2 * Ram backed block device driver.
4 * Copyright (C) 2007 Nick Piggin
5 * Copyright (C) 2007 Novell Inc.
7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8 * of their respective owners.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/major.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/highmem.h>
18 #include <linux/mutex.h>
19 #include <linux/radix-tree.h>
21 #include <linux/slab.h>
22 #ifdef CONFIG_BLK_DEV_RAM_DAX
23 #include <linux/pfn_t.h>
24 #include <linux/dax.h>
27 #include <linux/uaccess.h>
29 #define SECTOR_SHIFT 9
30 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
31 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
34 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
35 * the pages containing the block device's contents. A brd page's ->index is
36 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
37 * with, the kernel's pagecache or buffer cache (which sit above our block
43 struct request_queue
*brd_queue
;
44 struct gendisk
*brd_disk
;
45 #ifdef CONFIG_BLK_DEV_RAM_DAX
46 struct dax_device
*dax_dev
;
48 struct list_head brd_list
;
51 * Backing store of pages and lock to protect it. This is the contents
52 * of the block device.
55 struct radix_tree_root brd_pages
;
59 * Look up and return a brd's page for a given sector.
61 static DEFINE_MUTEX(brd_mutex
);
62 static struct page
*brd_lookup_page(struct brd_device
*brd
, sector_t sector
)
68 * The page lifetime is protected by the fact that we have opened the
69 * device node -- brd pages will never be deleted under us, so we
70 * don't need any further locking or refcounting.
72 * This is strictly true for the radix-tree nodes as well (ie. we
73 * don't actually need the rcu_read_lock()), however that is not a
74 * documented feature of the radix-tree API so it is better to be
75 * safe here (we don't have total exclusion from radix tree updates
76 * here, only deletes).
79 idx
= sector
>> PAGE_SECTORS_SHIFT
; /* sector to page index */
80 page
= radix_tree_lookup(&brd
->brd_pages
, idx
);
83 BUG_ON(page
&& page
->index
!= idx
);
89 * Look up and return a brd's page for a given sector.
90 * If one does not exist, allocate an empty page, and insert that. Then
93 static struct page
*brd_insert_page(struct brd_device
*brd
, sector_t sector
)
99 page
= brd_lookup_page(brd
, sector
);
104 * Must use NOIO because we don't want to recurse back into the
105 * block or filesystem layers from page reclaim.
107 * Cannot support DAX and highmem, because our ->direct_access
108 * routine for DAX must return memory that is always addressable.
109 * If DAX was reworked to use pfns and kmap throughout, this
110 * restriction might be able to be lifted.
112 gfp_flags
= GFP_NOIO
| __GFP_ZERO
;
113 #ifndef CONFIG_BLK_DEV_RAM_DAX
114 gfp_flags
|= __GFP_HIGHMEM
;
116 page
= alloc_page(gfp_flags
);
120 if (radix_tree_preload(GFP_NOIO
)) {
125 spin_lock(&brd
->brd_lock
);
126 idx
= sector
>> PAGE_SECTORS_SHIFT
;
128 if (radix_tree_insert(&brd
->brd_pages
, idx
, page
)) {
130 page
= radix_tree_lookup(&brd
->brd_pages
, idx
);
132 BUG_ON(page
->index
!= idx
);
134 spin_unlock(&brd
->brd_lock
);
136 radix_tree_preload_end();
142 * Free all backing store pages and radix tree. This must only be called when
143 * there are no other users of the device.
145 #define FREE_BATCH 16
146 static void brd_free_pages(struct brd_device
*brd
)
148 unsigned long pos
= 0;
149 struct page
*pages
[FREE_BATCH
];
155 nr_pages
= radix_tree_gang_lookup(&brd
->brd_pages
,
156 (void **)pages
, pos
, FREE_BATCH
);
158 for (i
= 0; i
< nr_pages
; i
++) {
161 BUG_ON(pages
[i
]->index
< pos
);
162 pos
= pages
[i
]->index
;
163 ret
= radix_tree_delete(&brd
->brd_pages
, pos
);
164 BUG_ON(!ret
|| ret
!= pages
[i
]);
165 __free_page(pages
[i
]);
171 * This assumes radix_tree_gang_lookup always returns as
172 * many pages as possible. If the radix-tree code changes,
173 * so will this have to.
175 } while (nr_pages
== FREE_BATCH
);
179 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
181 static int copy_to_brd_setup(struct brd_device
*brd
, sector_t sector
, size_t n
)
183 unsigned int offset
= (sector
& (PAGE_SECTORS
-1)) << SECTOR_SHIFT
;
186 copy
= min_t(size_t, n
, PAGE_SIZE
- offset
);
187 if (!brd_insert_page(brd
, sector
))
190 sector
+= copy
>> SECTOR_SHIFT
;
191 if (!brd_insert_page(brd
, sector
))
198 * Copy n bytes from src to the brd starting at sector. Does not sleep.
200 static void copy_to_brd(struct brd_device
*brd
, const void *src
,
201 sector_t sector
, size_t n
)
205 unsigned int offset
= (sector
& (PAGE_SECTORS
-1)) << SECTOR_SHIFT
;
208 copy
= min_t(size_t, n
, PAGE_SIZE
- offset
);
209 page
= brd_lookup_page(brd
, sector
);
212 dst
= kmap_atomic(page
);
213 memcpy(dst
+ offset
, src
, copy
);
218 sector
+= copy
>> SECTOR_SHIFT
;
220 page
= brd_lookup_page(brd
, sector
);
223 dst
= kmap_atomic(page
);
224 memcpy(dst
, src
, copy
);
230 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
232 static void copy_from_brd(void *dst
, struct brd_device
*brd
,
233 sector_t sector
, size_t n
)
237 unsigned int offset
= (sector
& (PAGE_SECTORS
-1)) << SECTOR_SHIFT
;
240 copy
= min_t(size_t, n
, PAGE_SIZE
- offset
);
241 page
= brd_lookup_page(brd
, sector
);
243 src
= kmap_atomic(page
);
244 memcpy(dst
, src
+ offset
, copy
);
247 memset(dst
, 0, copy
);
251 sector
+= copy
>> SECTOR_SHIFT
;
253 page
= brd_lookup_page(brd
, sector
);
255 src
= kmap_atomic(page
);
256 memcpy(dst
, src
, copy
);
259 memset(dst
, 0, copy
);
264 * Process a single bvec of a bio.
266 static int brd_do_bvec(struct brd_device
*brd
, struct page
*page
,
267 unsigned int len
, unsigned int off
, bool is_write
,
274 err
= copy_to_brd_setup(brd
, sector
, len
);
279 mem
= kmap_atomic(page
);
281 copy_from_brd(mem
+ off
, brd
, sector
, len
);
282 flush_dcache_page(page
);
284 flush_dcache_page(page
);
285 copy_to_brd(brd
, mem
+ off
, sector
, len
);
293 static blk_qc_t
brd_make_request(struct request_queue
*q
, struct bio
*bio
)
295 struct block_device
*bdev
= bio
->bi_bdev
;
296 struct brd_device
*brd
= bdev
->bd_disk
->private_data
;
299 struct bvec_iter iter
;
301 sector
= bio
->bi_iter
.bi_sector
;
302 if (bio_end_sector(bio
) > get_capacity(bdev
->bd_disk
))
305 bio_for_each_segment(bvec
, bio
, iter
) {
306 unsigned int len
= bvec
.bv_len
;
309 err
= brd_do_bvec(brd
, bvec
.bv_page
, len
, bvec
.bv_offset
,
310 op_is_write(bio_op(bio
)), sector
);
313 sector
+= len
>> SECTOR_SHIFT
;
317 return BLK_QC_T_NONE
;
320 return BLK_QC_T_NONE
;
323 static int brd_rw_page(struct block_device
*bdev
, sector_t sector
,
324 struct page
*page
, bool is_write
)
326 struct brd_device
*brd
= bdev
->bd_disk
->private_data
;
327 int err
= brd_do_bvec(brd
, page
, PAGE_SIZE
, 0, is_write
, sector
);
328 page_endio(page
, is_write
, err
);
332 #ifdef CONFIG_BLK_DEV_RAM_DAX
333 static long __brd_direct_access(struct brd_device
*brd
, pgoff_t pgoff
,
334 long nr_pages
, void **kaddr
, pfn_t
*pfn
)
340 page
= brd_insert_page(brd
, PFN_PHYS(pgoff
) / 512);
343 *kaddr
= page_address(page
);
344 *pfn
= page_to_pfn_t(page
);
349 static long brd_dax_direct_access(struct dax_device
*dax_dev
,
350 pgoff_t pgoff
, long nr_pages
, void **kaddr
, pfn_t
*pfn
)
352 struct brd_device
*brd
= dax_get_private(dax_dev
);
354 return __brd_direct_access(brd
, pgoff
, nr_pages
, kaddr
, pfn
);
357 static const struct dax_operations brd_dax_ops
= {
358 .direct_access
= brd_dax_direct_access
,
362 static const struct block_device_operations brd_fops
= {
363 .owner
= THIS_MODULE
,
364 .rw_page
= brd_rw_page
,
368 * And now the modules code and kernel interface.
370 static int rd_nr
= CONFIG_BLK_DEV_RAM_COUNT
;
371 module_param(rd_nr
, int, S_IRUGO
);
372 MODULE_PARM_DESC(rd_nr
, "Maximum number of brd devices");
374 unsigned long rd_size
= CONFIG_BLK_DEV_RAM_SIZE
;
375 module_param(rd_size
, ulong
, S_IRUGO
);
376 MODULE_PARM_DESC(rd_size
, "Size of each RAM disk in kbytes.");
378 static int max_part
= 1;
379 module_param(max_part
, int, S_IRUGO
);
380 MODULE_PARM_DESC(max_part
, "Num Minors to reserve between devices");
382 MODULE_LICENSE("GPL");
383 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR
);
387 /* Legacy boot options - nonmodular */
388 static int __init
ramdisk_size(char *str
)
390 rd_size
= simple_strtol(str
, NULL
, 0);
393 __setup("ramdisk_size=", ramdisk_size
);
397 * The device scheme is derived from loop.c. Keep them in synch where possible
398 * (should share code eventually).
400 static LIST_HEAD(brd_devices
);
401 static DEFINE_MUTEX(brd_devices_mutex
);
403 static struct brd_device
*brd_alloc(int i
)
405 struct brd_device
*brd
;
406 struct gendisk
*disk
;
408 brd
= kzalloc(sizeof(*brd
), GFP_KERNEL
);
412 spin_lock_init(&brd
->brd_lock
);
413 INIT_RADIX_TREE(&brd
->brd_pages
, GFP_ATOMIC
);
415 brd
->brd_queue
= blk_alloc_queue(GFP_KERNEL
);
419 blk_queue_make_request(brd
->brd_queue
, brd_make_request
);
420 blk_queue_max_hw_sectors(brd
->brd_queue
, 1024);
421 blk_queue_bounce_limit(brd
->brd_queue
, BLK_BOUNCE_ANY
);
423 /* This is so fdisk will align partitions on 4k, because of
424 * direct_access API needing 4k alignment, returning a PFN
425 * (This is only a problem on very small devices <= 4M,
426 * otherwise fdisk will align on 1M. Regardless this call
429 blk_queue_physical_block_size(brd
->brd_queue
, PAGE_SIZE
);
430 disk
= brd
->brd_disk
= alloc_disk(max_part
);
433 disk
->major
= RAMDISK_MAJOR
;
434 disk
->first_minor
= i
* max_part
;
435 disk
->fops
= &brd_fops
;
436 disk
->private_data
= brd
;
437 disk
->queue
= brd
->brd_queue
;
438 disk
->flags
= GENHD_FL_EXT_DEVT
;
439 sprintf(disk
->disk_name
, "ram%d", i
);
440 set_capacity(disk
, rd_size
* 2);
442 #ifdef CONFIG_BLK_DEV_RAM_DAX
443 queue_flag_set_unlocked(QUEUE_FLAG_DAX
, brd
->brd_queue
);
444 brd
->dax_dev
= alloc_dax(brd
, disk
->disk_name
, &brd_dax_ops
);
452 #ifdef CONFIG_BLK_DEV_RAM_DAX
454 kill_dax(brd
->dax_dev
);
455 put_dax(brd
->dax_dev
);
458 blk_cleanup_queue(brd
->brd_queue
);
465 static void brd_free(struct brd_device
*brd
)
467 put_disk(brd
->brd_disk
);
468 blk_cleanup_queue(brd
->brd_queue
);
473 static struct brd_device
*brd_init_one(int i
, bool *new)
475 struct brd_device
*brd
;
478 list_for_each_entry(brd
, &brd_devices
, brd_list
) {
479 if (brd
->brd_number
== i
)
485 add_disk(brd
->brd_disk
);
486 list_add_tail(&brd
->brd_list
, &brd_devices
);
493 static void brd_del_one(struct brd_device
*brd
)
495 list_del(&brd
->brd_list
);
496 #ifdef CONFIG_BLK_DEV_RAM_DAX
497 kill_dax(brd
->dax_dev
);
498 put_dax(brd
->dax_dev
);
500 del_gendisk(brd
->brd_disk
);
504 static struct kobject
*brd_probe(dev_t dev
, int *part
, void *data
)
506 struct brd_device
*brd
;
507 struct kobject
*kobj
;
510 mutex_lock(&brd_devices_mutex
);
511 brd
= brd_init_one(MINOR(dev
) / max_part
, &new);
512 kobj
= brd
? get_disk(brd
->brd_disk
) : NULL
;
513 mutex_unlock(&brd_devices_mutex
);
521 static int __init
brd_init(void)
523 struct brd_device
*brd
, *next
;
527 * brd module now has a feature to instantiate underlying device
528 * structure on-demand, provided that there is an access dev node.
530 * (1) if rd_nr is specified, create that many upfront. else
531 * it defaults to CONFIG_BLK_DEV_RAM_COUNT
532 * (2) User can further extend brd devices by create dev node themselves
533 * and have kernel automatically instantiate actual device
534 * on-demand. Example:
535 * mknod /path/devnod_name b 1 X # 1 is the rd major
536 * fdisk -l /path/devnod_name
537 * If (X / max_part) was not already created it will be created
541 if (register_blkdev(RAMDISK_MAJOR
, "ramdisk"))
544 if (unlikely(!max_part
))
547 for (i
= 0; i
< rd_nr
; i
++) {
551 list_add_tail(&brd
->brd_list
, &brd_devices
);
554 /* point of no return */
556 list_for_each_entry(brd
, &brd_devices
, brd_list
)
557 add_disk(brd
->brd_disk
);
559 blk_register_region(MKDEV(RAMDISK_MAJOR
, 0), 1UL << MINORBITS
,
560 THIS_MODULE
, brd_probe
, NULL
, NULL
);
562 pr_info("brd: module loaded\n");
566 list_for_each_entry_safe(brd
, next
, &brd_devices
, brd_list
) {
567 list_del(&brd
->brd_list
);
570 unregister_blkdev(RAMDISK_MAJOR
, "ramdisk");
572 pr_info("brd: module NOT loaded !!!\n");
576 static void __exit
brd_exit(void)
578 struct brd_device
*brd
, *next
;
580 list_for_each_entry_safe(brd
, next
, &brd_devices
, brd_list
)
583 blk_unregister_region(MKDEV(RAMDISK_MAJOR
, 0), 1UL << MINORBITS
);
584 unregister_blkdev(RAMDISK_MAJOR
, "ramdisk");
586 pr_info("brd: module unloaded\n");
589 module_init(brd_init
);
590 module_exit(brd_exit
);