1 // SPDX-License-Identifier: GPL-2.0-only
5 * ARM performance counter support.
7 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
10 * This code is based on the sparc64 perf event code, which is in turn based
13 #define pr_fmt(fmt) "hw perfevents: " fmt
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
27 #include <asm/irq_regs.h>
29 static DEFINE_PER_CPU(struct arm_pmu
*, cpu_armpmu
);
30 static DEFINE_PER_CPU(int, cpu_irq
);
32 static inline u64
arm_pmu_event_max_period(struct perf_event
*event
)
34 if (event
->hw
.flags
& ARMPMU_EVT_64BIT
)
35 return GENMASK_ULL(63, 0);
37 return GENMASK_ULL(31, 0);
41 armpmu_map_cache_event(const unsigned (*cache_map
)
42 [PERF_COUNT_HW_CACHE_MAX
]
43 [PERF_COUNT_HW_CACHE_OP_MAX
]
44 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
47 unsigned int cache_type
, cache_op
, cache_result
, ret
;
49 cache_type
= (config
>> 0) & 0xff;
50 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
53 cache_op
= (config
>> 8) & 0xff;
54 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
57 cache_result
= (config
>> 16) & 0xff;
58 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
64 ret
= (int)(*cache_map
)[cache_type
][cache_op
][cache_result
];
66 if (ret
== CACHE_OP_UNSUPPORTED
)
73 armpmu_map_hw_event(const unsigned (*event_map
)[PERF_COUNT_HW_MAX
], u64 config
)
77 if (config
>= PERF_COUNT_HW_MAX
)
83 mapping
= (*event_map
)[config
];
84 return mapping
== HW_OP_UNSUPPORTED
? -ENOENT
: mapping
;
88 armpmu_map_raw_event(u32 raw_event_mask
, u64 config
)
90 return (int)(config
& raw_event_mask
);
94 armpmu_map_event(struct perf_event
*event
,
95 const unsigned (*event_map
)[PERF_COUNT_HW_MAX
],
96 const unsigned (*cache_map
)
97 [PERF_COUNT_HW_CACHE_MAX
]
98 [PERF_COUNT_HW_CACHE_OP_MAX
]
99 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
102 u64 config
= event
->attr
.config
;
103 int type
= event
->attr
.type
;
105 if (type
== event
->pmu
->type
)
106 return armpmu_map_raw_event(raw_event_mask
, config
);
109 case PERF_TYPE_HARDWARE
:
110 return armpmu_map_hw_event(event_map
, config
);
111 case PERF_TYPE_HW_CACHE
:
112 return armpmu_map_cache_event(cache_map
, config
);
114 return armpmu_map_raw_event(raw_event_mask
, config
);
120 int armpmu_event_set_period(struct perf_event
*event
)
122 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
123 struct hw_perf_event
*hwc
= &event
->hw
;
124 s64 left
= local64_read(&hwc
->period_left
);
125 s64 period
= hwc
->sample_period
;
129 max_period
= arm_pmu_event_max_period(event
);
130 if (unlikely(left
<= -period
)) {
132 local64_set(&hwc
->period_left
, left
);
133 hwc
->last_period
= period
;
137 if (unlikely(left
<= 0)) {
139 local64_set(&hwc
->period_left
, left
);
140 hwc
->last_period
= period
;
145 * Limit the maximum period to prevent the counter value
146 * from overtaking the one we are about to program. In
147 * effect we are reducing max_period to account for
148 * interrupt latency (and we are being very conservative).
150 if (left
> (max_period
>> 1))
151 left
= (max_period
>> 1);
153 local64_set(&hwc
->prev_count
, (u64
)-left
);
155 armpmu
->write_counter(event
, (u64
)(-left
) & max_period
);
157 perf_event_update_userpage(event
);
162 u64
armpmu_event_update(struct perf_event
*event
)
164 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
165 struct hw_perf_event
*hwc
= &event
->hw
;
166 u64 delta
, prev_raw_count
, new_raw_count
;
167 u64 max_period
= arm_pmu_event_max_period(event
);
170 prev_raw_count
= local64_read(&hwc
->prev_count
);
171 new_raw_count
= armpmu
->read_counter(event
);
173 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
174 new_raw_count
) != prev_raw_count
)
177 delta
= (new_raw_count
- prev_raw_count
) & max_period
;
179 local64_add(delta
, &event
->count
);
180 local64_sub(delta
, &hwc
->period_left
);
182 return new_raw_count
;
186 armpmu_read(struct perf_event
*event
)
188 armpmu_event_update(event
);
192 armpmu_stop(struct perf_event
*event
, int flags
)
194 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
195 struct hw_perf_event
*hwc
= &event
->hw
;
198 * ARM pmu always has to update the counter, so ignore
199 * PERF_EF_UPDATE, see comments in armpmu_start().
201 if (!(hwc
->state
& PERF_HES_STOPPED
)) {
202 armpmu
->disable(event
);
203 armpmu_event_update(event
);
204 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
208 static void armpmu_start(struct perf_event
*event
, int flags
)
210 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
211 struct hw_perf_event
*hwc
= &event
->hw
;
214 * ARM pmu always has to reprogram the period, so ignore
215 * PERF_EF_RELOAD, see the comment below.
217 if (flags
& PERF_EF_RELOAD
)
218 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
222 * Set the period again. Some counters can't be stopped, so when we
223 * were stopped we simply disabled the IRQ source and the counter
224 * may have been left counting. If we don't do this step then we may
225 * get an interrupt too soon or *way* too late if the overflow has
226 * happened since disabling.
228 armpmu_event_set_period(event
);
229 armpmu
->enable(event
);
233 armpmu_del(struct perf_event
*event
, int flags
)
235 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
236 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
237 struct hw_perf_event
*hwc
= &event
->hw
;
240 armpmu_stop(event
, PERF_EF_UPDATE
);
241 hw_events
->events
[idx
] = NULL
;
242 armpmu
->clear_event_idx(hw_events
, event
);
243 perf_event_update_userpage(event
);
244 /* Clear the allocated counter */
249 armpmu_add(struct perf_event
*event
, int flags
)
251 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
252 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
253 struct hw_perf_event
*hwc
= &event
->hw
;
256 /* An event following a process won't be stopped earlier */
257 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
260 /* If we don't have a space for the counter then finish early. */
261 idx
= armpmu
->get_event_idx(hw_events
, event
);
266 * If there is an event in the counter we are going to use then make
267 * sure it is disabled.
270 armpmu
->disable(event
);
271 hw_events
->events
[idx
] = event
;
273 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
274 if (flags
& PERF_EF_START
)
275 armpmu_start(event
, PERF_EF_RELOAD
);
277 /* Propagate our changes to the userspace mapping. */
278 perf_event_update_userpage(event
);
284 validate_event(struct pmu
*pmu
, struct pmu_hw_events
*hw_events
,
285 struct perf_event
*event
)
287 struct arm_pmu
*armpmu
;
289 if (is_software_event(event
))
293 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
294 * core perf code won't check that the pmu->ctx == leader->ctx
295 * until after pmu->event_init(event).
297 if (event
->pmu
!= pmu
)
300 if (event
->state
< PERF_EVENT_STATE_OFF
)
303 if (event
->state
== PERF_EVENT_STATE_OFF
&& !event
->attr
.enable_on_exec
)
306 armpmu
= to_arm_pmu(event
->pmu
);
307 return armpmu
->get_event_idx(hw_events
, event
) >= 0;
311 validate_group(struct perf_event
*event
)
313 struct perf_event
*sibling
, *leader
= event
->group_leader
;
314 struct pmu_hw_events fake_pmu
;
317 * Initialise the fake PMU. We only need to populate the
318 * used_mask for the purposes of validation.
320 memset(&fake_pmu
.used_mask
, 0, sizeof(fake_pmu
.used_mask
));
322 if (!validate_event(event
->pmu
, &fake_pmu
, leader
))
325 for_each_sibling_event(sibling
, leader
) {
326 if (!validate_event(event
->pmu
, &fake_pmu
, sibling
))
330 if (!validate_event(event
->pmu
, &fake_pmu
, event
))
336 static irqreturn_t
armpmu_dispatch_irq(int irq
, void *dev
)
338 struct arm_pmu
*armpmu
;
340 u64 start_clock
, finish_clock
;
343 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
344 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
345 * do any necessary shifting, we just need to perform the first
348 armpmu
= *(void **)dev
;
349 if (WARN_ON_ONCE(!armpmu
))
352 start_clock
= sched_clock();
353 ret
= armpmu
->handle_irq(armpmu
);
354 finish_clock
= sched_clock();
356 perf_sample_event_took(finish_clock
- start_clock
);
361 __hw_perf_event_init(struct perf_event
*event
)
363 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
364 struct hw_perf_event
*hwc
= &event
->hw
;
368 mapping
= armpmu
->map_event(event
);
371 pr_debug("event %x:%llx not supported\n", event
->attr
.type
,
377 * We don't assign an index until we actually place the event onto
378 * hardware. Use -1 to signify that we haven't decided where to put it
379 * yet. For SMP systems, each core has it's own PMU so we can't do any
380 * clever allocation or constraints checking at this point.
383 hwc
->config_base
= 0;
388 * Check whether we need to exclude the counter from certain modes.
390 if (armpmu
->set_event_filter
&&
391 armpmu
->set_event_filter(hwc
, &event
->attr
)) {
392 pr_debug("ARM performance counters do not support "
398 * Store the event encoding into the config_base field.
400 hwc
->config_base
|= (unsigned long)mapping
;
402 if (!is_sampling_event(event
)) {
404 * For non-sampling runs, limit the sample_period to half
405 * of the counter width. That way, the new counter value
406 * is far less likely to overtake the previous one unless
407 * you have some serious IRQ latency issues.
409 hwc
->sample_period
= arm_pmu_event_max_period(event
) >> 1;
410 hwc
->last_period
= hwc
->sample_period
;
411 local64_set(&hwc
->period_left
, hwc
->sample_period
);
414 if (event
->group_leader
!= event
) {
415 if (validate_group(event
) != 0)
422 static int armpmu_event_init(struct perf_event
*event
)
424 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
427 * Reject CPU-affine events for CPUs that are of a different class to
428 * that which this PMU handles. Process-following events (where
429 * event->cpu == -1) can be migrated between CPUs, and thus we have to
430 * reject them later (in armpmu_add) if they're scheduled on a
431 * different class of CPU.
433 if (event
->cpu
!= -1 &&
434 !cpumask_test_cpu(event
->cpu
, &armpmu
->supported_cpus
))
437 /* does not support taken branch sampling */
438 if (has_branch_stack(event
))
441 if (armpmu
->map_event(event
) == -ENOENT
)
444 return __hw_perf_event_init(event
);
447 static void armpmu_enable(struct pmu
*pmu
)
449 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
450 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
451 int enabled
= bitmap_weight(hw_events
->used_mask
, armpmu
->num_events
);
453 /* For task-bound events we may be called on other CPUs */
454 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
458 armpmu
->start(armpmu
);
461 static void armpmu_disable(struct pmu
*pmu
)
463 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
465 /* For task-bound events we may be called on other CPUs */
466 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
469 armpmu
->stop(armpmu
);
473 * In heterogeneous systems, events are specific to a particular
474 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
475 * the same microarchitecture.
477 static int armpmu_filter_match(struct perf_event
*event
)
479 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
480 unsigned int cpu
= smp_processor_id();
483 ret
= cpumask_test_cpu(cpu
, &armpmu
->supported_cpus
);
484 if (ret
&& armpmu
->filter_match
)
485 return armpmu
->filter_match(event
);
490 static ssize_t
armpmu_cpumask_show(struct device
*dev
,
491 struct device_attribute
*attr
, char *buf
)
493 struct arm_pmu
*armpmu
= to_arm_pmu(dev_get_drvdata(dev
));
494 return cpumap_print_to_pagebuf(true, buf
, &armpmu
->supported_cpus
);
497 static DEVICE_ATTR(cpus
, S_IRUGO
, armpmu_cpumask_show
, NULL
);
499 static struct attribute
*armpmu_common_attrs
[] = {
504 static struct attribute_group armpmu_common_attr_group
= {
505 .attrs
= armpmu_common_attrs
,
508 /* Set at runtime when we know what CPU type we are. */
509 static struct arm_pmu
*__oprofile_cpu_pmu
;
512 * Despite the names, these two functions are CPU-specific and are used
513 * by the OProfile/perf code.
515 const char *perf_pmu_name(void)
517 if (!__oprofile_cpu_pmu
)
520 return __oprofile_cpu_pmu
->name
;
522 EXPORT_SYMBOL_GPL(perf_pmu_name
);
524 int perf_num_counters(void)
528 if (__oprofile_cpu_pmu
!= NULL
)
529 max_events
= __oprofile_cpu_pmu
->num_events
;
533 EXPORT_SYMBOL_GPL(perf_num_counters
);
535 static int armpmu_count_irq_users(const int irq
)
539 for_each_possible_cpu(cpu
) {
540 if (per_cpu(cpu_irq
, cpu
) == irq
)
547 void armpmu_free_irq(int irq
, int cpu
)
549 if (per_cpu(cpu_irq
, cpu
) == 0)
551 if (WARN_ON(irq
!= per_cpu(cpu_irq
, cpu
)))
554 if (!irq_is_percpu_devid(irq
))
555 free_irq(irq
, per_cpu_ptr(&cpu_armpmu
, cpu
));
556 else if (armpmu_count_irq_users(irq
) == 1)
557 free_percpu_irq(irq
, &cpu_armpmu
);
559 per_cpu(cpu_irq
, cpu
) = 0;
562 int armpmu_request_irq(int irq
, int cpu
)
565 const irq_handler_t handler
= armpmu_dispatch_irq
;
569 if (!irq_is_percpu_devid(irq
)) {
570 unsigned long irq_flags
;
572 err
= irq_force_affinity(irq
, cpumask_of(cpu
));
574 if (err
&& num_possible_cpus() > 1) {
575 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
580 irq_flags
= IRQF_PERCPU
|
584 irq_set_status_flags(irq
, IRQ_NOAUTOEN
);
585 err
= request_irq(irq
, handler
, irq_flags
, "arm-pmu",
586 per_cpu_ptr(&cpu_armpmu
, cpu
));
587 } else if (armpmu_count_irq_users(irq
) == 0) {
588 err
= request_percpu_irq(irq
, handler
, "arm-pmu",
595 per_cpu(cpu_irq
, cpu
) = irq
;
599 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq
);
603 static int armpmu_get_cpu_irq(struct arm_pmu
*pmu
, int cpu
)
605 struct pmu_hw_events __percpu
*hw_events
= pmu
->hw_events
;
606 return per_cpu(hw_events
->irq
, cpu
);
610 * PMU hardware loses all context when a CPU goes offline.
611 * When a CPU is hotplugged back in, since some hardware registers are
612 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
613 * junk values out of them.
615 static int arm_perf_starting_cpu(unsigned int cpu
, struct hlist_node
*node
)
617 struct arm_pmu
*pmu
= hlist_entry_safe(node
, struct arm_pmu
, node
);
620 if (!cpumask_test_cpu(cpu
, &pmu
->supported_cpus
))
625 per_cpu(cpu_armpmu
, cpu
) = pmu
;
627 irq
= armpmu_get_cpu_irq(pmu
, cpu
);
629 if (irq_is_percpu_devid(irq
))
630 enable_percpu_irq(irq
, IRQ_TYPE_NONE
);
638 static int arm_perf_teardown_cpu(unsigned int cpu
, struct hlist_node
*node
)
640 struct arm_pmu
*pmu
= hlist_entry_safe(node
, struct arm_pmu
, node
);
643 if (!cpumask_test_cpu(cpu
, &pmu
->supported_cpus
))
646 irq
= armpmu_get_cpu_irq(pmu
, cpu
);
648 if (irq_is_percpu_devid(irq
))
649 disable_percpu_irq(irq
);
651 disable_irq_nosync(irq
);
654 per_cpu(cpu_armpmu
, cpu
) = NULL
;
660 static void cpu_pm_pmu_setup(struct arm_pmu
*armpmu
, unsigned long cmd
)
662 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
663 struct perf_event
*event
;
666 for (idx
= 0; idx
< armpmu
->num_events
; idx
++) {
667 event
= hw_events
->events
[idx
];
674 * Stop and update the counter
676 armpmu_stop(event
, PERF_EF_UPDATE
);
679 case CPU_PM_ENTER_FAILED
:
681 * Restore and enable the counter.
682 * armpmu_start() indirectly calls
684 * perf_event_update_userpage()
686 * that requires RCU read locking to be functional,
687 * wrap the call within RCU_NONIDLE to make the
688 * RCU subsystem aware this cpu is not idle from
689 * an RCU perspective for the armpmu_start() call
692 RCU_NONIDLE(armpmu_start(event
, PERF_EF_RELOAD
));
700 static int cpu_pm_pmu_notify(struct notifier_block
*b
, unsigned long cmd
,
703 struct arm_pmu
*armpmu
= container_of(b
, struct arm_pmu
, cpu_pm_nb
);
704 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
705 int enabled
= bitmap_weight(hw_events
->used_mask
, armpmu
->num_events
);
707 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
711 * Always reset the PMU registers on power-up even if
712 * there are no events running.
714 if (cmd
== CPU_PM_EXIT
&& armpmu
->reset
)
715 armpmu
->reset(armpmu
);
722 armpmu
->stop(armpmu
);
723 cpu_pm_pmu_setup(armpmu
, cmd
);
726 case CPU_PM_ENTER_FAILED
:
727 cpu_pm_pmu_setup(armpmu
, cmd
);
728 armpmu
->start(armpmu
);
737 static int cpu_pm_pmu_register(struct arm_pmu
*cpu_pmu
)
739 cpu_pmu
->cpu_pm_nb
.notifier_call
= cpu_pm_pmu_notify
;
740 return cpu_pm_register_notifier(&cpu_pmu
->cpu_pm_nb
);
743 static void cpu_pm_pmu_unregister(struct arm_pmu
*cpu_pmu
)
745 cpu_pm_unregister_notifier(&cpu_pmu
->cpu_pm_nb
);
748 static inline int cpu_pm_pmu_register(struct arm_pmu
*cpu_pmu
) { return 0; }
749 static inline void cpu_pm_pmu_unregister(struct arm_pmu
*cpu_pmu
) { }
752 static int cpu_pmu_init(struct arm_pmu
*cpu_pmu
)
756 err
= cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING
,
761 err
= cpu_pm_pmu_register(cpu_pmu
);
768 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING
,
774 static void cpu_pmu_destroy(struct arm_pmu
*cpu_pmu
)
776 cpu_pm_pmu_unregister(cpu_pmu
);
777 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING
,
781 static struct arm_pmu
*__armpmu_alloc(gfp_t flags
)
786 pmu
= kzalloc(sizeof(*pmu
), flags
);
788 pr_info("failed to allocate PMU device!\n");
792 pmu
->hw_events
= alloc_percpu_gfp(struct pmu_hw_events
, flags
);
793 if (!pmu
->hw_events
) {
794 pr_info("failed to allocate per-cpu PMU data.\n");
798 pmu
->pmu
= (struct pmu
) {
799 .pmu_enable
= armpmu_enable
,
800 .pmu_disable
= armpmu_disable
,
801 .event_init
= armpmu_event_init
,
804 .start
= armpmu_start
,
807 .filter_match
= armpmu_filter_match
,
808 .attr_groups
= pmu
->attr_groups
,
810 * This is a CPU PMU potentially in a heterogeneous
811 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
812 * and we have taken ctx sharing into account (e.g. with our
813 * pmu::filter_match callback and pmu::event_init group
816 .capabilities
= PERF_PMU_CAP_HETEROGENEOUS_CPUS
,
819 pmu
->attr_groups
[ARMPMU_ATTR_GROUP_COMMON
] =
820 &armpmu_common_attr_group
;
822 for_each_possible_cpu(cpu
) {
823 struct pmu_hw_events
*events
;
825 events
= per_cpu_ptr(pmu
->hw_events
, cpu
);
826 raw_spin_lock_init(&events
->pmu_lock
);
827 events
->percpu_pmu
= pmu
;
838 struct arm_pmu
*armpmu_alloc(void)
840 return __armpmu_alloc(GFP_KERNEL
);
843 struct arm_pmu
*armpmu_alloc_atomic(void)
845 return __armpmu_alloc(GFP_ATOMIC
);
849 void armpmu_free(struct arm_pmu
*pmu
)
851 free_percpu(pmu
->hw_events
);
855 int armpmu_register(struct arm_pmu
*pmu
)
859 ret
= cpu_pmu_init(pmu
);
863 if (!pmu
->set_event_filter
)
864 pmu
->pmu
.capabilities
|= PERF_PMU_CAP_NO_EXCLUDE
;
866 ret
= perf_pmu_register(&pmu
->pmu
, pmu
->name
, -1);
870 if (!__oprofile_cpu_pmu
)
871 __oprofile_cpu_pmu
= pmu
;
873 pr_info("enabled with %s PMU driver, %d counters available\n",
874 pmu
->name
, pmu
->num_events
);
879 cpu_pmu_destroy(pmu
);
883 static int arm_pmu_hp_init(void)
887 ret
= cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING
,
888 "perf/arm/pmu:starting",
889 arm_perf_starting_cpu
,
890 arm_perf_teardown_cpu
);
892 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
896 subsys_initcall(arm_pmu_hp_init
);