2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
14 * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
17 * Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials provided
20 * with the distribution.
22 * Neither the name of the Network Appliance, Inc. nor the names of
23 * its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
43 * This file contains the guts of the RPC RDMA protocol, and
44 * does marshaling/unmarshaling, etc. It is also where interfacing
45 * to the Linux RPC framework lives.
48 #include "xprt_rdma.h"
50 #include <linux/highmem.h>
53 # define RPCDBG_FACILITY RPCDBG_TRANS
56 enum rpcrdma_chunktype
{
65 static const char transfertypes
[][12] = {
66 "pure inline", /* no chunks */
67 " read chunk", /* some argument via rdma read */
68 "*read chunk", /* entire request via rdma read */
69 "write chunk", /* some result via rdma write */
70 "reply chunk" /* entire reply via rdma write */
75 * Chunk assembly from upper layer xdr_buf.
77 * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
78 * elements. Segments are then coalesced when registered, if possible
79 * within the selected memreg mode.
81 * Note, this routine is never called if the connection's memory
82 * registration strategy is 0 (bounce buffers).
86 rpcrdma_convert_iovs(struct xdr_buf
*xdrbuf
, unsigned int pos
,
87 enum rpcrdma_chunktype type
, struct rpcrdma_mr_seg
*seg
, int nsegs
)
93 if (pos
== 0 && xdrbuf
->head
[0].iov_len
) {
94 seg
[n
].mr_page
= NULL
;
95 seg
[n
].mr_offset
= xdrbuf
->head
[0].iov_base
;
96 seg
[n
].mr_len
= xdrbuf
->head
[0].iov_len
;
100 len
= xdrbuf
->page_len
;
101 ppages
= xdrbuf
->pages
+ (xdrbuf
->page_base
>> PAGE_SHIFT
);
102 page_base
= xdrbuf
->page_base
& ~PAGE_MASK
;
104 while (len
&& n
< nsegs
) {
105 seg
[n
].mr_page
= ppages
[p
];
106 seg
[n
].mr_offset
= (void *)(unsigned long) page_base
;
107 seg
[n
].mr_len
= min_t(u32
, PAGE_SIZE
- page_base
, len
);
108 BUG_ON(seg
[n
].mr_len
> PAGE_SIZE
);
109 len
-= seg
[n
].mr_len
;
112 page_base
= 0; /* page offset only applies to first page */
115 /* Message overflows the seg array */
116 if (len
&& n
== nsegs
)
119 if (xdrbuf
->tail
[0].iov_len
) {
120 /* the rpcrdma protocol allows us to omit any trailing
121 * xdr pad bytes, saving the server an RDMA operation. */
122 if (xdrbuf
->tail
[0].iov_len
< 4 && xprt_rdma_pad_optimize
)
125 /* Tail remains, but we're out of segments */
127 seg
[n
].mr_page
= NULL
;
128 seg
[n
].mr_offset
= xdrbuf
->tail
[0].iov_base
;
129 seg
[n
].mr_len
= xdrbuf
->tail
[0].iov_len
;
137 * Create read/write chunk lists, and reply chunks, for RDMA
139 * Assume check against THRESHOLD has been done, and chunks are required.
140 * Assume only encoding one list entry for read|write chunks. The NFSv3
141 * protocol is simple enough to allow this as it only has a single "bulk
142 * result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
143 * RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
145 * When used for a single reply chunk (which is a special write
146 * chunk used for the entire reply, rather than just the data), it
147 * is used primarily for READDIR and READLINK which would otherwise
148 * be severely size-limited by a small rdma inline read max. The server
149 * response will come back as an RDMA Write, followed by a message
150 * of type RDMA_NOMSG carrying the xid and length. As a result, reply
151 * chunks do not provide data alignment, however they do not require
152 * "fixup" (moving the response to the upper layer buffer) either.
154 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
156 * Read chunklist (a linked list):
157 * N elements, position P (same P for all chunks of same arg!):
158 * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
160 * Write chunklist (a list of (one) counted array):
162 * 1 - N - HLOO - HLOO - ... - HLOO - 0
164 * Reply chunk (a counted array):
166 * 1 - N - HLOO - HLOO - ... - HLOO
170 rpcrdma_create_chunks(struct rpc_rqst
*rqst
, struct xdr_buf
*target
,
171 struct rpcrdma_msg
*headerp
, enum rpcrdma_chunktype type
)
173 struct rpcrdma_req
*req
= rpcr_to_rdmar(rqst
);
174 struct rpcrdma_xprt
*r_xprt
= rpcx_to_rdmax(rqst
->rq_task
->tk_xprt
);
175 int nsegs
, nchunks
= 0;
177 struct rpcrdma_mr_seg
*seg
= req
->rl_segments
;
178 struct rpcrdma_read_chunk
*cur_rchunk
= NULL
;
179 struct rpcrdma_write_array
*warray
= NULL
;
180 struct rpcrdma_write_chunk
*cur_wchunk
= NULL
;
181 __be32
*iptr
= headerp
->rm_body
.rm_chunks
;
183 if (type
== rpcrdma_readch
|| type
== rpcrdma_areadch
) {
184 /* a read chunk - server will RDMA Read our memory */
185 cur_rchunk
= (struct rpcrdma_read_chunk
*) iptr
;
187 /* a write or reply chunk - server will RDMA Write our memory */
188 *iptr
++ = xdr_zero
; /* encode a NULL read chunk list */
189 if (type
== rpcrdma_replych
)
190 *iptr
++ = xdr_zero
; /* a NULL write chunk list */
191 warray
= (struct rpcrdma_write_array
*) iptr
;
192 cur_wchunk
= (struct rpcrdma_write_chunk
*) (warray
+ 1);
195 if (type
== rpcrdma_replych
|| type
== rpcrdma_areadch
)
198 pos
= target
->head
[0].iov_len
;
200 nsegs
= rpcrdma_convert_iovs(target
, pos
, type
, seg
, RPCRDMA_MAX_SEGS
);
205 /* bind/register the memory, then build chunk from result. */
206 int n
= rpcrdma_register_external(seg
, nsegs
,
207 cur_wchunk
!= NULL
, r_xprt
);
210 if (cur_rchunk
) { /* read */
211 cur_rchunk
->rc_discrim
= xdr_one
;
212 /* all read chunks have the same "position" */
213 cur_rchunk
->rc_position
= htonl(pos
);
214 cur_rchunk
->rc_target
.rs_handle
= htonl(seg
->mr_rkey
);
215 cur_rchunk
->rc_target
.rs_length
= htonl(seg
->mr_len
);
217 (__be32
*)&cur_rchunk
->rc_target
.rs_offset
,
219 dprintk("RPC: %s: read chunk "
220 "elem %d@0x%llx:0x%x pos %u (%s)\n", __func__
,
221 seg
->mr_len
, (unsigned long long)seg
->mr_base
,
222 seg
->mr_rkey
, pos
, n
< nsegs
? "more" : "last");
224 r_xprt
->rx_stats
.read_chunk_count
++;
225 } else { /* write/reply */
226 cur_wchunk
->wc_target
.rs_handle
= htonl(seg
->mr_rkey
);
227 cur_wchunk
->wc_target
.rs_length
= htonl(seg
->mr_len
);
229 (__be32
*)&cur_wchunk
->wc_target
.rs_offset
,
231 dprintk("RPC: %s: %s chunk "
232 "elem %d@0x%llx:0x%x (%s)\n", __func__
,
233 (type
== rpcrdma_replych
) ? "reply" : "write",
234 seg
->mr_len
, (unsigned long long)seg
->mr_base
,
235 seg
->mr_rkey
, n
< nsegs
? "more" : "last");
237 if (type
== rpcrdma_replych
)
238 r_xprt
->rx_stats
.reply_chunk_count
++;
240 r_xprt
->rx_stats
.write_chunk_count
++;
241 r_xprt
->rx_stats
.total_rdma_request
+= seg
->mr_len
;
248 /* success. all failures return above */
249 req
->rl_nchunks
= nchunks
;
251 BUG_ON(nchunks
== 0);
252 BUG_ON((r_xprt
->rx_ia
.ri_memreg_strategy
== RPCRDMA_FRMR
)
256 * finish off header. If write, marshal discrim and nchunks.
259 iptr
= (__be32
*) cur_rchunk
;
260 *iptr
++ = xdr_zero
; /* finish the read chunk list */
261 *iptr
++ = xdr_zero
; /* encode a NULL write chunk list */
262 *iptr
++ = xdr_zero
; /* encode a NULL reply chunk */
264 warray
->wc_discrim
= xdr_one
;
265 warray
->wc_nchunks
= htonl(nchunks
);
266 iptr
= (__be32
*) cur_wchunk
;
267 if (type
== rpcrdma_writech
) {
268 *iptr
++ = xdr_zero
; /* finish the write chunk list */
269 *iptr
++ = xdr_zero
; /* encode a NULL reply chunk */
274 * Return header size.
276 return (unsigned char *)iptr
- (unsigned char *)headerp
;
279 for (pos
= 0; nchunks
--;)
280 pos
+= rpcrdma_deregister_external(
281 &req
->rl_segments
[pos
], r_xprt
, NULL
);
286 * Copy write data inline.
287 * This function is used for "small" requests. Data which is passed
288 * to RPC via iovecs (or page list) is copied directly into the
289 * pre-registered memory buffer for this request. For small amounts
290 * of data, this is efficient. The cutoff value is tunable.
293 rpcrdma_inline_pullup(struct rpc_rqst
*rqst
, int pad
)
295 int i
, npages
, curlen
;
297 unsigned char *srcp
, *destp
;
298 struct rpcrdma_xprt
*r_xprt
= rpcx_to_rdmax(rqst
->rq_xprt
);
300 struct page
**ppages
;
302 destp
= rqst
->rq_svec
[0].iov_base
;
303 curlen
= rqst
->rq_svec
[0].iov_len
;
306 * Do optional padding where it makes sense. Alignment of write
307 * payload can help the server, if our setting is accurate.
309 pad
-= (curlen
+ 36/*sizeof(struct rpcrdma_msg_padded)*/);
310 if (pad
< 0 || rqst
->rq_slen
- curlen
< RPCRDMA_INLINE_PAD_THRESH
)
311 pad
= 0; /* don't pad this request */
313 dprintk("RPC: %s: pad %d destp 0x%p len %d hdrlen %d\n",
314 __func__
, pad
, destp
, rqst
->rq_slen
, curlen
);
316 copy_len
= rqst
->rq_snd_buf
.page_len
;
318 if (rqst
->rq_snd_buf
.tail
[0].iov_len
) {
319 curlen
= rqst
->rq_snd_buf
.tail
[0].iov_len
;
320 if (destp
+ copy_len
!= rqst
->rq_snd_buf
.tail
[0].iov_base
) {
321 memmove(destp
+ copy_len
,
322 rqst
->rq_snd_buf
.tail
[0].iov_base
, curlen
);
323 r_xprt
->rx_stats
.pullup_copy_count
+= curlen
;
325 dprintk("RPC: %s: tail destp 0x%p len %d\n",
326 __func__
, destp
+ copy_len
, curlen
);
327 rqst
->rq_svec
[0].iov_len
+= curlen
;
329 r_xprt
->rx_stats
.pullup_copy_count
+= copy_len
;
331 page_base
= rqst
->rq_snd_buf
.page_base
;
332 ppages
= rqst
->rq_snd_buf
.pages
+ (page_base
>> PAGE_SHIFT
);
333 page_base
&= ~PAGE_MASK
;
334 npages
= PAGE_ALIGN(page_base
+copy_len
) >> PAGE_SHIFT
;
335 for (i
= 0; copy_len
&& i
< npages
; i
++) {
336 curlen
= PAGE_SIZE
- page_base
;
337 if (curlen
> copy_len
)
339 dprintk("RPC: %s: page %d destp 0x%p len %d curlen %d\n",
340 __func__
, i
, destp
, copy_len
, curlen
);
341 srcp
= kmap_atomic(ppages
[i
], KM_SKB_SUNRPC_DATA
);
342 memcpy(destp
, srcp
+page_base
, curlen
);
343 kunmap_atomic(srcp
, KM_SKB_SUNRPC_DATA
);
344 rqst
->rq_svec
[0].iov_len
+= curlen
;
349 /* header now contains entire send message */
354 * Marshal a request: the primary job of this routine is to choose
355 * the transfer modes. See comments below.
357 * Uses multiple RDMA IOVs for a request:
358 * [0] -- RPC RDMA header, which uses memory from the *start* of the
359 * preregistered buffer that already holds the RPC data in
361 * [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
362 * [2] -- optional padding.
363 * [3] -- if padded, header only in [1] and data here.
367 rpcrdma_marshal_req(struct rpc_rqst
*rqst
)
369 struct rpc_xprt
*xprt
= rqst
->rq_task
->tk_xprt
;
370 struct rpcrdma_xprt
*r_xprt
= rpcx_to_rdmax(xprt
);
371 struct rpcrdma_req
*req
= rpcr_to_rdmar(rqst
);
373 size_t hdrlen
, rpclen
, padlen
;
374 enum rpcrdma_chunktype rtype
, wtype
;
375 struct rpcrdma_msg
*headerp
;
378 * rpclen gets amount of data in first buffer, which is the
379 * pre-registered buffer.
381 base
= rqst
->rq_svec
[0].iov_base
;
382 rpclen
= rqst
->rq_svec
[0].iov_len
;
384 /* build RDMA header in private area at front */
385 headerp
= (struct rpcrdma_msg
*) req
->rl_base
;
386 /* don't htonl XID, it's already done in request */
387 headerp
->rm_xid
= rqst
->rq_xid
;
388 headerp
->rm_vers
= xdr_one
;
389 headerp
->rm_credit
= htonl(r_xprt
->rx_buf
.rb_max_requests
);
390 headerp
->rm_type
= htonl(RDMA_MSG
);
393 * Chunks needed for results?
395 * o If the expected result is under the inline threshold, all ops
396 * return as inline (but see later).
397 * o Large non-read ops return as a single reply chunk.
398 * o Large read ops return data as write chunk(s), header as inline.
400 * Note: the NFS code sending down multiple result segments implies
401 * the op is one of read, readdir[plus], readlink or NFSv4 getacl.
405 * This code can handle read chunks, write chunks OR reply
406 * chunks -- only one type. If the request is too big to fit
407 * inline, then we will choose read chunks. If the request is
408 * a READ, then use write chunks to separate the file data
409 * into pages; otherwise use reply chunks.
411 if (rqst
->rq_rcv_buf
.buflen
<= RPCRDMA_INLINE_READ_THRESHOLD(rqst
))
412 wtype
= rpcrdma_noch
;
413 else if (rqst
->rq_rcv_buf
.page_len
== 0)
414 wtype
= rpcrdma_replych
;
415 else if (rqst
->rq_rcv_buf
.flags
& XDRBUF_READ
)
416 wtype
= rpcrdma_writech
;
418 wtype
= rpcrdma_replych
;
421 * Chunks needed for arguments?
423 * o If the total request is under the inline threshold, all ops
424 * are sent as inline.
425 * o Large non-write ops are sent with the entire message as a
426 * single read chunk (protocol 0-position special case).
427 * o Large write ops transmit data as read chunk(s), header as
430 * Note: the NFS code sending down multiple argument segments
431 * implies the op is a write.
432 * TBD check NFSv4 setacl
434 if (rqst
->rq_snd_buf
.len
<= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst
))
435 rtype
= rpcrdma_noch
;
436 else if (rqst
->rq_snd_buf
.page_len
== 0)
437 rtype
= rpcrdma_areadch
;
439 rtype
= rpcrdma_readch
;
441 /* The following simplification is not true forever */
442 if (rtype
!= rpcrdma_noch
&& wtype
== rpcrdma_replych
)
443 wtype
= rpcrdma_noch
;
444 BUG_ON(rtype
!= rpcrdma_noch
&& wtype
!= rpcrdma_noch
);
446 if (r_xprt
->rx_ia
.ri_memreg_strategy
== RPCRDMA_BOUNCEBUFFERS
&&
447 (rtype
!= rpcrdma_noch
|| wtype
!= rpcrdma_noch
)) {
448 /* forced to "pure inline"? */
449 dprintk("RPC: %s: too much data (%d/%d) for inline\n",
450 __func__
, rqst
->rq_rcv_buf
.len
, rqst
->rq_snd_buf
.len
);
454 hdrlen
= 28; /*sizeof *headerp;*/
458 * Pull up any extra send data into the preregistered buffer.
459 * When padding is in use and applies to the transfer, insert
460 * it and change the message type.
462 if (rtype
== rpcrdma_noch
) {
464 padlen
= rpcrdma_inline_pullup(rqst
,
465 RPCRDMA_INLINE_PAD_VALUE(rqst
));
468 headerp
->rm_type
= htonl(RDMA_MSGP
);
469 headerp
->rm_body
.rm_padded
.rm_align
=
470 htonl(RPCRDMA_INLINE_PAD_VALUE(rqst
));
471 headerp
->rm_body
.rm_padded
.rm_thresh
=
472 htonl(RPCRDMA_INLINE_PAD_THRESH
);
473 headerp
->rm_body
.rm_padded
.rm_pempty
[0] = xdr_zero
;
474 headerp
->rm_body
.rm_padded
.rm_pempty
[1] = xdr_zero
;
475 headerp
->rm_body
.rm_padded
.rm_pempty
[2] = xdr_zero
;
476 hdrlen
+= 2 * sizeof(u32
); /* extra words in padhdr */
477 BUG_ON(wtype
!= rpcrdma_noch
);
480 headerp
->rm_body
.rm_nochunks
.rm_empty
[0] = xdr_zero
;
481 headerp
->rm_body
.rm_nochunks
.rm_empty
[1] = xdr_zero
;
482 headerp
->rm_body
.rm_nochunks
.rm_empty
[2] = xdr_zero
;
483 /* new length after pullup */
484 rpclen
= rqst
->rq_svec
[0].iov_len
;
486 * Currently we try to not actually use read inline.
487 * Reply chunks have the desirable property that
488 * they land, packed, directly in the target buffers
489 * without headers, so they require no fixup. The
490 * additional RDMA Write op sends the same amount
491 * of data, streams on-the-wire and adds no overhead
492 * on receive. Therefore, we request a reply chunk
493 * for non-writes wherever feasible and efficient.
495 if (wtype
== rpcrdma_noch
&&
496 r_xprt
->rx_ia
.ri_memreg_strategy
> RPCRDMA_REGISTER
)
497 wtype
= rpcrdma_replych
;
502 * Marshal chunks. This routine will return the header length
503 * consumed by marshaling.
505 if (rtype
!= rpcrdma_noch
) {
506 hdrlen
= rpcrdma_create_chunks(rqst
,
507 &rqst
->rq_snd_buf
, headerp
, rtype
);
508 wtype
= rtype
; /* simplify dprintk */
510 } else if (wtype
!= rpcrdma_noch
) {
511 hdrlen
= rpcrdma_create_chunks(rqst
,
512 &rqst
->rq_rcv_buf
, headerp
, wtype
);
518 dprintk("RPC: %s: %s: hdrlen %zd rpclen %zd padlen %zd"
519 " headerp 0x%p base 0x%p lkey 0x%x\n",
520 __func__
, transfertypes
[wtype
], hdrlen
, rpclen
, padlen
,
521 headerp
, base
, req
->rl_iov
.lkey
);
524 * initialize send_iov's - normally only two: rdma chunk header and
525 * single preregistered RPC header buffer, but if padding is present,
526 * then use a preregistered (and zeroed) pad buffer between the RPC
527 * header and any write data. In all non-rdma cases, any following
528 * data has been copied into the RPC header buffer.
530 req
->rl_send_iov
[0].addr
= req
->rl_iov
.addr
;
531 req
->rl_send_iov
[0].length
= hdrlen
;
532 req
->rl_send_iov
[0].lkey
= req
->rl_iov
.lkey
;
534 req
->rl_send_iov
[1].addr
= req
->rl_iov
.addr
+ (base
- req
->rl_base
);
535 req
->rl_send_iov
[1].length
= rpclen
;
536 req
->rl_send_iov
[1].lkey
= req
->rl_iov
.lkey
;
541 struct rpcrdma_ep
*ep
= &r_xprt
->rx_ep
;
543 req
->rl_send_iov
[2].addr
= ep
->rep_pad
.addr
;
544 req
->rl_send_iov
[2].length
= padlen
;
545 req
->rl_send_iov
[2].lkey
= ep
->rep_pad
.lkey
;
547 req
->rl_send_iov
[3].addr
= req
->rl_send_iov
[1].addr
+ rpclen
;
548 req
->rl_send_iov
[3].length
= rqst
->rq_slen
- rpclen
;
549 req
->rl_send_iov
[3].lkey
= req
->rl_iov
.lkey
;
558 * Chase down a received write or reply chunklist to get length
559 * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
562 rpcrdma_count_chunks(struct rpcrdma_rep
*rep
, unsigned int max
, int wrchunk
, __be32
**iptrp
)
564 unsigned int i
, total_len
;
565 struct rpcrdma_write_chunk
*cur_wchunk
;
567 i
= ntohl(**iptrp
); /* get array count */
570 cur_wchunk
= (struct rpcrdma_write_chunk
*) (*iptrp
+ 1);
573 struct rpcrdma_segment
*seg
= &cur_wchunk
->wc_target
;
576 xdr_decode_hyper((__be32
*)&seg
->rs_offset
, &off
);
577 dprintk("RPC: %s: chunk %d@0x%llx:0x%x\n",
579 ntohl(seg
->rs_length
),
580 (unsigned long long)off
,
581 ntohl(seg
->rs_handle
));
583 total_len
+= ntohl(seg
->rs_length
);
586 /* check and adjust for properly terminated write chunk */
588 __be32
*w
= (__be32
*) cur_wchunk
;
589 if (*w
++ != xdr_zero
)
591 cur_wchunk
= (struct rpcrdma_write_chunk
*) w
;
593 if ((char *) cur_wchunk
> rep
->rr_base
+ rep
->rr_len
)
596 *iptrp
= (__be32
*) cur_wchunk
;
601 * Scatter inline received data back into provided iov's.
604 rpcrdma_inline_fixup(struct rpc_rqst
*rqst
, char *srcp
, int copy_len
, int pad
)
606 int i
, npages
, curlen
, olen
;
608 struct page
**ppages
;
611 curlen
= rqst
->rq_rcv_buf
.head
[0].iov_len
;
612 if (curlen
> copy_len
) { /* write chunk header fixup */
614 rqst
->rq_rcv_buf
.head
[0].iov_len
= curlen
;
617 dprintk("RPC: %s: srcp 0x%p len %d hdrlen %d\n",
618 __func__
, srcp
, copy_len
, curlen
);
620 /* Shift pointer for first receive segment only */
621 rqst
->rq_rcv_buf
.head
[0].iov_base
= srcp
;
627 rpcx_to_rdmax(rqst
->rq_xprt
)->rx_stats
.fixup_copy_count
+= olen
;
628 page_base
= rqst
->rq_rcv_buf
.page_base
;
629 ppages
= rqst
->rq_rcv_buf
.pages
+ (page_base
>> PAGE_SHIFT
);
630 page_base
&= ~PAGE_MASK
;
632 if (copy_len
&& rqst
->rq_rcv_buf
.page_len
) {
633 npages
= PAGE_ALIGN(page_base
+
634 rqst
->rq_rcv_buf
.page_len
) >> PAGE_SHIFT
;
635 for (; i
< npages
; i
++) {
636 curlen
= PAGE_SIZE
- page_base
;
637 if (curlen
> copy_len
)
639 dprintk("RPC: %s: page %d"
640 " srcp 0x%p len %d curlen %d\n",
641 __func__
, i
, srcp
, copy_len
, curlen
);
642 destp
= kmap_atomic(ppages
[i
], KM_SKB_SUNRPC_DATA
);
643 memcpy(destp
+ page_base
, srcp
, curlen
);
644 flush_dcache_page(ppages
[i
]);
645 kunmap_atomic(destp
, KM_SKB_SUNRPC_DATA
);
652 rqst
->rq_rcv_buf
.page_len
= olen
- copy_len
;
654 rqst
->rq_rcv_buf
.page_len
= 0;
656 if (copy_len
&& rqst
->rq_rcv_buf
.tail
[0].iov_len
) {
658 if (curlen
> rqst
->rq_rcv_buf
.tail
[0].iov_len
)
659 curlen
= rqst
->rq_rcv_buf
.tail
[0].iov_len
;
660 if (rqst
->rq_rcv_buf
.tail
[0].iov_base
!= srcp
)
661 memmove(rqst
->rq_rcv_buf
.tail
[0].iov_base
, srcp
, curlen
);
662 dprintk("RPC: %s: tail srcp 0x%p len %d curlen %d\n",
663 __func__
, srcp
, copy_len
, curlen
);
664 rqst
->rq_rcv_buf
.tail
[0].iov_len
= curlen
;
665 copy_len
-= curlen
; ++i
;
667 rqst
->rq_rcv_buf
.tail
[0].iov_len
= 0;
670 /* implicit padding on terminal chunk */
671 unsigned char *p
= rqst
->rq_rcv_buf
.tail
[0].iov_base
;
673 p
[rqst
->rq_rcv_buf
.tail
[0].iov_len
++] = 0;
677 dprintk("RPC: %s: %d bytes in"
678 " %d extra segments (%d lost)\n",
679 __func__
, olen
, i
, copy_len
);
681 /* TBD avoid a warning from call_decode() */
682 rqst
->rq_private_buf
= rqst
->rq_rcv_buf
;
686 * This function is called when an async event is posted to
687 * the connection which changes the connection state. All it
688 * does at this point is mark the connection up/down, the rpc
689 * timers do the rest.
692 rpcrdma_conn_func(struct rpcrdma_ep
*ep
)
694 struct rpc_xprt
*xprt
= ep
->rep_xprt
;
696 spin_lock_bh(&xprt
->transport_lock
);
697 if (++xprt
->connect_cookie
== 0) /* maintain a reserved value */
698 ++xprt
->connect_cookie
;
699 if (ep
->rep_connected
> 0) {
700 if (!xprt_test_and_set_connected(xprt
))
701 xprt_wake_pending_tasks(xprt
, 0);
703 if (xprt_test_and_clear_connected(xprt
))
704 xprt_wake_pending_tasks(xprt
, -ENOTCONN
);
706 spin_unlock_bh(&xprt
->transport_lock
);
710 * This function is called when memory window unbind which we are waiting
711 * for completes. Just use rr_func (zeroed by upcall) to signal completion.
714 rpcrdma_unbind_func(struct rpcrdma_rep
*rep
)
716 wake_up(&rep
->rr_unbind
);
720 * Called as a tasklet to do req/reply match and complete a request
721 * Errors must result in the RPC task either being awakened, or
722 * allowed to timeout, to discover the errors at that time.
725 rpcrdma_reply_handler(struct rpcrdma_rep
*rep
)
727 struct rpcrdma_msg
*headerp
;
728 struct rpcrdma_req
*req
;
729 struct rpc_rqst
*rqst
;
730 struct rpc_xprt
*xprt
= rep
->rr_xprt
;
731 struct rpcrdma_xprt
*r_xprt
= rpcx_to_rdmax(xprt
);
733 int i
, rdmalen
, status
;
735 /* Check status. If bad, signal disconnect and return rep to pool */
736 if (rep
->rr_len
== ~0U) {
737 rpcrdma_recv_buffer_put(rep
);
738 if (r_xprt
->rx_ep
.rep_connected
== 1) {
739 r_xprt
->rx_ep
.rep_connected
= -EIO
;
740 rpcrdma_conn_func(&r_xprt
->rx_ep
);
744 if (rep
->rr_len
< 28) {
745 dprintk("RPC: %s: short/invalid reply\n", __func__
);
748 headerp
= (struct rpcrdma_msg
*) rep
->rr_base
;
749 if (headerp
->rm_vers
!= xdr_one
) {
750 dprintk("RPC: %s: invalid version %d\n",
751 __func__
, ntohl(headerp
->rm_vers
));
755 /* Get XID and try for a match. */
756 spin_lock(&xprt
->transport_lock
);
757 rqst
= xprt_lookup_rqst(xprt
, headerp
->rm_xid
);
759 spin_unlock(&xprt
->transport_lock
);
760 dprintk("RPC: %s: reply 0x%p failed "
761 "to match any request xid 0x%08x len %d\n",
762 __func__
, rep
, headerp
->rm_xid
, rep
->rr_len
);
764 r_xprt
->rx_stats
.bad_reply_count
++;
765 rep
->rr_func
= rpcrdma_reply_handler
;
766 if (rpcrdma_ep_post_recv(&r_xprt
->rx_ia
, &r_xprt
->rx_ep
, rep
))
767 rpcrdma_recv_buffer_put(rep
);
772 /* get request object */
773 req
= rpcr_to_rdmar(rqst
);
775 dprintk("RPC: %s: reply 0x%p completes request 0x%p\n"
776 " RPC request 0x%p xid 0x%08x\n",
777 __func__
, rep
, req
, rqst
, headerp
->rm_xid
);
779 BUG_ON(!req
|| req
->rl_reply
);
781 /* from here on, the reply is no longer an orphan */
784 /* check for expected message types */
785 /* The order of some of these tests is important. */
786 switch (headerp
->rm_type
) {
787 case htonl(RDMA_MSG
):
788 /* never expect read chunks */
789 /* never expect reply chunks (two ways to check) */
790 /* never expect write chunks without having offered RDMA */
791 if (headerp
->rm_body
.rm_chunks
[0] != xdr_zero
||
792 (headerp
->rm_body
.rm_chunks
[1] == xdr_zero
&&
793 headerp
->rm_body
.rm_chunks
[2] != xdr_zero
) ||
794 (headerp
->rm_body
.rm_chunks
[1] != xdr_zero
&&
795 req
->rl_nchunks
== 0))
797 if (headerp
->rm_body
.rm_chunks
[1] != xdr_zero
) {
798 /* count any expected write chunks in read reply */
799 /* start at write chunk array count */
800 iptr
= &headerp
->rm_body
.rm_chunks
[2];
801 rdmalen
= rpcrdma_count_chunks(rep
,
802 req
->rl_nchunks
, 1, &iptr
);
803 /* check for validity, and no reply chunk after */
804 if (rdmalen
< 0 || *iptr
++ != xdr_zero
)
807 ((unsigned char *)iptr
- (unsigned char *)headerp
);
808 status
= rep
->rr_len
+ rdmalen
;
809 r_xprt
->rx_stats
.total_rdma_reply
+= rdmalen
;
810 /* special case - last chunk may omit padding */
812 rdmalen
= 4 - rdmalen
;
816 /* else ordinary inline */
818 iptr
= (__be32
*)((unsigned char *)headerp
+ 28);
819 rep
->rr_len
-= 28; /*sizeof *headerp;*/
820 status
= rep
->rr_len
;
822 /* Fix up the rpc results for upper layer */
823 rpcrdma_inline_fixup(rqst
, (char *)iptr
, rep
->rr_len
, rdmalen
);
826 case htonl(RDMA_NOMSG
):
827 /* never expect read or write chunks, always reply chunks */
828 if (headerp
->rm_body
.rm_chunks
[0] != xdr_zero
||
829 headerp
->rm_body
.rm_chunks
[1] != xdr_zero
||
830 headerp
->rm_body
.rm_chunks
[2] != xdr_one
||
831 req
->rl_nchunks
== 0)
833 iptr
= (__be32
*)((unsigned char *)headerp
+ 28);
834 rdmalen
= rpcrdma_count_chunks(rep
, req
->rl_nchunks
, 0, &iptr
);
837 r_xprt
->rx_stats
.total_rdma_reply
+= rdmalen
;
838 /* Reply chunk buffer already is the reply vector - no fixup. */
844 dprintk("%s: invalid rpcrdma reply header (type %d):"
845 " chunks[012] == %d %d %d"
846 " expected chunks <= %d\n",
847 __func__
, ntohl(headerp
->rm_type
),
848 headerp
->rm_body
.rm_chunks
[0],
849 headerp
->rm_body
.rm_chunks
[1],
850 headerp
->rm_body
.rm_chunks
[2],
853 r_xprt
->rx_stats
.bad_reply_count
++;
857 /* If using mw bind, start the deregister process now. */
858 /* (Note: if mr_free(), cannot perform it here, in tasklet context) */
859 if (req
->rl_nchunks
) switch (r_xprt
->rx_ia
.ri_memreg_strategy
) {
860 case RPCRDMA_MEMWINDOWS
:
861 for (i
= 0; req
->rl_nchunks
-- > 1;)
862 i
+= rpcrdma_deregister_external(
863 &req
->rl_segments
[i
], r_xprt
, NULL
);
864 /* Optionally wait (not here) for unbinds to complete */
865 rep
->rr_func
= rpcrdma_unbind_func
;
866 (void) rpcrdma_deregister_external(&req
->rl_segments
[i
],
869 case RPCRDMA_MEMWINDOWS_ASYNC
:
870 for (i
= 0; req
->rl_nchunks
--;)
871 i
+= rpcrdma_deregister_external(&req
->rl_segments
[i
],
878 dprintk("RPC: %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
879 __func__
, xprt
, rqst
, status
);
880 xprt_complete_rqst(rqst
->rq_task
, status
);
881 spin_unlock(&xprt
->transport_lock
);