_section
5849 if (!(pfn
& (pageblock_nr_pages
- 1))) {
5850 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5855 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap
->dev
),
5856 size
, jiffies_to_msecs(jiffies
- start
));
5860 static void __meminit
zone_init_free_lists(struct zone
*zone
)
5862 unsigned int order
, t
;
5863 for_each_migratetype_order(order
, t
) {
5864 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
5865 zone
->free_area
[order
].nr_free
= 0;
5869 void __meminit __weak
memmap_init(unsigned long size
, int nid
,
5870 unsigned long zone
, unsigned long start_pfn
)
5872 memmap_init_zone(size
, nid
, zone
, start_pfn
, MEMMAP_EARLY
, NULL
);
5875 static int zone_batchsize(struct zone
*zone
)
5881 * The per-cpu-pages pools are set to around 1000th of the
5884 batch
= zone_managed_pages(zone
) / 1024;
5885 /* But no more than a meg. */
5886 if (batch
* PAGE_SIZE
> 1024 * 1024)
5887 batch
= (1024 * 1024) / PAGE_SIZE
;
5888 batch
/= 4; /* We effectively *= 4 below */
5893 * Clamp the batch to a 2^n - 1 value. Having a power
5894 * of 2 value was found to be more likely to have
5895 * suboptimal cache aliasing properties in some cases.
5897 * For example if 2 tasks are alternately allocating
5898 * batches of pages, one task can end up with a lot
5899 * of pages of one half of the possible page colors
5900 * and the other with pages of the other colors.
5902 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
5907 /* The deferral and batching of frees should be suppressed under NOMMU
5910 * The problem is that NOMMU needs to be able to allocate large chunks
5911 * of contiguous memory as there's no hardware page translation to
5912 * assemble apparent contiguous memory from discontiguous pages.
5914 * Queueing large contiguous runs of pages for batching, however,
5915 * causes the pages to actually be freed in smaller chunks. As there
5916 * can be a significant delay between the individual batches being
5917 * recycled, this leads to the once large chunks of space being
5918 * fragmented and becoming unavailable for high-order allocations.
5925 * pcp->high and pcp->batch values are related and dependent on one another:
5926 * ->batch must never be higher then ->high.
5927 * The following function updates them in a safe manner without read side
5930 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5931 * those fields changing asynchronously (acording the the above rule).
5933 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5934 * outside of boot time (or some other assurance that no concurrent updaters
5937 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
5938 unsigned long batch
)
5940 /* start with a fail safe value for batch */
5944 /* Update high, then batch, in order */
5951 /* a companion to pageset_set_high() */
5952 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
5954 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
5957 static void pageset_init(struct per_cpu_pageset
*p
)
5959 struct per_cpu_pages
*pcp
;
5962 memset(p
, 0, sizeof(*p
));
5965 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
5966 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
5969 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
5972 pageset_set_batch(p
, batch
);
5976 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5977 * to the value high for the pageset p.
5979 static void pageset_set_high(struct per_cpu_pageset
*p
,
5982 unsigned long batch
= max(1UL, high
/ 4);
5983 if ((high
/ 4) > (PAGE_SHIFT
* 8))
5984 batch
= PAGE_SHIFT
* 8;
5986 pageset_update(&p
->pcp
, high
, batch
);
5989 static void pageset_set_high_and_batch(struct zone
*zone
,
5990 struct per_cpu_pageset
*pcp
)
5992 if (percpu_pagelist_fraction
)
5993 pageset_set_high(pcp
,
5994 (zone_managed_pages(zone
) /
5995 percpu_pagelist_fraction
));
5997 pageset_set_batch(pcp
, zone_batchsize(zone
));
6000 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
6002 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
6005 pageset_set_high_and_batch(zone
, pcp
);
6008 void __meminit
setup_zone_pageset(struct zone
*zone
)
6011 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
6012 for_each_possible_cpu(cpu
)
6013 zone_pageset_init(zone
, cpu
);
6017 * Allocate per cpu pagesets and initialize them.
6018 * Before this call only boot pagesets were available.
6020 void __init
setup_per_cpu_pageset(void)
6022 struct pglist_data
*pgdat
;
6025 for_each_populated_zone(zone
)
6026 setup_zone_pageset(zone
);
6028 for_each_online_pgdat(pgdat
)
6029 pgdat
->per_cpu_nodestats
=
6030 alloc_percpu(struct per_cpu_nodestat
);
6033 static __meminit
void zone_pcp_init(struct zone
*zone
)
6036 * per cpu subsystem is not up at this point. The following code
6037 * relies on the ability of the linker to provide the
6038 * offset of a (static) per cpu variable into the per cpu area.
6040 zone
->pageset
= &boot_pageset
;
6042 if (populated_zone(zone
))
6043 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
6044 zone
->name
, zone
->present_pages
,
6045 zone_batchsize(zone
));
6048 void __meminit
init_currently_empty_zone(struct zone
*zone
,
6049 unsigned long zone_start_pfn
,
6052 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
6053 int zone_idx
= zone_idx(zone
) + 1;
6055 if (zone_idx
> pgdat
->nr_zones
)
6056 pgdat
->nr_zones
= zone_idx
;
6058 zone
->zone_start_pfn
= zone_start_pfn
;
6060 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
6061 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6063 (unsigned long)zone_idx(zone
),
6064 zone_start_pfn
, (zone_start_pfn
+ size
));
6066 zone_init_free_lists(zone
);
6067 zone
->initialized
= 1;
6070 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6071 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6074 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6076 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
6077 struct mminit_pfnnid_cache
*state
)
6079 unsigned long start_pfn
, end_pfn
;
6082 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
6083 return state
->last_nid
;
6085 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
6086 if (nid
!= NUMA_NO_NODE
) {
6087 state
->last_start
= start_pfn
;
6088 state
->last_end
= end_pfn
;
6089 state
->last_nid
= nid
;
6094 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6097 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6098 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6099 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6101 * If an architecture guarantees that all ranges registered contain no holes
6102 * and may be freed, this this function may be used instead of calling
6103 * memblock_free_early_nid() manually.
6105 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
6107 unsigned long start_pfn
, end_pfn
;
6110 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
6111 start_pfn
= min(start_pfn
, max_low_pfn
);
6112 end_pfn
= min(end_pfn
, max_low_pfn
);
6114 if (start_pfn
< end_pfn
)
6115 memblock_free_early_nid(PFN_PHYS(start_pfn
),
6116 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
6122 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6123 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6125 * If an architecture guarantees that all ranges registered contain no holes and may
6126 * be freed, this function may be used instead of calling memory_present() manually.
6128 void __init
sparse_memory_present_with_active_regions(int nid
)
6130 unsigned long start_pfn
, end_pfn
;
6133 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
6134 memory_present(this_nid
, start_pfn
, end_pfn
);
6138 * get_pfn_range_for_nid - Return the start and end page frames for a node
6139 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6140 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6141 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6143 * It returns the start and end page frame of a node based on information
6144 * provided by memblock_set_node(). If called for a node
6145 * with no available memory, a warning is printed and the start and end
6148 void __init
get_pfn_range_for_nid(unsigned int nid
,
6149 unsigned long *start_pfn
, unsigned long *end_pfn
)
6151 unsigned long this_start_pfn
, this_end_pfn
;
6157 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
6158 *start_pfn
= min(*start_pfn
, this_start_pfn
);
6159 *end_pfn
= max(*end_pfn
, this_end_pfn
);
6162 if (*start_pfn
== -1UL)
6167 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6168 * assumption is made that zones within a node are ordered in monotonic
6169 * increasing memory addresses so that the "highest" populated zone is used
6171 static void __init
find_usable_zone_for_movable(void)
6174 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
6175 if (zone_index
== ZONE_MOVABLE
)
6178 if (arch_zone_highest_possible_pfn
[zone_index
] >
6179 arch_zone_lowest_possible_pfn
[zone_index
])
6183 VM_BUG_ON(zone_index
== -1);
6184 movable_zone
= zone_index
;
6188 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6189 * because it is sized independent of architecture. Unlike the other zones,
6190 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6191 * in each node depending on the size of each node and how evenly kernelcore
6192 * is distributed. This helper function adjusts the zone ranges
6193 * provided by the architecture for a given node by using the end of the
6194 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6195 * zones within a node are in order of monotonic increases memory addresses
6197 static void __init
adjust_zone_range_for_zone_movable(int nid
,
6198 unsigned long zone_type
,
6199 unsigned long node_start_pfn
,
6200 unsigned long node_end_pfn
,
6201 unsigned long *zone_start_pfn
,
6202 unsigned long *zone_end_pfn
)
6204 /* Only adjust if ZONE_MOVABLE is on this node */
6205 if (zone_movable_pfn
[nid
]) {
6206 /* Size ZONE_MOVABLE */
6207 if (zone_type
== ZONE_MOVABLE
) {
6208 *zone_start_pfn
= zone_movable_pfn
[nid
];
6209 *zone_end_pfn
= min(node_end_pfn
,
6210 arch_zone_highest_possible_pfn
[movable_zone
]);
6212 /* Adjust for ZONE_MOVABLE starting within this range */
6213 } else if (!mirrored_kernelcore
&&
6214 *zone_start_pfn
< zone_movable_pfn
[nid
] &&
6215 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
6216 *zone_end_pfn
= zone_movable_pfn
[nid
];
6218 /* Check if this whole range is within ZONE_MOVABLE */
6219 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
6220 *zone_start_pfn
= *zone_end_pfn
;
6225 * Return the number of pages a zone spans in a node, including holes
6226 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6228 static unsigned long __init
zone_spanned_pages_in_node(int nid
,
6229 unsigned long zone_type
,
6230 unsigned long node_start_pfn
,
6231 unsigned long node_end_pfn
,
6232 unsigned long *zone_start_pfn
,
6233 unsigned long *zone_end_pfn
,
6234 unsigned long *ignored
)
6236 /* When hotadd a new node from cpu_up(), the node should be empty */
6237 if (!node_start_pfn
&& !node_end_pfn
)
6240 /* Get the start and end of the zone */
6241 *zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
6242 *zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
6243 adjust_zone_range_for_zone_movable(nid
, zone_type
,
6244 node_start_pfn
, node_end_pfn
,
6245 zone_start_pfn
, zone_end_pfn
);
6247 /* Check that this node has pages within the zone's required range */
6248 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
6251 /* Move the zone boundaries inside the node if necessary */
6252 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
6253 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
6255 /* Return the spanned pages */
6256 return *zone_end_pfn
- *zone_start_pfn
;
6260 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6261 * then all holes in the requested range will be accounted for.
6263 unsigned long __init
__absent_pages_in_range(int nid
,
6264 unsigned long range_start_pfn
,
6265 unsigned long range_end_pfn
)
6267 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
6268 unsigned long start_pfn
, end_pfn
;
6271 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6272 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
6273 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
6274 nr_absent
-= end_pfn
- start_pfn
;
6280 * absent_pages_in_range - Return number of page frames in holes within a range
6281 * @start_pfn: The start PFN to start searching for holes
6282 * @end_pfn: The end PFN to stop searching for holes
6284 * Return: the number of pages frames in memory holes within a range.
6286 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
6287 unsigned long end_pfn
)
6289 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
6292 /* Return the number of page frames in holes in a zone on a node */
6293 static unsigned long __init
zone_absent_pages_in_node(int nid
,
6294 unsigned long zone_type
,
6295 unsigned long node_start_pfn
,
6296 unsigned long node_end_pfn
,
6297 unsigned long *ignored
)
6299 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
6300 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
6301 unsigned long zone_start_pfn
, zone_end_pfn
;
6302 unsigned long nr_absent
;
6304 /* When hotadd a new node from cpu_up(), the node should be empty */
6305 if (!node_start_pfn
&& !node_end_pfn
)
6308 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
6309 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
6311 adjust_zone_range_for_zone_movable(nid
, zone_type
,
6312 node_start_pfn
, node_end_pfn
,
6313 &zone_start_pfn
, &zone_end_pfn
);
6314 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
6317 * ZONE_MOVABLE handling.
6318 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6321 if (mirrored_kernelcore
&& zone_movable_pfn
[nid
]) {
6322 unsigned long start_pfn
, end_pfn
;
6323 struct memblock_region
*r
;
6325 for_each_memblock(memory
, r
) {
6326 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
6327 zone_start_pfn
, zone_end_pfn
);
6328 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
6329 zone_start_pfn
, zone_end_pfn
);
6331 if (zone_type
== ZONE_MOVABLE
&&
6332 memblock_is_mirror(r
))
6333 nr_absent
+= end_pfn
- start_pfn
;
6335 if (zone_type
== ZONE_NORMAL
&&
6336 !memblock_is_mirror(r
))
6337 nr_absent
+= end_pfn
- start_pfn
;
6344 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6345 static inline unsigned long __init
zone_spanned_pages_in_node(int nid
,
6346 unsigned long zone_type
,
6347 unsigned long node_start_pfn
,
6348 unsigned long node_end_pfn
,
6349 unsigned long *zone_start_pfn
,
6350 unsigned long *zone_end_pfn
,
6351 unsigned long *zones_size
)
6355 *zone_start_pfn
= node_start_pfn
;
6356 for (zone
= 0; zone
< zone_type
; zone
++)
6357 *zone_start_pfn
+= zones_size
[zone
];
6359 *zone_end_pfn
= *zone_start_pfn
+ zones_size
[zone_type
];
6361 return zones_size
[zone_type
];
6364 static inline unsigned long __init
zone_absent_pages_in_node(int nid
,
6365 unsigned long zone_type
,
6366 unsigned long node_start_pfn
,
6367 unsigned long node_end_pfn
,
6368 unsigned long *zholes_size
)
6373 return zholes_size
[zone_type
];
6376 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6378 static void __init
calculate_node_totalpages(struct pglist_data
*pgdat
,
6379 unsigned long node_start_pfn
,
6380 unsigned long node_end_pfn
,
6381 unsigned long *zones_size
,
6382 unsigned long *zholes_size
)
6384 unsigned long realtotalpages
= 0, totalpages
= 0;
6387 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6388 struct zone
*zone
= pgdat
->node_zones
+ i
;
6389 unsigned long zone_start_pfn
, zone_end_pfn
;
6390 unsigned long size
, real_size
;
6392 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
6398 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
6399 node_start_pfn
, node_end_pfn
,
6402 zone
->zone_start_pfn
= zone_start_pfn
;
6404 zone
->zone_start_pfn
= 0;
6405 zone
->spanned_pages
= size
;
6406 zone
->present_pages
= real_size
;
6409 realtotalpages
+= real_size
;
6412 pgdat
->node_spanned_pages
= totalpages
;
6413 pgdat
->node_present_pages
= realtotalpages
;
6414 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
6418 #ifndef CONFIG_SPARSEMEM
6420 * Calculate the size of the zone->blockflags rounded to an unsigned long
6421 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6422 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6423 * round what is now in bits to nearest long in bits, then return it in
6426 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
6428 unsigned long usemapsize
;
6430 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
6431 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
6432 usemapsize
= usemapsize
>> pageblock_order
;
6433 usemapsize
*= NR_PAGEBLOCK_BITS
;
6434 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
6436 return usemapsize
/ 8;
6439 static void __ref
setup_usemap(struct pglist_data
*pgdat
,
6441 unsigned long zone_start_pfn
,
6442 unsigned long zonesize
)
6444 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
6445 zone
->pageblock_flags
= NULL
;
6447 zone
->pageblock_flags
=
6448 memblock_alloc_node(usemapsize
, SMP_CACHE_BYTES
,
6450 if (!zone
->pageblock_flags
)
6451 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6452 usemapsize
, zone
->name
, pgdat
->node_id
);
6456 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
6457 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
6458 #endif /* CONFIG_SPARSEMEM */
6460 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6462 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6463 void __init
set_pageblock_order(void)
6467 /* Check that pageblock_nr_pages has not already been setup */
6468 if (pageblock_order
)
6471 if (HPAGE_SHIFT
> PAGE_SHIFT
)
6472 order
= HUGETLB_PAGE_ORDER
;
6474 order
= MAX_ORDER
- 1;
6477 * Assume the largest contiguous order of interest is a huge page.
6478 * This value may be variable depending on boot parameters on IA64 and
6481 pageblock_order
= order
;
6483 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6486 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6487 * is unused as pageblock_order is set at compile-time. See
6488 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6491 void __init
set_pageblock_order(void)
6495 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6497 static unsigned long __init
calc_memmap_size(unsigned long spanned_pages
,
6498 unsigned long present_pages
)
6500 unsigned long pages
= spanned_pages
;
6503 * Provide a more accurate estimation if there are holes within
6504 * the zone and SPARSEMEM is in use. If there are holes within the
6505 * zone, each populated memory region may cost us one or two extra
6506 * memmap pages due to alignment because memmap pages for each
6507 * populated regions may not be naturally aligned on page boundary.
6508 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6510 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
6511 IS_ENABLED(CONFIG_SPARSEMEM
))
6512 pages
= present_pages
;
6514 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
6517 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6518 static void pgdat_init_split_queue(struct pglist_data
*pgdat
)
6520 spin_lock_init(&pgdat
->split_queue_lock
);
6521 INIT_LIST_HEAD(&pgdat
->split_queue
);
6522 pgdat
->split_queue_len
= 0;
6525 static void pgdat_init_split_queue(struct pglist_data
*pgdat
) {}
6528 #ifdef CONFIG_COMPACTION
6529 static void pgdat_init_kcompactd(struct pglist_data
*pgdat
)
6531 init_waitqueue_head(&pgdat
->kcompactd_wait
);
6534 static void pgdat_init_kcompactd(struct pglist_data
*pgdat
) {}
6537 static void __meminit
pgdat_init_internals(struct pglist_data
*pgdat
)
6539 pgdat_resize_init(pgdat
);
6541 pgdat_init_split_queue(pgdat
);
6542 pgdat_init_kcompactd(pgdat
);
6544 init_waitqueue_head(&pgdat
->kswapd_wait
);
6545 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
6547 pgdat_page_ext_init(pgdat
);
6548 spin_lock_init(&pgdat
->lru_lock
);
6549 lruvec_init(node_lruvec(pgdat
));
6552 static void __meminit
zone_init_internals(struct zone
*zone
, enum zone_type idx
, int nid
,
6553 unsigned long remaining_pages
)
6555 atomic_long_set(&zone
->managed_pages
, remaining_pages
);
6556 zone_set_nid(zone
, nid
);
6557 zone
->name
= zone_names
[idx
];
6558 zone
->zone_pgdat
= NODE_DATA(nid
);
6559 spin_lock_init(&zone
->lock
);
6560 zone_seqlock_init(zone
);
6561 zone_pcp_init(zone
);
6565 * Set up the zone data structures
6566 * - init pgdat internals
6567 * - init all zones belonging to this node
6569 * NOTE: this function is only called during memory hotplug
6571 #ifdef CONFIG_MEMORY_HOTPLUG
6572 void __ref
free_area_init_core_hotplug(int nid
)
6575 pg_data_t
*pgdat
= NODE_DATA(nid
);
6577 pgdat_init_internals(pgdat
);
6578 for (z
= 0; z
< MAX_NR_ZONES
; z
++)
6579 zone_init_internals(&pgdat
->node_zones
[z
], z
, nid
, 0);
6584 * Set up the zone data structures:
6585 * - mark all pages reserved
6586 * - mark all memory queues empty
6587 * - clear the memory bitmaps
6589 * NOTE: pgdat should get zeroed by caller.
6590 * NOTE: this function is only called during early init.
6592 static void __init
free_area_init_core(struct pglist_data
*pgdat
)
6595 int nid
= pgdat
->node_id
;
6597 pgdat_init_internals(pgdat
);
6598 pgdat
->per_cpu_nodestats
= &boot_nodestats
;
6600 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6601 struct zone
*zone
= pgdat
->node_zones
+ j
;
6602 unsigned long size
, freesize
, memmap_pages
;
6603 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
6605 size
= zone
->spanned_pages
;
6606 freesize
= zone
->present_pages
;
6609 * Adjust freesize so that it accounts for how much memory
6610 * is used by this zone for memmap. This affects the watermark
6611 * and per-cpu initialisations
6613 memmap_pages
= calc_memmap_size(size
, freesize
);
6614 if (!is_highmem_idx(j
)) {
6615 if (freesize
>= memmap_pages
) {
6616 freesize
-= memmap_pages
;
6619 " %s zone: %lu pages used for memmap\n",
6620 zone_names
[j
], memmap_pages
);
6622 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6623 zone_names
[j
], memmap_pages
, freesize
);
6626 /* Account for reserved pages */
6627 if (j
== 0 && freesize
> dma_reserve
) {
6628 freesize
-= dma_reserve
;
6629 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
6630 zone_names
[0], dma_reserve
);
6633 if (!is_highmem_idx(j
))
6634 nr_kernel_pages
+= freesize
;
6635 /* Charge for highmem memmap if there are enough kernel pages */
6636 else if (nr_kernel_pages
> memmap_pages
* 2)
6637 nr_kernel_pages
-= memmap_pages
;
6638 nr_all_pages
+= freesize
;
6641 * Set an approximate value for lowmem here, it will be adjusted
6642 * when the bootmem allocator frees pages into the buddy system.
6643 * And all highmem pages will be managed by the buddy system.
6645 zone_init_internals(zone
, j
, nid
, freesize
);
6650 set_pageblock_order();
6651 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
6652 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
6653 memmap_init(size
, nid
, j
, zone_start_pfn
);
6657 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6658 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
)
6660 unsigned long __maybe_unused start
= 0;
6661 unsigned long __maybe_unused offset
= 0;
6663 /* Skip empty nodes */
6664 if (!pgdat
->node_spanned_pages
)
6667 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
6668 offset
= pgdat
->node_start_pfn
- start
;
6669 /* ia64 gets its own node_mem_map, before this, without bootmem */
6670 if (!pgdat
->node_mem_map
) {
6671 unsigned long size
, end
;
6675 * The zone's endpoints aren't required to be MAX_ORDER
6676 * aligned but the node_mem_map endpoints must be in order
6677 * for the buddy allocator to function correctly.
6679 end
= pgdat_end_pfn(pgdat
);
6680 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
6681 size
= (end
- start
) * sizeof(struct page
);
6682 map
= memblock_alloc_node(size
, SMP_CACHE_BYTES
,
6685 panic("Failed to allocate %ld bytes for node %d memory map\n",
6686 size
, pgdat
->node_id
);
6687 pgdat
->node_mem_map
= map
+ offset
;
6689 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6690 __func__
, pgdat
->node_id
, (unsigned long)pgdat
,
6691 (unsigned long)pgdat
->node_mem_map
);
6692 #ifndef CONFIG_NEED_MULTIPLE_NODES
6694 * With no DISCONTIG, the global mem_map is just set as node 0's
6696 if (pgdat
== NODE_DATA(0)) {
6697 mem_map
= NODE_DATA(0)->node_mem_map
;
6698 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6699 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
6701 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6706 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
) { }
6707 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6709 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6710 static inline void pgdat_set_deferred_range(pg_data_t
*pgdat
)
6712 pgdat
->first_deferred_pfn
= ULONG_MAX
;
6715 static inline void pgdat_set_deferred_range(pg_data_t
*pgdat
) {}
6718 void __init
free_area_init_node(int nid
, unsigned long *zones_size
,
6719 unsigned long node_start_pfn
,
6720 unsigned long *zholes_size
)
6722 pg_data_t
*pgdat
= NODE_DATA(nid
);
6723 unsigned long start_pfn
= 0;
6724 unsigned long end_pfn
= 0;
6726 /* pg_data_t should be reset to zero when it's allocated */
6727 WARN_ON(pgdat
->nr_zones
|| pgdat
->kswapd_classzone_idx
);
6729 pgdat
->node_id
= nid
;
6730 pgdat
->node_start_pfn
= node_start_pfn
;
6731 pgdat
->per_cpu_nodestats
= NULL
;
6732 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6733 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
6734 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
6735 (u64
)start_pfn
<< PAGE_SHIFT
,
6736 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
6738 start_pfn
= node_start_pfn
;
6740 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
6741 zones_size
, zholes_size
);
6743 alloc_node_mem_map(pgdat
);
6744 pgdat_set_deferred_range(pgdat
);
6746 free_area_init_core(pgdat
);
6749 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6751 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6754 static u64
zero_pfn_range(unsigned long spfn
, unsigned long epfn
)
6759 for (pfn
= spfn
; pfn
< epfn
; pfn
++) {
6760 if (!pfn_valid(ALIGN_DOWN(pfn
, pageblock_nr_pages
))) {
6761 pfn
= ALIGN_DOWN(pfn
, pageblock_nr_pages
)
6762 + pageblock_nr_pages
- 1;
6765 mm_zero_struct_page(pfn_to_page(pfn
));
6773 * Only struct pages that are backed by physical memory are zeroed and
6774 * initialized by going through __init_single_page(). But, there are some
6775 * struct pages which are reserved in memblock allocator and their fields
6776 * may be accessed (for example page_to_pfn() on some configuration accesses
6777 * flags). We must explicitly zero those struct pages.
6779 * This function also addresses a similar issue where struct pages are left
6780 * uninitialized because the physical address range is not covered by
6781 * memblock.memory or memblock.reserved. That could happen when memblock
6782 * layout is manually configured via memmap=.
6784 void __init
zero_resv_unavail(void)
6786 phys_addr_t start
, end
;
6788 phys_addr_t next
= 0;
6791 * Loop through unavailable ranges not covered by memblock.memory.
6794 for_each_mem_range(i
, &memblock
.memory
, NULL
,
6795 NUMA_NO_NODE
, MEMBLOCK_NONE
, &start
, &end
, NULL
) {
6797 pgcnt
+= zero_pfn_range(PFN_DOWN(next
), PFN_UP(start
));
6800 pgcnt
+= zero_pfn_range(PFN_DOWN(next
), max_pfn
);
6803 * Struct pages that do not have backing memory. This could be because
6804 * firmware is using some of this memory, or for some other reasons.
6807 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt
);
6809 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6811 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6813 #if MAX_NUMNODES > 1
6815 * Figure out the number of possible node ids.
6817 void __init
setup_nr_node_ids(void)
6819 unsigned int highest
;
6821 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
6822 nr_node_ids
= highest
+ 1;
6827 * node_map_pfn_alignment - determine the maximum internode alignment
6829 * This function should be called after node map is populated and sorted.
6830 * It calculates the maximum power of two alignment which can distinguish
6833 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6834 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6835 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6836 * shifted, 1GiB is enough and this function will indicate so.
6838 * This is used to test whether pfn -> nid mapping of the chosen memory
6839 * model has fine enough granularity to avoid incorrect mapping for the
6840 * populated node map.
6842 * Return: the determined alignment in pfn's. 0 if there is no alignment
6843 * requirement (single node).
6845 unsigned long __init
node_map_pfn_alignment(void)
6847 unsigned long accl_mask
= 0, last_end
= 0;
6848 unsigned long start
, end
, mask
;
6849 int last_nid
= NUMA_NO_NODE
;
6852 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
6853 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
6860 * Start with a mask granular enough to pin-point to the
6861 * start pfn and tick off bits one-by-one until it becomes
6862 * too coarse to separate the current node from the last.
6864 mask
= ~((1 << __ffs(start
)) - 1);
6865 while (mask
&& last_end
<= (start
& (mask
<< 1)))
6868 /* accumulate all internode masks */
6872 /* convert mask to number of pages */
6873 return ~accl_mask
+ 1;
6876 /* Find the lowest pfn for a node */
6877 static unsigned long __init
find_min_pfn_for_node(int nid
)
6879 unsigned long min_pfn
= ULONG_MAX
;
6880 unsigned long start_pfn
;
6883 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
6884 min_pfn
= min(min_pfn
, start_pfn
);
6886 if (min_pfn
== ULONG_MAX
) {
6887 pr_warn("Could not find start_pfn for node %d\n", nid
);
6895 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6897 * Return: the minimum PFN based on information provided via
6898 * memblock_set_node().
6900 unsigned long __init
find_min_pfn_with_active_regions(void)
6902 return find_min_pfn_for_node(MAX_NUMNODES
);
6906 * early_calculate_totalpages()
6907 * Sum pages in active regions for movable zone.
6908 * Populate N_MEMORY for calculating usable_nodes.
6910 static unsigned long __init
early_calculate_totalpages(void)
6912 unsigned long totalpages
= 0;
6913 unsigned long start_pfn
, end_pfn
;
6916 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
6917 unsigned long pages
= end_pfn
- start_pfn
;
6919 totalpages
+= pages
;
6921 node_set_state(nid
, N_MEMORY
);
6927 * Find the PFN the Movable zone begins in each node. Kernel memory
6928 * is spread evenly between nodes as long as the nodes have enough
6929 * memory. When they don't, some nodes will have more kernelcore than
6932 static void __init
find_zone_movable_pfns_for_nodes(void)
6935 unsigned long usable_startpfn
;
6936 unsigned long kernelcore_node
, kernelcore_remaining
;
6937 /* save the state before borrow the nodemask */
6938 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
6939 unsigned long totalpages
= early_calculate_totalpages();
6940 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
6941 struct memblock_region
*r
;
6943 /* Need to find movable_zone earlier when movable_node is specified. */
6944 find_usable_zone_for_movable();
6947 * If movable_node is specified, ignore kernelcore and movablecore
6950 if (movable_node_is_enabled()) {
6951 for_each_memblock(memory
, r
) {
6952 if (!memblock_is_hotpluggable(r
))
6957 usable_startpfn
= PFN_DOWN(r
->base
);
6958 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6959 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6967 * If kernelcore=mirror is specified, ignore movablecore option
6969 if (mirrored_kernelcore
) {
6970 bool mem_below_4gb_not_mirrored
= false;
6972 for_each_memblock(memory
, r
) {
6973 if (memblock_is_mirror(r
))
6978 usable_startpfn
= memblock_region_memory_base_pfn(r
);
6980 if (usable_startpfn
< 0x100000) {
6981 mem_below_4gb_not_mirrored
= true;
6985 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6986 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6990 if (mem_below_4gb_not_mirrored
)
6991 pr_warn("This configuration results in unmirrored kernel memory.");
6997 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6998 * amount of necessary memory.
7000 if (required_kernelcore_percent
)
7001 required_kernelcore
= (totalpages
* 100 * required_kernelcore_percent
) /
7003 if (required_movablecore_percent
)
7004 required_movablecore
= (totalpages
* 100 * required_movablecore_percent
) /
7008 * If movablecore= was specified, calculate what size of
7009 * kernelcore that corresponds so that memory usable for
7010 * any allocation type is evenly spread. If both kernelcore
7011 * and movablecore are specified, then the value of kernelcore
7012 * will be used for required_kernelcore if it's greater than
7013 * what movablecore would have allowed.
7015 if (required_movablecore
) {
7016 unsigned long corepages
;
7019 * Round-up so that ZONE_MOVABLE is at least as large as what
7020 * was requested by the user
7022 required_movablecore
=
7023 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
7024 required_movablecore
= min(totalpages
, required_movablecore
);
7025 corepages
= totalpages
- required_movablecore
;
7027 required_kernelcore
= max(required_kernelcore
, corepages
);
7031 * If kernelcore was not specified or kernelcore size is larger
7032 * than totalpages, there is no ZONE_MOVABLE.
7034 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
7037 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7038 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
7041 /* Spread kernelcore memory as evenly as possible throughout nodes */
7042 kernelcore_node
= required_kernelcore
/ usable_nodes
;
7043 for_each_node_state(nid
, N_MEMORY
) {
7044 unsigned long start_pfn
, end_pfn
;
7047 * Recalculate kernelcore_node if the division per node
7048 * now exceeds what is necessary to satisfy the requested
7049 * amount of memory for the kernel
7051 if (required_kernelcore
< kernelcore_node
)
7052 kernelcore_node
= required_kernelcore
/ usable_nodes
;
7055 * As the map is walked, we track how much memory is usable
7056 * by the kernel using kernelcore_remaining. When it is
7057 * 0, the rest of the node is usable by ZONE_MOVABLE
7059 kernelcore_remaining
= kernelcore_node
;
7061 /* Go through each range of PFNs within this node */
7062 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
7063 unsigned long size_pages
;
7065 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
7066 if (start_pfn
>= end_pfn
)
7069 /* Account for what is only usable for kernelcore */
7070 if (start_pfn
< usable_startpfn
) {
7071 unsigned long kernel_pages
;
7072 kernel_pages
= min(end_pfn
, usable_startpfn
)
7075 kernelcore_remaining
-= min(kernel_pages
,
7076 kernelcore_remaining
);
7077 required_kernelcore
-= min(kernel_pages
,
7078 required_kernelcore
);
7080 /* Continue if range is now fully accounted */
7081 if (end_pfn
<= usable_startpfn
) {
7084 * Push zone_movable_pfn to the end so
7085 * that if we have to rebalance
7086 * kernelcore across nodes, we will
7087 * not double account here
7089 zone_movable_pfn
[nid
] = end_pfn
;
7092 start_pfn
= usable_startpfn
;
7096 * The usable PFN range for ZONE_MOVABLE is from
7097 * start_pfn->end_pfn. Calculate size_pages as the
7098 * number of pages used as kernelcore
7100 size_pages
= end_pfn
- start_pfn
;
7101 if (size_pages
> kernelcore_remaining
)
7102 size_pages
= kernelcore_remaining
;
7103 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
7106 * Some kernelcore has been met, update counts and
7107 * break if the kernelcore for this node has been
7110 required_kernelcore
-= min(required_kernelcore
,
7112 kernelcore_remaining
-= size_pages
;
7113 if (!kernelcore_remaining
)
7119 * If there is still required_kernelcore, we do another pass with one
7120 * less node in the count. This will push zone_movable_pfn[nid] further
7121 * along on the nodes that still have memory until kernelcore is
7125 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
7129 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7130 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
7131 zone_movable_pfn
[nid
] =
7132 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
7135 /* restore the node_state */
7136 node_states
[N_MEMORY
] = saved_node_state
;
7139 /* Any regular or high memory on that node ? */
7140 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
7142 enum zone_type zone_type
;
7144 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
7145 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
7146 if (populated_zone(zone
)) {
7147 if (IS_ENABLED(CONFIG_HIGHMEM
))
7148 node_set_state(nid
, N_HIGH_MEMORY
);
7149 if (zone_type
<= ZONE_NORMAL
)
7150 node_set_state(nid
, N_NORMAL_MEMORY
);
7157 * free_area_init_nodes - Initialise all pg_data_t and zone data
7158 * @max_zone_pfn: an array of max PFNs for each zone
7160 * This will call free_area_init_node() for each active node in the system.
7161 * Using the page ranges provided by memblock_set_node(), the size of each
7162 * zone in each node and their holes is calculated. If the maximum PFN
7163 * between two adjacent zones match, it is assumed that the zone is empty.
7164 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7165 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7166 * starts where the previous one ended. For example, ZONE_DMA32 starts
7167 * at arch_max_dma_pfn.
7169 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
7171 unsigned long start_pfn
, end_pfn
;
7174 /* Record where the zone boundaries are */
7175 memset(arch_zone_lowest_possible_pfn
, 0,
7176 sizeof(arch_zone_lowest_possible_pfn
));
7177 memset(arch_zone_highest_possible_pfn
, 0,
7178 sizeof(arch_zone_highest_possible_pfn
));
7180 start_pfn
= find_min_pfn_with_active_regions();
7182 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7183 if (i
== ZONE_MOVABLE
)
7186 end_pfn
= max(max_zone_pfn
[i
], start_pfn
);
7187 arch_zone_lowest_possible_pfn
[i
] = start_pfn
;
7188 arch_zone_highest_possible_pfn
[i
] = end_pfn
;
7190 start_pfn
= end_pfn
;
7193 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7194 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
7195 find_zone_movable_pfns_for_nodes();
7197 /* Print out the zone ranges */
7198 pr_info("Zone ranges:\n");
7199 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7200 if (i
== ZONE_MOVABLE
)
7202 pr_info(" %-8s ", zone_names
[i
]);
7203 if (arch_zone_lowest_possible_pfn
[i
] ==
7204 arch_zone_highest_possible_pfn
[i
])
7207 pr_cont("[mem %#018Lx-%#018Lx]\n",
7208 (u64
)arch_zone_lowest_possible_pfn
[i
]
7210 ((u64
)arch_zone_highest_possible_pfn
[i
]
7211 << PAGE_SHIFT
) - 1);
7214 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7215 pr_info("Movable zone start for each node\n");
7216 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
7217 if (zone_movable_pfn
[i
])
7218 pr_info(" Node %d: %#018Lx\n", i
,
7219 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
7222 /* Print out the early node map */
7223 pr_info("Early memory node ranges\n");
7224 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
7225 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
7226 (u64
)start_pfn
<< PAGE_SHIFT
,
7227 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
7229 /* Initialise every node */
7230 mminit_verify_pageflags_layout();
7231 setup_nr_node_ids();
7232 zero_resv_unavail();
7233 for_each_online_node(nid
) {
7234 pg_data_t
*pgdat
= NODE_DATA(nid
);
7235 free_area_init_node(nid
, NULL
,
7236 find_min_pfn_for_node(nid
), NULL
);
7238 /* Any memory on that node */
7239 if (pgdat
->node_present_pages
)
7240 node_set_state(nid
, N_MEMORY
);
7241 check_for_memory(pgdat
, nid
);
7245 static int __init
cmdline_parse_core(char *p
, unsigned long *core
,
7246 unsigned long *percent
)
7248 unsigned long long coremem
;
7254 /* Value may be a percentage of total memory, otherwise bytes */
7255 coremem
= simple_strtoull(p
, &endptr
, 0);
7256 if (*endptr
== '%') {
7257 /* Paranoid check for percent values greater than 100 */
7258 WARN_ON(coremem
> 100);
7262 coremem
= memparse(p
, &p
);
7263 /* Paranoid check that UL is enough for the coremem value */
7264 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
7266 *core
= coremem
>> PAGE_SHIFT
;
7273 * kernelcore=size sets the amount of memory for use for allocations that
7274 * cannot be reclaimed or migrated.
7276 static int __init
cmdline_parse_kernelcore(char *p
)
7278 /* parse kernelcore=mirror */
7279 if (parse_option_str(p
, "mirror")) {
7280 mirrored_kernelcore
= true;
7284 return cmdline_parse_core(p
, &required_kernelcore
,
7285 &required_kernelcore_percent
);
7289 * movablecore=size sets the amount of memory for use for allocations that
7290 * can be reclaimed or migrated.
7292 static int __init
cmdline_parse_movablecore(char *p
)
7294 return cmdline_parse_core(p
, &required_movablecore
,
7295 &required_movablecore_percent
);
7298 early_param("kernelcore", cmdline_parse_kernelcore
);
7299 early_param("movablecore", cmdline_parse_movablecore
);
7301 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7303 void adjust_managed_page_count(struct page
*page
, long count
)
7305 atomic_long_add(count
, &page_zone(page
)->managed_pages
);
7306 totalram_pages_add(count
);
7307 #ifdef CONFIG_HIGHMEM
7308 if (PageHighMem(page
))
7309 totalhigh_pages_add(count
);
7312 EXPORT_SYMBOL(adjust_managed_page_count
);
7314 unsigned long free_reserved_area(void *start
, void *end
, int poison
, const char *s
)
7317 unsigned long pages
= 0;
7319 start
= (void *)PAGE_ALIGN((unsigned long)start
);
7320 end
= (void *)((unsigned long)end
& PAGE_MASK
);
7321 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
7322 struct page
*page
= virt_to_page(pos
);
7323 void *direct_map_addr
;
7326 * 'direct_map_addr' might be different from 'pos'
7327 * because some architectures' virt_to_page()
7328 * work with aliases. Getting the direct map
7329 * address ensures that we get a _writeable_
7330 * alias for the memset().
7332 direct_map_addr
= page_address(page
);
7333 if ((unsigned int)poison
<= 0xFF)
7334 memset(direct_map_addr
, poison
, PAGE_SIZE
);
7336 free_reserved_page(page
);
7340 pr_info("Freeing %s memory: %ldK\n",
7341 s
, pages
<< (PAGE_SHIFT
- 10));
7346 #ifdef CONFIG_HIGHMEM
7347 void free_highmem_page(struct page
*page
)
7349 __free_reserved_page(page
);
7350 totalram_pages_inc();
7351 atomic_long_inc(&page_zone(page
)->managed_pages
);
7352 totalhigh_pages_inc();
7357 void __init
mem_init_print_info(const char *str
)
7359 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
7360 unsigned long init_code_size
, init_data_size
;
7362 physpages
= get_num_physpages();
7363 codesize
= _etext
- _stext
;
7364 datasize
= _edata
- _sdata
;
7365 rosize
= __end_rodata
- __start_rodata
;
7366 bss_size
= __bss_stop
- __bss_start
;
7367 init_data_size
= __init_end
- __init_begin
;
7368 init_code_size
= _einittext
- _sinittext
;
7371 * Detect special cases and adjust section sizes accordingly:
7372 * 1) .init.* may be embedded into .data sections
7373 * 2) .init.text.* may be out of [__init_begin, __init_end],
7374 * please refer to arch/tile/kernel/vmlinux.lds.S.
7375 * 3) .rodata.* may be embedded into .text or .data sections.
7377 #define adj_init_size(start, end, size, pos, adj) \
7379 if (start <= pos && pos < end && size > adj) \
7383 adj_init_size(__init_begin
, __init_end
, init_data_size
,
7384 _sinittext
, init_code_size
);
7385 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
7386 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
7387 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
7388 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
7390 #undef adj_init_size
7392 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7393 #ifdef CONFIG_HIGHMEM
7397 nr_free_pages() << (PAGE_SHIFT
- 10),
7398 physpages
<< (PAGE_SHIFT
- 10),
7399 codesize
>> 10, datasize
>> 10, rosize
>> 10,
7400 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
7401 (physpages
- totalram_pages() - totalcma_pages
) << (PAGE_SHIFT
- 10),
7402 totalcma_pages
<< (PAGE_SHIFT
- 10),
7403 #ifdef CONFIG_HIGHMEM
7404 totalhigh_pages() << (PAGE_SHIFT
- 10),
7406 str
? ", " : "", str
? str
: "");
7410 * set_dma_reserve - set the specified number of pages reserved in the first zone
7411 * @new_dma_reserve: The number of pages to mark reserved
7413 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7414 * In the DMA zone, a significant percentage may be consumed by kernel image
7415 * and other unfreeable allocations which can skew the watermarks badly. This
7416 * function may optionally be used to account for unfreeable pages in the
7417 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7418 * smaller per-cpu batchsize.
7420 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
7422 dma_reserve
= new_dma_reserve
;
7425 void __init
free_area_init(unsigned long *zones_size
)
7427 zero_resv_unavail();
7428 free_area_init_node(0, zones_size
,
7429 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
7432 static int page_alloc_cpu_dead(unsigned int cpu
)
7435 lru_add_drain_cpu(cpu
);
7439 * Spill the event counters of the dead processor
7440 * into the current processors event counters.
7441 * This artificially elevates the count of the current
7444 vm_events_fold_cpu(cpu
);
7447 * Zero the differential counters of the dead processor
7448 * so that the vm statistics are consistent.
7450 * This is only okay since the processor is dead and cannot
7451 * race with what we are doing.
7453 cpu_vm_stats_fold(cpu
);
7457 void __init
page_alloc_init(void)
7461 ret
= cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD
,
7462 "mm/page_alloc:dead", NULL
,
7463 page_alloc_cpu_dead
);
7468 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7469 * or min_free_kbytes changes.
7471 static void calculate_totalreserve_pages(void)
7473 struct pglist_data
*pgdat
;
7474 unsigned long reserve_pages
= 0;
7475 enum zone_type i
, j
;
7477 for_each_online_pgdat(pgdat
) {
7479 pgdat
->totalreserve_pages
= 0;
7481 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7482 struct zone
*zone
= pgdat
->node_zones
+ i
;
7484 unsigned long managed_pages
= zone_managed_pages(zone
);
7486 /* Find valid and maximum lowmem_reserve in the zone */
7487 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
7488 if (zone
->lowmem_reserve
[j
] > max
)
7489 max
= zone
->lowmem_reserve
[j
];
7492 /* we treat the high watermark as reserved pages. */
7493 max
+= high_wmark_pages(zone
);
7495 if (max
> managed_pages
)
7496 max
= managed_pages
;
7498 pgdat
->totalreserve_pages
+= max
;
7500 reserve_pages
+= max
;
7503 totalreserve_pages
= reserve_pages
;
7507 * setup_per_zone_lowmem_reserve - called whenever
7508 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7509 * has a correct pages reserved value, so an adequate number of
7510 * pages are left in the zone after a successful __alloc_pages().
7512 static void setup_per_zone_lowmem_reserve(void)
7514 struct pglist_data
*pgdat
;
7515 enum zone_type j
, idx
;
7517 for_each_online_pgdat(pgdat
) {
7518 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
7519 struct zone
*zone
= pgdat
->node_zones
+ j
;
7520 unsigned long managed_pages
= zone_managed_pages(zone
);
7522 zone
->lowmem_reserve
[j
] = 0;
7526 struct zone
*lower_zone
;
7529 lower_zone
= pgdat
->node_zones
+ idx
;
7531 if (sysctl_lowmem_reserve_ratio
[idx
] < 1) {
7532 sysctl_lowmem_reserve_ratio
[idx
] = 0;
7533 lower_zone
->lowmem_reserve
[j
] = 0;
7535 lower_zone
->lowmem_reserve
[j
] =
7536 managed_pages
/ sysctl_lowmem_reserve_ratio
[idx
];
7538 managed_pages
+= zone_managed_pages(lower_zone
);
7543 /* update totalreserve_pages */
7544 calculate_totalreserve_pages();
7547 static void __setup_per_zone_wmarks(void)
7549 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
7550 unsigned long lowmem_pages
= 0;
7552 unsigned long flags
;
7554 /* Calculate total number of !ZONE_HIGHMEM pages */
7555 for_each_zone(zone
) {
7556 if (!is_highmem(zone
))
7557 lowmem_pages
+= zone_managed_pages(zone
);
7560 for_each_zone(zone
) {
7563 spin_lock_irqsave(&zone
->lock
, flags
);
7564 tmp
= (u64
)pages_min
* zone_managed_pages(zone
);
7565 do_div(tmp
, lowmem_pages
);
7566 if (is_highmem(zone
)) {
7568 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7569 * need highmem pages, so cap pages_min to a small
7572 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7573 * deltas control async page reclaim, and so should
7574 * not be capped for highmem.
7576 unsigned long min_pages
;
7578 min_pages
= zone_managed_pages(zone
) / 1024;
7579 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
7580 zone
->_watermark
[WMARK_MIN
] = min_pages
;
7583 * If it's a lowmem zone, reserve a number of pages
7584 * proportionate to the zone's size.
7586 zone
->_watermark
[WMARK_MIN
] = tmp
;
7590 * Set the kswapd watermarks distance according to the
7591 * scale factor in proportion to available memory, but
7592 * ensure a minimum size on small systems.
7594 tmp
= max_t(u64
, tmp
>> 2,
7595 mult_frac(zone_managed_pages(zone
),
7596 watermark_scale_factor
, 10000));
7598 zone
->_watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
7599 zone
->_watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
7600 zone
->watermark_boost
= 0;
7602 spin_unlock_irqrestore(&zone
->lock
, flags
);
7605 /* update totalreserve_pages */
7606 calculate_totalreserve_pages();
7610 * setup_per_zone_wmarks - called when min_free_kbytes changes
7611 * or when memory is hot-{added|removed}
7613 * Ensures that the watermark[min,low,high] values for each zone are set
7614 * correctly with respect to min_free_kbytes.
7616 void setup_per_zone_wmarks(void)
7618 static DEFINE_SPINLOCK(lock
);
7621 __setup_per_zone_wmarks();
7626 * Initialise min_free_kbytes.
7628 * For small machines we want it small (128k min). For large machines
7629 * we want it large (64MB max). But it is not linear, because network
7630 * bandwidth does not increase linearly with machine size. We use
7632 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7633 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7649 int __meminit
init_per_zone_wmark_min(void)
7651 unsigned long lowmem_kbytes
;
7652 int new_min_free_kbytes
;
7654 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
7655 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
7657 if (new_min_free_kbytes
> user_min_free_kbytes
) {
7658 min_free_kbytes
= new_min_free_kbytes
;
7659 if (min_free_kbytes
< 128)
7660 min_free_kbytes
= 128;
7661 if (min_free_kbytes
> 65536)
7662 min_free_kbytes
= 65536;
7664 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7665 new_min_free_kbytes
, user_min_free_kbytes
);
7667 setup_per_zone_wmarks();
7668 refresh_zone_stat_thresholds();
7669 setup_per_zone_lowmem_reserve();
7672 setup_min_unmapped_ratio();
7673 setup_min_slab_ratio();
7678 core_initcall(init_per_zone_wmark_min
)
7681 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7682 * that we can call two helper functions whenever min_free_kbytes
7685 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
7686 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7690 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7695 user_min_free_kbytes
= min_free_kbytes
;
7696 setup_per_zone_wmarks();
7701 int watermark_boost_factor_sysctl_handler(struct ctl_table
*table
, int write
,
7702 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7706 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7713 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
7714 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7718 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7723 setup_per_zone_wmarks();
7729 static void setup_min_unmapped_ratio(void)
7734 for_each_online_pgdat(pgdat
)
7735 pgdat
->min_unmapped_pages
= 0;
7738 zone
->zone_pgdat
->min_unmapped_pages
+= (zone_managed_pages(zone
) *
7739 sysctl_min_unmapped_ratio
) / 100;
7743 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7744 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7748 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7752 setup_min_unmapped_ratio();
7757 static void setup_min_slab_ratio(void)
7762 for_each_online_pgdat(pgdat
)
7763 pgdat
->min_slab_pages
= 0;
7766 zone
->zone_pgdat
->min_slab_pages
+= (zone_managed_pages(zone
) *
7767 sysctl_min_slab_ratio
) / 100;
7770 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7771 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7775 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7779 setup_min_slab_ratio();
7786 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7787 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7788 * whenever sysctl_lowmem_reserve_ratio changes.
7790 * The reserve ratio obviously has absolutely no relation with the
7791 * minimum watermarks. The lowmem reserve ratio can only make sense
7792 * if in function of the boot time zone sizes.
7794 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7795 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7797 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7798 setup_per_zone_lowmem_reserve();
7803 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7804 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7805 * pagelist can have before it gets flushed back to buddy allocator.
7807 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
7808 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7811 int old_percpu_pagelist_fraction
;
7814 mutex_lock(&pcp_batch_high_lock
);
7815 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
7817 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7818 if (!write
|| ret
< 0)
7821 /* Sanity checking to avoid pcp imbalance */
7822 if (percpu_pagelist_fraction
&&
7823 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
7824 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
7830 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
7833 for_each_populated_zone(zone
) {
7836 for_each_possible_cpu(cpu
)
7837 pageset_set_high_and_batch(zone
,
7838 per_cpu_ptr(zone
->pageset
, cpu
));
7841 mutex_unlock(&pcp_batch_high_lock
);
7846 int hashdist
= HASHDIST_DEFAULT
;
7848 static int __init
set_hashdist(char *str
)
7852 hashdist
= simple_strtoul(str
, &str
, 0);
7855 __setup("hashdist=", set_hashdist
);
7858 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7860 * Returns the number of pages that arch has reserved but
7861 * is not known to alloc_large_system_hash().
7863 static unsigned long __init
arch_reserved_kernel_pages(void)
7870 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7871 * machines. As memory size is increased the scale is also increased but at
7872 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7873 * quadruples the scale is increased by one, which means the size of hash table
7874 * only doubles, instead of quadrupling as well.
7875 * Because 32-bit systems cannot have large physical memory, where this scaling
7876 * makes sense, it is disabled on such platforms.
7878 #if __BITS_PER_LONG > 32
7879 #define ADAPT_SCALE_BASE (64ul << 30)
7880 #define ADAPT_SCALE_SHIFT 2
7881 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7885 * allocate a large system hash table from bootmem
7886 * - it is assumed that the hash table must contain an exact power-of-2
7887 * quantity of entries
7888 * - limit is the number of hash buckets, not the total allocation size
7890 void *__init
alloc_large_system_hash(const char *tablename
,
7891 unsigned long bucketsize
,
7892 unsigned long numentries
,
7895 unsigned int *_hash_shift
,
7896 unsigned int *_hash_mask
,
7897 unsigned long low_limit
,
7898 unsigned long high_limit
)
7900 unsigned long long max
= high_limit
;
7901 unsigned long log2qty
, size
;
7905 /* allow the kernel cmdline to have a say */
7907 /* round applicable memory size up to nearest megabyte */
7908 numentries
= nr_kernel_pages
;
7909 numentries
-= arch_reserved_kernel_pages();
7911 /* It isn't necessary when PAGE_SIZE >= 1MB */
7912 if (PAGE_SHIFT
< 20)
7913 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
7915 #if __BITS_PER_LONG > 32
7917 unsigned long adapt
;
7919 for (adapt
= ADAPT_SCALE_NPAGES
; adapt
< numentries
;
7920 adapt
<<= ADAPT_SCALE_SHIFT
)
7925 /* limit to 1 bucket per 2^scale bytes of low memory */
7926 if (scale
> PAGE_SHIFT
)
7927 numentries
>>= (scale
- PAGE_SHIFT
);
7929 numentries
<<= (PAGE_SHIFT
- scale
);
7931 /* Make sure we've got at least a 0-order allocation.. */
7932 if (unlikely(flags
& HASH_SMALL
)) {
7933 /* Makes no sense without HASH_EARLY */
7934 WARN_ON(!(flags
& HASH_EARLY
));
7935 if (!(numentries
>> *_hash_shift
)) {
7936 numentries
= 1UL << *_hash_shift
;
7937 BUG_ON(!numentries
);
7939 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
7940 numentries
= PAGE_SIZE
/ bucketsize
;
7942 numentries
= roundup_pow_of_two(numentries
);
7944 /* limit allocation size to 1/16 total memory by default */
7946 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
7947 do_div(max
, bucketsize
);
7949 max
= min(max
, 0x80000000ULL
);
7951 if (numentries
< low_limit
)
7952 numentries
= low_limit
;
7953 if (numentries
> max
)
7956 log2qty
= ilog2(numentries
);
7958 gfp_flags
= (flags
& HASH_ZERO
) ? GFP_ATOMIC
| __GFP_ZERO
: GFP_ATOMIC
;
7960 size
= bucketsize
<< log2qty
;
7961 if (flags
& HASH_EARLY
) {
7962 if (flags
& HASH_ZERO
)
7963 table
= memblock_alloc(size
, SMP_CACHE_BYTES
);
7965 table
= memblock_alloc_raw(size
,
7967 } else if (hashdist
) {
7968 table
= __vmalloc(size
, gfp_flags
, PAGE_KERNEL
);
7971 * If bucketsize is not a power-of-two, we may free
7972 * some pages at the end of hash table which
7973 * alloc_pages_exact() automatically does
7975 if (get_order(size
) < MAX_ORDER
) {
7976 table
= alloc_pages_exact(size
, gfp_flags
);
7977 kmemleak_alloc(table
, size
, 1, gfp_flags
);
7980 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
7983 panic("Failed to allocate %s hash table\n", tablename
);
7985 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7986 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
);
7989 *_hash_shift
= log2qty
;
7991 *_hash_mask
= (1 << log2qty
) - 1;
7997 * This function checks whether pageblock includes unmovable pages or not.
7998 * If @count is not zero, it is okay to include less @count unmovable pages
8000 * PageLRU check without isolation or lru_lock could race so that
8001 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8002 * check without lock_page also may miss some movable non-lru pages at
8003 * race condition. So you can't expect this function should be exact.
8005 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
8006 int migratetype
, int flags
)
8008 unsigned long pfn
, iter
, found
;
8011 * TODO we could make this much more efficient by not checking every
8012 * page in the range if we know all of them are in MOVABLE_ZONE and
8013 * that the movable zone guarantees that pages are migratable but
8014 * the later is not the case right now unfortunatelly. E.g. movablecore
8015 * can still lead to having bootmem allocations in zone_movable.
8019 * CMA allocations (alloc_contig_range) really need to mark isolate
8020 * CMA pageblocks even when they are not movable in fact so consider
8021 * them movable here.
8023 if (is_migrate_cma(migratetype
) &&
8024 is_migrate_cma(get_pageblock_migratetype(page
)))
8027 pfn
= page_to_pfn(page
);
8028 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
8029 unsigned long check
= pfn
+ iter
;
8031 if (!pfn_valid_within(check
))
8034 page
= pfn_to_page(check
);
8036 if (PageReserved(page
))
8040 * If the zone is movable and we have ruled out all reserved
8041 * pages then it should be reasonably safe to assume the rest
8044 if (zone_idx(zone
) == ZONE_MOVABLE
)
8048 * Hugepages are not in LRU lists, but they're movable.
8049 * We need not scan over tail pages because we don't
8050 * handle each tail page individually in migration.
8052 if (PageHuge(page
)) {
8053 struct page
*head
= compound_head(page
);
8054 unsigned int skip_pages
;
8056 if (!hugepage_migration_supported(page_hstate(head
)))
8059 skip_pages
= (1 << compound_order(head
)) - (page
- head
);
8060 iter
+= skip_pages
- 1;
8065 * We can't use page_count without pin a page
8066 * because another CPU can free compound page.
8067 * This check already skips compound tails of THP
8068 * because their page->_refcount is zero at all time.
8070 if (!page_ref_count(page
)) {
8071 if (PageBuddy(page
))
8072 iter
+= (1 << page_order(page
)) - 1;
8077 * The HWPoisoned page may be not in buddy system, and
8078 * page_count() is not 0.
8080 if ((flags
& SKIP_HWPOISON
) && PageHWPoison(page
))
8083 if (__PageMovable(page
))
8089 * If there are RECLAIMABLE pages, we need to check
8090 * it. But now, memory offline itself doesn't call
8091 * shrink_node_slabs() and it still to be fixed.
8094 * If the page is not RAM, page_count()should be 0.
8095 * we don't need more check. This is an _used_ not-movable page.
8097 * The problematic thing here is PG_reserved pages. PG_reserved
8098 * is set to both of a memory hole page and a _used_ kernel
8106 WARN_ON_ONCE(zone_idx(zone
) == ZONE_MOVABLE
);
8107 if (flags
& REPORT_FAILURE
)
8108 dump_page(pfn_to_page(pfn
+iter
), "unmovable page");
8112 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
8114 static unsigned long pfn_max_align_down(unsigned long pfn
)
8116 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
8117 pageblock_nr_pages
) - 1);
8120 static unsigned long pfn_max_align_up(unsigned long pfn
)
8122 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
8123 pageblock_nr_pages
));
8126 /* [start, end) must belong to a single zone. */
8127 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
8128 unsigned long start
, unsigned long end
)
8130 /* This function is based on compact_zone() from compaction.c. */
8131 unsigned long nr_reclaimed
;
8132 unsigned long pfn
= start
;
8133 unsigned int tries
= 0;
8138 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
8139 if (fatal_signal_pending(current
)) {
8144 if (list_empty(&cc
->migratepages
)) {
8145 cc
->nr_migratepages
= 0;
8146 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
8152 } else if (++tries
== 5) {
8153 ret
= ret
< 0 ? ret
: -EBUSY
;
8157 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
8159 cc
->nr_migratepages
-= nr_reclaimed
;
8161 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
8162 NULL
, 0, cc
->mode
, MR_CONTIG_RANGE
);
8165 putback_movable_pages(&cc
->migratepages
);
8172 * alloc_contig_range() -- tries to allocate given range of pages
8173 * @start: start PFN to allocate
8174 * @end: one-past-the-last PFN to allocate
8175 * @migratetype: migratetype of the underlaying pageblocks (either
8176 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8177 * in range must have the same migratetype and it must
8178 * be either of the two.
8179 * @gfp_mask: GFP mask to use during compaction
8181 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8182 * aligned. The PFN range must belong to a single zone.
8184 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8185 * pageblocks in the range. Once isolated, the pageblocks should not
8186 * be modified by others.
8188 * Return: zero on success or negative error code. On success all
8189 * pages which PFN is in [start, end) are allocated for the caller and
8190 * need to be freed with free_contig_range().
8192 int alloc_contig_range(unsigned long start
, unsigned long end
,
8193 unsigned migratetype
, gfp_t gfp_mask
)
8195 unsigned long outer_start
, outer_end
;
8199 struct compact_control cc
= {
8200 .nr_migratepages
= 0,
8202 .zone
= page_zone(pfn_to_page(start
)),
8203 .mode
= MIGRATE_SYNC
,
8204 .ignore_skip_hint
= true,
8205 .no_set_skip_hint
= true,
8206 .gfp_mask
= current_gfp_context(gfp_mask
),
8208 INIT_LIST_HEAD(&cc
.migratepages
);
8211 * What we do here is we mark all pageblocks in range as
8212 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8213 * have different sizes, and due to the way page allocator
8214 * work, we align the range to biggest of the two pages so
8215 * that page allocator won't try to merge buddies from
8216 * different pageblocks and change MIGRATE_ISOLATE to some
8217 * other migration type.
8219 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8220 * migrate the pages from an unaligned range (ie. pages that
8221 * we are interested in). This will put all the pages in
8222 * range back to page allocator as MIGRATE_ISOLATE.
8224 * When this is done, we take the pages in range from page
8225 * allocator removing them from the buddy system. This way
8226 * page allocator will never consider using them.
8228 * This lets us mark the pageblocks back as
8229 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8230 * aligned range but not in the unaligned, original range are
8231 * put back to page allocator so that buddy can use them.
8234 ret
= start_isolate_page_range(pfn_max_align_down(start
),
8235 pfn_max_align_up(end
), migratetype
, 0);
8240 * In case of -EBUSY, we'd like to know which page causes problem.
8241 * So, just fall through. test_pages_isolated() has a tracepoint
8242 * which will report the busy page.
8244 * It is possible that busy pages could become available before
8245 * the call to test_pages_isolated, and the range will actually be
8246 * allocated. So, if we fall through be sure to clear ret so that
8247 * -EBUSY is not accidentally used or returned to caller.
8249 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
8250 if (ret
&& ret
!= -EBUSY
)
8255 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8256 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8257 * more, all pages in [start, end) are free in page allocator.
8258 * What we are going to do is to allocate all pages from
8259 * [start, end) (that is remove them from page allocator).
8261 * The only problem is that pages at the beginning and at the
8262 * end of interesting range may be not aligned with pages that
8263 * page allocator holds, ie. they can be part of higher order
8264 * pages. Because of this, we reserve the bigger range and
8265 * once this is done free the pages we are not interested in.
8267 * We don't have to hold zone->lock here because the pages are
8268 * isolated thus they won't get removed from buddy.
8271 lru_add_drain_all();
8274 outer_start
= start
;
8275 while (!PageBuddy(pfn_to_page(outer_start
))) {
8276 if (++order
>= MAX_ORDER
) {
8277 outer_start
= start
;
8280 outer_start
&= ~0UL << order
;
8283 if (outer_start
!= start
) {
8284 order
= page_order(pfn_to_page(outer_start
));
8287 * outer_start page could be small order buddy page and
8288 * it doesn't include start page. Adjust outer_start
8289 * in this case to report failed page properly
8290 * on tracepoint in test_pages_isolated()
8292 if (outer_start
+ (1UL << order
) <= start
)
8293 outer_start
= start
;
8296 /* Make sure the range is really isolated. */
8297 if (test_pages_isolated(outer_start
, end
, false)) {
8298 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8299 __func__
, outer_start
, end
);
8304 /* Grab isolated pages from freelists. */
8305 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
8311 /* Free head and tail (if any) */
8312 if (start
!= outer_start
)
8313 free_contig_range(outer_start
, start
- outer_start
);
8314 if (end
!= outer_end
)
8315 free_contig_range(end
, outer_end
- end
);
8318 undo_isolate_page_range(pfn_max_align_down(start
),
8319 pfn_max_align_up(end
), migratetype
);
8323 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
8325 unsigned int count
= 0;
8327 for (; nr_pages
--; pfn
++) {
8328 struct page
*page
= pfn_to_page(pfn
);
8330 count
+= page_count(page
) != 1;
8333 WARN(count
!= 0, "%d pages are still in use!\n", count
);
8337 #ifdef CONFIG_MEMORY_HOTPLUG
8339 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8340 * page high values need to be recalulated.
8342 void __meminit
zone_pcp_update(struct zone
*zone
)
8345 mutex_lock(&pcp_batch_high_lock
);
8346 for_each_possible_cpu(cpu
)
8347 pageset_set_high_and_batch(zone
,
8348 per_cpu_ptr(zone
->pageset
, cpu
));
8349 mutex_unlock(&pcp_batch_high_lock
);
8353 void zone_pcp_reset(struct zone
*zone
)
8355 unsigned long flags
;
8357 struct per_cpu_pageset
*pset
;
8359 /* avoid races with drain_pages() */
8360 local_irq_save(flags
);
8361 if (zone
->pageset
!= &boot_pageset
) {
8362 for_each_online_cpu(cpu
) {
8363 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
8364 drain_zonestat(zone
, pset
);
8366 free_percpu(zone
->pageset
);
8367 zone
->pageset
= &boot_pageset
;
8369 local_irq_restore(flags
);
8372 #ifdef CONFIG_MEMORY_HOTREMOVE
8374 * All pages in the range must be in a single zone and isolated
8375 * before calling this.
8378 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
8382 unsigned int order
, i
;
8384 unsigned long flags
;
8385 /* find the first valid pfn */
8386 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
8391 offline_mem_sections(pfn
, end_pfn
);
8392 zone
= page_zone(pfn_to_page(pfn
));
8393 spin_lock_irqsave(&zone
->lock
, flags
);
8395 while (pfn
< end_pfn
) {
8396 if (!pfn_valid(pfn
)) {
8400 page
= pfn_to_page(pfn
);
8402 * The HWPoisoned page may be not in buddy system, and
8403 * page_count() is not 0.
8405 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
8407 SetPageReserved(page
);
8411 BUG_ON(page_count(page
));
8412 BUG_ON(!PageBuddy(page
));
8413 order
= page_order(page
);
8414 #ifdef CONFIG_DEBUG_VM
8415 pr_info("remove from free list %lx %d %lx\n",
8416 pfn
, 1 << order
, end_pfn
);
8418 list_del(&page
->lru
);
8419 rmv_page_order(page
);
8420 zone
->free_area
[order
].nr_free
--;
8421 for (i
= 0; i
< (1 << order
); i
++)
8422 SetPageReserved((page
+i
));
8423 pfn
+= (1 << order
);
8425 spin_unlock_irqrestore(&zone
->lock
, flags
);
8429 bool is_free_buddy_page(struct page
*page
)
8431 struct zone
*zone
= page_zone(page
);
8432 unsigned long pfn
= page_to_pfn(page
);
8433 unsigned long flags
;
8436 spin_lock_irqsave(&zone
->lock
, flags
);
8437 for (order
= 0; order
< MAX_ORDER
; order
++) {
8438 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
8440 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
8443 spin_unlock_irqrestore(&zone
->lock
, flags
);
8445 return order
< MAX_ORDER
;
8448 #ifdef CONFIG_MEMORY_FAILURE
8450 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8451 * test is performed under the zone lock to prevent a race against page
8454 bool set_hwpoison_free_buddy_page(struct page
*page
)
8456 struct zone
*zone
= page_zone(page
);
8457 unsigned long pfn
= page_to_pfn(page
);
8458 unsigned long flags
;
8460 bool hwpoisoned
= false;
8462 spin_lock_irqsave(&zone
->lock
, flags
);
8463 for (order
= 0; order
< MAX_ORDER
; order
++) {
8464 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
8466 if (PageBuddy(page_head
) && page_order(page_head
) >= order
) {
8467 if (!TestSetPageHWPoison(page
))
8472 spin_unlock_irqrestore(&zone
->lock
, flags
);