4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/init.h>
12 #include <linux/sched/signal.h>
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/list.h>
16 #include <linux/spinlock.h>
17 #include <linux/anon_inodes.h>
18 #include <linux/syscalls.h>
19 #include <linux/export.h>
20 #include <linux/kref.h>
21 #include <linux/eventfd.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
27 wait_queue_head_t wqh
;
29 * Every time that a write(2) is performed on an eventfd, the
30 * value of the __u64 being written is added to "count" and a
31 * wakeup is performed on "wqh". A read(2) will return the "count"
32 * value to userspace, and will reset "count" to zero. The kernel
33 * side eventfd_signal() also, adds to the "count" counter and
41 * eventfd_signal - Adds @n to the eventfd counter.
42 * @ctx: [in] Pointer to the eventfd context.
43 * @n: [in] Value of the counter to be added to the eventfd internal counter.
44 * The value cannot be negative.
46 * This function is supposed to be called by the kernel in paths that do not
47 * allow sleeping. In this function we allow the counter to reach the ULLONG_MAX
48 * value, and we signal this as overflow condition by returning a POLLERR
51 * Returns the amount by which the counter was incremented. This will be less
52 * than @n if the counter has overflowed.
54 __u64
eventfd_signal(struct eventfd_ctx
*ctx
, __u64 n
)
58 spin_lock_irqsave(&ctx
->wqh
.lock
, flags
);
59 if (ULLONG_MAX
- ctx
->count
< n
)
60 n
= ULLONG_MAX
- ctx
->count
;
62 if (waitqueue_active(&ctx
->wqh
))
63 wake_up_locked_poll(&ctx
->wqh
, POLLIN
);
64 spin_unlock_irqrestore(&ctx
->wqh
.lock
, flags
);
68 EXPORT_SYMBOL_GPL(eventfd_signal
);
70 static void eventfd_free_ctx(struct eventfd_ctx
*ctx
)
75 static void eventfd_free(struct kref
*kref
)
77 struct eventfd_ctx
*ctx
= container_of(kref
, struct eventfd_ctx
, kref
);
79 eventfd_free_ctx(ctx
);
83 * eventfd_ctx_get - Acquires a reference to the internal eventfd context.
84 * @ctx: [in] Pointer to the eventfd context.
86 * Returns: In case of success, returns a pointer to the eventfd context.
88 struct eventfd_ctx
*eventfd_ctx_get(struct eventfd_ctx
*ctx
)
93 EXPORT_SYMBOL_GPL(eventfd_ctx_get
);
96 * eventfd_ctx_put - Releases a reference to the internal eventfd context.
97 * @ctx: [in] Pointer to eventfd context.
99 * The eventfd context reference must have been previously acquired either
100 * with eventfd_ctx_get() or eventfd_ctx_fdget().
102 void eventfd_ctx_put(struct eventfd_ctx
*ctx
)
104 kref_put(&ctx
->kref
, eventfd_free
);
106 EXPORT_SYMBOL_GPL(eventfd_ctx_put
);
108 static int eventfd_release(struct inode
*inode
, struct file
*file
)
110 struct eventfd_ctx
*ctx
= file
->private_data
;
112 wake_up_poll(&ctx
->wqh
, POLLHUP
);
113 eventfd_ctx_put(ctx
);
117 static unsigned int eventfd_poll(struct file
*file
, poll_table
*wait
)
119 struct eventfd_ctx
*ctx
= file
->private_data
;
120 unsigned int events
= 0;
123 poll_wait(file
, &ctx
->wqh
, wait
);
126 * All writes to ctx->count occur within ctx->wqh.lock. This read
127 * can be done outside ctx->wqh.lock because we know that poll_wait
128 * takes that lock (through add_wait_queue) if our caller will sleep.
130 * The read _can_ therefore seep into add_wait_queue's critical
131 * section, but cannot move above it! add_wait_queue's spin_lock acts
132 * as an acquire barrier and ensures that the read be ordered properly
133 * against the writes. The following CAN happen and is safe:
136 * ----------------- ------------
137 * lock ctx->wqh.lock (in poll_wait)
140 * unlock ctx->wqh.lock
143 * if (waitqueue_active)
144 * wake_up_locked_poll
145 * unlock ctx->qwh.lock
146 * eventfd_poll returns 0
148 * but the following, which would miss a wakeup, cannot happen:
151 * ----------------- ------------
152 * count = ctx->count (INVALID!)
155 * **waitqueue_active is false**
156 * **no wake_up_locked_poll!**
157 * unlock ctx->qwh.lock
158 * lock ctx->wqh.lock (in poll_wait)
160 * unlock ctx->wqh.lock
161 * eventfd_poll returns 0
163 count
= READ_ONCE(ctx
->count
);
167 if (count
== ULLONG_MAX
)
169 if (ULLONG_MAX
- 1 > count
)
175 static void eventfd_ctx_do_read(struct eventfd_ctx
*ctx
, __u64
*cnt
)
177 *cnt
= (ctx
->flags
& EFD_SEMAPHORE
) ? 1 : ctx
->count
;
182 * eventfd_ctx_remove_wait_queue - Read the current counter and removes wait queue.
183 * @ctx: [in] Pointer to eventfd context.
184 * @wait: [in] Wait queue to be removed.
185 * @cnt: [out] Pointer to the 64-bit counter value.
187 * Returns %0 if successful, or the following error codes:
189 * -EAGAIN : The operation would have blocked.
191 * This is used to atomically remove a wait queue entry from the eventfd wait
192 * queue head, and read/reset the counter value.
194 int eventfd_ctx_remove_wait_queue(struct eventfd_ctx
*ctx
, wait_queue_t
*wait
,
199 spin_lock_irqsave(&ctx
->wqh
.lock
, flags
);
200 eventfd_ctx_do_read(ctx
, cnt
);
201 __remove_wait_queue(&ctx
->wqh
, wait
);
202 if (*cnt
!= 0 && waitqueue_active(&ctx
->wqh
))
203 wake_up_locked_poll(&ctx
->wqh
, POLLOUT
);
204 spin_unlock_irqrestore(&ctx
->wqh
.lock
, flags
);
206 return *cnt
!= 0 ? 0 : -EAGAIN
;
208 EXPORT_SYMBOL_GPL(eventfd_ctx_remove_wait_queue
);
211 * eventfd_ctx_read - Reads the eventfd counter or wait if it is zero.
212 * @ctx: [in] Pointer to eventfd context.
213 * @no_wait: [in] Different from zero if the operation should not block.
214 * @cnt: [out] Pointer to the 64-bit counter value.
216 * Returns %0 if successful, or the following error codes:
218 * -EAGAIN : The operation would have blocked but @no_wait was non-zero.
219 * -ERESTARTSYS : A signal interrupted the wait operation.
221 * If @no_wait is zero, the function might sleep until the eventfd internal
222 * counter becomes greater than zero.
224 ssize_t
eventfd_ctx_read(struct eventfd_ctx
*ctx
, int no_wait
, __u64
*cnt
)
227 DECLARE_WAITQUEUE(wait
, current
);
229 spin_lock_irq(&ctx
->wqh
.lock
);
235 __add_wait_queue(&ctx
->wqh
, &wait
);
237 set_current_state(TASK_INTERRUPTIBLE
);
238 if (ctx
->count
> 0) {
242 if (signal_pending(current
)) {
246 spin_unlock_irq(&ctx
->wqh
.lock
);
248 spin_lock_irq(&ctx
->wqh
.lock
);
250 __remove_wait_queue(&ctx
->wqh
, &wait
);
251 __set_current_state(TASK_RUNNING
);
253 if (likely(res
== 0)) {
254 eventfd_ctx_do_read(ctx
, cnt
);
255 if (waitqueue_active(&ctx
->wqh
))
256 wake_up_locked_poll(&ctx
->wqh
, POLLOUT
);
258 spin_unlock_irq(&ctx
->wqh
.lock
);
262 EXPORT_SYMBOL_GPL(eventfd_ctx_read
);
264 static ssize_t
eventfd_read(struct file
*file
, char __user
*buf
, size_t count
,
267 struct eventfd_ctx
*ctx
= file
->private_data
;
271 if (count
< sizeof(cnt
))
273 res
= eventfd_ctx_read(ctx
, file
->f_flags
& O_NONBLOCK
, &cnt
);
277 return put_user(cnt
, (__u64 __user
*) buf
) ? -EFAULT
: sizeof(cnt
);
280 static ssize_t
eventfd_write(struct file
*file
, const char __user
*buf
, size_t count
,
283 struct eventfd_ctx
*ctx
= file
->private_data
;
286 DECLARE_WAITQUEUE(wait
, current
);
288 if (count
< sizeof(ucnt
))
290 if (copy_from_user(&ucnt
, buf
, sizeof(ucnt
)))
292 if (ucnt
== ULLONG_MAX
)
294 spin_lock_irq(&ctx
->wqh
.lock
);
296 if (ULLONG_MAX
- ctx
->count
> ucnt
)
298 else if (!(file
->f_flags
& O_NONBLOCK
)) {
299 __add_wait_queue(&ctx
->wqh
, &wait
);
301 set_current_state(TASK_INTERRUPTIBLE
);
302 if (ULLONG_MAX
- ctx
->count
> ucnt
) {
306 if (signal_pending(current
)) {
310 spin_unlock_irq(&ctx
->wqh
.lock
);
312 spin_lock_irq(&ctx
->wqh
.lock
);
314 __remove_wait_queue(&ctx
->wqh
, &wait
);
315 __set_current_state(TASK_RUNNING
);
317 if (likely(res
> 0)) {
319 if (waitqueue_active(&ctx
->wqh
))
320 wake_up_locked_poll(&ctx
->wqh
, POLLIN
);
322 spin_unlock_irq(&ctx
->wqh
.lock
);
327 #ifdef CONFIG_PROC_FS
328 static void eventfd_show_fdinfo(struct seq_file
*m
, struct file
*f
)
330 struct eventfd_ctx
*ctx
= f
->private_data
;
332 spin_lock_irq(&ctx
->wqh
.lock
);
333 seq_printf(m
, "eventfd-count: %16llx\n",
334 (unsigned long long)ctx
->count
);
335 spin_unlock_irq(&ctx
->wqh
.lock
);
339 static const struct file_operations eventfd_fops
= {
340 #ifdef CONFIG_PROC_FS
341 .show_fdinfo
= eventfd_show_fdinfo
,
343 .release
= eventfd_release
,
344 .poll
= eventfd_poll
,
345 .read
= eventfd_read
,
346 .write
= eventfd_write
,
347 .llseek
= noop_llseek
,
351 * eventfd_fget - Acquire a reference of an eventfd file descriptor.
352 * @fd: [in] Eventfd file descriptor.
354 * Returns a pointer to the eventfd file structure in case of success, or the
355 * following error pointer:
357 * -EBADF : Invalid @fd file descriptor.
358 * -EINVAL : The @fd file descriptor is not an eventfd file.
360 struct file
*eventfd_fget(int fd
)
366 return ERR_PTR(-EBADF
);
367 if (file
->f_op
!= &eventfd_fops
) {
369 return ERR_PTR(-EINVAL
);
374 EXPORT_SYMBOL_GPL(eventfd_fget
);
377 * eventfd_ctx_fdget - Acquires a reference to the internal eventfd context.
378 * @fd: [in] Eventfd file descriptor.
380 * Returns a pointer to the internal eventfd context, otherwise the error
381 * pointers returned by the following functions:
385 struct eventfd_ctx
*eventfd_ctx_fdget(int fd
)
387 struct eventfd_ctx
*ctx
;
388 struct fd f
= fdget(fd
);
390 return ERR_PTR(-EBADF
);
391 ctx
= eventfd_ctx_fileget(f
.file
);
395 EXPORT_SYMBOL_GPL(eventfd_ctx_fdget
);
398 * eventfd_ctx_fileget - Acquires a reference to the internal eventfd context.
399 * @file: [in] Eventfd file pointer.
401 * Returns a pointer to the internal eventfd context, otherwise the error
404 * -EINVAL : The @fd file descriptor is not an eventfd file.
406 struct eventfd_ctx
*eventfd_ctx_fileget(struct file
*file
)
408 if (file
->f_op
!= &eventfd_fops
)
409 return ERR_PTR(-EINVAL
);
411 return eventfd_ctx_get(file
->private_data
);
413 EXPORT_SYMBOL_GPL(eventfd_ctx_fileget
);
416 * eventfd_file_create - Creates an eventfd file pointer.
417 * @count: Initial eventfd counter value.
418 * @flags: Flags for the eventfd file.
420 * This function creates an eventfd file pointer, w/out installing it into
421 * the fd table. This is useful when the eventfd file is used during the
422 * initialization of data structures that require extra setup after the eventfd
423 * creation. So the eventfd creation is split into the file pointer creation
424 * phase, and the file descriptor installation phase.
425 * In this way races with userspace closing the newly installed file descriptor
427 * Returns an eventfd file pointer, or a proper error pointer.
429 struct file
*eventfd_file_create(unsigned int count
, int flags
)
432 struct eventfd_ctx
*ctx
;
434 /* Check the EFD_* constants for consistency. */
435 BUILD_BUG_ON(EFD_CLOEXEC
!= O_CLOEXEC
);
436 BUILD_BUG_ON(EFD_NONBLOCK
!= O_NONBLOCK
);
438 if (flags
& ~EFD_FLAGS_SET
)
439 return ERR_PTR(-EINVAL
);
441 ctx
= kmalloc(sizeof(*ctx
), GFP_KERNEL
);
443 return ERR_PTR(-ENOMEM
);
445 kref_init(&ctx
->kref
);
446 init_waitqueue_head(&ctx
->wqh
);
450 file
= anon_inode_getfile("[eventfd]", &eventfd_fops
, ctx
,
451 O_RDWR
| (flags
& EFD_SHARED_FCNTL_FLAGS
));
453 eventfd_free_ctx(ctx
);
458 SYSCALL_DEFINE2(eventfd2
, unsigned int, count
, int, flags
)
463 error
= get_unused_fd_flags(flags
& EFD_SHARED_FCNTL_FLAGS
);
468 file
= eventfd_file_create(count
, flags
);
470 error
= PTR_ERR(file
);
471 goto err_put_unused_fd
;
473 fd_install(fd
, file
);
483 SYSCALL_DEFINE1(eventfd
, unsigned int, count
)
485 return sys_eventfd2(count
, 0);