viafb: use proper pci config API
[linux/fpc-iii.git] / drivers / video / intelfb / intelfbhw.c
blob81627466804e1f7ceeba08f63bf7517562ac3ef4
1 /*
2 * intelfb
4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7 * 2004 Sylvain Meyer
9 * This driver consists of two parts. The first part (intelfbdrv.c) provides
10 * the basic fbdev interfaces, is derived in part from the radeonfb and
11 * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
12 * provides the code to program the hardware. Most of it is derived from
13 * the i810/i830 XFree86 driver. The HW-specific code is covered here
14 * under a dual license (GPL and MIT/XFree86 license).
16 * Author: David Dawes
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fb.h>
30 #include <linux/ioport.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/interrupt.h>
37 #include <asm/io.h>
39 #include "intelfb.h"
40 #include "intelfbhw.h"
42 struct pll_min_max {
43 int min_m, max_m, min_m1, max_m1;
44 int min_m2, max_m2, min_n, max_n;
45 int min_p, max_p, min_p1, max_p1;
46 int min_vco, max_vco, p_transition_clk, ref_clk;
47 int p_inc_lo, p_inc_hi;
50 #define PLLS_I8xx 0
51 #define PLLS_I9xx 1
52 #define PLLS_MAX 2
54 static struct pll_min_max plls[PLLS_MAX] = {
55 { 108, 140, 18, 26,
56 6, 16, 3, 16,
57 4, 128, 0, 31,
58 930000, 1400000, 165000, 48000,
59 4, 2 }, /* I8xx */
61 { 75, 120, 10, 20,
62 5, 9, 4, 7,
63 5, 80, 1, 8,
64 1400000, 2800000, 200000, 96000,
65 10, 5 } /* I9xx */
68 int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
70 u32 tmp;
71 if (!pdev || !dinfo)
72 return 1;
74 switch (pdev->device) {
75 case PCI_DEVICE_ID_INTEL_830M:
76 dinfo->name = "Intel(R) 830M";
77 dinfo->chipset = INTEL_830M;
78 dinfo->mobile = 1;
79 dinfo->pll_index = PLLS_I8xx;
80 return 0;
81 case PCI_DEVICE_ID_INTEL_845G:
82 dinfo->name = "Intel(R) 845G";
83 dinfo->chipset = INTEL_845G;
84 dinfo->mobile = 0;
85 dinfo->pll_index = PLLS_I8xx;
86 return 0;
87 case PCI_DEVICE_ID_INTEL_854:
88 dinfo->mobile = 1;
89 dinfo->name = "Intel(R) 854";
90 dinfo->chipset = INTEL_854;
91 return 0;
92 case PCI_DEVICE_ID_INTEL_85XGM:
93 tmp = 0;
94 dinfo->mobile = 1;
95 dinfo->pll_index = PLLS_I8xx;
96 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
97 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
98 INTEL_85X_VARIANT_MASK) {
99 case INTEL_VAR_855GME:
100 dinfo->name = "Intel(R) 855GME";
101 dinfo->chipset = INTEL_855GME;
102 return 0;
103 case INTEL_VAR_855GM:
104 dinfo->name = "Intel(R) 855GM";
105 dinfo->chipset = INTEL_855GM;
106 return 0;
107 case INTEL_VAR_852GME:
108 dinfo->name = "Intel(R) 852GME";
109 dinfo->chipset = INTEL_852GME;
110 return 0;
111 case INTEL_VAR_852GM:
112 dinfo->name = "Intel(R) 852GM";
113 dinfo->chipset = INTEL_852GM;
114 return 0;
115 default:
116 dinfo->name = "Intel(R) 852GM/855GM";
117 dinfo->chipset = INTEL_85XGM;
118 return 0;
120 break;
121 case PCI_DEVICE_ID_INTEL_865G:
122 dinfo->name = "Intel(R) 865G";
123 dinfo->chipset = INTEL_865G;
124 dinfo->mobile = 0;
125 dinfo->pll_index = PLLS_I8xx;
126 return 0;
127 case PCI_DEVICE_ID_INTEL_915G:
128 dinfo->name = "Intel(R) 915G";
129 dinfo->chipset = INTEL_915G;
130 dinfo->mobile = 0;
131 dinfo->pll_index = PLLS_I9xx;
132 return 0;
133 case PCI_DEVICE_ID_INTEL_915GM:
134 dinfo->name = "Intel(R) 915GM";
135 dinfo->chipset = INTEL_915GM;
136 dinfo->mobile = 1;
137 dinfo->pll_index = PLLS_I9xx;
138 return 0;
139 case PCI_DEVICE_ID_INTEL_945G:
140 dinfo->name = "Intel(R) 945G";
141 dinfo->chipset = INTEL_945G;
142 dinfo->mobile = 0;
143 dinfo->pll_index = PLLS_I9xx;
144 return 0;
145 case PCI_DEVICE_ID_INTEL_945GM:
146 dinfo->name = "Intel(R) 945GM";
147 dinfo->chipset = INTEL_945GM;
148 dinfo->mobile = 1;
149 dinfo->pll_index = PLLS_I9xx;
150 return 0;
151 case PCI_DEVICE_ID_INTEL_945GME:
152 dinfo->name = "Intel(R) 945GME";
153 dinfo->chipset = INTEL_945GME;
154 dinfo->mobile = 1;
155 dinfo->pll_index = PLLS_I9xx;
156 return 0;
157 case PCI_DEVICE_ID_INTEL_965G:
158 dinfo->name = "Intel(R) 965G";
159 dinfo->chipset = INTEL_965G;
160 dinfo->mobile = 0;
161 dinfo->pll_index = PLLS_I9xx;
162 return 0;
163 case PCI_DEVICE_ID_INTEL_965GM:
164 dinfo->name = "Intel(R) 965GM";
165 dinfo->chipset = INTEL_965GM;
166 dinfo->mobile = 1;
167 dinfo->pll_index = PLLS_I9xx;
168 return 0;
169 default:
170 return 1;
174 int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
175 int *stolen_size)
177 struct pci_dev *bridge_dev;
178 u16 tmp;
179 int stolen_overhead;
181 if (!pdev || !aperture_size || !stolen_size)
182 return 1;
184 /* Find the bridge device. It is always 0:0.0 */
185 if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
186 ERR_MSG("cannot find bridge device\n");
187 return 1;
190 /* Get the fb aperture size and "stolen" memory amount. */
191 tmp = 0;
192 pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
193 pci_dev_put(bridge_dev);
195 switch (pdev->device) {
196 case PCI_DEVICE_ID_INTEL_915G:
197 case PCI_DEVICE_ID_INTEL_915GM:
198 case PCI_DEVICE_ID_INTEL_945G:
199 case PCI_DEVICE_ID_INTEL_945GM:
200 case PCI_DEVICE_ID_INTEL_945GME:
201 case PCI_DEVICE_ID_INTEL_965G:
202 case PCI_DEVICE_ID_INTEL_965GM:
203 /* 915, 945 and 965 chipsets support a 256MB aperture.
204 Aperture size is determined by inspected the
205 base address of the aperture. */
206 if (pci_resource_start(pdev, 2) & 0x08000000)
207 *aperture_size = MB(128);
208 else
209 *aperture_size = MB(256);
210 break;
211 default:
212 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
213 *aperture_size = MB(64);
214 else
215 *aperture_size = MB(128);
216 break;
219 /* Stolen memory size is reduced by the GTT and the popup.
220 GTT is 1K per MB of aperture size, and popup is 4K. */
221 stolen_overhead = (*aperture_size / MB(1)) + 4;
222 switch(pdev->device) {
223 case PCI_DEVICE_ID_INTEL_830M:
224 case PCI_DEVICE_ID_INTEL_845G:
225 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
226 case INTEL_830_GMCH_GMS_STOLEN_512:
227 *stolen_size = KB(512) - KB(stolen_overhead);
228 return 0;
229 case INTEL_830_GMCH_GMS_STOLEN_1024:
230 *stolen_size = MB(1) - KB(stolen_overhead);
231 return 0;
232 case INTEL_830_GMCH_GMS_STOLEN_8192:
233 *stolen_size = MB(8) - KB(stolen_overhead);
234 return 0;
235 case INTEL_830_GMCH_GMS_LOCAL:
236 ERR_MSG("only local memory found\n");
237 return 1;
238 case INTEL_830_GMCH_GMS_DISABLED:
239 ERR_MSG("video memory is disabled\n");
240 return 1;
241 default:
242 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
243 tmp & INTEL_830_GMCH_GMS_MASK);
244 return 1;
246 break;
247 default:
248 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
249 case INTEL_855_GMCH_GMS_STOLEN_1M:
250 *stolen_size = MB(1) - KB(stolen_overhead);
251 return 0;
252 case INTEL_855_GMCH_GMS_STOLEN_4M:
253 *stolen_size = MB(4) - KB(stolen_overhead);
254 return 0;
255 case INTEL_855_GMCH_GMS_STOLEN_8M:
256 *stolen_size = MB(8) - KB(stolen_overhead);
257 return 0;
258 case INTEL_855_GMCH_GMS_STOLEN_16M:
259 *stolen_size = MB(16) - KB(stolen_overhead);
260 return 0;
261 case INTEL_855_GMCH_GMS_STOLEN_32M:
262 *stolen_size = MB(32) - KB(stolen_overhead);
263 return 0;
264 case INTEL_915G_GMCH_GMS_STOLEN_48M:
265 *stolen_size = MB(48) - KB(stolen_overhead);
266 return 0;
267 case INTEL_915G_GMCH_GMS_STOLEN_64M:
268 *stolen_size = MB(64) - KB(stolen_overhead);
269 return 0;
270 case INTEL_855_GMCH_GMS_DISABLED:
271 ERR_MSG("video memory is disabled\n");
272 return 0;
273 default:
274 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
275 tmp & INTEL_855_GMCH_GMS_MASK);
276 return 1;
281 int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
283 int dvo = 0;
285 if (INREG(LVDS) & PORT_ENABLE)
286 dvo |= LVDS_PORT;
287 if (INREG(DVOA) & PORT_ENABLE)
288 dvo |= DVOA_PORT;
289 if (INREG(DVOB) & PORT_ENABLE)
290 dvo |= DVOB_PORT;
291 if (INREG(DVOC) & PORT_ENABLE)
292 dvo |= DVOC_PORT;
294 return dvo;
297 const char * intelfbhw_dvo_to_string(int dvo)
299 if (dvo & DVOA_PORT)
300 return "DVO port A";
301 else if (dvo & DVOB_PORT)
302 return "DVO port B";
303 else if (dvo & DVOC_PORT)
304 return "DVO port C";
305 else if (dvo & LVDS_PORT)
306 return "LVDS port";
307 else
308 return NULL;
312 int intelfbhw_validate_mode(struct intelfb_info *dinfo,
313 struct fb_var_screeninfo *var)
315 int bytes_per_pixel;
316 int tmp;
318 #if VERBOSE > 0
319 DBG_MSG("intelfbhw_validate_mode\n");
320 #endif
322 bytes_per_pixel = var->bits_per_pixel / 8;
323 if (bytes_per_pixel == 3)
324 bytes_per_pixel = 4;
326 /* Check if enough video memory. */
327 tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
328 if (tmp > dinfo->fb.size) {
329 WRN_MSG("Not enough video ram for mode "
330 "(%d KByte vs %d KByte).\n",
331 BtoKB(tmp), BtoKB(dinfo->fb.size));
332 return 1;
335 /* Check if x/y limits are OK. */
336 if (var->xres - 1 > HACTIVE_MASK) {
337 WRN_MSG("X resolution too large (%d vs %d).\n",
338 var->xres, HACTIVE_MASK + 1);
339 return 1;
341 if (var->yres - 1 > VACTIVE_MASK) {
342 WRN_MSG("Y resolution too large (%d vs %d).\n",
343 var->yres, VACTIVE_MASK + 1);
344 return 1;
346 if (var->xres < 4) {
347 WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
348 return 1;
350 if (var->yres < 4) {
351 WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
352 return 1;
355 /* Check for doublescan modes. */
356 if (var->vmode & FB_VMODE_DOUBLE) {
357 WRN_MSG("Mode is double-scan.\n");
358 return 1;
361 if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
362 WRN_MSG("Odd number of lines in interlaced mode\n");
363 return 1;
366 /* Check if clock is OK. */
367 tmp = 1000000000 / var->pixclock;
368 if (tmp < MIN_CLOCK) {
369 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
370 (tmp + 500) / 1000, MIN_CLOCK / 1000);
371 return 1;
373 if (tmp > MAX_CLOCK) {
374 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
375 (tmp + 500) / 1000, MAX_CLOCK / 1000);
376 return 1;
379 return 0;
382 int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
384 struct intelfb_info *dinfo = GET_DINFO(info);
385 u32 offset, xoffset, yoffset;
387 #if VERBOSE > 0
388 DBG_MSG("intelfbhw_pan_display\n");
389 #endif
391 xoffset = ROUND_DOWN_TO(var->xoffset, 8);
392 yoffset = var->yoffset;
394 if ((xoffset + var->xres > var->xres_virtual) ||
395 (yoffset + var->yres > var->yres_virtual))
396 return -EINVAL;
398 offset = (yoffset * dinfo->pitch) +
399 (xoffset * var->bits_per_pixel) / 8;
401 offset += dinfo->fb.offset << 12;
403 dinfo->vsync.pan_offset = offset;
404 if ((var->activate & FB_ACTIVATE_VBL) &&
405 !intelfbhw_enable_irq(dinfo))
406 dinfo->vsync.pan_display = 1;
407 else {
408 dinfo->vsync.pan_display = 0;
409 OUTREG(DSPABASE, offset);
412 return 0;
415 /* Blank the screen. */
416 void intelfbhw_do_blank(int blank, struct fb_info *info)
418 struct intelfb_info *dinfo = GET_DINFO(info);
419 u32 tmp;
421 #if VERBOSE > 0
422 DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
423 #endif
425 /* Turn plane A on or off */
426 tmp = INREG(DSPACNTR);
427 if (blank)
428 tmp &= ~DISPPLANE_PLANE_ENABLE;
429 else
430 tmp |= DISPPLANE_PLANE_ENABLE;
431 OUTREG(DSPACNTR, tmp);
432 /* Flush */
433 tmp = INREG(DSPABASE);
434 OUTREG(DSPABASE, tmp);
436 /* Turn off/on the HW cursor */
437 #if VERBOSE > 0
438 DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
439 #endif
440 if (dinfo->cursor_on) {
441 if (blank)
442 intelfbhw_cursor_hide(dinfo);
443 else
444 intelfbhw_cursor_show(dinfo);
445 dinfo->cursor_on = 1;
447 dinfo->cursor_blanked = blank;
449 /* Set DPMS level */
450 tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
451 switch (blank) {
452 case FB_BLANK_UNBLANK:
453 case FB_BLANK_NORMAL:
454 tmp |= ADPA_DPMS_D0;
455 break;
456 case FB_BLANK_VSYNC_SUSPEND:
457 tmp |= ADPA_DPMS_D1;
458 break;
459 case FB_BLANK_HSYNC_SUSPEND:
460 tmp |= ADPA_DPMS_D2;
461 break;
462 case FB_BLANK_POWERDOWN:
463 tmp |= ADPA_DPMS_D3;
464 break;
466 OUTREG(ADPA, tmp);
468 return;
472 /* Check which pipe is connected to an active display plane. */
473 int intelfbhw_active_pipe(const struct intelfb_hwstate *hw)
475 int pipe = -1;
477 /* keep old default behaviour - prefer PIPE_A */
478 if (hw->disp_b_ctrl & DISPPLANE_PLANE_ENABLE) {
479 pipe = (hw->disp_b_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
480 pipe &= PIPE_MASK;
481 if (unlikely(pipe == PIPE_A))
482 return PIPE_A;
484 if (hw->disp_a_ctrl & DISPPLANE_PLANE_ENABLE) {
485 pipe = (hw->disp_a_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
486 pipe &= PIPE_MASK;
487 if (likely(pipe == PIPE_A))
488 return PIPE_A;
490 /* Impossible that no pipe is selected - return PIPE_A */
491 WARN_ON(pipe == -1);
492 if (unlikely(pipe == -1))
493 pipe = PIPE_A;
495 return pipe;
498 void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
499 unsigned red, unsigned green, unsigned blue,
500 unsigned transp)
502 u32 palette_reg = (dinfo->pipe == PIPE_A) ?
503 PALETTE_A : PALETTE_B;
505 #if VERBOSE > 0
506 DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
507 regno, red, green, blue);
508 #endif
510 OUTREG(palette_reg + (regno << 2),
511 (red << PALETTE_8_RED_SHIFT) |
512 (green << PALETTE_8_GREEN_SHIFT) |
513 (blue << PALETTE_8_BLUE_SHIFT));
517 int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
518 struct intelfb_hwstate *hw, int flag)
520 int i;
522 #if VERBOSE > 0
523 DBG_MSG("intelfbhw_read_hw_state\n");
524 #endif
526 if (!hw || !dinfo)
527 return -1;
529 /* Read in as much of the HW state as possible. */
530 hw->vga0_divisor = INREG(VGA0_DIVISOR);
531 hw->vga1_divisor = INREG(VGA1_DIVISOR);
532 hw->vga_pd = INREG(VGAPD);
533 hw->dpll_a = INREG(DPLL_A);
534 hw->dpll_b = INREG(DPLL_B);
535 hw->fpa0 = INREG(FPA0);
536 hw->fpa1 = INREG(FPA1);
537 hw->fpb0 = INREG(FPB0);
538 hw->fpb1 = INREG(FPB1);
540 if (flag == 1)
541 return flag;
543 #if 0
544 /* This seems to be a problem with the 852GM/855GM */
545 for (i = 0; i < PALETTE_8_ENTRIES; i++) {
546 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
547 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
549 #endif
551 if (flag == 2)
552 return flag;
554 hw->htotal_a = INREG(HTOTAL_A);
555 hw->hblank_a = INREG(HBLANK_A);
556 hw->hsync_a = INREG(HSYNC_A);
557 hw->vtotal_a = INREG(VTOTAL_A);
558 hw->vblank_a = INREG(VBLANK_A);
559 hw->vsync_a = INREG(VSYNC_A);
560 hw->src_size_a = INREG(SRC_SIZE_A);
561 hw->bclrpat_a = INREG(BCLRPAT_A);
562 hw->htotal_b = INREG(HTOTAL_B);
563 hw->hblank_b = INREG(HBLANK_B);
564 hw->hsync_b = INREG(HSYNC_B);
565 hw->vtotal_b = INREG(VTOTAL_B);
566 hw->vblank_b = INREG(VBLANK_B);
567 hw->vsync_b = INREG(VSYNC_B);
568 hw->src_size_b = INREG(SRC_SIZE_B);
569 hw->bclrpat_b = INREG(BCLRPAT_B);
571 if (flag == 3)
572 return flag;
574 hw->adpa = INREG(ADPA);
575 hw->dvoa = INREG(DVOA);
576 hw->dvob = INREG(DVOB);
577 hw->dvoc = INREG(DVOC);
578 hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
579 hw->dvob_srcdim = INREG(DVOB_SRCDIM);
580 hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
581 hw->lvds = INREG(LVDS);
583 if (flag == 4)
584 return flag;
586 hw->pipe_a_conf = INREG(PIPEACONF);
587 hw->pipe_b_conf = INREG(PIPEBCONF);
588 hw->disp_arb = INREG(DISPARB);
590 if (flag == 5)
591 return flag;
593 hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
594 hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
595 hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
596 hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
598 if (flag == 6)
599 return flag;
601 for (i = 0; i < 4; i++) {
602 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
603 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
606 if (flag == 7)
607 return flag;
609 hw->cursor_size = INREG(CURSOR_SIZE);
611 if (flag == 8)
612 return flag;
614 hw->disp_a_ctrl = INREG(DSPACNTR);
615 hw->disp_b_ctrl = INREG(DSPBCNTR);
616 hw->disp_a_base = INREG(DSPABASE);
617 hw->disp_b_base = INREG(DSPBBASE);
618 hw->disp_a_stride = INREG(DSPASTRIDE);
619 hw->disp_b_stride = INREG(DSPBSTRIDE);
621 if (flag == 9)
622 return flag;
624 hw->vgacntrl = INREG(VGACNTRL);
626 if (flag == 10)
627 return flag;
629 hw->add_id = INREG(ADD_ID);
631 if (flag == 11)
632 return flag;
634 for (i = 0; i < 7; i++) {
635 hw->swf0x[i] = INREG(SWF00 + (i << 2));
636 hw->swf1x[i] = INREG(SWF10 + (i << 2));
637 if (i < 3)
638 hw->swf3x[i] = INREG(SWF30 + (i << 2));
641 for (i = 0; i < 8; i++)
642 hw->fence[i] = INREG(FENCE + (i << 2));
644 hw->instpm = INREG(INSTPM);
645 hw->mem_mode = INREG(MEM_MODE);
646 hw->fw_blc_0 = INREG(FW_BLC_0);
647 hw->fw_blc_1 = INREG(FW_BLC_1);
649 hw->hwstam = INREG16(HWSTAM);
650 hw->ier = INREG16(IER);
651 hw->iir = INREG16(IIR);
652 hw->imr = INREG16(IMR);
654 return 0;
658 static int calc_vclock3(int index, int m, int n, int p)
660 if (p == 0 || n == 0)
661 return 0;
662 return plls[index].ref_clk * m / n / p;
665 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
666 int lvds)
668 struct pll_min_max *pll = &plls[index];
669 u32 m, vco, p;
671 m = (5 * (m1 + 2)) + (m2 + 2);
672 n += 2;
673 vco = pll->ref_clk * m / n;
675 if (index == PLLS_I8xx)
676 p = ((p1 + 2) * (1 << (p2 + 1)));
677 else
678 p = ((p1) * (p2 ? 5 : 10));
679 return vco / p;
682 #if REGDUMP
683 static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
684 int *o_p1, int *o_p2)
686 int p1, p2;
688 if (IS_I9XX(dinfo)) {
689 if (dpll & DPLL_P1_FORCE_DIV2)
690 p1 = 1;
691 else
692 p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
694 p1 = ffs(p1);
696 p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
697 } else {
698 if (dpll & DPLL_P1_FORCE_DIV2)
699 p1 = 0;
700 else
701 p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
702 p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
705 *o_p1 = p1;
706 *o_p2 = p2;
708 #endif
711 void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
712 struct intelfb_hwstate *hw)
714 #if REGDUMP
715 int i, m1, m2, n, p1, p2;
716 int index = dinfo->pll_index;
717 DBG_MSG("intelfbhw_print_hw_state\n");
719 if (!hw)
720 return;
721 /* Read in as much of the HW state as possible. */
722 printk("hw state dump start\n");
723 printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
724 printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
725 printk(" VGAPD: 0x%08x\n", hw->vga_pd);
726 n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
727 m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
728 m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
730 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
732 printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
733 m1, m2, n, p1, p2);
734 printk(" VGA0: clock is %d\n",
735 calc_vclock(index, m1, m2, n, p1, p2, 0));
737 n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
738 m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
739 m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
741 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
742 printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
743 m1, m2, n, p1, p2);
744 printk(" VGA1: clock is %d\n",
745 calc_vclock(index, m1, m2, n, p1, p2, 0));
747 printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
748 printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
749 printk(" FPA0: 0x%08x\n", hw->fpa0);
750 printk(" FPA1: 0x%08x\n", hw->fpa1);
751 printk(" FPB0: 0x%08x\n", hw->fpb0);
752 printk(" FPB1: 0x%08x\n", hw->fpb1);
754 n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
755 m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
756 m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
758 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
760 printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
761 m1, m2, n, p1, p2);
762 printk(" PLLA0: clock is %d\n",
763 calc_vclock(index, m1, m2, n, p1, p2, 0));
765 n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
766 m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
767 m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
769 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
771 printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
772 m1, m2, n, p1, p2);
773 printk(" PLLA1: clock is %d\n",
774 calc_vclock(index, m1, m2, n, p1, p2, 0));
776 #if 0
777 printk(" PALETTE_A:\n");
778 for (i = 0; i < PALETTE_8_ENTRIES)
779 printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
780 printk(" PALETTE_B:\n");
781 for (i = 0; i < PALETTE_8_ENTRIES)
782 printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
783 #endif
785 printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
786 printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
787 printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
788 printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
789 printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
790 printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
791 printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
792 printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
793 printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
794 printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
795 printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
796 printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
797 printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
798 printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
799 printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
800 printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
802 printk(" ADPA: 0x%08x\n", hw->adpa);
803 printk(" DVOA: 0x%08x\n", hw->dvoa);
804 printk(" DVOB: 0x%08x\n", hw->dvob);
805 printk(" DVOC: 0x%08x\n", hw->dvoc);
806 printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
807 printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
808 printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
809 printk(" LVDS: 0x%08x\n", hw->lvds);
811 printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
812 printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
813 printk(" DISPARB: 0x%08x\n", hw->disp_arb);
815 printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
816 printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
817 printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
818 printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
820 printk(" CURSOR_A_PALETTE: ");
821 for (i = 0; i < 4; i++) {
822 printk("0x%08x", hw->cursor_a_palette[i]);
823 if (i < 3)
824 printk(", ");
826 printk("\n");
827 printk(" CURSOR_B_PALETTE: ");
828 for (i = 0; i < 4; i++) {
829 printk("0x%08x", hw->cursor_b_palette[i]);
830 if (i < 3)
831 printk(", ");
833 printk("\n");
835 printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
837 printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
838 printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
839 printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
840 printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
841 printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
842 printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
844 printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
845 printk(" ADD_ID: 0x%08x\n", hw->add_id);
847 for (i = 0; i < 7; i++) {
848 printk(" SWF0%d 0x%08x\n", i,
849 hw->swf0x[i]);
851 for (i = 0; i < 7; i++) {
852 printk(" SWF1%d 0x%08x\n", i,
853 hw->swf1x[i]);
855 for (i = 0; i < 3; i++) {
856 printk(" SWF3%d 0x%08x\n", i,
857 hw->swf3x[i]);
859 for (i = 0; i < 8; i++)
860 printk(" FENCE%d 0x%08x\n", i,
861 hw->fence[i]);
863 printk(" INSTPM 0x%08x\n", hw->instpm);
864 printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
865 printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
866 printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
868 printk(" HWSTAM 0x%04x\n", hw->hwstam);
869 printk(" IER 0x%04x\n", hw->ier);
870 printk(" IIR 0x%04x\n", hw->iir);
871 printk(" IMR 0x%04x\n", hw->imr);
872 printk("hw state dump end\n");
873 #endif
878 /* Split the M parameter into M1 and M2. */
879 static int splitm(int index, unsigned int m, unsigned int *retm1,
880 unsigned int *retm2)
882 int m1, m2;
883 int testm;
884 struct pll_min_max *pll = &plls[index];
886 /* no point optimising too much - brute force m */
887 for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
888 for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
889 testm = (5 * (m1 + 2)) + (m2 + 2);
890 if (testm == m) {
891 *retm1 = (unsigned int)m1;
892 *retm2 = (unsigned int)m2;
893 return 0;
897 return 1;
900 /* Split the P parameter into P1 and P2. */
901 static int splitp(int index, unsigned int p, unsigned int *retp1,
902 unsigned int *retp2)
904 int p1, p2;
905 struct pll_min_max *pll = &plls[index];
907 if (index == PLLS_I9xx) {
908 p2 = (p % 10) ? 1 : 0;
910 p1 = p / (p2 ? 5 : 10);
912 *retp1 = (unsigned int)p1;
913 *retp2 = (unsigned int)p2;
914 return 0;
917 if (p % 4 == 0)
918 p2 = 1;
919 else
920 p2 = 0;
921 p1 = (p / (1 << (p2 + 1))) - 2;
922 if (p % 4 == 0 && p1 < pll->min_p1) {
923 p2 = 0;
924 p1 = (p / (1 << (p2 + 1))) - 2;
926 if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
927 (p1 + 2) * (1 << (p2 + 1)) != p) {
928 return 1;
929 } else {
930 *retp1 = (unsigned int)p1;
931 *retp2 = (unsigned int)p2;
932 return 0;
936 static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
937 u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
939 u32 m1, m2, n, p1, p2, n1, testm;
940 u32 f_vco, p, p_best = 0, m, f_out = 0;
941 u32 err_max, err_target, err_best = 10000000;
942 u32 n_best = 0, m_best = 0, f_best, f_err;
943 u32 p_min, p_max, p_inc, div_max;
944 struct pll_min_max *pll = &plls[index];
946 /* Accept 0.5% difference, but aim for 0.1% */
947 err_max = 5 * clock / 1000;
948 err_target = clock / 1000;
950 DBG_MSG("Clock is %d\n", clock);
952 div_max = pll->max_vco / clock;
954 p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
955 p_min = p_inc;
956 p_max = ROUND_DOWN_TO(div_max, p_inc);
957 if (p_min < pll->min_p)
958 p_min = pll->min_p;
959 if (p_max > pll->max_p)
960 p_max = pll->max_p;
962 DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
964 p = p_min;
965 do {
966 if (splitp(index, p, &p1, &p2)) {
967 WRN_MSG("cannot split p = %d\n", p);
968 p += p_inc;
969 continue;
971 n = pll->min_n;
972 f_vco = clock * p;
974 do {
975 m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
976 if (m < pll->min_m)
977 m = pll->min_m + 1;
978 if (m > pll->max_m)
979 m = pll->max_m - 1;
980 for (testm = m - 1; testm <= m; testm++) {
981 f_out = calc_vclock3(index, testm, n, p);
982 if (splitm(index, testm, &m1, &m2)) {
983 WRN_MSG("cannot split m = %d\n",
984 testm);
985 continue;
987 if (clock > f_out)
988 f_err = clock - f_out;
989 else/* slightly bias the error for bigger clocks */
990 f_err = f_out - clock + 1;
992 if (f_err < err_best) {
993 m_best = testm;
994 n_best = n;
995 p_best = p;
996 f_best = f_out;
997 err_best = f_err;
1000 n++;
1001 } while ((n <= pll->max_n) && (f_out >= clock));
1002 p += p_inc;
1003 } while ((p <= p_max));
1005 if (!m_best) {
1006 WRN_MSG("cannot find parameters for clock %d\n", clock);
1007 return 1;
1009 m = m_best;
1010 n = n_best;
1011 p = p_best;
1012 splitm(index, m, &m1, &m2);
1013 splitp(index, p, &p1, &p2);
1014 n1 = n - 2;
1016 DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
1017 "f: %d (%d), VCO: %d\n",
1018 m, m1, m2, n, n1, p, p1, p2,
1019 calc_vclock3(index, m, n, p),
1020 calc_vclock(index, m1, m2, n1, p1, p2, 0),
1021 calc_vclock3(index, m, n, p) * p);
1022 *retm1 = m1;
1023 *retm2 = m2;
1024 *retn = n1;
1025 *retp1 = p1;
1026 *retp2 = p2;
1027 *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
1029 return 0;
1032 static __inline__ int check_overflow(u32 value, u32 limit,
1033 const char *description)
1035 if (value > limit) {
1036 WRN_MSG("%s value %d exceeds limit %d\n",
1037 description, value, limit);
1038 return 1;
1040 return 0;
1043 /* It is assumed that hw is filled in with the initial state information. */
1044 int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
1045 struct intelfb_hwstate *hw,
1046 struct fb_var_screeninfo *var)
1048 int pipe = intelfbhw_active_pipe(hw);
1049 u32 *dpll, *fp0, *fp1;
1050 u32 m1, m2, n, p1, p2, clock_target, clock;
1051 u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
1052 u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
1053 u32 vsync_pol, hsync_pol;
1054 u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
1055 u32 stride_alignment;
1057 DBG_MSG("intelfbhw_mode_to_hw\n");
1059 /* Disable VGA */
1060 hw->vgacntrl |= VGA_DISABLE;
1062 /* Set which pipe's registers will be set. */
1063 if (pipe == PIPE_B) {
1064 dpll = &hw->dpll_b;
1065 fp0 = &hw->fpb0;
1066 fp1 = &hw->fpb1;
1067 hs = &hw->hsync_b;
1068 hb = &hw->hblank_b;
1069 ht = &hw->htotal_b;
1070 vs = &hw->vsync_b;
1071 vb = &hw->vblank_b;
1072 vt = &hw->vtotal_b;
1073 ss = &hw->src_size_b;
1074 pipe_conf = &hw->pipe_b_conf;
1075 } else {
1076 dpll = &hw->dpll_a;
1077 fp0 = &hw->fpa0;
1078 fp1 = &hw->fpa1;
1079 hs = &hw->hsync_a;
1080 hb = &hw->hblank_a;
1081 ht = &hw->htotal_a;
1082 vs = &hw->vsync_a;
1083 vb = &hw->vblank_a;
1084 vt = &hw->vtotal_a;
1085 ss = &hw->src_size_a;
1086 pipe_conf = &hw->pipe_a_conf;
1089 /* Use ADPA register for sync control. */
1090 hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1092 /* sync polarity */
1093 hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1094 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1095 vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1096 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1097 hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1098 (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1099 hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1100 (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1102 /* Connect correct pipe to the analog port DAC */
1103 hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1104 hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1106 /* Set DPMS state to D0 (on) */
1107 hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1108 hw->adpa |= ADPA_DPMS_D0;
1110 hw->adpa |= ADPA_DAC_ENABLE;
1112 *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1113 *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1114 *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1116 /* Desired clock in kHz */
1117 clock_target = 1000000000 / var->pixclock;
1119 if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1120 &n, &p1, &p2, &clock)) {
1121 WRN_MSG("calc_pll_params failed\n");
1122 return 1;
1125 /* Check for overflow. */
1126 if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1127 return 1;
1128 if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1129 return 1;
1130 if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1131 return 1;
1132 if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1133 return 1;
1134 if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1135 return 1;
1137 *dpll &= ~DPLL_P1_FORCE_DIV2;
1138 *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1139 (DPLL_P1_MASK << DPLL_P1_SHIFT));
1141 if (IS_I9XX(dinfo)) {
1142 *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1143 *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1144 } else
1145 *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1147 *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1148 (m1 << FP_M1_DIVISOR_SHIFT) |
1149 (m2 << FP_M2_DIVISOR_SHIFT);
1150 *fp1 = *fp0;
1152 hw->dvob &= ~PORT_ENABLE;
1153 hw->dvoc &= ~PORT_ENABLE;
1155 /* Use display plane A. */
1156 hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1157 hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1158 hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1159 switch (intelfb_var_to_depth(var)) {
1160 case 8:
1161 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1162 break;
1163 case 15:
1164 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1165 break;
1166 case 16:
1167 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1168 break;
1169 case 24:
1170 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1171 break;
1173 hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1174 hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1176 /* Set CRTC registers. */
1177 hactive = var->xres;
1178 hsync_start = hactive + var->right_margin;
1179 hsync_end = hsync_start + var->hsync_len;
1180 htotal = hsync_end + var->left_margin;
1181 hblank_start = hactive;
1182 hblank_end = htotal;
1184 DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1185 hactive, hsync_start, hsync_end, htotal, hblank_start,
1186 hblank_end);
1188 vactive = var->yres;
1189 if (var->vmode & FB_VMODE_INTERLACED)
1190 vactive--; /* the chip adds 2 halflines automatically */
1191 vsync_start = vactive + var->lower_margin;
1192 vsync_end = vsync_start + var->vsync_len;
1193 vtotal = vsync_end + var->upper_margin;
1194 vblank_start = vactive;
1195 vblank_end = vtotal;
1196 vblank_end = vsync_end + 1;
1198 DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1199 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1200 vblank_end);
1202 /* Adjust for register values, and check for overflow. */
1203 hactive--;
1204 if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1205 return 1;
1206 hsync_start--;
1207 if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1208 return 1;
1209 hsync_end--;
1210 if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1211 return 1;
1212 htotal--;
1213 if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1214 return 1;
1215 hblank_start--;
1216 if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1217 return 1;
1218 hblank_end--;
1219 if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1220 return 1;
1222 vactive--;
1223 if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1224 return 1;
1225 vsync_start--;
1226 if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1227 return 1;
1228 vsync_end--;
1229 if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1230 return 1;
1231 vtotal--;
1232 if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1233 return 1;
1234 vblank_start--;
1235 if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1236 return 1;
1237 vblank_end--;
1238 if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1239 return 1;
1241 *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1242 *hb = (hblank_start << HBLANKSTART_SHIFT) |
1243 (hblank_end << HSYNCEND_SHIFT);
1244 *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1246 *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1247 *vb = (vblank_start << VBLANKSTART_SHIFT) |
1248 (vblank_end << VSYNCEND_SHIFT);
1249 *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1250 *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1251 (vactive << SRC_SIZE_VERT_SHIFT);
1253 hw->disp_a_stride = dinfo->pitch;
1254 DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1256 hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1257 var->xoffset * var->bits_per_pixel / 8;
1259 hw->disp_a_base += dinfo->fb.offset << 12;
1261 /* Check stride alignment. */
1262 stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1263 STRIDE_ALIGNMENT;
1264 if (hw->disp_a_stride % stride_alignment != 0) {
1265 WRN_MSG("display stride %d has bad alignment %d\n",
1266 hw->disp_a_stride, stride_alignment);
1267 return 1;
1270 /* Set the palette to 8-bit mode. */
1271 *pipe_conf &= ~PIPECONF_GAMMA;
1273 if (var->vmode & FB_VMODE_INTERLACED)
1274 *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
1275 else
1276 *pipe_conf &= ~PIPECONF_INTERLACE_MASK;
1278 return 0;
1281 /* Program a (non-VGA) video mode. */
1282 int intelfbhw_program_mode(struct intelfb_info *dinfo,
1283 const struct intelfb_hwstate *hw, int blank)
1285 u32 tmp;
1286 const u32 *dpll, *fp0, *fp1, *pipe_conf;
1287 const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1288 u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
1289 u32 hsync_reg, htotal_reg, hblank_reg;
1290 u32 vsync_reg, vtotal_reg, vblank_reg;
1291 u32 src_size_reg;
1292 u32 count, tmp_val[3];
1294 /* Assume single pipe */
1296 #if VERBOSE > 0
1297 DBG_MSG("intelfbhw_program_mode\n");
1298 #endif
1300 /* Disable VGA */
1301 tmp = INREG(VGACNTRL);
1302 tmp |= VGA_DISABLE;
1303 OUTREG(VGACNTRL, tmp);
1305 dinfo->pipe = intelfbhw_active_pipe(hw);
1307 if (dinfo->pipe == PIPE_B) {
1308 dpll = &hw->dpll_b;
1309 fp0 = &hw->fpb0;
1310 fp1 = &hw->fpb1;
1311 pipe_conf = &hw->pipe_b_conf;
1312 hs = &hw->hsync_b;
1313 hb = &hw->hblank_b;
1314 ht = &hw->htotal_b;
1315 vs = &hw->vsync_b;
1316 vb = &hw->vblank_b;
1317 vt = &hw->vtotal_b;
1318 ss = &hw->src_size_b;
1319 dpll_reg = DPLL_B;
1320 fp0_reg = FPB0;
1321 fp1_reg = FPB1;
1322 pipe_conf_reg = PIPEBCONF;
1323 pipe_stat_reg = PIPEBSTAT;
1324 hsync_reg = HSYNC_B;
1325 htotal_reg = HTOTAL_B;
1326 hblank_reg = HBLANK_B;
1327 vsync_reg = VSYNC_B;
1328 vtotal_reg = VTOTAL_B;
1329 vblank_reg = VBLANK_B;
1330 src_size_reg = SRC_SIZE_B;
1331 } else {
1332 dpll = &hw->dpll_a;
1333 fp0 = &hw->fpa0;
1334 fp1 = &hw->fpa1;
1335 pipe_conf = &hw->pipe_a_conf;
1336 hs = &hw->hsync_a;
1337 hb = &hw->hblank_a;
1338 ht = &hw->htotal_a;
1339 vs = &hw->vsync_a;
1340 vb = &hw->vblank_a;
1341 vt = &hw->vtotal_a;
1342 ss = &hw->src_size_a;
1343 dpll_reg = DPLL_A;
1344 fp0_reg = FPA0;
1345 fp1_reg = FPA1;
1346 pipe_conf_reg = PIPEACONF;
1347 pipe_stat_reg = PIPEASTAT;
1348 hsync_reg = HSYNC_A;
1349 htotal_reg = HTOTAL_A;
1350 hblank_reg = HBLANK_A;
1351 vsync_reg = VSYNC_A;
1352 vtotal_reg = VTOTAL_A;
1353 vblank_reg = VBLANK_A;
1354 src_size_reg = SRC_SIZE_A;
1357 /* turn off pipe */
1358 tmp = INREG(pipe_conf_reg);
1359 tmp &= ~PIPECONF_ENABLE;
1360 OUTREG(pipe_conf_reg, tmp);
1362 count = 0;
1363 do {
1364 tmp_val[count % 3] = INREG(PIPEA_DSL);
1365 if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
1366 break;
1367 count++;
1368 udelay(1);
1369 if (count % 200 == 0) {
1370 tmp = INREG(pipe_conf_reg);
1371 tmp &= ~PIPECONF_ENABLE;
1372 OUTREG(pipe_conf_reg, tmp);
1374 } while (count < 2000);
1376 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1378 /* Disable planes A and B. */
1379 tmp = INREG(DSPACNTR);
1380 tmp &= ~DISPPLANE_PLANE_ENABLE;
1381 OUTREG(DSPACNTR, tmp);
1382 tmp = INREG(DSPBCNTR);
1383 tmp &= ~DISPPLANE_PLANE_ENABLE;
1384 OUTREG(DSPBCNTR, tmp);
1386 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1387 mdelay(20);
1389 OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1390 OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1391 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1393 /* Disable Sync */
1394 tmp = INREG(ADPA);
1395 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1396 tmp |= ADPA_DPMS_D3;
1397 OUTREG(ADPA, tmp);
1399 /* do some funky magic - xyzzy */
1400 OUTREG(0x61204, 0xabcd0000);
1402 /* turn off PLL */
1403 tmp = INREG(dpll_reg);
1404 tmp &= ~DPLL_VCO_ENABLE;
1405 OUTREG(dpll_reg, tmp);
1407 /* Set PLL parameters */
1408 OUTREG(fp0_reg, *fp0);
1409 OUTREG(fp1_reg, *fp1);
1411 /* Enable PLL */
1412 OUTREG(dpll_reg, *dpll);
1414 /* Set DVOs B/C */
1415 OUTREG(DVOB, hw->dvob);
1416 OUTREG(DVOC, hw->dvoc);
1418 /* undo funky magic */
1419 OUTREG(0x61204, 0x00000000);
1421 /* Set ADPA */
1422 OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1423 OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1425 /* Set pipe parameters */
1426 OUTREG(hsync_reg, *hs);
1427 OUTREG(hblank_reg, *hb);
1428 OUTREG(htotal_reg, *ht);
1429 OUTREG(vsync_reg, *vs);
1430 OUTREG(vblank_reg, *vb);
1431 OUTREG(vtotal_reg, *vt);
1432 OUTREG(src_size_reg, *ss);
1434 switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
1435 FB_VMODE_ODD_FLD_FIRST)) {
1436 case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
1437 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
1438 break;
1439 case FB_VMODE_INTERLACED: /* even lines first */
1440 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
1441 break;
1442 default: /* non-interlaced */
1443 OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
1445 /* Enable pipe */
1446 OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1448 /* Enable sync */
1449 tmp = INREG(ADPA);
1450 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1451 tmp |= ADPA_DPMS_D0;
1452 OUTREG(ADPA, tmp);
1454 /* setup display plane */
1455 if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1457 * i830M errata: the display plane must be enabled
1458 * to allow writes to the other bits in the plane
1459 * control register.
1461 tmp = INREG(DSPACNTR);
1462 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1463 tmp |= DISPPLANE_PLANE_ENABLE;
1464 OUTREG(DSPACNTR, tmp);
1465 OUTREG(DSPACNTR,
1466 hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1467 mdelay(1);
1471 OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1472 OUTREG(DSPASTRIDE, hw->disp_a_stride);
1473 OUTREG(DSPABASE, hw->disp_a_base);
1475 /* Enable plane */
1476 if (!blank) {
1477 tmp = INREG(DSPACNTR);
1478 tmp |= DISPPLANE_PLANE_ENABLE;
1479 OUTREG(DSPACNTR, tmp);
1480 OUTREG(DSPABASE, hw->disp_a_base);
1483 return 0;
1486 /* forward declarations */
1487 static void refresh_ring(struct intelfb_info *dinfo);
1488 static void reset_state(struct intelfb_info *dinfo);
1489 static void do_flush(struct intelfb_info *dinfo);
1491 static u32 get_ring_space(struct intelfb_info *dinfo)
1493 u32 ring_space;
1495 if (dinfo->ring_tail >= dinfo->ring_head)
1496 ring_space = dinfo->ring.size -
1497 (dinfo->ring_tail - dinfo->ring_head);
1498 else
1499 ring_space = dinfo->ring_head - dinfo->ring_tail;
1501 if (ring_space > RING_MIN_FREE)
1502 ring_space -= RING_MIN_FREE;
1503 else
1504 ring_space = 0;
1506 return ring_space;
1509 static int wait_ring(struct intelfb_info *dinfo, int n)
1511 int i = 0;
1512 unsigned long end;
1513 u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1515 #if VERBOSE > 0
1516 DBG_MSG("wait_ring: %d\n", n);
1517 #endif
1519 end = jiffies + (HZ * 3);
1520 while (dinfo->ring_space < n) {
1521 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1522 dinfo->ring_space = get_ring_space(dinfo);
1524 if (dinfo->ring_head != last_head) {
1525 end = jiffies + (HZ * 3);
1526 last_head = dinfo->ring_head;
1528 i++;
1529 if (time_before(end, jiffies)) {
1530 if (!i) {
1531 /* Try again */
1532 reset_state(dinfo);
1533 refresh_ring(dinfo);
1534 do_flush(dinfo);
1535 end = jiffies + (HZ * 3);
1536 i = 1;
1537 } else {
1538 WRN_MSG("ring buffer : space: %d wanted %d\n",
1539 dinfo->ring_space, n);
1540 WRN_MSG("lockup - turning off hardware "
1541 "acceleration\n");
1542 dinfo->ring_lockup = 1;
1543 break;
1546 udelay(1);
1548 return i;
1551 static void do_flush(struct intelfb_info *dinfo)
1553 START_RING(2);
1554 OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1555 OUT_RING(MI_NOOP);
1556 ADVANCE_RING();
1559 void intelfbhw_do_sync(struct intelfb_info *dinfo)
1561 #if VERBOSE > 0
1562 DBG_MSG("intelfbhw_do_sync\n");
1563 #endif
1565 if (!dinfo->accel)
1566 return;
1569 * Send a flush, then wait until the ring is empty. This is what
1570 * the XFree86 driver does, and actually it doesn't seem a lot worse
1571 * than the recommended method (both have problems).
1573 do_flush(dinfo);
1574 wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1575 dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1578 static void refresh_ring(struct intelfb_info *dinfo)
1580 #if VERBOSE > 0
1581 DBG_MSG("refresh_ring\n");
1582 #endif
1584 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1585 dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1586 dinfo->ring_space = get_ring_space(dinfo);
1589 static void reset_state(struct intelfb_info *dinfo)
1591 int i;
1592 u32 tmp;
1594 #if VERBOSE > 0
1595 DBG_MSG("reset_state\n");
1596 #endif
1598 for (i = 0; i < FENCE_NUM; i++)
1599 OUTREG(FENCE + (i << 2), 0);
1601 /* Flush the ring buffer if it's enabled. */
1602 tmp = INREG(PRI_RING_LENGTH);
1603 if (tmp & RING_ENABLE) {
1604 #if VERBOSE > 0
1605 DBG_MSG("reset_state: ring was enabled\n");
1606 #endif
1607 refresh_ring(dinfo);
1608 intelfbhw_do_sync(dinfo);
1609 DO_RING_IDLE();
1612 OUTREG(PRI_RING_LENGTH, 0);
1613 OUTREG(PRI_RING_HEAD, 0);
1614 OUTREG(PRI_RING_TAIL, 0);
1615 OUTREG(PRI_RING_START, 0);
1618 /* Stop the 2D engine, and turn off the ring buffer. */
1619 void intelfbhw_2d_stop(struct intelfb_info *dinfo)
1621 #if VERBOSE > 0
1622 DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
1623 dinfo->accel, dinfo->ring_active);
1624 #endif
1626 if (!dinfo->accel)
1627 return;
1629 dinfo->ring_active = 0;
1630 reset_state(dinfo);
1634 * Enable the ring buffer, and initialise the 2D engine.
1635 * It is assumed that the graphics engine has been stopped by previously
1636 * calling intelfb_2d_stop().
1638 void intelfbhw_2d_start(struct intelfb_info *dinfo)
1640 #if VERBOSE > 0
1641 DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1642 dinfo->accel, dinfo->ring_active);
1643 #endif
1645 if (!dinfo->accel)
1646 return;
1648 /* Initialise the primary ring buffer. */
1649 OUTREG(PRI_RING_LENGTH, 0);
1650 OUTREG(PRI_RING_TAIL, 0);
1651 OUTREG(PRI_RING_HEAD, 0);
1653 OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1654 OUTREG(PRI_RING_LENGTH,
1655 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1656 RING_NO_REPORT | RING_ENABLE);
1657 refresh_ring(dinfo);
1658 dinfo->ring_active = 1;
1661 /* 2D fillrect (solid fill or invert) */
1662 void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
1663 u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
1665 u32 br00, br09, br13, br14, br16;
1667 #if VERBOSE > 0
1668 DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1669 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1670 #endif
1672 br00 = COLOR_BLT_CMD;
1673 br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1674 br13 = (rop << ROP_SHIFT) | pitch;
1675 br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1676 br16 = color;
1678 switch (bpp) {
1679 case 8:
1680 br13 |= COLOR_DEPTH_8;
1681 break;
1682 case 16:
1683 br13 |= COLOR_DEPTH_16;
1684 break;
1685 case 32:
1686 br13 |= COLOR_DEPTH_32;
1687 br00 |= WRITE_ALPHA | WRITE_RGB;
1688 break;
1691 START_RING(6);
1692 OUT_RING(br00);
1693 OUT_RING(br13);
1694 OUT_RING(br14);
1695 OUT_RING(br09);
1696 OUT_RING(br16);
1697 OUT_RING(MI_NOOP);
1698 ADVANCE_RING();
1700 #if VERBOSE > 0
1701 DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1702 dinfo->ring_tail, dinfo->ring_space);
1703 #endif
1706 void
1707 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1708 u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1710 u32 br00, br09, br11, br12, br13, br22, br23, br26;
1712 #if VERBOSE > 0
1713 DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1714 curx, cury, dstx, dsty, w, h, pitch, bpp);
1715 #endif
1717 br00 = XY_SRC_COPY_BLT_CMD;
1718 br09 = dinfo->fb_start;
1719 br11 = (pitch << PITCH_SHIFT);
1720 br12 = dinfo->fb_start;
1721 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1722 br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1723 br23 = ((dstx + w) << WIDTH_SHIFT) |
1724 ((dsty + h) << HEIGHT_SHIFT);
1725 br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1727 switch (bpp) {
1728 case 8:
1729 br13 |= COLOR_DEPTH_8;
1730 break;
1731 case 16:
1732 br13 |= COLOR_DEPTH_16;
1733 break;
1734 case 32:
1735 br13 |= COLOR_DEPTH_32;
1736 br00 |= WRITE_ALPHA | WRITE_RGB;
1737 break;
1740 START_RING(8);
1741 OUT_RING(br00);
1742 OUT_RING(br13);
1743 OUT_RING(br22);
1744 OUT_RING(br23);
1745 OUT_RING(br09);
1746 OUT_RING(br26);
1747 OUT_RING(br11);
1748 OUT_RING(br12);
1749 ADVANCE_RING();
1752 int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1753 u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
1754 u32 bpp)
1756 int nbytes, ndwords, pad, tmp;
1757 u32 br00, br09, br13, br18, br19, br22, br23;
1758 int dat, ix, iy, iw;
1759 int i, j;
1761 #if VERBOSE > 0
1762 DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1763 #endif
1765 /* size in bytes of a padded scanline */
1766 nbytes = ROUND_UP_TO(w, 16) / 8;
1768 /* Total bytes of padded scanline data to write out. */
1769 nbytes = nbytes * h;
1772 * Check if the glyph data exceeds the immediate mode limit.
1773 * It would take a large font (1K pixels) to hit this limit.
1775 if (nbytes > MAX_MONO_IMM_SIZE)
1776 return 0;
1778 /* Src data is packaged a dword (32-bit) at a time. */
1779 ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1782 * Ring has to be padded to a quad word. But because the command starts
1783 with 7 bytes, pad only if there is an even number of ndwords
1785 pad = !(ndwords % 2);
1787 tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1788 br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1789 br09 = dinfo->fb_start;
1790 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1791 br18 = bg;
1792 br19 = fg;
1793 br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1794 br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1796 switch (bpp) {
1797 case 8:
1798 br13 |= COLOR_DEPTH_8;
1799 break;
1800 case 16:
1801 br13 |= COLOR_DEPTH_16;
1802 break;
1803 case 32:
1804 br13 |= COLOR_DEPTH_32;
1805 br00 |= WRITE_ALPHA | WRITE_RGB;
1806 break;
1809 START_RING(8 + ndwords);
1810 OUT_RING(br00);
1811 OUT_RING(br13);
1812 OUT_RING(br22);
1813 OUT_RING(br23);
1814 OUT_RING(br09);
1815 OUT_RING(br18);
1816 OUT_RING(br19);
1817 ix = iy = 0;
1818 iw = ROUND_UP_TO(w, 8) / 8;
1819 while (ndwords--) {
1820 dat = 0;
1821 for (j = 0; j < 2; ++j) {
1822 for (i = 0; i < 2; ++i) {
1823 if (ix != iw || i == 0)
1824 dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1826 if (ix == iw && iy != (h-1)) {
1827 ix = 0;
1828 ++iy;
1831 OUT_RING(dat);
1833 if (pad)
1834 OUT_RING(MI_NOOP);
1835 ADVANCE_RING();
1837 return 1;
1840 /* HW cursor functions. */
1841 void intelfbhw_cursor_init(struct intelfb_info *dinfo)
1843 u32 tmp;
1845 #if VERBOSE > 0
1846 DBG_MSG("intelfbhw_cursor_init\n");
1847 #endif
1849 if (dinfo->mobile || IS_I9XX(dinfo)) {
1850 if (!dinfo->cursor.physical)
1851 return;
1852 tmp = INREG(CURSOR_A_CONTROL);
1853 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1854 CURSOR_MEM_TYPE_LOCAL |
1855 (1 << CURSOR_PIPE_SELECT_SHIFT));
1856 tmp |= CURSOR_MODE_DISABLE;
1857 OUTREG(CURSOR_A_CONTROL, tmp);
1858 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1859 } else {
1860 tmp = INREG(CURSOR_CONTROL);
1861 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1862 CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1863 tmp = CURSOR_FORMAT_3C;
1864 OUTREG(CURSOR_CONTROL, tmp);
1865 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1866 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1867 (64 << CURSOR_SIZE_V_SHIFT);
1868 OUTREG(CURSOR_SIZE, tmp);
1872 void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1874 u32 tmp;
1876 #if VERBOSE > 0
1877 DBG_MSG("intelfbhw_cursor_hide\n");
1878 #endif
1880 dinfo->cursor_on = 0;
1881 if (dinfo->mobile || IS_I9XX(dinfo)) {
1882 if (!dinfo->cursor.physical)
1883 return;
1884 tmp = INREG(CURSOR_A_CONTROL);
1885 tmp &= ~CURSOR_MODE_MASK;
1886 tmp |= CURSOR_MODE_DISABLE;
1887 OUTREG(CURSOR_A_CONTROL, tmp);
1888 /* Flush changes */
1889 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1890 } else {
1891 tmp = INREG(CURSOR_CONTROL);
1892 tmp &= ~CURSOR_ENABLE;
1893 OUTREG(CURSOR_CONTROL, tmp);
1897 void intelfbhw_cursor_show(struct intelfb_info *dinfo)
1899 u32 tmp;
1901 #if VERBOSE > 0
1902 DBG_MSG("intelfbhw_cursor_show\n");
1903 #endif
1905 dinfo->cursor_on = 1;
1907 if (dinfo->cursor_blanked)
1908 return;
1910 if (dinfo->mobile || IS_I9XX(dinfo)) {
1911 if (!dinfo->cursor.physical)
1912 return;
1913 tmp = INREG(CURSOR_A_CONTROL);
1914 tmp &= ~CURSOR_MODE_MASK;
1915 tmp |= CURSOR_MODE_64_4C_AX;
1916 OUTREG(CURSOR_A_CONTROL, tmp);
1917 /* Flush changes */
1918 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1919 } else {
1920 tmp = INREG(CURSOR_CONTROL);
1921 tmp |= CURSOR_ENABLE;
1922 OUTREG(CURSOR_CONTROL, tmp);
1926 void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1928 u32 tmp;
1930 #if VERBOSE > 0
1931 DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1932 #endif
1935 * Sets the position. The coordinates are assumed to already
1936 * have any offset adjusted. Assume that the cursor is never
1937 * completely off-screen, and that x, y are always >= 0.
1940 tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1941 ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1942 OUTREG(CURSOR_A_POSITION, tmp);
1944 if (IS_I9XX(dinfo))
1945 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1948 void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1950 #if VERBOSE > 0
1951 DBG_MSG("intelfbhw_cursor_setcolor\n");
1952 #endif
1954 OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1955 OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1956 OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1957 OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1960 void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1961 u8 *data)
1963 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1964 int i, j, w = width / 8;
1965 int mod = width % 8, t_mask, d_mask;
1967 #if VERBOSE > 0
1968 DBG_MSG("intelfbhw_cursor_load\n");
1969 #endif
1971 if (!dinfo->cursor.virtual)
1972 return;
1974 t_mask = 0xff >> mod;
1975 d_mask = ~(0xff >> mod);
1976 for (i = height; i--; ) {
1977 for (j = 0; j < w; j++) {
1978 writeb(0x00, addr + j);
1979 writeb(*(data++), addr + j+8);
1981 if (mod) {
1982 writeb(t_mask, addr + j);
1983 writeb(*(data++) & d_mask, addr + j+8);
1985 addr += 16;
1989 void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
1991 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1992 int i, j;
1994 #if VERBOSE > 0
1995 DBG_MSG("intelfbhw_cursor_reset\n");
1996 #endif
1998 if (!dinfo->cursor.virtual)
1999 return;
2001 for (i = 64; i--; ) {
2002 for (j = 0; j < 8; j++) {
2003 writeb(0xff, addr + j+0);
2004 writeb(0x00, addr + j+8);
2006 addr += 16;
2010 static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
2012 u16 tmp;
2013 struct intelfb_info *dinfo = dev_id;
2015 spin_lock(&dinfo->int_lock);
2017 tmp = INREG16(IIR);
2018 if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2019 tmp &= PIPE_A_EVENT_INTERRUPT;
2020 else
2021 tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2023 if (tmp == 0) {
2024 spin_unlock(&dinfo->int_lock);
2025 return IRQ_RETVAL(0); /* not us */
2028 /* clear status bits 0-15 ASAP and don't touch bits 16-31 */
2029 OUTREG(PIPEASTAT, INREG(PIPEASTAT));
2031 OUTREG16(IIR, tmp);
2032 if (dinfo->vsync.pan_display) {
2033 dinfo->vsync.pan_display = 0;
2034 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2037 dinfo->vsync.count++;
2038 wake_up_interruptible(&dinfo->vsync.wait);
2040 spin_unlock(&dinfo->int_lock);
2042 return IRQ_RETVAL(1);
2045 int intelfbhw_enable_irq(struct intelfb_info *dinfo)
2047 u16 tmp;
2048 if (!test_and_set_bit(0, &dinfo->irq_flags)) {
2049 if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
2050 "intelfb", dinfo)) {
2051 clear_bit(0, &dinfo->irq_flags);
2052 return -EINVAL;
2055 spin_lock_irq(&dinfo->int_lock);
2056 OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
2057 OUTREG16(IMR, 0);
2058 } else
2059 spin_lock_irq(&dinfo->int_lock);
2061 if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2062 tmp = PIPE_A_EVENT_INTERRUPT;
2063 else
2064 tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2065 if (tmp != INREG16(IER)) {
2066 DBG_MSG("changing IER to 0x%X\n", tmp);
2067 OUTREG16(IER, tmp);
2070 spin_unlock_irq(&dinfo->int_lock);
2071 return 0;
2074 void intelfbhw_disable_irq(struct intelfb_info *dinfo)
2076 if (test_and_clear_bit(0, &dinfo->irq_flags)) {
2077 if (dinfo->vsync.pan_display) {
2078 dinfo->vsync.pan_display = 0;
2079 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2081 spin_lock_irq(&dinfo->int_lock);
2082 OUTREG16(HWSTAM, 0xffff);
2083 OUTREG16(IMR, 0xffff);
2084 OUTREG16(IER, 0x0);
2086 OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
2087 spin_unlock_irq(&dinfo->int_lock);
2089 free_irq(dinfo->pdev->irq, dinfo);
2093 int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
2095 struct intelfb_vsync *vsync;
2096 unsigned int count;
2097 int ret;
2099 switch (pipe) {
2100 case 0:
2101 vsync = &dinfo->vsync;
2102 break;
2103 default:
2104 return -ENODEV;
2107 ret = intelfbhw_enable_irq(dinfo);
2108 if (ret)
2109 return ret;
2111 count = vsync->count;
2112 ret = wait_event_interruptible_timeout(vsync->wait,
2113 count != vsync->count, HZ / 10);
2114 if (ret < 0)
2115 return ret;
2116 if (ret == 0) {
2117 DBG_MSG("wait_for_vsync timed out!\n");
2118 return -ETIMEDOUT;
2121 return 0;